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ABSTRACT Domain generalization seeks to acquire a domain-invariant representation from various source
domains, thereby enabling a model to achieve robust generalization across previously unseen target domains.
Most existing domain generalization methods for cross-domain classification tasks typically train models
using examples randomly presented from all source domains. This may lead to training instability due to
the presence of conflicting gradients, thus affecting the model’s generalization ability. Recently, curriculum
learning has been successfully applied in domain generalization. However, we find that existing methods
only focus on domain shift and ignore intra-domain category shift, which still leads to gradient conflict
problems and affects the model’s generalization ability. To address the aforementioned challenges, we put
forward a novel and general methodology known as ladder curriculum learning (LCL) as a solution to
the above problem. Specifically, we deliver the source domain data in stages according to the order from
easy to difficult. We focus not only on the inter-domain data sorted from easy to difficult, known as
inter-domain curriculum learning, but also on the intra-domain data sorted from easy to difficult, known
as intra-domain curriculum learning. Through the combined effects of inter-domain curriculum learning
and intra-domain curriculum learning, our proposed LCL method can effectively address the optimization
problem concerning conflicting gradient directions. Experiments conducted on widely used public datasets
show that the LCL method can significantly improve baseline methods, with an improvement margin of up
to 1.5%. Through experiments, we also find that the LCL method can be successfully applied to existing
domain generalization methods, further enhancing the network’s generalization capability with an average
improvement rate of 1%.

INDEX TERMS Conflicting gradients, domain generalization, ladder curriculum learning.

I. INTRODUCTION
With the rapid development of deep learning, deep neu-
ral networks (DNN) have become the primary solution
for applications in various fields such as image classifi-
cation and image recognition. DNN typically assume that
the training and testing data are independently and identi-
cally distributed (i.i.d.) [1]. This assumption, however, is not
applicable in numerous real-world scenarios. For example,
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when utilizing segmentation models trained on sunny days
to handle rainy and foggy environments [2], or attempting
to recognize art paintings using models trained on pho-
tographs [3], an unavoidable decrease in performance is often
observed in such out-of-distribution deployment scenarios.
The answers to these questions all hinge on the machine
learning models’ ability to effectively address a fundamen-
tal challenge, known as the domain shift [4] problem. This
problem pertains to the distributional shift between a given
set of training (source) data and a different set of test (target)
data [5].
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FIGURE 1. Comparison between existing methods and our proposed approach in terms of design philosophy.
Existing methods focus solely on domain shift while neglecting category shift, which may result in conflicting
gradients during the optimization process, making it challenging for the network parameters to follow
consistent optimization directions. This instability could hinder the learning of domain-invariant
representations. In contrast, our proposed approach emphasizes category shift and aims to minimize the
generation of conflicting gradients, enabling the network model to follow a consistent optimization direction.

Domain generalization (DG), which focuses on the task
of generalizing a predictive model across distinct domains,
specifically targets the challenges posed by non-i.i.d. super-
vised learning scenarios. The primary objective of domain
generalization is to train a predictive model by harnessing
labelled data from multiple source domains and enhancing
its capacity to generalize effectively to an unseen target
domain. In this context, a domain is defined as a joint prob-
ability distribution P(x, y). Domain generalization has been
extensively investigated in diverse applications, including
person re-identification [6], object recognition [7], and fault
diagnosis [8].
In the DG context, researchers have conventionally

employed pre-trained weights from the ImageNet dataset [9]
to train their models. This transfer learning approach proves
to be pragmatic, especially when dealing with limited data.
However, this model exhibits a bias towards the ImageNet
dataset even before the training process. This phenomenon
becomes notably pronounced in multi-domain datasets with
well-represented domain shift. Therefore, it is crucial to
pay attention to the sequence of training data from multiple
domains, as arbitrarily changing the order can cause con-
flicting gradient issues, affecting the model’s generalization
ability. This study aims to address the conflicting gradient
problem to improve the model’s generalization ability.

Curriculum learning [10] involves the sequential presenta-
tion of data that progresses from easy-to-learn to difficult-
to-learn during the training of deep learning models. This
approach is implemented in the context of a deep learning
model that emulates a person’s 18-year knowledge trajectory,
encompassing knowledge from beginner to university-level
understanding. Currently, there have been studies applying
the idea of curriculum learning to DG. As an illustration,
the researchers in literature [11] introduce a novel approach

known as inter-domain curriculum learning (IDCL), which
employs a curriculum learning-based training strategy in the
context of DG by effectively utilizing domain shift. Within
IDCL, the training process entails the sequential presentation
of weak domain-shift data followed by strong domain-shift
data. However, we find that existing methods only focus on
domain shift and ignore category shift within domains, which
still lead to conflicting gradient issues and affect the model’s
generalization ability, as shown in Figure 1 (left). Therefore,
to address the aforementioned issues, we propose Ladder
Curriculum Learning (LCL) to minimize the generation of
conflicting gradients, as illustrated in Figure 1 (right).
We metaphorically regard domain data as a course and

category data as the content of chapters. We believe it is
important to consider not only the difficulty between courses
but also the difficulty within course chapters. Based on
the above idea, we introduce the concepts of inter-domain
curriculum learning and intra-domain curriculum learning
in domain generalization. Inter-domain curriculum learn-
ing refers to the ordering of multiple source domain data
from easy to difficult, while intra-domain curriculum learn-
ing refers to the ordering of category data within a source
domain from easy to difficult. Considering both inter-domain
and intra-domain curriculum learning, we propose the LCL
method.

This study focuses on cross-domain classification tasks.
Therefore, in the implementation of LCL, the data used for
training is arranged in ascending order based on data shift.
Generally, it can be sorted according to the distance from
the domain where the backbone is pre-trained. We calculate
the distances between the source domain data and ImageNet
data, as well as between the category data within the source
domain and ImageNet data, using cosine similarity. These
two distances are referred to as domain-level distance and
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FIGURE 2. Generic network structure. Taking the PACS dataset as an example, we meticulously partition multiple source domain data with different
domain shifts, sorting the data from easy to difficult in each stage to alleviate the issue of training instability caused by conflicting gradients. In the
network below Figure2, we implement the proposed LCL method at the input end of the network. Figure2 depicts unique domain distributions,
denoted by different colors, and distinct classes, represented by various shapes.

category-level distance, respectively. Based on these dis-
tances, we strictly sort the source domain data from easy to
difficult to alleviate training instability caused by conflicting
gradient directions during the optimization process.

This study provides the following contributions:
(1) We introduce an innovative and advanced curriculum

learning-based training strategy in the domain generalization
(DG) context, capitalizing on domain shift and category shift.

(2) LCL considers both inter-domain curriculum learning
and intra-domain curriculum learning, not only focusing on
the sorting of inter-domain data but also emphasizing the sort-
ing of intra-domain data. This is a comprehensive application
of the curriculum learning concept in domain generalization.

(3) LCL can be successfully applied to existing domain
generalization methods to further improve generalization
performance. Through experiments, it is verified that LCL

can be successfully applied to multi-class datasets, and the
proposed method has broad application prospects.

The structure of the remainder of this paper is as follows:
Section II introduces related research; Section III discusses
our proposed method in detail; Section IV reports the exper-
imental results and provides a detailed analysis of these
results; Section V summarizes the work of this paper.

II. RELATED WORK
The problem of generalizing predictive models from several
source domains to an unseen target domain has been explored
to some extent in the fields of machine learning and computer
vision [12], [13]. Muandet et al. [14] formally introduce the
term ‘‘domain generalization’’ to refer to this problem and
enhance a classifier trained on source domains for use with
an unseen target domain by proposing the Domain-Invariant
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Component Analysis (DICA) approach. Specifically, DICA
identifies a feature transformation byminimizing the distribu-
tional variance among various source marginal distributions
while preserving the functional relationship between input
and output variables. Subsequently, aligning the distributions
of multiple source domains has emerged as a fundamen-
tal solution for addressing domain generalization [15], [16],
[17], [18].

One of the most commonly utilized methods in domain
generalization (DG) is domain-invariant representation learn-
ing. Mahajan et al. [19] elucidate the importance of mod-
elling within-class variations and propose a matching-based
algorithm for situations where base objects are observed,
and an approximate objective when objects are not observed.
Lv et al. [20] advances a cutting-edge method from a causal
perspective to extract causal factors from inputs and recon-
struct invariant causal mechanisms. Li et al. [21] explicitly
address disentangled features on shape by refining network
structures and augmentation techniques. Additionally, learn-
ing schemes achieve significant advancements from various
angles with transferable architecture. Cha et al. [22] endeavor
to discover flat minima to narrow the domain generalization
gap by devising a strategy of stochastic weight averaging
densely to mitigate overfitting. Zhang et al. [23] develop a
multi-view regularized meta-learning algorithm that utilizes
multiple optimization trajectories to determine optimal direc-
tions for model updates. Wang et al. [24] explore implicitly
aligning the gradient directions between the perturbed loss
and the empirical risk to enhance the optimization objective.
Dai et al. [25] propose to conduct distribution exploration in
the subset of uncertainty sharing the same semantic factors
with the training domain. A special subset of methods based
on representation learning are those grounded in causality,
which introduce causal invariance. As an example, PAIR
[26] learns causal invariance by introducing a multi-objective
optimization approach to effectively balance empirical and
invariant risk minimization.

In addition to the methods mentioned above, domain gen-
eralization can also be achieved through other approaches
[27], [28], [29], [30], [31], [32], [33]. Ensemble methodsin
deep learning have garnered attention due to their efficacy
in enhancing model performance, robustness, and general-
ization. Bayesian ensemble method [27] offer a probabilistic
framework for amalgamating predictions while accounting
for model uncertainties. Ensemble distillation methods [28]
aim to bridge the performance disparity between large and
small models through techniques grounded in ensemble
learning. Approaches hinging on meta-learning [29], [30],
[31] acquire the ability to simulate domain shifts through the
employment of an episode-based training paradigm. Besides,
methods rooted in self-challenge, exemplified by RSC [32],
compel the model to glean a comprehensive representation
by discarding prevailing features elicited within the training
dataset.Furthermore, Gao et al. [33] employ meta-learning
to discover a reusable white-box loss function, employing
the Implicit Function Theorem (IFT) to compute gradients of

FIGURE 3. Principles of domain generalization.

the target domain performance concerning the source domain
loss parameters.

III. METHODOLOGY
A. NOTATIONS
Consider X as representing a set of input elements, where Y
designates the output space. Within a given domain, datasets
are drawn from a distribution. This phenomenon is denoted
as S = {(xi, yi)}ni=1∼PXY , wherein x∈X⊂Rd , y∈Y⊂R rep-
resents the label, while PXY signifies the joint distribution of
the input sample and output label. The corresponding random
variables are represented by X and Y [34].

Illustrated in Figure 3, within the context of domain gen-
eralization, we are presented with a collection of M source
domains denoted as Ssource = {S i | i = 1, · · · ,M}, where
S i = {(x ij , y

i
j)}

ni
j=1 represents the i-th specific domain. The

difference in the joint distributions exists between every pair
of domains, denoted as: PiXY ̸=PjXY , 1 ≤ i̸=j ≤ M . The pri-
mary objective underlying domain generalization pertains to
the acquisition of a robust and broadly applicable predictive
function denoted as h : X →Y [34]. This function is to be
learned from the training data originating from theM source
domains, with the ultimate aim ofminimizing predictive error
when applied to an entirely novel target domain, Starget (It is
important to note that Starget cannot be accessed in training
and PtargetXY ̸= PiXY for i∈{1, · · ·M}) :

min hE(x,y)∈Starget [ℓ(h(x), y)

where E is the expectation and ℓ(·, ·) is the loss function.

B. GENERIC NETWORK STRUCTURE
We propose a universal network architecture, the network
structure utilized in this research is depicted in Figure 2.
This network structure can be applied to current mainstream
domain generalization methods, such as representation learn-
ing, learning strategy, and so on. The proposed generic
network structure consists of three key elements: the LCL
method, the feature extractor, and the classifier. LCL is used
to feed data in stages, and then DG methods are applied
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FIGURE 4. Comparison of inter-domain curriculum learning and intra-domain curriculum learning. Inter-domain curriculum learning
focuses on sorting the inter-domain data as a whole from easy to hard, while intra-domain curriculum learning focuses on sorting the
intra-domain category data from easy to hard.

to the embedded data extracted by the feature extractor to
facilitate the establishment of a correctly aligned embedding
space. Finally, these acquired embeddings are input into
the classifier, which adeptly discriminates target images by
ensuring robust alignment among classes within the learned
embeddings.

C. LADDER CURRICULUM LEARNING
In DG, we find that almost all methods use random data
for training, however, this approach can produce conflict-
ing gradients. Therefore, we propose the LCL method as
an innovative strategy to be implemented at the input end.
Specifically, the source domain data needs to be sorted
through inter-domain curriculum learning and intra-domain
curriculum learning, and then each stage’s data is sequentially
fed into the network for training.

Based on previous research findings, it has been observed
that as the domain shift from the specific photo domain
becomes stronger, the model’s test accuracy decreases.
Specifically, in the PACS dataset, the test accuracy is rela-
tively high for photos, followed by art paintings, cartoons, and
sketches. Researchers commonly adopt pre-trained weights

from ImageNet for domain generalization (DG) tasks instead
of training models from scratch. As a result, the model
exhibits bias towards the photo domain even before training,
leading to a degradation in generalization performance. This
decline is particularly evident in datasets where domain shift
is prominently represented, such as PACS, which has been
actively utilized in recent DG studies.

In light of this, we hypothesize that including training
data with strong domain shift during the initial training
phase might hinder successful learning due to difficulties
with weight exploration. Therefore, we consider inter-domain
curriculum learning and intra-domaincurriculum learning.
Inter-domain curriculum learning provides data with weak
domain shift from ImageNet during the initial training to train
the model, and then gradually provides all domain data. For
example, in the PACS dataset, assuming the target domain is
cartoons. As shown in Figure 4 (top), the model first learns
photos, then photos and art paintings, and finally photos,
art paintings, and sketches. Intra-domain curriculum learning
focuses on learning category data from easy to difficult within
a specific domain. As shown in Figure 4 (bottom), during the
initial training, data with weak category shift from ImageNet
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is used to train the model, and then all category data is
gradually provided. As shown in Figure 4 (bottom), themodel
first learns dogs, then dogs and horses, then dogs, horses,
and guitars, and finally dogs, horses, guitars, and houses. It
is noteworthy that we use cosine similarity to measure the
distance between the data from the source domains and the
ImageNet data, as shown in Equation (1).

cos =
a · b

∥a∥ ∥b∥
(1)

Here, ‘‘·’’ denotes the dot product, and ‘‘∥a∥ ’’ represents the
magnitude of the vectors. The range of cosine similarity is
[−1, 1], with larger values indicating a smaller angle between
the two vectors, meaning the vectors are more similar. Based
on these distances, we strictly sort the source domain data
from easy to difficult to alleviate training instability caused
by conflicting gradient directions during the optimization
process.

The process of data input is described as follows. Assum-
ing thatDall , as defined in Equation (2), representing a dataset
comprising all domains. The sequence of {D1,D2, · · · ,DM }

denotes the progression in which domain shifts intensify.
Additionally, Di, 1 ≤ i ≤ M in Equation (3) to Equation (5)
denotes a domain encompassing all categories, and the
sequence of {A,B, · · · ,Z } signifies the increasing strength of
category shift.

Dall = {D1,D2, · · · ,DM } (2)

D1 = {A1,B1, · · · ,Z1} (3)

D2 = {A2,B2, · · · ,Z2} (4)

. . .

DM = {AM ,BM , · · · ,ZM } (5)

Assuming that the target domain is DM . As shown in
Equations (6), (7), and (8), we progressively incorporate class
data in the order from weak to strong shift, while excluding
the target domain DM .

S1 = {A1} (6)

S2 = {S1,B1} (7)

. . .

Sn = {Sn−1,ZM−1} (8)

In the LCL framework, the domains utilized for training
are arranged in ascending order based on their domain shift.
Typically, source domains can be organized by their distance
from a domain where a backbone is pre-trained. Likewise,
the categories employed for training are arranged in ascend-
ing order according to their category shift within the LCL
approach. These categories can be ordered based on their
distance from a domain where a backbone is pre-trained.
Specifically, we usemetric methods to calculate domain-level
distance and class-level distance. Based on these two dis-
tances, we carefully sort the source domain data from easy
to difficult. We firmly believe that the LCL method is still
effective even when applied to complex datasets.

D. OVERALL OBJECTIVE AND TRAINING
In order to facilitate the classification task in DG, we employ
the cross-entropy loss. This mathematical expression,
as depicted in Equation (9), represents the definition of the
classification loss.

Lc =
1
ns

ns∑
j=1

L(f (g(x j)), yj) (9)

where L(·,·) is the cross-entropy loss, g (·) is the feature
extractor, and a softmax over the K classes comes after the
classifier f (·). ns represents the number of source domain
images.

Assuming the loss function of a certain domain generaliza-
tion method is denoted as Ldg, the overall objective function
is shown as Equation (10).

Lall = Lc + αLdg (10)

We integrate two distinct loss functions: the classification
loss and the domain generalization loss. The relative signifi-
cance of these functions is controlled by the hyperparameters
α, which dictate the weight of the domain generalization loss.

IV. EXPERIMENTS
We carry out experiments on three well-established bench-
mark datasets that are widely employed in the domain
generalization research. Firstly, we provide an overview
of the datasets used and elaborate on the implementation
specifics. Subsequently, we conduct a comprehensive abla-
tion study of the proposed method. Finally, we further
evaluate the effectiveness of LCL in domain generalization
tasks through its application in state-of-the-art domain gen-
eralization methods.

A. DATASETS
Figure 5 illustrates selected sample images from the three
benchmark datasets utilized in our experiments.

PACS [3] dataset comprises four domains: Photo, Art
Painting (Art), Cartoon, and Sketch. It encompasses a total
of 9,991 images belonging to seven classes, namely dog,
elephant, giraffe, guitar, horse, house, and person.

Office-31 [35] dataset comprises 4,652 images distributed
across 31 categories. These images have been collected
from three distinct sources: Amazon, Webcam, and DSLR.
DSLR contains high-quality images captured using a digital
SLR camera. Amazon includes medium-resolution photos
obtained from internet retailers (www.amazon.com). Web-
cam consists of low-resolution images captured using a web
camera. Our proposed method is evaluated on six transfer
tasks within the Office-31 dataset, namely A → W, D → W,
W → D, A → D, D → A, and W → A.
Office-Home [36] dataset consists of approximately 15,500

images, which are categorized into 65 object classes com-
monly observed in office and home settings. It comprises
four source domains, namely Art, Clipart, Product, and Real
World. Notably, the Office-Home dataset boasts the largest
number of categories among the three benchmark datasets.
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TABLE 1. Classification accuracy of various methods on PACS dataset. The best results are highlighted in bold font. In this table, ‘‘Basel.’’ Represents the
basel. method trained solely on the source dataset, ‘‘IDCL2STAGE’’ and ‘‘IDCL3STAGE’’ are both methods proposed in the literature [11].

FIGURE 5. The gallery of datasets.

B. PARAMETER SETTING
Our approach is implemented in the PyTorch framework,
utilizing the AlexNet [37] architecture or the ResNet [38]
architecture as the underlying network. The network is ini-
tially pre-trained on the ImageNet dataset. Stochastic gradient
descent (SGD) is employed as the optimizer for network
training. Following IDCL [11], data augmentation is used in
our experiments to improve model generalizability. This is
done by randomly cropping, flipping horizontally, jittering
color, and changing the intensity. The learning rate gradually
decreases, starting from 0.001. The batch size is set to 64.
Batch data has two sources: newly added class data and class
data that has already participated in the training. We divide
the newly added class data and the class data that has already
participated in the training in a 1:1 ratio. The number of
iterations for the first input category data is set to p, and
the number of iterations is increased by p for each category
added thereafter. Due to the varying number of categories in
the PACS, Office-31, and Office-Home datasets, the iteration
counts are set differently for each dataset. The p-values are
set to 90, 10, and 3 in the PACS, Office-31, and Office-Home

datasets, respectively. The implementation process follows
a leave-one-domain-out protocol, i.e., all but one domain
dataset is treated as the target domain and the rest of the
domain datasets are treated as source domains.

C. ANALYSIS OF EFFECTIVENESS
1) METHODS
This section aims to assess the effectiveness of the pro-
posed method. To conduct this evaluation, three benchmark
datasets are employed, namely PACS, Office-31, and Office-
Home. For the PACS dataset and the Office-31 dataset, all
methods use the AlexNet [37] network and ResNet18 [38]
network. Moreover, the scope of this comparison is broad-
ened to encompass the Office-Home datasets, where we use
ResNet18 [38] and ResNet50 [38] as the underlying network
model. In DG, there are relatively few studies on curriculum
learning at present. We only find the IDCL2stage method
[11] and the IDCL3stage method [11]. Both IDCL2stage and
IDCL3stage are methods of inter-domain curriculum learning,
but the two methods differ in how they input data. IDCL3stage
inputs data from all stages, while IDCL2stage only inputs
data from some stages. It is worth noting that IDCL3stage
is designed for datasets with three source domains, but the
Office-31 dataset only has two source domain data. There-
fore, in the Office-31 dataset, we refer to the method in
literature [11] as IDCL2stage. By applying the LCL method
on various datasets and comparing it with the IDCL method,
we aim to comprehensively evaluate the effectiveness and
performance of LCL on different datasets and network
architectures.

Table 1 presents the outcomes achieved on the PACS
dataset, while Tables 2 and 3 display the results on Office-
31 and Office-Home, respectively. Throughout these tables,
we adhere to the leave-one-domain-out evaluation protocol.
Notably, in each column of the tables, the most favorable
outcome is denoted in bold formatting.

2) ANALYSIS OF THE PACS DATASET
We conduct a comprehensive comparison between our pro-
posed method, LCL, and the state-of-the-art approaches.
Table 1 shows the recognition accuracy in the PACS
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TABLE 2. Classification accuracy of various methods on Office-31 dataset. The best results are highlighted in bold font. In this table, ‘‘Basel.’’ represents
the basel. Method trained solely on the source dataset, ‘‘IDCL2STAGE’’ is a methods proposed in the literature [11].

TABLE 3. Classification accuracy of various methods on office-home dataset. The best results are highlighted in bold font. In this table, ‘‘Basel.’’
represents the basel. Method trained solely on the source dataset, ‘‘IDCL2STAGE’’ and ‘‘IDCL3STAGE’’ are both methods proposed in the literature [11].

FIGURE 6. Performance of various methods on various datasets and various networks. (a): performance of various methods on PACS dataset using the
AlexNet network. (b): performance of various methods on Office-31 dataset using the ResNet18 network. (c): performance of various methods on
Office-Home dataset using the ResNet50 network.

FIGURE 7. Number of categories.

benchmark. The Basel. is a network modified from AlexNet
or ResNet18, without using any domain generalization
methods.

In AlexNet, we find that both IDCL2stage and IDCL3stage
significantly improve the ‘‘Basel.’’ method, with average

FIGURE 8. Comparison of the average accuracy of various methods.

accuracy increased by 0.6% and 0.9% respectively. This indi-
cates that a reasonable arrangement of data in domain gener-
alization is essential. Moreover, we observe that ‘‘Basel. +

IDCL3stage’’ outperforms ‘‘Basel. +IDCL2stage’’ in both
task-specific accuracy and average accuracy, indicating that
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input data from all stages is more effective than using data
from only some stages. Our proposed LCLmethod is inspired
by this, and it inputs data from all stages in order. Fur-
thermore, we observe that ‘‘Basel. + LCL’’ significantly
improves the average accuracy of ‘‘Basel.’’ by 1.2%, demon-
strating its capability in enhancing generalization. Similar
conclusions are drawn in ResNet18.

3) ANALYSIS OF THE OFFICE-31 DATASET
Based on the experimental data presented in Table 2, we find
that in AlexNet, ‘‘Basel. + LCL’’ achieves a significant
improvement in the accuracy of ‘‘Basel.’’ by 1.2%, thus
demonstrating its effectiveness in enhancing generaliza-
tion. Furthermore, ‘‘Basel. + LCL’’ significantly improves
‘‘Basel.’’ in all tasks. It is worth noting that we obtain similar
conclusions in ResNet18, indicating that LCL can effec-
tively enhance network generalization capability, whether in
AlexNet or ResNet18. This means that the LCL method can
be applied to different networks and has broad application
prospects.

4) ANALYSIS OF THE OFFICE-HOME DATASET
Table 3 provides a comprehensive comparison of our
proposed method with several state-of-the-art approaches.
In ResNet18, the experimental results clearly demonstrate
that both ‘‘Basel. + LCL’’ and ‘‘Basel. + IDCL3stage’’ out-
perform ‘‘Basel.’’ in terms of average accuracy. This indicates
that reasonably arranging data in each stage can signifi-
cantly improve generalization capability compared to random
data input. Furthermore, we apply the LCL method to the
deeper ResNet50 and find that ‘‘Basel. + LCL’’ significantly
improves ‘‘Basel.’’ in all tasks. This shows that even in deeper
networks, LCL can enhance the network’s generalization
ability, further demonstrating the applicability of LCL in
different classification networks. Moreover, ‘‘Basel. + LCL’’
achieves higher accuracy across all tasks than ‘‘Basel. +

IDCL3stage’’. This is because our proposed method not only
focuses on inter-domain curriculum learning but also care-
fully considers intra-domain curriculum learning, thereby
mitigating the generation of conflicting gradients as much as
possible.

5) FURTHER ANALYSIS
Based on the data in Table 1 to Table 3, we present the
accuracy of three tasks on three different datasets in Figure 6.
From Figure 6, it can be observed that whether using a
shallow network such as AlexNet or a deep network like
ResNet18 and ResNet50, ‘‘Basel. + LCL’’ significantly
improves the accuracy of ‘‘Basel.’’ on all tasks. This demon-
strates the applicability of our proposed LCL method in
different networks and datasets.

Figure 7 shows the number of classes contained in each
domain in the PACS dataset, Office-31 dataset, and Office-
Home dataset. We find that each domain in the PACS dataset
has relatively few classes, only 7 classes. However, in the
Office-31 dataset and Office-Home dataset, each domain

contains a relatively large number of classes, exceeding
30 classes. There is a significant difference in the number
of classes among the datasets. Based on this, we compare
the average accuracy of ‘‘Basel. + IDCL’’ and ‘‘Basel. +

LCL’’ on different datasets to reflect their overall perfor-
mance, as shown in Figure 8 (left) and Figure 8 (right). Please
note that ‘‘Basel. + IDCL’’ here refers to the input of data
from all stages, representing either ‘‘Basel. + IDCL2stage’’
or ‘‘Basel. + IDCL3stage’’. From Figure 8 (left), it can be
observed that compared to ‘‘Basel.’’, ‘‘Basel.+ IDCL’’ shows
a significant improvement in the PACS dataset, reaching
1.0%. However, in the Office-31 dataset and Office-Home
dataset, the improvement of ‘‘Basel.+ IDCL’’ is not as signif-
icant, only around 0.5%. This indicates that IDCL performs
better in datasets with fewer classes but only moderately in
datasets with more classes. We believe this is because the
IDCL method does not consider the problem of intra-domain
class shift. Specifically, in the PACS dataset, each domain
has fewer classes, and using the IDCL method is less likely
to encounter the problem of conflicting gradients. Therefore,
the improvement of ‘‘Basel. + IDCL’’ is more evident in
the PACS dataset. However, in the Office-31 dataset and
Office-Home dataset, there are more classes, making it more
prone to the issue of conflicting gradients when using the
IDCL method, leading to less prominent improvement in
‘‘Basel.+ IDCL’’ in these datasets. In contrast, from Figure 8
(right), it can be observed that ‘‘Basel. + LCL’’ significantly
improves the accuracy of ‘‘Basel.’’ on all datasets. This indi-
cates that our proposed LCL method can be successfully
applied to datasets with either fewer or more classes.

D. COMPARATIVE ANALYSIS OF THE LATEST METHODS
1) METHODS
In this section, we perform a comprehensive comparison to
evaluate the effectiveness of LCL applied in state-of-the-
art domain generalization methods. We use a representative
benchmark dataset: PACS. We use the ResNet18 network
architecture. We apply two domain generalization methods:
DSU [39]and DSU++ [40]. To further validate the superi-
ority of LCL, we incorporate the concept of LCL into the
DSU method and DSU++ method.Through this evaluation,
we aim to assess the effectiveness of LCL implementing in
domain generalization methods.

In the DSU method, we implement our proposed approach
and report the experimental results in Table 4. Likewise, in the
DSU++ method, we implement our proposed approach and
report the experimental results in Table 5. In each table, the
names of the source domains are omitted according to the
leave-one-domain-out evaluation protocol.

2) COMPARATIVE ANALYSIS IN DSU METHOD
DSU is an advanced domain generalization methods pro-
posed by Li et al. In the DSU method, we incorporate LCL
to verify its effectiveness. Table 4 presents the experimen-
tal results of our approach on the PACS dataset. In the
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TABLE 4. Classification accuracy of various methods on PACS dataset. The best results are highlighted in bold font.

TABLE 5. Classification accuracy of various methods on PACS dataset. The best results are highlighted in bold font.

FIGURE 9. Comparison of the shifts of feature statistics (mean and standard deviation) in source domains and target domain using the DSU method.
(a): feature mean value of source domains. (b): feature mean value of target domain. (c): feature standard deviation of source domains. (d): feature
standard deviation of the target domain.

FIGURE 10. Comparison of the shifts of feature statistics (mean and standard deviation) in source domains and target domain using the ‘‘DSU + LCL’’
method. (a): feature mean value of source domains. (b): feature mean value of target domain. (c): feature standard deviation of source domains.
(d): feature standard deviation of the target domain.

FIGURE 11. Comparison of the DSU method and ‘‘DSU + LCL’’ method in terms of feature statistics (mean and standard deviation) (a): feature mean
value of source domains and target domain using the DSU method. (b): feature mean value of source domains and target domain using the ‘‘DSU +

LCL’’ method. (c): feature standard deviation of source domains and target domain using the DSU method. (d): feature standard deviation of source
domains and target domain using the ‘‘DSU + LCL’’ method.

PACS dataset, LCL significantly improves the DSU method.
‘‘DSU + LCL’’ achieves an average accuracy improvement
of 1.2% over ‘‘DSU.’’ This demonstrates that a reasonable
arrangement of data in the domain generalization method can
effectively enhance the network’s generalization ability.

3) COMPARATIVE ANALYSIS IN DSU++ METHOD
To further validate the effectiveness of LCL in other
domain generalization methods, we incorporate LCL into the
advanced domain generalization method DSU++ proposed
by Li et al. Table 5 present the experimental results of our
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approach on the PACS dataset. Similar to the conclusions in
Table 4, ‘‘DSU++ + LCL’’ also significantly improves the
DSU++method, achieving better results than ‘‘DSU++’’ on
all tasks, with an average accuracy increase of 0.8%. These
results indicate that our proposed method can be successfully
applied to existing domain generalization methods.

4) FURTHER ANALYSIS
Within this subsection, we delve into an extensive exami-
nation of the impacts generated by the DSU method and
the ‘‘DSU + LCL’’ method on intermediate features. For
analysis purposes, we conduct quantitative experiments on
the PACS dataset, where we treat art painting as the unseen
target domain and the remaining domains as source domains.

To elucidate the phenomenon of feature statistical shift,
we capture the intermediate features after the second block
in ResNet18 and calculate the average feature statistics val-
ues for some data in a specific category within both the
source domain and the target domain. The distributions of
these feature statistics are visually presented in Figure 9 and
Figure 10. We find that when using the DSU method, the
feature statistics demonstrate an obvious implicit calibration
effect, indicating that the DSU method can to some extent
improve the differences between feature statistics, but there
are still differences between domain distributions. Therefore,
we add our proposed LCLmethod on top of the DSUmethod.
From Figure 10, it can be observed that ‘‘DSU + LCL’’
has a smaller distribution shift compared to DSU. This is
because LCL not only focuses on domain shift issues but
also considers category shift issues within the domain. LCL
improves the training instability caused by conflicting gra-
dients from two aspects. As a result, ‘‘DSU + LCL’’ can
help themodel obtain robustness to domain shift and category
shift. To visually compare the source domain distributionwith
the target domain distribution, we present the feature statistics
of Figure 9 and Figure 10 together in Figure 11. It can be
observed from Figure 11 that ‘‘DSU + LCL’’ can further
improve the distribution shift issue present in DSU. This once
again strongly confirms that the LCL method can be success-
fully applied to existing domain generalization methods.

V. CONCLUSION
The primary goal of this study is to address the issue of
training instability caused by conflicting gradient directions.
We propose a method called ‘‘Ladder Curriculum Learning’’
(LCL) to promote domain generalization. The integration of
the LCL method yields substantial enhancements in manag-
ing the direction of conflicting gradients, a pivotal aspect
for bolstering domain generalization, ultimately leading to
heightened accuracy on the target dataset. Furthermore,
LCL demonstrates its ability to harmoniously complement
existing domain generalization approaches. Through the con-
current application of these two approaches, the models attain
heightened robustness when faced with diverse domain data.
Empirical evaluations on benchmark datasets unequivocally
validate the efficacy of our proposed method in advancing

the network’s generalization capabilities. Although LCL is a
successful method for resolving conflicting gradients, some
domain generalization methods may not yet fully apply the
idea of LCL. We will address this issue in future research.
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