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ABSTRACT Nowadays, the evolution of Al is noticed in supporting many life applications and manipulating
different data types. It helps complete the tasks and get the required information efficiently and precisely. The
deployment of Al techniques and machine learning models moves to limited-resources energy-constrained
platforms, ranging from simple IoT devices to unmanned aerial vehicles (UAVs). Employing such models
on limited-resource UAVs to support a wide range of applications is an inevitable duty and it is at the
same time a challenging task. Additionally, obtaining high-accuracy outputs from a single Al-enabled UAV
within the operating context of delay-sensitive applications faces a lot of obstacles, and may not be feasible.
Accordingly, distributed operations and cooperation among a set of UAVs can provide the required level of
accuracy within the time constraints for some applications. This work proposes a distributed computing
architecture for networked UAVs based on collaborative learning and edge-of-things computing. Such
architecture would help a suite of UAVs to train based on their local ML model and captured data and
to collaborate with other UAVs in the same network to generate an aggregated ML model that improves
the operation accuracy with acceptable performance speed. Using a networked UAV system and various
application scenarios, numerical simulation studies have been presented. The performance analysis and
results show how the proposed distributed computing architecture with collaborative learning outperforms
the centralized computing architecture with edge and cloud computing paradigms.

INDEX TERMS Artificial intelligence, collaborative learning, lightweight training, networked UAVs,
resource allocation, vehicular edge of things computing.

I. INTRODUCTION

In this era and upcoming period, there are plenty of appli-
cations and services that run and support users’ needs
depending on Internet-enabled embedded systems. The Inter-
net of Things (IoT), Internet of Vehicles (IoV), and Internet
of Drones (IoD) are clear examples of such networked sys-
tems with resource-constrained devices [1]. Those systems
are implemented at edges near users to enable real-time
high-speed privacy-preserved data communications. Artifi-
cial Intelligence (AI) has been involved in diverse real-life
applications and deployed on various hardware devices in
such systems. Implementing Al-based solutions on lim-
ited energy resource-constrained systems, such as unmanned
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aerial vehicles (UAVs), is not an easy task. Al engines
require high computation and energy power besides their
dependence on huge memory sizes. Employing Al/machine
learning (ML) algorithms would help tackle challenges when
operating these systems such as i) unreliable connectivity,
ii) high latency, iii) low data throughput, iv) high power
consumption, and v) resource management.

There are unique characteristics in UAV networks that
enforce to employ of ML algorithms to optimize operations
and consequently the quality of services of offered appli-
cations and services [2]. For instance, the highly dynamic
networking environment and the intermittency in communi-
cation paths are two main characteristics of UAV networks.
ML enables drones to learn data patterns related to differ-
ent network topology-related parameters (wireless channels,
traffic rates, .....), and service-related parameters (required
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resources, security requirements, ..... ). Drones can adopt
learned patterns autonomously to predict needs in the future
to establish reliable communication channels and to transfer
data efficiently to meet the quality of services of running
applications. Also, drones can adapt to any changes in oper-
ating conditions to meet an acceptable level of quality of
service.

Embedded machine learning [3] can support employing
machine learning algorithms on networked embedded sys-
tems, such as UAV networks, with limited resources to offer
reliable services to overcome the challenges in these net-
works. Embedded machine learning can help in planning
for efficient data transmission and minimizing power con-
sumption in limited resources Internet of Things devices [4].
In addition, ML can help in handling big data with privacy
preservation in IoV environments [5]. In UAV networks, sev-
eral types of embedded machine learning algorithms can be
adopted [2]. Unsupervised learning techniques require train-
ing datasets to expect the output, however, the training data
is not labeled to a specific output. Drones can learn classes
of output to be able to predict patterns and outcomes. Super-
vised learning techniques require labeled training datasets
that can help to learn drones the expected outcomes when
having specific input data. Semi-supervised learning tech-
niques depend on labeled and unlabeled training data that can
help in predicting output whether without learning a specific
related pattern or not. Reinforcement learning techniques
enable drones to learn by experience through trial and test
processes and to evaluate the obtained outcome targeting a
maximized cumulative reward. Deep Reinforcement Learn-
ing (RL) algorithms have been used in UAV-related duties,
such as UAV target tracking control, to help in learning the
best strategy for designing a suitable tracking controller [6].
In addition, the RL-based UAV controller design enables
UAV control adaptation in complicated operating environ-
ments [7]. It targets more instructive and directional training
phases for developing an optimized ML model. In addition,
RL algorithms can aid energy-constrained UAV systems to
work efficiently in various networking and communication
systems targeting optimized energy consumption and pro-
longing operating time [8].

In the previously discussed ML algorithms, the ML models
based on the implemented algorithms have to be imple-
mented locally in each drone and each drone has to employ
those models and keep training those models to be able to
rely on them and achieve reliable efficient operations. Since
employing ML requires utilizing and consuming some UAV
resources, UAVs may have limited capability to conduct the
required tasks. UAV resources overloading with tasks in a
highly dynamic and mobile network is still representing a
major problem that should be tackled with efficient solutions.
Training efficiently a machine learning model on a UAV
requires a huge amount of data and requires a long time.
Also, the inference time expected for a UAV when running
its trained model may vary and not be acceptable. So, it is
required to utilize lightweight machine learning algorithms
on UAVs that consider their limited resources, and at the
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same time, such algorithms should be efficient and generate
accurate outcomes in a timely manner.

To improve the training capability of UAVs, federated
learning (FL) architectures are recommended to be deployed.
FL is presented to provide an advantage of decoupling train-
ing ML models from accessing directly training data, which
results in privacy preservation [9]. This leads to leveraging a
set of trained ML models in drones where such models can be
aggregated to generate an efficient ML model without shar-
ing related locally-maintained training raw datasets between
interacting and communicating drones. There are centralized
and distributed FL architectures proposed to support cooper-
ating embedded systems [10]. In FL, each drone has its own
dataset and is not shared with other drones. Drones can get a
trained ML based on decentralized data among various drones
where that trained model may be shared by a master drone or
a central server.

In this research paper, we propose and discuss a computing
architecture for UAV networks based on adopting a dis-
tributed collaborative learning algorithm and edge-of-things
computing architecture. Such architecture would help a suite
of UAVs to train their ML models based on decentralized
data and with sharing raw data with other UAVs in the same
network. An aggregated ML model will be generated and
shared between UAVs in order to support realtime applica-
tions where the aggregated model improves the operation
accuracy with acceptable performance speed.

The main contributions of this work are outlined as follows.

o Developed system model of a distributed computing
architecture for networked UAVs based on collaborative
learning and edge-of-things computing.

o Algorithms for task offloading and collaborative learn-
ing for distributed UAVs integrated with edge and cloud
computing architectures.

o Analytical studies for comparing various computing
paradigms organized in a distributed way to serve dif-
ferent types of UAV-related services.

The remainder of this paper is organized as follows. Section II
highlights some relevant fields in literature with a focus
on some related work. The proposed UAV network system
model with distributed collaborative learning capability is
presented in section III. The conducted numerical studies are
shown and discussed in section IV. The paperwork concludes
in section V with a reference to some future directions.

Il. RELATED WORK

Due to the high computational requirements of the machine
learning algorithms and the resource limitations of the
embedded systems, embedded machine learning emerges to
fill in that gap and support the running of various real-time
applications on mobile devices [3]. The applications include
ones related to computer vision, health care, transportation,
and environmental monitoring. Self-driving and autonomous
vehicles are a domain of interest that attracts researchers
to investigate embedded machine learning algorithms that
support this industry. Many works have been introduced to
address related applications. In [11], the authors discussed
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some risks and challenges of applying Al in autonomous
vehicles. For sure, there are some aspects to be considered
when choosing a machine learning algorithm for a certain
embedded system and the targeted application. These aspects
might be related to available energy and memory resources,
running costs, and the required quality of service.

In [3], the authors overviewed various application-oriented
embedded systems that employ specific machine learning
models and architectures to suit the hardware specifica-
tions and the applications’ QoS demands. Multiple machine
learning classes can be used. Unsupervised and supervised
ML algorithms can be used, such as the k-nearest neighbor
algorithm, naive Bayes, decision tree, random forest, logistic
regression, support vector machines, convolutional neural
networks, deep neural networks, recurrent neural networks,
long short-term memory networks, and hidden Markov
models.

For UAV networks, several machine learning algorithms
can be used to enable real-time applications, such as pattern
recognition and object detection [2]. Any applied machine
learning algorithm should be able to support the demands of
robotic applications in UAV environments like low latency,
low power consumption, and high reliability. Machine learn-
ing algorithms include deep Q-network, deep Q-learning
(DQL), and liquid state machines. A survey study [12] high-
lighted some machine learning algorithms that can support
and improve definite UAV-based robotic applications. For
instance, artificial neural networks would help in enhancing
delay, connectivity, and security in aerospace robotics. More-
over, ML approaches can be adopted with UAVs systems and
networks to enable/support processes, such as trajectory and
placement, path planning, interference management, situa-
tional awareness, and motion control.

To overcome the limitation that might exist in the energy
and memory resources of embedded systems that employ
machine learning models and with the emergence of privacy
concerns when using cloud-centric ML, federated learning
(FL) [9] is recommended to be used. The capability of
machine learning-enabled embedded systems will not enable
such systems in many times to update their machine learn-
ing models efficiently. This may be because of not having
sufficient data or inability due to energy and computation
resources. In general, FL. would enable multiple embedded
systems to collaborate on training an ML model without shar-
ing their own data. FL is applied better with edge computing
architectures to shorten the delay and utilize efficiently band-
width. There are various architectures for FL [10] that can
support diverse designs of embedded systems networks and
multiple applications. There are centralized and decentralized
federated learning architectures that can support operations
and applications within the UAV networks. In centralized FL
architectures, any implemented FL approach will depend on
a central machine or server for generating the aggregated ML
model. Some challenges and problems may appear due to this
dependency, such as the single point of failure with respect to
this central entity. On the other hand, with decentralized FL
(or serverless FL) architectures, each UAV will have and train

VOLUME 12, 2024

its ML model and it will share its trained model with one-hop
neighboring UAV or a cluster head UAV for aggregating all
received ML models and generating a global ML model. Such
decentralized FL architectures can be classified as collabora-
tive FL, multi-hop FL, and Fog learning.

Several computing architectures were presented to enable
efficient and resource-matching computation and storage
services for static and mobile network devices. For UAV
systems, vehicular computing architectures would be better to
be used to support the highly dynamic environment of com-
municating UAVs and the running of real-time applications.
Different computing paradigms, such as mobile and vehicular
edge computing, were discussed to support edge computing
collaboration of vehicular devices in various networks [13].
It was recommended to adopt edge of things computing archi-
tecture that can provide suitable computing resources near a
wide range of vehicular devices [14]. In [15], a vehicular edge
of things computing architecture was discussed. Such edge
computing architectures are suitable for running real-time
video recognition and computer vision applications [16].

Selecting an appropriate computing architecture would
help networked and communicating devices and controllers
apply efficient resource allocation and task offloading. For
instance, vehicular edge computing enables efficient com-
putation and storage capabilities for mobile devices and
UAVs via offloading to edges (road side units) or with the
capability to decide whether offloading at edges or cloud
servers [17]. In [18], two methods were presented to enable
efficient bandwidth allocation among a suite of communi-
cating and networked UAVs with limited energy resources.
Other research work considered resource allocation as an
optimization problem where it can relieve the energy con-
sumption challenge in UAV networks [19], [20].The authors
in [21] presented a distributed Edge-Cloud collaborative
framework for accurate and realtime UAV-based object detec-
tion. The framework depended on a lightweight object
detection algorithm that can be implemented on embedded
systems. a fuzzy NN-based mechanism was adopted to enable
task allocation in edge or cloud. In [22], a hierarchical UAV-
assisted data processing framework was developed to support
data processing and computing offloading targeting mini-
mized age of information.

Ill. SYSTEM MODEL
We developed a system model of a UAVs network that follows
a simple star topology. Each UAV will be represented by an
embedded ML system/IoT platform equipped with a camera
(to capture RGB images) and enough memory. We include
an edge server and a central cloud server that can be reached
remotely by a specific UAV to provide powerful resources in
case of need. Figure 1 shows the proposed framework for the
proposed UAV-based distributed computing system.

Various UAV network models were surveyed in [23].
A UAV network may comprise one UAV for a single mission.
For large-scale missions, UAV networks comprise multiple
interactive UAVs. There are various network architectures as
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FIGURE 1. UAV-based distributed computing framework.

follows. UAV network of cell level (UCL), UAV network
of system-level (USL), and UAV network of the system of
system level (USoS). For USL, there are five representa-
tive examples of the USL topology; infrastructure-based,
single-star, multi-star, flat ad hoc, and hierarchical ad hoc
architectures. Considering USoS, there are two discussed
architectures, which are LAN-based cloud service architec-
ture and Internet-based cloud service architecture.

A network system model is presented for UAVs where a set
of connected UAVs with a cloud can communicate directly
with mobile handheld devices on Earth [24].

Different communication and network models were pre-
sented to UAVs. In [25], a network cluster model for UAVs
was discussed. A mobility model for an ad hoc UAV network
was presented in [26]. A network communication model was
presented in [27]. In addition, a traffic flow model for UAV
was presented in [28].

We consider the system model and the proposed scenario
in [17] where we will adapt it to a UAV system. There are
different levels of computing: cloud computing, edge com-
puting, edge of things computing with collaborative learning,
and local computing.

We adopted the system model of USoS of the
Internet-based cloud service architecture presented in [23].
There are sets of UAVs connected to base stations and then
to a cloud.

Table 1 shows the system model notation. In each area out
of M areas with N UAVs, there will be a cluster C of UAVs
led by a master UAV forming a star topology. Accordingly,
each UAV cluster comprises m; UAVs, m. < N

So, there are M clusters, and the total number of UAVs in

all clusters
M
> ma=N (1)

In each cluster, there will be one master UAV and a number
of normal UAVs up to N-1.

Each task i can be processed on the UAV (i.e., edge of
things offloading), or offloaded to the base station server
(i.e., edge offloading when A_UAV; < 0), or accomplished
on the cloud server (i.e., cloud offloading) through the base
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TABLE 1. System model notation.

Symbol Meaning and Formula

N number of UAVs (drones)

BS; base station server i (each base station is equipped with
one server)

M number of base stations or area segments where each

base station serves a segment
d interdisance between UAVs and between UAV and the
base station

Uint; task of UAV offloaded internally to a computing
resource j inside UAV

UAVY; the whole tasks executed by k computing resources in
UAV i, UAVt; = ¥¥ , Uint,

UAVe; Computing capacity of UAV i

UAVs; Storage capacity of UAV i

A _UAV; The availability of UAV i computing capacity,
A UAV;=UAVc¢; - UAVY

Uext; task of UAV j offloaded externally to a base station

BSt; the whole tasks offloaded to base station server i from
n UAVs,n<N, BSt; = 37, Uext;

BSc; Computing capacity of a base station server i

BSs; Storage capacity of a base station server i

A _BS; The availability of a base station i computing capacity,

A_BS;=BSc; - BSt;

T number of tasks UAV/base station may accomplish
where each task i is characterized by Ti: {si, ci, ti}
where s; is the task size, ¢;is the required computing
resource speed, and it is the maximum accepted delay

station (i.e., when A_BS; < 0). The base station is considered
with a capability to communicate with a number of master
UAVs. The communication between cluster members (the
master UAV and normal UAVs and the base station) is done
over an average distance d meters.

Each cluster of M clusters is served by a base station and is
formed based on the targeted tasks and events to be detected.
In case there is a need to allow or order UAV to join a cluster
to provide further computing capabilities, this will be valid as
the number of connected UAVs in less than N-1. New UAV
clusters can be formed and connected to a base station to serve
more areas and to execute more tasks.
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Each UAV will employ one machine learning model to help
in completing the required task (e.g., image classification).
The approach is schematically shown in Fig. 2.

A. NETWORK AND COMPUTATION MODEL

As mentioned previously, there are various ways for offload-
ing the tasks. It is proposed that a suite of UAVs will form
a star topology with a master UAV that can manage the
processes of tasks offloading to base station servers. Also,
the master UAV will aggregate the machine-learning models
collected from UAVs in the cluster and send them the aggre-
gated model. Also, the master UAV will be responsible for
sending collected machine learning models from all UAVs
and forward to the base station and then to the cloud to
generalize the model, get that model, and forward it to all
UAVs. We target a similar data collection system model for
UAVs as the one presented in [29]. We assume that each UAV
is equipped with sensors (i.e., data sources)

We target the task completion delay and accuracy by
considering the used machine learning model detection accu-
racy (MLA), machine learning model training/updating time
(Tmt), machine learning model exchange time (Tgr), task
transmission time (Ty), task data propagation time (Tp) in
the network, task processing time (Tproc), and UAV con-
nection time with the edge or cloud (T¢) as performance
measures to compare the various computing architectures.

In the formation process of each cluster, the assumption is
that interdistance d between the master UAV and the normal
UAVs and between the master UAV and the base station will
encounter delay plus the processing delays by the employed
ML engines that would not affect the transmission delay
threshold of data and the accomplishment of tasks by UAV
members in the cluster.

Task Resource
Allocation

£6mputing Resourde.
Availability on UAV
A_UAV=0

levels (distributed and centralized)

— Check Performance Accepled
(delay & accuracy)
I This loop to enbale federated leaming on different

Update ML Model |,

(federated Learning)
No

es ’ i
| Run Task on Edge Check Performance Accepted Yes
(delay & accuracy)

Check Performance
(delay & accuracy)

afhputing Resode
Availability on Edge
ABs>0

Run Task on Cloud

FIGURE 2. Task resource allocation and computation.

Moreover, the energy consumption of UAVs is following
the model of hovering battery-powered WiFi-enabled UAV
presented in [30] where UAV is stationary in a place in the
air. There is a relationship extracted in [30] that considers
the energy required for hovering and flying at altitude h for t
seconds is as follows E = (4.917 h + 275.204) t. It is assumed
that before assigning a task to an UAV, a prediction model
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would be applied to expect the amount of energy and time
needed to accomplish task besides the energy required for
landing after completing the task. Based on the current energy
level at UAYV, the decision to offload the task would be taken.

B. LOCAL COMPUTING (EDGE OF THINGS OFFLOADING)
UAVs can accomplish the tasks on their embedded com-
puting resources and no tasks-related data will be shared
with other UAVs/servers. Each UAV is equipped with a set
of IoT platforms/computing devices that form an edge of
things computing inside the UAV. Based on the utilization and
availability of resources in UAV and the number of assigned
tasks T. So, if A_UAV > 0 (there are sufficient resources) or
UAVt == T(number of assigned tasks that can be executed
equally to the number of all required tasks), the UAV can
accomplish tasks locally. Figure 3 shows the algorithm of
resource allocation for executing a task at UAVs.

Algorithm 1: Resource Allocation for Task. There are NV UAVs that form a cluster; each UAV
is indexed by #; one edge station is indexed by E; one cloud server is indexed by C;

Local Computing:
Initialize UAV resources

for each UAV ndo
if task available
measure task data arrival rate
check available service rate
LC:if(u, = Ay,)

run the local ML model (run the task)

measure performance

if performance is accepted
go to Done

else

Collaborative Learning: Master UAV-get ML models and weights from N-7 UAVs
update weights of the local ML model
gotoLC
Edge Computing: else

if(up = Ag)
run the ML model on the edge
measure performance
if performance is accepted

go to Done
Cloud Computing: run the ML model on the server
measure performance
Done: task completed

FIGURE 3. Local computing - task resource allocation algorithm.

1. Without collaborative learning : The UAV will
depend on its developed and locally updated machine
learning models. So, for a task j to be executed on UAV;
in area m, we will use this tuple (j, i, m) In this case,
transmission time and propagation time Tty im) =
Trpim) =0

Delayy, yithoutFL(j,i,m)
sjtaskjsize

Proc(j,i,m) cjcomputing resource speed for task j

@

MLAY,_withoutFL(,i,m)
nynumber of correct objects detections in task j

1j 1o1q1 total number of detections in task j
3)

It is expected that the number of correct objects
detections n; K< 1j soral

2. With collaborative learning [9], [31]: The UAV will
depend on its developed machine learning models and
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Algorithm 2: Distributed Collaborative Learning for N UAVs that form a cluster; one master
UAV and N-1 normal UAVs

Master UAV:

Initialize an ML model with weights

for each UAV t=1,2,......N-1 do
get the trained ML model and weights from the local ML models
update weights
check performance

update weights of the ML model

FIGURE 4. Collaborative computing - task resource allocation algorithm.

be globally updated with the help of other UAVs and
central servers. So, we will consider the following two
cases.
a. Centralized collaborative learning: updates on
the adopted machine learning model done on a
central server in the cloud.

Delayy,_cpy,im)
= Twmr + Tproc(,i,m)
“
MLAL_CFL(,i,m)
__njnumber of correct objects detections in task j

nj, totaltotal number of detections in task j
(5

It is expected that the number of correct objects
detections nj < 1nj total

Besides the time required for training, the training
model time Ty will include the time overhead to
send and receive the model from the cloud.

b. Distributed collaborative learning: updates on
the adopted machine learning models done on one
UAV or a set of UAVs in a cluster with a star
topology and then shared with all UAVs in the
cluster. Algorithm 2 in Fig. 4 describes the main
processes of distributed collaborative learning.

Delayy,_prr,i,m)
= Tmt + Tproc(,i,m) (©6)

MLAL_DFL(,i,m)
njnumber of correct objects detections in task j

nj, (otaltotal number of detections in task j
7

It is expected that the number of correct objects
detections nj < nj otal

The model training time in this distributed learning case
will be shorter than the one in the centralized learning.

C. EDGE COMPUTING (EDGE OFFLOADING)

UAVs can offload tasks to be executed on base stations
(edges) based on the utilization and availability of resources
in UAV and the number of assigned tasks T. So, if

96520

A_UAV < 0 (there are no sufficient resources) or UAVt <
T(number of tasks that can be executed less than the required
tasks), UAVs will forward tasks to base stations.

DelayE(j’i’m)
= Tproc(j,i,m) + TTtG,i,m) + Tpec,i.m) + Teg.,im) (3
MLAE(,i,m)

__ njnumber of correct objects detections in task j

&)

1 s0rq1total number of detections in task j

D. CLOUD COMPUTING (CLOUD OFFLOADING)

Base station servers can offload tasks to be executed on cloud
servers (cloud) based on the utilization and availability of
resources in base station servers and the number of assigned
tasks T. So, if A_BS < 0 (there are no sufficient resources
at the base station) or BSt < T (number of tasks that can
be executed less than the required tasks), base stations will
forward tasks to cloud servers.

Delayc i m)
= Tproc(j,i,m) + TTe(i,i,m) + Tpegi,m) + Tegim  (10)
_n numberofcorrectobjectsdetectionsintaskj (11

nj totaltotalnumberofdetectionsintaskj

The task propagation time Tp; will be longer in the case of
cloud computing compared with the case of edge computing
with respect to the distance the task should travel.

IV. NUMERICAL SIMULATIONS

In this section, we conduct a set of numerical simulation
studies based on a system model proposed for networked
UAVs as shown in Fig. 5. Mathematica-based simulations are
conducted.

A. ASSUMPTIONS
The adopted UAV system design considered the following
assumptions.

%, S 2R
O 4,
S, e R aggregated ML
@(®)) () 1 model update
A ¥
S\ Network_ data transmission

Base Router
Station

FIGURE 5. Local computing - task resource allocation algorithm.

« Network design
o One UAV cluster: A set of four UAVs forms a star
topology and one of them is the master UAV that
other UAVs can communicate with directly.
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o Each UAV is equipped with one IoT platform that is
attached to one sensor and one computing device.

o The inter-distance d between all UAVs and between
the master UAV and the base station is equal and
fixed.

o Each UAV is always in proximity to the master UAV
and it can communicate with and send data directly
to it.

« Data sending

o Each UAV sensor is collecting data per task with
rate A

o Each UAV is sending task data with rate equal to
task data collection rate X

o Normal UAV has a buffer size equals

A x Task Delay

o The master UAV has a buffer size that equals to
Z?Zl Ai x Task Delay
Communication channel and impact
UAVs adopt IEEE 802.11 MAC protocol
o Each wireless channel between UAV's and the base sta-
tion is suffering from path loss n.
o Energy consumption
o Each UAV is assumed to be powered with on-board bat-
tery and has energy level with consumption rate and flies
on altitude and communicate within a distance d. All
these factors enable UAV to be successfully accomplish
the assigned offloaded tasks.
Resource allocation and computing
Considering one cluster with small number of con-
nected UAVs to minimize the collaborative learning time
among UAVs without centralized training data.
o Each UAV has its ML model, which can be trained
locally based on captured RGB images/dataset.
o The master UAV that can get ML models from the
other UAVs to generate an aggregated ML model and
broadcast it to all UAVs.
A simple image classification and object identification
application (i.e., computer vision application) with time
constraints will be targeted. Convolutional neural net-
works can be used.
In the proposed UAV-based distributed computing archi-
tecture where energy-efficient inference engines with
structured pruning strategies for model compression are
applied heavily at local UAV and minimized heavily at
the cloud computing (CC). In other words, the number of
neural network layers and neurons has the largest value
at CC and the smallest value at LC. It was assumed
that UAV is equipped with embedded ML models with
limited capability.
o The following computing architectures will be consid-
ered in the evaluation studies.

B UAV-based computing: each UAV employs its
local ML model to get the result. In the case of
normal UAV with Local Computing (LC), an ML
model was built using a linear neural network

[¢]

o O

[e]

[e]
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accompanied by layers for input and output has
been adopted. In the case of master UAV with Edge
of Things Computing (EoTC), an additional linear
neural network was added to the ML model design
presented at the LC computing.

B Without collaborative learning: Each UAV is
locally analyzing data based on its ML model to
generate outcomes with rate p (assuming that p >
A) and there are sufficient computing resources
(i.e., A_UAV > 0)

B With collaborative learning: Distributed learn-
ing: the master UAV will receive ML models and
the initialized weights from all UAVs and it will
build an aggregated ML model use and send it back
to all UAVs. This learning will enable a computing
architecture, we call it edge of things computing,
where learning and decision are taking based on
capabilities of learning models and hardware at
multiple UAVs.

B Edge Computing (EC): The edge is equipped with
an ML model with more neural network layers than
in UAVs with less compression. In that case, tasks
will be offloaded to edge where UAVs have no
capabilities (i.e., A_UAV < 0) or ML models; and
accordingly, they send all data to the edge server to
analyze and send back the results.

B Cloud Computing (CC): The cloud is equipped
with an ML model with more neural network layers
than in the edge with less compression. In that case,
tasks will be offloaded to cloud where UAVs have
no ML models and the edge servers do not have
the related ML models or there are no sufficient
capabilities (A_BS < 0). The edge server sends all
data to the cloud server to analyze and send back
the results.

We configured the UAV system model shown in Fig. 5.
Table 2 describes the main simulation parameters.

A dataset was generated and Table 3 shows its main
information. The dataset refers to the classification to mea-
surements done by UAVs based on phenomena of interest
(image of activity). Every entry in the dataset comprises
4 attributes, namely, measurement class, measurement read-
ing value, targeted phenomena type, and label (output class).
We followed a supervised learning approach where each data
entry in the dataset includes information about the output
decision (classification result) as a label.

B. SCENARIOS

Scenario (1): a simulation study of the effectiveness of
using UAVs with linear layer neural network and adopting
different computing architectures to help accomplish a non-
time-sensitive data classification duty.

We targeted a non-time-sensitive simple classification task
where the UAV system shown in Fig. 5 will be employed for
it. The task is to classify some collected environment-related
measures into specific classes. There are three classes with
two different types that can help in interpreting phenomena
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TABLE 2. Simulation parameters.

Parameter Definition and Related Equation Values Range/Unit
Data arrivalrateA | e 1 — 5 packets/seconds
Data service rate p u=A1 Packets/seconds
Packet size | e 500 — 3000 bytes
Transmission power Pyon | e 80 dBm
UAV interdistanced | e 2- 10 meters

On average 7 for distance (2-10

Pathlossindex n | e meters) [28]

Average path 10ss Pjos 10nlog(d) [32][33] 20-70 dB
Received signal strength indicator
(RSSD RSSI=Pi—Pios 10-60 dBm
ML model loss function: mean i dif ference between detection' i an('i the truth Variable (0 1.0)
squared error (MSE) : N total number of detections in task
i=
ML model performance measure number of correctly predicted classes .
- Variable (0 — 1.0)
accuracy total number of predicted classes

The time required to push out the data to the channel (Data

task transmission time (Tr) packet size/channel bandwidth)

(range of milliseconds)

task data propagation time (Tp) in The time required to transfer data to the computing device

the network (travelled distance d/propagation speed) (range of milliseconds)

Time needed to establish a connection between the master

Connection time (Tc) UAV and edge/cloud Te = Tri+ Toroe

(range of milliseconds)

Data collected by the networked UAV system to learn and

Number of collected data points .
classify

500

Training data points Percentage of data points used for training 70% (350)

String (1%, 2™, 3') , scalar (range
Data point profile Measurement class, reading value, type, label 5 to 80), string (phenomena 1 or
2), string (normal, abnormal)

ML Activation functions Logistic sigmoid | memeeeeeee

Machine learning model

raining/updating time (Tys) The time required to update and train the ML model (range of seconds)

machine learning model exchange

. The time required to broadcast the trained ML model (range of milliseconds)
time (Tgr)

The time required to process the task by the ML model
task processing time (Tpyoc) Tproc = Tyr + Terincluding time for data preprocessing, (range of seconds)
learning patterns and training the model.

The whole time required to accomplish the task (the
Execution time (Tgxec) inference) by the used computing architecture (range of seconds)
Texee = Tc + Toroc

from collected images, such as the possibility of having flood- Network (NN) is employed in each UAV to help in accom-
ing, thunderstorms, and cyclone. A simple linear layer Neural plishing efficiently the classification duty. The linear layer
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TABLE 3. UAV dataset information.

Number of dataset entries 500
Number of attributes 4
Number of measurement classes | 3

Possible measurement class 1st, 2nd 3rd

Possible measurement value An integer value from 5 to
80

Number of phenomena type 2

Number of possible outputs 2

Possible outputs
Training data percentage

Normal, Abnormal
70% (default)

NN model is associated with a mean squared error (MSE)
layer and is trained using ADAM Optimizer to minimize the
loss function and adjust the hyperparameters. A master UAV,
with multiple platforms, which is far d meters from normal
UAVs is employing a linear NN that is formed based on the
getting weights from NNs at normal UAV using the Identity
method. As we discussed in Fig. 1 and Algorithm 1, the model
at the master UAV is updated with the NN models and their
weights once it is used. In case of unavailability of computing
resources or not meeting QoS measures the master UAV, a
2 x 2 linear NN with MSE layer can be employed at the
edge with capability to combine more than one reading at
the same input. In case of unavailability of resources at the
edge, a 3 x 3 linear NN with MSE layer can be employed at
the cloud with powerful computation to help in getting better
results and expectations for the classes of the measurements.

We simulated four levels of computing as discussed pre-
viously. The first level is local computing (LC) where each
UAV employs the implemented ML model. The second level
is edge of things computing (EoTC) where the master UAV
employs and initializes an ML model based on defined ML
models at the other UAVs in its cluster. The third level is edge
computing (EC) where an edge server near to the UAV cluster
employs an ML model with high computation capability. The
last level is cloud computing (CC) where a cloud server with
a powerful ML model will be used. The obtained results were
averaged over five runs.

We target the following performance metrics and the
related measures to quantitatively compare the performance
of the different computing levels.

1. Time complexity: this metric refers to the time over-
head needed by the various computing paradigms to
execute the assigned tasks of learning data patterns and
classifying the outputs.

a. The task execution delay (measured in seconds):
this measure was considered where it refers to
the computing speed at the computing paradigm
engine with or without previous learning. This
delay considers the connection time and the pro-
cessing time of the ML model.

2. ML model performance: this metric refers to the ML
model’s capacity to perform efficient classification
tasks
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b. Mean square error: it measures the average
squared difference between the predicted and the
actual target values by the ML model within the
acquired dataset.

Mean Square Error before Training

5

5

o = =

© 25

2 20 7

ﬁlS

g % / /

2 s = _ _ _ _
1 2 3 4 5

TLC 39.56696 29.19042 36.78906 25.981276 41.1221

% EoTC 12.930328
EC 13.607228

cc 26.73314

17.984
14.720396
24.52164

27.452686 27.94348 31.44988
14.01464

26.25428

13.09206
29.34882

18.85188
26.6253
Task Generated Rate at UAV (task per second)

FIGURE 6. Obtained MSE before training and updating ML models.

Figures 6 and 7 show the obtained MSE by the used ML
models before and after getting trained at various computing
levels when varying the task arrival rate (i.e., task-related
data packets generated by UAVs). It is noticed that the local
computing (LC) achieved the worst MSE level before training
and better MSE levels at the other computing paradigms.
However, after training, the computing levels achieved better
MSE values. In Figs. 8 and 9, the execution time overhead is
given. Longer execution time is achieved at edge and cloud
computing levels due to the impact of the data transmission
and propagation time complexity besides the time overhead
of the implemented ML models. As a conclusion, well-
trained ML models at the levels of local computing and edge
of things computing can provide good MSE levels with short
execution times.

Mean Square Error after Training

0.06
0.05
0.04
0.03
0.02

0.01 P
o % % =

1 2

Mean Square Error

%% =

4 5
0.006455174  0.017250064 0.00831863

M\

HLE 0.019505738
#EoTC 0.009812306 0.009554106 0.01987914
EC 0.001304882  0.003967878 0.002197654 0.002906147 = 0.00808287
cc 0.05128392 = 0.04449164

0.00596975
0.007615072 = 0.005412294

0.04584326 = 0.04586268 = 0.04399548

Task Generated Rate at UAV (task per second)
FIGURE 7. Obtained MSE after training and updating ML models.

Figure 10 shows the computation overhead when changing
the interdistance between UAVs in the network. Based on the
developed system model in Fig. 5, it is noticed that increasing
the distance leads to some increase in the computation delay
according to the impact of the propagation delay. In the case
of using the EC and CC levels, there was an impact when
changing the distance where data needs more time to arrive
and to be processed.
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Scenario (2): a simulation study of the effectiveness of
using UAVs with multilayer neural networks and adopting
different computing architectures to help accomplish UAV
sensor quality classification duty in a timely manner.

Execution Overhead before Training

450
400

$ 350
5 300
@ 250
< 200
& 150
= 100
50 P % 7
0 . . L w—% . %/
1 2 3 4 5
T LC 11.90736 15.55156 14.93392 21.37342 11.67408
%EOTC  27.77582 33.46552 43.04044 67.913 72.82382
EC 61.7333 146.33 230.012 338.7676 254.5366
cc 104.36772 207.9274 276.46 365.0262 415.3114

Task Generated Rate at UAV (task per second)

FIGURE 8. Expected delay when applying various computing architectures
before training ML models.

Execution Overhead after Training

450
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300
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Delay (seconds)

0.019272782 | 0.006378728 = 0.00485813 = 0.006066184

15.37468 11.52705301 | 31.6849224 = 49.92509728 57.60502

EC 46.0852 122.88502 207.3652 322.5652 230.40522

cc 92.16528 192.005 264.9658 353.2856 403.214

Task Generated Rate at UAV (task per second)

FIGURE 9. Expected delay when applying various computing architectures
after training ML models.

We target a duty, which focuses on analyzing and classi-
fying collected data received from three classes of sensors
at each UAV. We assume a labeled empirical dataset where it
includes three input attributes (sensed parameter, sensor read-
ing, sensor type) and one output (sensor status). Each sensor
generates a digital reading within a certain levels range,
from 5 to 80. Normal UAVs within the cluster as depicted
in Fig. 5 will employ a NN comprising two layers; a linear
layer and a logistic sigmoid layer. The logistic sigmoid layer
will help in having binary classification for the output, which
is normal or abnormal sensor. Based on defined encoders, the
data is profiled with various classes. Based on the developed
mathematical model, a set of data entries (500 entries) was
developed based on collected profiled data from UAV sensors
and 70% of these data were used for training and 30% of the
data for testing. The master UAV will use an aggregated ML
model based on trained models adopted by the UAVs in the
cluster. The edge server will get the data from UAVs and its
ML model will be trained. The ML at the edge has an extra
logistic sigmoid layer to classify the input data and help in
categorizing the input data received from UAVs into specific
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classes to avoid outliers and abnormal levels. At the cloud,
a powerful ML is applied with another NN layer to help in
getting finer-tuned relations between input data and output
classes. Also, the cloud ML will be trained based on data sent
by UAVs.

Computation Overhead versus variable UAV
interdistance at task arrival rate = 3

350

1
g 200
3 10
> 100
< 50 — E— — m—p
a 0 —
2 5 10
=L 0.00945465 0.00501404 0.00534751
e EOTC 28.8054 43.2049 57.6055
EC 172.805 172.805 230.405
cc 230.405 230.405 288.006

UAV Interdistance d (meters)

FIGURE 10. Expected Delay when Varying the UAV interdistance at task
arrival rate equals 3.

Accuracy versus variable NN-enabled
UAV interdistance at task arrival rate = 3
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e EOTC 0.513333 0.56 0.54
EC 0.533333 0.56 0.566667
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FIGURE 11. Accuracy of ML-based computing tasks at various UAV
interdistance.

We target the following performance metrics and the
related measures to quantitatively compare the performance
of the different computing levels.

1. Time complexity: this metric refers to the time over-
head needed by the various computing paradigms to
execute the assigned tasks of learning data patterns and
classifying the outputs.

a. Model computation delay (measured in seconds):
the measure refers to the time consumed by the
ML models to accomplish the assigned comput-
ing tasks.

2. ML model performance: this metric refers to the ML
model’s capacity to perform efficient classification
tasks

a. Accuracy: it measures how the ML model often
classifies correctly the outcome concerning pos-
sible classes of normal and abnormal.

b. Fl-score: it measures implemented ML models’
performance based on the used dataset
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Computation overhead versus variable NN-
enabled UAV interdistance at task arrival rate
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FIGURE 12. Computation time overhead of ML-based Computing Tasks at
various UAV interdistance.
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FIGURE 13. F1-Score of the Implemented ML Models at various
Computing Paradigms.

We conducted simulation runs for the developed comput-
ing resource allocation algorithm. Figures 11 and 12 show the
accuracy and execution time overhead of the different com-
puting levels at various UAV interdistance values. Based on
the empirical datasets and the used trained MLs, the obtained
accuracy when using cloud computing (CC) was better com-
pared with the other computing paradigms, however, the
execution time was the longest value, as depicted in Fig. 12.
Considering the edge of things computing with collaborative
learning at the master UAV, a comparable accuracy level was
achieved with shorter execution time.

Figure 13 shows the obtained Fl-score of the used ML
models adopting different computing paradigms when using
various percentages of training data. The results show that
using more data points for training will lead to an improve-
ment in the Fl-score value. In addition, better results were
obtained when adopting the CC computing paradigm, how-
ever, with collaborative learning, EoTC with master UAV
achieved good levels of Fl-score with less execution over-
head as depicted in previous figures.

In the conducted scenarios, we targeted performance met-
rics and related measures to highlight the impact of adopting
various computing paradigms on the penalty or cost the
users/administrators might pay to get the desired outputs.
Running ML models on powerful engines in the cloud
will lead to highly accurate results, however, for a long
time. However, if there is a well-trained ML model on a
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resource-constrained engine (edge of things) on UAV near to
the users, a good performance level of results can be obtained
within a shorter time if done on the cloud. This is valid if the
ML model operates on a lightweight problem with a limited
number of classes and a small size of datasets to learn.

V. CONCLUSION

We have introduced a distributed computing architecture
for networked UAVs based on collaborative learning and
edge-of-things computing. A system model for a networked
UAV with clusters was presented. The computing architecture
included a) computation at UAV's (local computing); comput-
ing at the master UAV or the cluster head UAV (edge of things
computing); computing at an edge server (edge computing);
and computing at a cloud server (cloud computing). Machine
learning (ML) models depending on neural networks were
employed at UAVSs to help accomplish various data classifica-
tion tasks. We introduced algorithms for resource allocation
and collaborative learning to enable the distributed comput-
ing architecture. Using various sensors and ML models at
UAVs and edge and cloud servers, the performance analysis
for the distributed computing architecture showed good per-
formance when having collaborative learning. We targeted
the execution time overhead and ML-related performance
measures, such as accuracy and mean squared error.

Future work includes extending the evaluation for the
collaborative learning model using explainable Al for devel-
oping anomaly detection models and using real-world
datasets to detect catastrophic regions, natural disasters, and
abnormal conditions in urban areas. In addition, we tar-
get real-time delay-sensitive applications to investigate the
performance of the proposed computing architecture. Addi-
tionally, lightweight ML models (TinyML models) are to be
investigated to help optimize the energy consumption and the
utilized storage space to provide resource-efficient operations
and with acceptable performance levels.
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