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ABSTRACT The accurate collection of operational data at airports is essential for ensuring the fair
distribution of national funds. However, many U.S. airports lack control towers, which forces planners to rely
on sound, radio, and transponder-based systems for detecting aircraft operations. While these methods are
useful, they have limitations, such as low accuracy and an inability to identify specific aircraft. In our previous
work, we developed a computer vision-based system capable of accurately counting and identifying aircraft.
However, implementing this system requires powerful computing devices that are not typically found at non-
towered airports. Additionally, cloud computing is not a viable option due to data transfer limitations and
associated costs. To address these challenges, we propose an affordable solution utilizing edge computing.
This paper describes the necessary software and hardware modules, including optimized machine learning
methods and edge devices, for deploying the system at airports. We tested the system’s performance using
two independent standalone setups, created with NVIDIA edge kits, at three non-towered airports. The first
setup aimed to obtain an accurate count of operations without detailed aircraft information, while the second
setup was designed to extract an operations count with comprehensive aircraft information, including aircraft
type recognition and identification. The accurate retrieval of aircraft information in the edge computing
system is achieved through the introduction of a tailored CNN-based recognition model and the execution
of a 3-step tail number identification algorithm. The results demonstrate the practical value of the proposed
system, indicating that an accurate count of operations with detailed aircraft information can be obtained at
a reasonable cost.

INDEX TERMS Edge computing, airport operations count, aircraft identification, computer vision,
intelligent system.

I. INTRODUCTION

The majority of airports worldwide do not have control
towers [1]. In the United States, for instance, there are nearly
20,000 non-towered airports compared to approximately
500 airports with control towers [2]. Control towers play
a crucial role in identifying and documenting aircraft
operations while efficiently coordinating aircraft and vehicle
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movements on the airport field [3]. However, at non-towered
airports, alternative methods must be employed to ensure air
traffic safety and security due to the absence of a reliable
air traffic monitoring system [4]. The collected operations
data from non-towered airports serve as a valuable foundation
for resource allocation in airport industries, airport planning,
staffing, and environmental analysis [5], [6]. Moreover, these
records aid in estimating air pollution and noise levels
associated with aircraft activities in the vicinity of non-
towered airports [7].
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Developing intelligent systems that can automatically
document airport activities and provide operational data
to managers is crucial for non-towered airports. Currently,
airport practitioners commonly rely on automated acous-
tical counters, radio click counters, and transponder-based
counters [6]. However, these systems lack accuracy and
identification capacity. In response, the authors have pro-
posed a computer-vision-based method capable of accurately
counting and identifying aircraft operations at non-towered
airports [8], [9], [10]. The implementation of these algorithms
requires powerful graphics processing units (GPUs) to
handle the computational intensity. To evaluate the system’s
performance, the authors conducted tests by transmitting
video data to a computer center located outside the airport.
However, this approach encounters two challenges. Firstly,
Wi-Fi availability is limited in the necessary areas of non-
towered airport airfields, making it difficult to transmit data
to remote servers. Additionally, the alternative solution of
cellular data transmission can be cost-prohibitive. Secondly,
the roundtrip delay of data transmission does not favor certain
system applications, particularly those related to safety and
security that require near-instantaneous decision-making.

This paper proposes an edge computing standalone system
to address the issues mentioned above, which eliminates the
need for large data transmission. The contributions of this
paper are as follows:

o The development of an intelligent standalone system
for fully-automated airport operation monitoring using
NVIDIA developer kits. The system uses affordable
hardware and fits within the typical budget for collecting
operational data at non-towered airports.

o The optimization of the system software for efficient
real-time operability on edge computing devices. Prac-
tical guidelines are provided for the development of
optimized algorithms to obtain operations count and
aircraft information.

e The development of an optimized custom convolu-
tional neural network (CNN) classifier model for
aircraft recognition. The classifier model is specifically
designed with a focus on efficiency and precision when
integrated with the edge computing system.

o The implementation of a 3-step identification process
(Figure 1) on edge computing devices that employs
a probabilistic method. This process utilizes predicted
label sequences obtained from multiple video frames,
ensuring precise tail number identification.

Il. EXISTING SYSTEMS

Considering the type of sensors used, the current counter
systems encompass automated acoustical counters, radio-
based counters, and transponder-based counters. Addition-
ally, we will focus on reviewing the relevant vision-based
systems.

A. AUTOMATED ACOUSTICAL COUNTER
This device records the operations count by detecting the
loud sound generated by aircraft engines during takeoff [11].
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Status : New Operation in Track
Previous Operation: N38986

# Departures : 0

#Landings :2

Current Frame Recognition Results:
Aircraft Class : a, f, b
Aircraft Tail Number : N314TB

Status : New Operation in Track
Previous Operation: N38986

# Departures : 0

#Landings :2

Current Frame Recognition Results:
Aircraft Class : a, b, d
Aircraft Tail Number : N314TA

Status : Possible New Operation
Previous Operation: N314TR

# Departures : 1

# Landings :2

Aircraft Info:
n_number: 314TR
serigl_number: R18201086
name:

Street: 6777 VISTA GRANDE DR

city: SALT LAKE CITY

state: UT

Zip_Code: 84121-3523

mfr_nome: CESSNA

year_mfr: 1979.0

model_name: TR182
38
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FIGURE 1. Extracted video frames from the proposed 3-step identification
process.

The performance of acoustic counters is heavily dependent
on their placement, requiring adherence to strict performance
standards [12]. Consequently, it does not provide an accurate
count for landing operations. Additionally, in the case of
aircraft equipped with quiet engines, an acoustical counter
may fail to detect and register the operation [6]. Weather
conditions also present a significant challenge, impacting
both the performance and accuracy of these devices [13].
Moreover, at airports where taxiways and taxilanes are in
close proximity to each other, this system may result in
an overcounting of aircraft operations [14]. Importantly,
processing engine sounds alone cannot determine the specific
identity of the operating aircraft. Research at Purdue
University Airport highlighted the system’s limitations, as it
captured only 59.72% of 34,051 aircraft operations during
a four-month period [11]. In addition, accurate operation
counts necessitate the interpretation of sounds to distinguish
between departures and non-departures [12].
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B. RADIO-BASED COUNTER

A recent approach to counting airport operations involves
recording the radio messages exchanged between aircraft
pilots and the airport’s universal communication (Unicom)
station. In this method, the total operations count is estimated
by dividing the overall number of radio messages by the aver-
age number of radio message transmissions for departure and
landing operations. However, this average number can vary
significantly depending on factors such as the pilot, airport
location, and specific situation. Consequently, this method
often produces inaccurate annual operations counts [15].
Another limitation of radio-based counters is the absence of
an identification module comparable to acoustical counters.
Additionally, the Unicom station frequencies at non-towered
general aviation airports typically range between the 122 and
123 Mega Hz series. As a result, some adjacent airports
might share the same frequency, leading to unreliable airport
operational data. They are also susceptible to interference
from other radio frequency signals, which can lead to data
inaccuracies [16].

C. TRANSPONDER-BASED COUNTER

The spatiotemporal proximity of operating aircraft to the
airport can be determined by decoding the signals transmitted
through the aircraft transponder. Data-driven techniques
have been developed to utilize this approach and detect
aircraft operations at non-towered airports [17], [18]. Addi-
tionally, Mode S transponders utilize Automatic Dependent
Surveillance-Broadcast (ADS-B) technology to identify the
aircraft. Despite the promising nature of this technology,
a significant number of general aviation aircraft are not yet
equipped with the required transponders [19]. Furthermore,
even among the equipped aircraft, many do not have
Mode S transponders [20], which are necessary for accu-
rate aircraft identification. Consequently, transponder-based
counters have a limited capacity for aircraft identification.
It is worth noting that most non-towered airports are not
located within the airspace where the FAA mandates the
use of ADS-B-enabled avionics [6]. Weather conditions
significantly affect the performance of transponder-based
counters by introducing variations in atmospheric pressure,
leading to inaccurate altitude readings. Consequently, this can
result in inaccurate operation counts, necessitating calibration
to maintain accuracy [21]. Additionally, another challenge in
employing transponders for navigating and identifying small
aircraft is their vulnerability to signal interference [22].

D. VISION-BASED SYSTEMS

In an attempt to supplement the ADS-B technology for oper-
ations count, the system incorporated video/image detection
(VID). This addition aimed to recognize aircraft registration
numbers during taxiing into the centralized terminal, initially
developed to automate landing fee billing [6]. The system
aimed to utilize the capabilities of VID/ADS-B by utilizing
supplemental FAA electronic-based near real-time traffic
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data from the National Airspace System (NAS), known as the
Aircraft Situation Display to Industry (ASDI), as indicated
in the Airport Cooperative Research Program (ACRP)
Report 129 [6]. However, despite these efforts, the VID
component proved unsuccessful in performing the operations
count task. The ACRP Report 129 outlines several reasons
for this failure, including the dependency on onboard ADS-B
transponders for accurate counting, the high cost associated
with system setup, and the limited applicability to airports
with restricted access to the terminal area. A similar system,
known as Vantage, combines radar flight data with registra-
tion numbers obtained through camera reading [23]. Another
vision-based technique is apron surveillance. Additionally,
apron surveillance has been explored as a vision-based
technique. Thirde et al. [24] proposed a multi-camera system
to monitor the activities of vehicles and personnel during
airplane servicing operations at the apron. Similarly, Koutsia
et al. [25] employed background extraction and data fusion
to establish an activity-tracking network using these cameras
and a central server. However, background extraction alone
is insufficient for accurately detecting and differentiating
between aircraft and service vehicles in general aviation
airports due to their small sizes.

To address these issues, we propose a passive standalone
system that performs aircraft operations count, including
aircraft detection, tracking, and trajectory analysis, as well
as aircraft identification through tail number detection and
recognition, using efficient computer vision techniques and
cost-effective edge computing devices. In addition, our
system incorporates a deep neural network to classify the
aircraft type in cases where the tail number is not visible
or not imprinted on the aircraft fuselage. We also use a
probabilistic aircraft identification procedure that builds upon
techniques developed by Molina et al. [26] and Vidakis and
Kosmopoulos [27], which both focus on feature-based optical
character recognition (OCR). VaxOCR [28] is a similar
commercially available technology for OCR services.

E. INTELLIGENT MODELS

To improve the performance of deep learning models for
specific applications, various methods have been explored.
The use of the sparrow search algorithm in combination
with Support Vector Regression for parameter correction
enhances deep learning model performance by refining their
ability to accurately estimate parameters [29]. Similarly,
the application of an improved YOLO v-5 algorithm
demonstrates significant advancements in the field of object
detection, specifically in detecting mineral zoning in spiral
slope flows [30]. Additionally, the adoption of probabilistic
prediction methods for estimating the remaining useful life of
components using deep learning underlines the adaptability
and effectiveness of probabilistic approaches in predictive
analytics [31]. Furthermore, the development of low-rank
tensor regularized graph fuzzy learning methods significantly
advances multi-view data processing, enhancing clustering
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accuracy by effectively managing high-dimensional multi-
view data in consumer electronics [32]. Moreover, tensor
voting methods have been applied to infer human mobility
traces from incomplete and noisy data, demonstrating
their effectiveness in recovering missing information and
extracting meaningful patterns [33].

In this research, we explore the Hyperband search
algorithm’s application for optimizing convolutional lay-
ers in an aircraft recognition model, aiming to improve
classification capabilities. For aircraft detection, the Haar
cascade classifier is utilized, recognized for its efficiency
in object detection within images. To further refine aircraft
identification, we employ a convolutional recurrent neural
network (CRNN) along with a probabilistic sequential
prediction approach. This method leverages the strengths
of CRNNs in processing sequential data and probabilistic
methods in enhancing prediction accuracy, offering a robust
solution for the challenges of aircraft identification. Through
these explorations, our study further contributes to the
expanding field of deep learning, illustrating the impact of
tailored optimization and predictive modeling techniques in
addressing specific application needs.

Deep learning technologies are applied across a wide array
of domains, showcasing their adaptability and efficiency in
solving complex problems. This approach has revolutionized
the way we handle disease detection and classification,
notably in agriculture for identifying plant diseases, thus
making feature extraction more objective and reliable [34].
Similarly, advancements in CNN have led to significant
improvements in detecting diseases in apple leaves, offering
practical solutions in the agricultural sector [35]. Beyond
agriculture, deep learning has also been instrumental in
healthcare, specifically using segmentation and visualiza-
tion techniques for Tuberculosis detection through chest
X-rays [36]. Additionally, this technology has been leveraged
in the energy sector to estimate photovoltaic output using
sky images as input through innovative CNN methods [37].
Its application extends to aiding in the identification of
mineral zoning in spiral slope flows [30]. The development of
efficient and interpretable Al engineering products is crucial
for achieving more substantial outcomes and enhancing
customer acceptance of Al applications [38]. Our research
utilizes deep learning for the novel purpose of counting
and identifying aircraft at non-towered airports, further
underscoring the broad applicability and potential of deep
learning in addressing diverse challenges.

llIl. EDGE COMPUTING VERSUS CLOUD COMPUTING

There are two primary approaches to operating intelli-
gent systems for decision-making: edge computing and
cloud computing. Cloud computing-based intelligent systems
provide computing services, including servers, databases,
storage, networking, software, and analytics, through the
internet. In this approach, data is collected by sensors
and transmitted to the cloud for processing. While cloud
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TABLE 1. Approximated cost of data transmission for a general aviation
airport with normal traffic.

Factor Remark Total per Year
Operations Count 100 operations per day 36,500 operations
Video Data Size 80 MB per operation 2,920 GB
Cellular Data | $15 per 1 GB data $43,800.00

Transmission Cost
Note: The costs are obtained from the Verizon [43] carrier. Operational data from
Skypark Airport [44] in Utah is used. Also, it is assumed that the cameras only transmit
video data when a motion (i.e., possible aircraft operation) is detected.

computing offers benefits such as potentially unlimited
processing power, it has limitations in terms of latency,
bandwidth, and privacy concerns [39]. Additionally, data
transmission costs can be prohibitively high in certain
cases. In contrast, edge computing presents an alternative
by enabling data storage, processing, and analysis at the
network’s edge [40]. Edge computing is a viable solution for
achieving real-time stability and executing specific functions
within a particular field [41]. The advantages of edge
computing are as follows:

« Reduced data transmission costs by decreasing the size
of the transmitted data. Only the final results of data
processing (i.e., aircraft information, times, etc.) are
transferred to the servers.

o Faster decision-making by reducing the response
time [42] and removing the roundtrip data latencies that
exist in the cloud computing approach.

o Secure data at the network edge (i.e., airport).

In terms of expenses, cloud computing involves transmit-
ting data to the associated cloud processing platform, which
is typically achieved through a family of wireless network
protocols known as Wi-Fi. However, non-towered general
aviation airports often lack Wi-Fi coverage within their
airfield, making cellular data service the only option. Table 1
provides estimates of the total cost of data transmission using
cellular service and outdoor pan-tilt-zoom (PTZ) cameras
with a motion detection module. To minimize the data
transmission rate, we assumed that only video data linked
to motion events are transmitted to the cloud processing
platform. Despite this, the overall cost is exorbitant and
does not warrant the use of a cloud computing setup. It is
noteworthy that airports are dynamic environments, and
many possible motions other than aircraft operations, such
as nearby highway traffic at local airports, service vehicles
and personnel, wildlife, and camera motions due to wind, can
increase the cost of cloud computing several times more than
what is calculated in Table 1.

IV. INTELLIGENT EDGE COMPUTING SYSTEM

The intelligent system is composed of both software and
hardware components, which must be compatible with
each other. Thus, the proposed intelligent edge computing
system is specifically designed, taking into account the
limitations of both software and hardware elements. The
system is structured with efficient machine learning models
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and utilizes NVIDIA edge computing processors to optimize
performance. In the subsequent sections, we will provide a
detailed explanation of how we developed a portable system
capable of measuring aircraft operations in real-time at the
network edge, where the sensors are located.

A. SOFTWARE

In this study, camera sensors are strategically positioned at
entrance taxiways, designated locations for data collection.
By providing coverage of these passages, the system can
accurately measure arrival and departure operations on each
runway. Figure 2 illustrates the camera layout implemented
in a single-runway airport. In Farhadmanesh et al. [8], [9],
we provide detailed explanations on how this camera layout
can effectively cover aircraft operations in multi-runway
airports, including intersecting and parallel runways. The two
layouts are considered as Layout 1 and Layout 2. In Figure 2,
the cameras from Layout 1 are labeled as ‘S1°, and those from
Layout 2 are labeled as ‘S2.

Layout 1 features end of runway cameras, strategically
placed at runway ends where pilots typically begin take-
offs, enhancing safety by allowing for emergency aborts.
These cameras capture take-off and landing activities. Ideally
positioned beyond any bypass taxiway, they ensure compre-
hensive coverage of departures. In multi-runway airports,
they are set up to avoid field-of-view overlap, with each
camera focused on its respective runway.

In Layout 2, two types of cameras are employed for
specific monitoring purposes. The first is positioned at the
end entrance taxiways, capturing both the departure and
arrival operations. The second camera type in Layout 2 is
located at the mid entrance taxiways. Its primary function is
to monitor arrival operations. This setup is potentially useful
for observing intersection departures. In this study, layout
2 was the preferred choice for conducting our experiment.
This selection is attributed to the layout’s capability to allow
edge devices additional time to detect aircraft, particularly as
the aircraft’s operational speed is slower when approaching
these devices.

Our previous study tested the design of the edge nodes and
experimented with them at five general aviation airports [8].
Each layout demonstrated a high level of precision in tracking
operations independently, as detailed in Table 2. This table
includes data from 21 collection sessions—18 during the
day and 3 at night. While Layout 1 failed to record only
4 out of 378 operations, Layout 2 successfully documented
all 149 operations. Notably, Layout 2 also possesses the
capability to differentiate between arrivals and touch-and-go
maneuvers. The data from these experiments are available
in the previous study [45]. Figure 3 displays the placement
of edge nodes in each camera layout for more complicated
scenarios at an airport with a multi-runway configuration.

1) OPERATIONS COUNT
To ensure accurate tracking of the number of operations, the
intelligent system integrates three modules in the specified
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FIGURE 2. Camera layout on a single-runway airport. “S1” stands for
Sensor for Layout 1 and “S2” stands for Sensor for Layout 2.

order: (1) Aircraft Detection Module, (2) Aircraft Tracking
Module, and (3) Trajectory Analysis Module. Figure 4
provides a visual representation of the sequential integration
of these modules within the system.

Aircraft Detection Module: The intelligent system is
designed to activate only when motion is detected. To detect
these motions within the field of view, we employ an
adaptive background-foreground extraction algorithm called
Gaussian Mixture model [46]. This algorithm identifies
any captured movements. The parameters, as well as the
number of mixture components, are continuously adjusted
for each pixel [46]. Subsequently, an object detection model
is utilized to localize any aircraft present in the field
of view. Specifically, we utilize a pre-trained model of
SSD [47] based on the MobileNetV2 architecture [48].
This makes the model more efficient and suitable for edge
devices with limited computational resources. The SSD-
Mobilenet-v2 model is trained on the 90-class Microsoft
COCO dataset, which includes the aircraft object [49].
The dataset consists of images that capture complex daily
scenes with common objects in their natural surroundings.
The amount of identified instances per image supports
the learning of contextual data. For faster inference on
edge computing platforms, this object detection model
is further optimized using NVIDIA TensorRT. TensorRT
enables the optimization of neural network models trained
on deep learning frameworks on separate host machines.
By leveraging a combination of neural network layers and
kernel optimization, TensorRT improves latency, memory
consumption, and network throughput (refer to Figure 5).

Aircraft Tracking Module: The detected aircraft is tracked
by the intelligent system for as long as it remains in the
field of view. The proposed system uses a fast computing
correlation-based object tracker, named MOSSE, to find the
aircraft’s position once it is detected. MOSSE, by calcu-
lating the correlation computation in the Fourier domain,
accelerates the tracking process [50], which is necessary
for real-time monitoring systems. Using geometric invariant
features, MOSSE is robust with respect to variations in pose
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TABLE 2. Distribution of the recorded video data of the aircraft operations based on the camera layout.

Total observed | Total captured leed-er}g lee.d-wn.lg Missed operations camera Missed operations
Layout by human by edge nodes single-engine | multi-engine view error (long landings) Layout 1 error
¥ Y edg (FWSE) (FWME) g 8 (intersection departures)
3 FWSE 1 FWSE
Layout 1 378 374 (98.9%) 353 21 (out of 274 landings) (out of104 departures)
Layout 2 149 149 (100%) 140 9 0 na

Note: Test locations selected are Bountiful Airport, Brigham City Municipal Airport, Spanish Fork Airport, Heber Valley Airport, and Logan-Cache Airport

na = not applicable.

L1

L2

FIGURE 3. Camera Layout 1 and 2 on a multi-runway airport. “L1” refers to Camera Layout 1 and “L2" refers to Camera
Layout 2.

TABLE 3. Constraint thresholds in the trajectory noise removal filter.

Constraint Minimum threshold | Maximum threshold
Length (L¢) 75 fuw fw
Duration (d¢) 0.5s 30s
Shape (Sy (n)) —155./n +155/h

Note: The numbers are calibrated with the collected video resolution and distances from
the target aircraft. f,, = video frame width and f}, = video frame height.

and deformations. The pixel coordinates of the tracking box
center are used as waypoints of the aircraft trajectory,

T(n) = (X, yn), ey

where n is the waypoint counter, x, is the horizontal pixel
coordinate, and y,, is the vertical pixel coordinate.

Trajectory Analysis Module: This module performs an
initial filtration of the generated trajectories by eliminating
any noise that may arise from aircraft detection and tracking
errors. These errors can lead to abnormal trajectories in
terms of their shape, length, and duration. To address
this, a noise removal filter is applied, effectively sifting
out these abnormal trajectories. The filtered trajectories
are subsequently classified into two categories: departure
operations and arrival operations. This classification is based
on the horizontal direction of the trajectory, Ty = sign(ATy).
Table 3 represents the thresholds used in the trajectory noise
removal filter.
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2) AIRCRAFT INFORMATION
The aircraft information extraction process involves two
approaches applied to the restored images of the aircraft from
the operation time window. The first approach utilizes a cus-
tom CNN classifier model to directly classify and recognize
the aircraft type from a set of predefined classes. On the
other hand, the second approach retrieves aircraft information
from the FAA registration database by recognizing the unique
aircraft tail number. To optimize the search process within
the FAA registration database and locate the target tail
number efficiently, the second approach leverages the output
of the first model, which provides the recognized aircraft
type. By employing this information, the system filters out
irrelevant tail numbers using a filtered database, as illustrated
in Figure 6. This approach narrows down the search space and
enables the identification of the desired tail number, allowing
for the retrieval of the corresponding aircraft information.
Aircraft Type Recognition: In our study, we developed an
aircraft classifier model using a CNN architecture. Figure 7
illustrates the structure of the customized CNN model
for aircraft classification, achieved by layer arrangement
optimization. In this optimization challenge, we established
a framework consisting of 5 convolutional blocks (referred
to as Conv B) and 3 fully connected layers as the core
components of our custom CNN classifier. We then employed
the HyperBand algorithm [51], integrated within Keras [52],
to fine-tune and optimize specific parameters of these
components:
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Aircraft Tracking Module

Trajectory Analysis Module

Aireraft Deicction Module

Motion Detection BN

Next frame

Building Aircraft Trajectory

>

Noise
>

Trajectory Noise Removal Filter

Trajectory Classification

|
AC Exits FoV

FIGURE 4. Operations count system flowchart. Green color-coded boxes refer to operational motions, and red
color-coded boxes refer to non-operational motions. “AC” stands for aircraft.

Tensor
(- Fusion ’\

Precision Kernel Auto-
»Calibration Tuning
Trained Neural -n!ne Optimi
Multi-Stream Optimized Model
Network Fusion TensorRT

Execution

FIGURE 5. TensorRT framework.

o Quantity of Convolutional Layers per Block: This is
restricted to a range of 1 to 5 layers in each block.

o Convolutional Layer Output Dimensionality: The
output dimensions are limited to 16-64 for B1 layers,
32-128 for B2 layers, 64-256 for B3 layers, and 128-
512 for both B4 and BS5 layers, with step increments set
to the respective lower bounds.

o Fully Connected Layer Output Dimensionality: The
first two fully connected layers’ output dimensions are
capped between 512-1024 for FC1 and 256-512 for FC2,
with step increments at half the lower bounds.

« Optimizer Learning Rate: Options for the learning rate
include 5e-3, 1e-3, 5e-4, 1e-4, and 5e-5.
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These defined boundaries were experimentally set to
ensure optimized performance in recognition. The architec-
ture consists of convolutional layers followed by a batch
normalization layer, as suggested in [53], to accelerate the
training process. The number of parameters in the CNN
classifier was optimized for efficient deployment on edge
devices and faster inference. The decreased size of the
parameters facilitates integration and enhances processing
speed on edge devices. To evaluate the performance of our
custom CNN classifier model, we compared it with two state-
of-the-art neural networks, ResNet50 [54] and Xception [55],
which were initially trained on the ImageNet dataset [56]
and later fine-tuned on our target dataset. The optimized
CNN classifier demonstrated higher accuracy with fewer
parameters on the FGVC-Aircraft dataset [57] compared to
ResNet50 and Xception, as presented in Table 5. The deep
classifier models were trained on a host machine equipped
with an NVIDIA GeForce RTX 2080 Ti. Recognizing
the aircraft type is instrumental in reducing the size of
the registration database within the identification system.
By filtering out tail numbers associated with other aircraft
types, our system effectively streamlines the search process,
improving overall efficiency. Table 6 provides a summary of
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Aircraft Type Recognition

Aircraft Information Aircraft Identification
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Database
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FIGURE 7. The structure of the CNN-based classifier models, where the HyperBand algorithm optimizes the
number of convolutional layers in each Conv B and output dimensions.

the predefined 13 aircraft type classes that encompass the
FAA database.

For our training, we utilized the FGVC-Aircraft dataset
[57], which comprises 10,000 images of aircraft, each model
variant represented by 100 images across 100 variants. The
aircraft images possess variations in function, dimension,
designation, structure, historical style, and brand identity. The
image resolution ranges from approximately 1 to 2 Mpixels.
This dataset is systematically categorized according to model,
variant, family, and manufacturer. In our study, we have
reclassified these into specific aircraft classes tailored to our
identification system needs. These classes are shaped by the
criteria set in the FAA’s standard registration database. This
database includes the Aircraft Registration Master file and the
Aircraft Reference file by Make/Model/Series Sequence [58].
The database provides key visual attributes such as the type of
aircraft, engine type, number of engines, size category (based
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on weight), and occasionally the model of manufacture. With
these parameters, along with the models in the FGVC dataset,
we established 13 distinct classes to cover a broad spectrum of
aircraft commonly found at various airports. Table 4 displays
the thirteen categories and the specific criteria utilized by
the proposed approach to enhance the registration database,
following the classification of the operational aircraft into one
of these distinct categories.

In our analysis, different engine types like reciprocating, 4-
cycle, 2-cycle, and rotary are categorized together due to their
similar combustion processes. Turbo-prop aircraft, capable
of carrying more payload than piston-powered ones, differ
in appearance from them (class a and b). This logic also
separates turbo-fan/jet from turbo-prop models, highlighted
by the absence of propellers in the former. Figure 6 indicates
that aircraft can be further grouped by engine number
and weight within the same engine type. Additionally, the
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TABLE 4. Aircraft classes; an example image from each class is presented
in Figure 6.

Class Aircraft Models Selected from FGVC Dataset
a Cessna 172, DH-82, DHC-1, DR-400, PA-28, SR-20
b Cessna 208
c Beechcraft 1900, DHC-6, EMB-120, B200
d ATR-72, DHC-8-300, Fokker 50, Saab 2000
e BAE-125, Cessna 525, Cessna 560, Falcon 2000
f Falcon 900
g CRIJ-700, CRJ-900, E-170, E-190, E-195, Fokker 100, Tu-134
h A300B4, A310, A318, A319, A320, A321, A330-200, A330-

300

i 737-200/300/400/500/600/700/800/900, 757-200/300, 767-
200/300/400, 777-200/300, Boeing 717

ERIJ 135, ERJ 145, Global Express, Gulfstream IV, Gulfstream
v

DC-9-30, MD-80, MD-87, MD-90

727-200, DC-10, L-1011, MD-11, Tu-154, Yak-42

707-320, 747-100, 747-200, 747-300, 747-400, A340-
200, A340-300, A340-500, A340-600, A380, BAE146-200,
BAE146-300,DC-8

Note: Class h consists of Airbus models.

—.

B|—~

FGVC-Aircraft dataset’s heavy turbo-fan/jet images aid in
identifying their manufacturers (class h-k), with similar
models from Embraer, Bombardier, and Gulfstream classified
together (class j).

a: TRAINING PROCEDURE

The FGVC-Aircraft image dataset was divided into three
parts: 66% for training, 17% for validation, and 17% for
testing. During training, we monitored the validation set’s
loss to identify the most effective model. The images were
resized to fit the input requirements of different deep learning
classifier models: 224 x 224 pixels for ResNet50, 299 x
299 for Xception, and 256 x 256 for our custom CNN
classifier model. To enhance the training data, we employed
data augmentation techniques, including random horizontal
flips and rotations within a range of [— 21—76, + 21—76] on batches
of 32 images during each epoch. To prevent overfitting,
we implemented two regularization methods: L2 regularizers
with a 0.01 factor for the convolutional layers in the custom
CNN classifier model and a dropout rate of 0.35 for the fully
connected layers in all deep learning classifier models. The
models were trained using categorical cross-entropy as the
loss function and the Adam optimizer.

The three deep learning classifier models utilizing CNN
were optimized for maximum efficiency, with each allowed
a training period of up to 100 epochs. This training was
conducted for the selection of the best architecture using the
HyperBand algorithm. The optimal architectures identified
from this process, using the HyperBand algorithm, are
presented in Table 5. Additionally, a constraint was placed on
the total number of parameters in the models by establishing
fixed boundaries within the search space. After the initial
100 epochs of training, we continued to train each optimized
model until the validation loss failed to improve for over
30 epochs. For the transferred models, we first allowed
them to converge on the target dataset, then fine-tuned
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FIGURE 8. Training and validation Curve of the custom CNN classifier
model for the Top 1 accuracy.

them by unfreezing the base model and continuing training.
This utilized the full capacity of the models. During fine-
tuning, we reduced the learning rate by a factor of 10 to
ensure gradual improvement and prevent overfitting. The
training validation curve is presented in Figure 8. The
custom CNN classifier model attained the highest validation
accuracy of 88% at epoch 132, and the training terminated
after 162 epochs as there was no improvement seen in the
validation loss. The highest training accuracy recorded was
92%.

b: DEEP LEARNING CLASSIFIER MODEL

Figure 9 presents a comparison of three deep learning
classifiers on the FGVC-Aircraft dataset’s test set, using
confusion matrices. These reveal the custom CNN classifier
model’s proficiency in categorizing heavyweight jet aircraft
(classes g to m), with a consistent accuracy above 80%.
On the other hand, ResNet50 and Xception demonstrate
weaker performance for these classes; ResNet50’s accuracy
falls below 80% for classes i and j, and under 70% for
class k, while Xception struggles with classes h, k, and 1,
maintaining accuracies below 80%. Additionally, the custom
CNN classifier model occasionally misclassifies lightweight
trijet aircraft (class f) as twinjet aircraft (class e), a trend
observed in 18% of cases, likely due to a limited number
of samples in class f. This issue of sample imbalance also
affects the detection of single-engine turbo-prop aircraft
(class b) in all models, resulting in slightly higher false
positive rates. Moreover, the confusion matrices highlight
the significant impact of an overrepresentation of BOEING
images, particularly affecting the Xception model, which
shows a 47% false positive rate in this respect. Overall,
the custom CNN classifier model provides superior and
consistent performance across all the classes compared to
ResNet50 and Xception.

Table 5 indicates that when each of the three deep
learning classifier models is applied to the test set, the top
three predicted classes achieve an accuracy exceeding 96%.
Therefore, in the process of filtering the registration database,
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FIGURE 9. Visualization of confusion matrices depicting classification
outcomes on the test set of the FGVC-Aircraft dataset. Top represents the
Custom CNN classifier, Middle shows Transferred ResNet50, and Bottom
illustrates Transferred Xception.

the focus is on these top three recognized classes, identified
after the classifier is used on the detected aircraft in selected
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video frames during the operation period. This approach
significantly reduces the likelihood of mistakenly excluding
the correct tail number from the database. The concept of
‘top-3 accuracy’ refers to scenarios where the actual class is
one of the three classes most likely to be predicted by the
model. The custom CNN classifier model was chosen for the
proposed aircraft identification system due to its advantages,
such as fewer parameters (resulting in faster inference),
lower loss, higher overall accuracy, and more consistent
performance in recognizing individual aircraft classes. The
custom CNN classifier model outperforms the state-of-the-art
classifier models Xception and ResNet50 in these aspects.

To mitigate bias, the custom CNN classifier model was
trained on the FGVC dataset and subsequently experimented
using data collected from three distinct airports not included
in the training set, ensuring robustness and generalizability
across different environments.

Aircraft Identification: The tail number plays a crucial
role in identifying aircraft. In our system, we adopted a
detection model based on Haar-like features to locate the
tail number within the recorded aircraft images. Although
Textboxes, a fast text detector utilizing a deep neural
network [59] was considered as an alternative, we decided
against its usage due to the significant increase in runtime
observed with deep text detectors. Instead, we chose the Haar
cascade classifier, originally designed for face detection [60],
as an efficient detection method suitable for embedded
systems. The classifier was chosen for its balance of speed
and accuracy, making it ideal for real-time applications
on resource-constrained devices like edge devices. Since
U.S. aircraft tail numbers begin with the letter “N,” we
trained a specialized “N” detector using Haar-like features.
Our experiments revealed that extending the bounding box
around the detected letter ““N”” four times captures the entire
tail number image. The detector we developed uses 24 x
24 window sizes and consists of 15 rejection and acceptance
stages. These stages are trained using Gentle Adaboost [61],
following the instructions in [62]. Gentle AdaBoost utilizes
weighted least-squares regression to establish a robust and
stable ensemble of weak classifiers [63]. We selected a
hit rate value of 0.997 because going any higher would
noticeably slow down the training process. In our tests,
a false alarm rate of up to 0.4 was found to be effective.
Regarding the specific hyperparameters for the degenerate
trees composed of weak classifiers, we established the weight
trim rate at 0.95, limited the maximum depth of weak trees
to 1, and capped the number of weak trees at each stage to
100. Additionally, we conducted a grid search across three
potential maximum stages (namely, 10, 15, and 20) and two
sizes of sample windows (20 x 20 and 24 x 24). For the
training data, we used 248 positive image samples (images
labeled as “N”’) and 415 negative samples, all sourced from
randomly selected web images. A separate validation dataset
comprising 100 aircraft images confirmed that the model,
when using 24 x 24 window sizes, achieved a superior
detection rate for tail numbers. The best-performing model
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TABLE 5. Performance comparison of the optimized classifier with Xception and ResNet50. Top-“n" accuracy is the accuracy where the true class matches
any of the “n” most probable classes predicted by the mode.

Variables ;)gtlmlzed CNN Model Transferred Models
onv | Output

Layers | Dimensionalities
Conv B1 5 16, 48, 16, 16, 48
Conv B2 2 64, 64
Conv B3 3 256, 64, 256 Xception ResNet50
Conv B4 2 512,256
Conv B5 4 512,256, 128, 384
FC1 NA 512 1024 1024
FC2 NA 256 512 512
FC3 NA 13 (aircraft classes) | 13 (aircraft classes) | 13 (aircraft classes)
Learning Rate 0.0001 0.0001 0.0001
# Parameters 18,711,245 23,491,125 26,217,357
Top-1 Accuracy 87 % 86% 82%
Top-2 Accuracy 93% 94% 93%
Top-3 Accuracy 97 % 97 % 96%

TABLE 6. 13 aircraft classes (S: single-engine, M: multi-engine, R:
reciprocating, TP: turbo-prop, P: piston, TF: turbo-fan, TJ: turbo-jet, weight
class 1: upto 12,499 Ib, weight class 2: 12,500-19,999, and weight class 3:
20,000 and over).

Class Am:n:aft Engine Weight | #Engine | Manufacturer
Engine Type
. Reciproc-
a ;fgf:e ating, Cllgszs 1 ALL
g Rotary
Single- Class
b Engine Turbo-prop 1&2 1 ALL
Multi- Turbo-prop Class
¢ Engine & piston 1&2 2 ALL
Multi-
d Engine Turbo-prop | Class 3 2 ALL
Multi- Turbo-fan, Class
¢ Engine Turbo-jet 1&2 2 ALL
Multi- Turbo-fan, Class
f Engine Turbo-jet 1&2 3 ALL
Multi- Turbo-fan,
g Engine Turbo-jet Class 3 2 ALL
Multi- Turbo-fan,
h Engine Turbo-jet Class 3 2 AIRBUS
. Multi- Turbo-fan,
i Engine Turbo-jet Class 3 2 BOEING
j é\f}‘;llze ?:;Eg;;’ Class 3 2 GULFSTREAM
X Multi- Turbo-fan, Class 3 5 MCDONNEL-
Engine Turbo-jet ass - DOUGLAS
Multi- Turbo-fan,
! Engine Turbo-jet Class 3 3 ALL
Multi- Turbo-fan,
m Engine Turbo-jet Class 3 4 ALL

was further trained for 15 stages and concluded once it met
the specified criteria for the overall false alarm rate. After
locating the tail number, our intelligent system predicts the
individual characters within the tail numbers using a text
recognition model called the CRNN [64]. The CRNN model
is pre-trained on two well-known synthetic text recognition
datasets named MJSynth and SynthText [65]. Each predicted
character in the CRNN model is represented as a probability
distribution over the character classes, encompassing the
English alphabet and numbers.

The softmax function is incorporated into the network
after the bidirectional long short-term memory (BLSTM)
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layer in the recurrent layers. It serves to normalize the score
list of predictions for each window (z;) into a probability
distribution across the predefined character classes. The
softmax function is defined as follows:

€5k
P(r; = w) = =L )
I
Here L, = |Q2] represents the number of character classes

and w is an element of set 2. The softmax function ensures
that the scores are normalized by exponentiating them and
dividing by the sum of all exponentiated scores. To determine
the final probability distribution of the recognized label
sequence for a video frame, r = {ry, ..., rz}, where L
is the length of the predicted label sequence, any blanks and
repeated labels (overlapped receptive fields) are removed.

In the initial step, for each video frame, we identify the
most probable value of r;, denoted as r[.*:

rf = arg rar)léaéP (ri=w). 3)

The predicted label sequence for that specific video frame
is represented by r* = {rl*, o, rl’:}, and A = {r’f, e, r;,f}
represents the set of predicted label sequences for all video
frames, where Ny is the number of selected frames.

To determine the most frequently recognized label
sequence during the operation time window, we select the
label sequence with the highest frequency of occurrence
among all the predicted label sequences:

T¢, = arg max |{x € A}|. @)
X

In the second step, we alter the first step and associate the
most frequent label sequence argument with a tail number
lexicon:

T¢, = arg max |{x € A}|. 5)
xeW

Here, W denotes the tail number lexicon, which is compiled
by extracting the list of registered aircraft tail numbers
relevant to the recognized aircraft classes from the database.
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The third step further refines the second step, particularly
in situations where there is no exact match between the tail
number lexicon and the set of predicted label sequences
during the operational time window. This step, specifically,
helps with false tail number detection cases. In such
scenarios, the tail number in the lexicon that yields the highest
conditional probability in relation to the observation of r is
chosen. This is expressed by:

s* = arg maxyp, .y P (TD‘r) . (6)

In this scenario, s* is deemed as the predicted label
sequence for a specific video frame. B = ({s],..., s}’{,f}
symbolizes the set of predicted label sequences for all video
frames. TP signifies a tail number recorded in the lexicon.
The predicted label sequence is obtained by applying text
recognition to the tail number image box, generating a set
of predicted characters denoted by P,.. With this notation, the
probability of each tail number in the database being the target
tail number can be calculated as follows:

N
S PP, ITE)
D i=
B(TP|Py) = . @)
where N is the length of the tail number, and T? denotes
the ith character of the target tail number. After processing
all the images of the tail number captured during the aircraft
operation time window, the intelligent system selects the tail
number with the maximum probability.

Finally, we select the most frequently recognized tail

number during the operation time window:

T¢, = arg m;lxl{x € B}|. 8)

B. HARDWARE
1) PROCESSOR
Considering the computational intensity of the algorithms,
we conducted experiments to test the system using two pro-
cessing platforms. We utilized two commercially available
Jetson developer kits to evaluate the performance of different
system modules: (1) NVIDIA Jetson Nano 4GB Developer
Kit BOI and (2) NVIDIA Jetson Xavier NX Developer Kit,
as depicted in Figure 11. Both kits are equipped with NVIDIA
GPUs that enhance deep learning computations, including
convolution, pooling, and activation operations. However, the
Jetson Xavier NX Developer Kit is approximately three times
more powerful and expensive than the Jetson Nano 4GB
Developer Kit BO1. Moreover, the algorithms designed for
extracting aircraft information require substantial computa-
tional resources. Consequently, we developed two separate
standalone devices to accommodate the following two setups:

Standalone device #1:

o Hardware Module: NVIDIA Jetson Nano 4GB Devel-

oper Kit BO1
o Software Module: Operations Count
Standalone device #2:
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FIGURE 11. (a) NVIDIA Jetson Nano 4GB Developer Kit BO1 (b) NVIDIA
Jetson Xavier NX Developer Kit.

« Hardware Module: NVIDIA Jetson Xavier NX Devel-
oper Kit

o Software Module: Operations Count and Aircraft Infor-
mation

NVIDIA Jetson Nano 4GB Developer Kit BO1 has 128-
core Maxwell GPU with 4 GB 64-bit LPDDR4 memory,
4K/HD/720p video decoder, microSD storage, and an M.2
key Wi-Fi connectivity (which requires an external Wi-Fi
module to be installed). On the other hand, the NVIDIA
Jetson Xavier NX Developer Kit is a more powerful
edge device for its GPU with 384 NVIDIA CUDA cores
and 48 Tensor cores. Additionally, it has an enhanced 8 GB
128-bit LPDDR4x memory and an included Wi-Fi/BT. The
technical specifications of these two developer kits are
summarized in Table 7.

The official operating system for the Jetson developer
kits is the Linux4Tegra, which is based on Ubuntu 18.04.
This operating system is available via the included SD card
image. NVIDIA JetPack is used as the Software Developer
Kit (SDK) for NVIDIA Jetson Nano Developer Kit and
NVIDIA Jetson Xavier NX Developer Kit. NVIDIA JetPack
SDK is a comprehensive solution for compiling end-to-end
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TABLE 7. Technical specifications of NVIDIA Jetson Nano 4GB Developer

Kit BO1 and NVIDIA Jetson Xavier NX Developer Kit.

Developer Jetson Nano Jetson Xavier NX
Kit Developer Kit Developer Kit
GPU 128-core Maxwell 384-core NVIDIA Volta
GPU with 48 Tensor
Cores
CPU Quad-core ARM A57 | 6-core NVIDIA Carmel
@ 1.43 GHz ARM v8.2 64-bit CPU 6
MBL2+4MBL3
Memory 4 GB 64-bit LPDDR4 | 8 GB 128-bit LPDDR4x
25.6 GB/s 51.2GB/s
Storage microSD microSD
Video 4K @ 30 | 4x 1080p | 2x 4K @ 30 | 6x 1080p
Encode @ 30 19x 720p @ 30 | @ 60 | 14x 1080p @ 30
(H.264/H.265) (H.265/H.264)
Video 4K @ 60 | 2x 4K | 2x 4K @ 60 | 4x 4K @
Decode @ 30 | 8x 1080p @ | 30112x 1080p @ 60 |32x
30 | 18x 720p @ 30 | 1080p @ 30 (H.265) | 2x
(H.264/H.265) 4K @ 3016x 1080p @ 60
| 16x 1080p @ 30 (H.264)
Camera 2x MIPI CSI-2 DPHY | 2x MIPI CSI-2 D-PHY
lanes lanes
Connectivity | Gigabit Ethernet, M.2 | Gigabit Ethernet, M.2
Key E Key E (Wi-Fi/BT
included), M.2 Key
M (NVMe)

Display HDMI and display port | HDMI and display port
USB 4x USB 3.0, USB 2.0 | 4x USB 3.1, USB 2.0
Micro-B Micro-B
Mechanical 69 mm x 45 mm, 260- 103 mm x 90.5 mm x 31
pin edge connector mm, 260-pin SO-DIMM

connector

GPU-accelerated deep learning applications. In this study,
we used JetPack 4.6 to flash both the NVIDIA Jetson Nano
4GB Developer Kit BO1 and the NVIDIA Jetson Xavier NX
Developer Kit.

An ACS8265 Dual Mode Wireless NIC Wi-Fi Module
(Figure 12a) is integrated into the NVIDIA Jetson Nano
4GB Developer Kit BO1. Furthermore, a 4020 PWM cooling
fan (Figure 12b) is placed on top of the Jetson Nano 4GB
Developer Kit BO1’s heatsink. This cooling solution is neces-
sary to prevent the kit’s temperature from rising excessively
during operation. For monitoring system performance at the
airport site during the experiments, a 7-inch LCD display
(Figure 12c) is connected to the Jetson Developer Kits.
This display provides real-time information and allows for
efficient observation of the system’s performance.

2) SENSOR
We utilized two camera modules that are compatible with the
NVIDIA Jetson Developer Kits: (1) Raspberry Pi Camera
Module V2-8 Megapixel, 1080p, and (2) IMX477 Camera
Bundle with 12.3MP HQ Camera Module, as shown in
Figure 12d and e. The Raspberry Pi Camera Module V2 is
installed on standalone device #1, while the IMX477 Camera
Module is installed on standalone device #2.

The IMX477 Camera Module includes a 6mm CS-mount
lens, which allows for manual zoom adjustments, particularly
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FIGURE 12. (a) Dual Mode (AC8265) Wireless NIC Wi-Fi Module (b) 4020
PWM cooling fan (c) Ingcool 7-inch HDMI LCD 1024 x 600 Resolution IPS
Display Module (d) Raspberry Pi Camera Module V2-8 Megapixel,1080p
(e) IMX477 Camera Bundle with 12.3MP HQ Camera Module (f) 8-50mm
C-Mount Zoom Lens for IMX477 Raspberry Pi HQ Camera.

useful for capturing aircraft tail numbers and extracting
aircraft information at airport sites. Since some airport safety
areas may require placing the camera at longer distances from
the taxiway and runway, we also employed a more robust
zoom lens. For this purpose, an 8-50mm C-Mount Zoom Lens
with a CS adaptor is used with the IMX477 Raspberry Pi HQ
Camera, as depicted in Figure 12f.

To enhance the quality of video data acquisition,
we installed the camera driver necessary for utilizing the
Camera Serial Interface (CSI) on the Jetson Developer Kits
(i.e., the host processors) instead of using USB cameras. This
approach ensures improved performance and reliable data
acquisition for the cameras connected to the Jetson Developer
Kits.

V. CONCLUSION AND FUTURE SCOPE

A. DATA COLLECTION

We conducted our experiments at three non-towered general
aviation airports located within the state of Utah: Heber
Valley Airport, South Valley Regional Airport, and Logan-
Cache Airport. The airports were selected due to their diverse
range of aircraft types and varying traffic volumes. The Heber
Valley Airport hosts over a hundred diverse aircraft, with
transient traffic that includes everything from light piston
planes to heavy turbine aircraft, such as the Gulfstream
G650 and Global Express [66]. Runway 04/22 has a dual-
wheel load capacity of 142,500 pounds and a pavement
classification number of 32/F/B/X/T. Similarly, Logan Cache
Airport is home to 176 based aircraft and supports roughly
137,900 takeoffs and landings annually [67]. Meanwhile,
South Valley Airport accommodates a variety of aircraft,
including 144 single-engine aircraft and 7 multi-engine
aircraft [68]. We placed our system setup at the entrance
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TABLE 8. Information on the data collection sessions.

Airport # Session Weather # Operations
. 1 Cloudy with drizzle 12
Heber Valley Airport 5 Clou dz o
South Valley 3 Sunny 17
Regional Airport 4 Partly cloudy 10
Logan-Cache 5 Sunny 22
Airport 6 Sunny 29

taxiway, specifically the one leading to the runway’s end,
a layout previously tested in our earlier study [9]. The
environmental setup for the three airports are illustrated in
Figure 13. This specific arrangement was selected due to its
advantage in providing the edge device with additional time
to identify aircraft, as the speed of aircraft operations is slow
while moving in front of the edge devices. The configuration
was tested on a single node of the airport in order to evaluate
the performance of the computer vision system and edge
computing devices. This configuration was chosen because
it allows the edge device more time to detect aircraft at their
reduced speeds. To ensure adherence to safety regulations, the
setup was situated outside both the runway safety area (RSA)
and taxiway safety area (TSA). We performed a total of six
data collection sessions, with each session taking place on a
different day and lasting for four hours. The sessions were
scheduled between 2 PM and 6 PM, during daylight hours.
Table 8 provides comprehensive information regarding the
weather conditions observed during each session, as well as
the corresponding number of aircraft activities recorded in the
targeted entrance taxiway.

Reduced visibility due to nighttime operations and adverse
weather conditions is a common challenge for all vision-
based systems. In the current study, data were collected
from 2 PM to 6 PM, but in our previous study [69],
we experimented with these challenges. Positioning edge
devices closer to the taxiway and the lights present in airports
helps improve visibility in these scenarios. Additionally, dur-
ing adverse weather conditions, airports typically have less
traffic. Figure 14 presents a screenshot from video footage
capturing aircraft detection during nighttime operations in
our previous study [69].

During the data collection sessions, we validated the
collected data by comparing it to observations made by
the data collection crew at the test locations (as shown in
Figure 15). The crew was present during the four-hour data
collection period and recorded the activities for comparison
with the data collected by the two standalone devices. During
each session, both standalone devices were placed next to
the targetted end entrance taxiway, with their camera sensors
aiming at the taxiway passage. To ensure sustained charging,
a portable power station equipped with a 60 watts solar panel
was used for each device. The two edge devices are efficient
in terms of energy consumption, with Standalone device #
1 consuming 5 watts and Standalone device # 2 consuming
10 watts. This efficiency is notable given that typical security
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cameras enabled with solar panels consume between 2 to
15 watts on average. By conducting the experiments at three
different airports, we were able to test the system in various
scenarios, including different safety areas, distances from the
target passage, and varying aircraft types.

B. SYSTEM INFERENCE SPEED

When assessing the system processing times on both stan-
dalone devices, we found that the operations count software
module performed in real-time, as shown in Table 9. The
highest processing time for this module occurred when SSD-
Mobilenet-v2 was activated. As a result, standalone device
#1 updates video frames at a minimum rate of 7 frames
per second (FPS), and standalone device #2 updates video
frames at a minimum rate of 19 FPS. This results from the
processing times of 142 ms and 51 ms for SSD-Mobilenet-
v2 on standalone devices #1 and #2, respectively, which
directly determine the achievable FPS rates. During the active
aircraft tracking module, both devices render more frames
per second, with standalone device #1 rendering 13 FPS
and standalone device #2 rendering 28 FPS. These frame
rates are derived from MOSSE’s processing times of 76 ms
for standalone device #1 and 35 ms for standalone device
#2. This indicates that both devices possess the capability
to process an ample number of video frames, enabling
the tracking and counting of aircraft operations within
the time it takes for an aircraft to traverse an entrance
taxiway. However, the aircraft information module is still
computationally intensive to execute on standalone device
#2, despite using a fast tail number detector. Therefore,
this module is only executed after the operations count
module has been processed. Nevertheless, the delay caused
by processing the aircraft information module is still shorter
than the waiting time between two consecutive aircraft
operations, as pilots typically follow safety measures before
entering the runway. As indicated in Table 9, the processing
delay for aircraft information on standalone device #2 totals
approximately 6.7 seconds.

C. SYSTEM ACCURACY

As illustrated in Figure 16, standalone device #2 achieved an
accuracy rate of approximately 80% in operations counting.
In contrast, standalone device #1, which has a less powerful
processor, managed an accuracy of about 71% in the same
task. It’s noteworthy that software errors contributed to less
than 4% of the counting errors in both devices. Due to
the complexity of the aircraft information algorithms, only
standalone device #2, with its more advanced processor, was
able to execute the aircraft type recognition and identification
tasks.

The majority of errors in both standalone devices were
attributed to hardware-related issues, which are highlighted in
dark blue. These errors refer to malfunctions of the standalone
system during testing, such as losing some video frames due
to camera-related errors or operating system malfunctions.
This type of malfunction precedes software errors since they
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FIGURE 13. Environmental setup for three airports.

FIGURE 15. On-site data collection.

happen before the algorithms are triggered. The remaining
errors were related to software issues.

Standalone device #2 was specifically utilized for extract-
ing aircraft information. The optimized CNN classifier
demonstrated an impressive aircraft type recognition rate of
76%, with an error rate of 7.4%. Additionally, the proposed
probabilistic aircraft identification method successfully iden-
tified 68.8% of the exact tail numbers by referencing the FAA
registration database. It is important to note that these results
were obtained despite hardware malfunctions. If the hardware
had been fully functional, it was estimated that the device
could have achieved up to 85.3% accuracy in identifying
the operating aircraft (as depicted in Figure 16). Notably,
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TABLE 9. Processing times recorded by standalone devices.

. Device #1 Device #2
Software Algorithm . .
Model Processing | Processing
Module Module R "
Time Time
Aircraft Ggussmn 32 ms 17 ms
. . Mixture
Operations Detection SSD-
Count Mobilenet- 142 ms 51 ms
v2
Aireraft MOSSE 76 ms 35 ms
Tracking
Trajectol Noise
An; 1 sisry Removal S ms 2 ms
Y Filter
Aircraft Optimized
Type CNN N/A 393 ms
Aircraft Recognition Classifier
Information Tail Number
Detector
Aircraft (Haar N/A 112 ms
Identificati Cascade
entification |\ del)
Tail Number
Recognizer N/A 814 ms
(CRNN)
Probabilistic
Identifier N/A 3,443 ms

Note: The processing times are the average of the times calculated by processing all
captured aircraft operations. The processor of standalone device #1 is the NVIDIA
Jetson Nano 4GB Developer Kit B0O1, and the processor of standalone device #2 is
the NVIDIA Jetson Xavier NX Developer Kit. The sensors recorded video data with
1080x1920 resolution.

these identification accuracies were attained even though,
on average, only 72% of the individual characters in the tail
numbers were correctly recognized by the text recognition
model (CRNN).

D. SYSTEM COST

The proposed system incorporates an NVIDIA developer
kit and a solar-powered camera module. The operational
cost of the standalone device can be segmented into hard-
ware, installation, and maintenance expenses, as detailed in
Table 10. However, the total cost of the system may fluctuate
depending on the rental option selected and the duration of
use. When accounting for the software subscription required
for the operations count and aircraft information modules,
an additional $4,000-$5,000 may be added to the annual
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DEVICE #2: Aircraft

Identification 16.5% 14.7%

DEVICE #2: Aircraft

Type Recognition 16.5% 7.4%

DEVICE #2: 16.5% 3.7%

Operations Count

DEVICE #1:

0
Operations Count 70.6% 26.6% 2.8%

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

m System Accuracy  Hardware Error ~ Software Error

FIGURE 16. System accuracy and error.

system cost. This estimate is derived from currently available
commercial computer vision solutions [70]. For a typical non-
towered general aviation airport with four entrance taxiways,
the estimated annual usage cost of standalone device #1 and
standalone device #2 would be around $10,000 and $15,000,
respectively.

E. COMPARISON WITH PREVIOUS MODELS

1) GENERAL AUDIO RECORDING DEVICE (GARD)

GARD calculates operation counts by considering the
average number of radio transmissions during take-offs and
landings. However, this count can be greatly affected by
factors like the pilot, the specific situation, and the location,
which can result in imprecise estimates. For instance, the
Florida Department of Transportation (FDOT) has observed
discrepancies in these estimates ranging from 40% to 60%
[15]. Moreover, airports that share a Unicom frequency with
neighboring airports are unable to utilize GARD. In contrast,
our system provides an accuracy of 79.8% in tracking the
operation counts of the aircraft.

2) TRANSPONDER

Only about 65% [71] of general aviation aircraft are equipped
with transponders, and a substantial portion of these aircraft
in the U.S., approximately 84% [72], do not possess transpon-
ders capable of transmitting Mode S signals that include
the aircraft identity information. Given these challenges, our
system provides a cost-effective and efficient approach for
performing operation counts and aircraft identification.

3) AUTOMATED ACOUSTICAL COUNTERS

As previously discussed in Section II-A, AAC systems rely
on sound to monitor aircraft operations, which presents
challenges in accurately capturing all types of operations [6],
[14]. Moreover, these systems cannot identify specific aircraft
using acoustical data. Conversely, our system, utilizing a
vision-based approach, demonstrates significant improve-
ments, achieving 79.8% accuracy in operation count and
68.8% accuracy in aircraft identification.

4) VISION ALGORITHMS
The custom CNN classifier model, enhanced with the
HyperBand algorithm, outperforms the advanced Xception
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and ResNet50 models by achieving a higher accuracy rate of
97% for the top 3 classes, while utilizing fewer parameters.
This comparison is detailed in Table 5. The efficiency of the
custom CNN model, processing at a rate of 4 frames per
second, is attributed to its reduced parameter size, enabling
quicker and more accurate results. It is particularly adept
at classifying heavyweight jet aircraft (classes g to m),
maintaining an accuracy above 80%. In contrast, ResNet50
and Xception demonstrate less consistent performance in
these classes, as shown in Figure 9, with ResNet50 falling
below 80% accuracy in classes i, j, and k, and Xception
in classes h, k, and 1. Thus, the custom CNN classifier is
selected for the identification system, surpassing Xception
and ResNet50 in terms of efficiency, accuracy, and consistent
recognition of classes.

F. DISCUSSION AND CONCLUSION

This paper presents an affordable and intelligent data
collection approach for counting and recognizing aircraft
operations at non-towered airports, which represent the
majority of U.S. airports. The availability of aircraft oper-
ational data is crucial for future planning and making
timely decisions regarding safety and security. Our proposed
intelligent system is structured with edge computing and
optimized machine and deep learning-based modules to
gather operation counts and aircraft information. We have
developed two standalone setups: standalone device #I,
dedicated to operation counting, and standalone device #2,
which has a more powerful edge processor capable of
recognizing aircraft information in addition to counting
operations.

Both standalone devices were tested at three non-towered
general aviation airports. We found that the majority of errors
(26% in device #1 and 16% in device #2) originated from
hardware components, while the software modules operated
with accuracy. These tests were conducted for experimental
purposes to evaluate the system’s feasibility and performance
and were not designed for long-term deployment. Future
work will focus on addressing the challenges associated
with long-term deployment and integrating more robust
solutions for continuous operation. As such, future research
should prioritize improving the hardware configurations. The
advent of advanced edge computing technologies, such as
the NVIDIA Jetson AGX Orin Developer Kit equipped with
a 512-core NVIDIA Ampere Architecture GPU, presents
promising opportunities for hardware enhancements. This
advancement can facilitate real-time data storage, a feature
not implemented in this study, while ensuring minimal impact
on the devices’ processing times. In future investigations,
utilizing such advanced edge computing devices could enable
longer deployment periods in coordination with existing
systems. We estimate that the deployment of the proposed
system for a one-year data collection period, inclusive of
aircraft information, would cost approximately $15,000 at a
typical general aviation airport. Additionally, the total cost
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TABLE 10. System operation costs.

)
Item Detail Cost per item!!] Quantity Sl;l:;ti(ztea;#[l] S:‘?itc:tzlz
NVIDIA Developer kit | ~ $300 - $1,300 4 $1,200 $5,200
Hardware Camera Sensor ~ $50 - $100 4 $200 $400
Optical Zoom Lens ~$50 4 $200 $200
Power Station + Solar ~$400 4 $1,600 $1,600
Installation Electrician ~$70 / hr 10 hrs $700 $700
; Computer Engineer ~$80 / hr 10 hrs $800 $800
Maintenance | Technical Support ~$100 each 1 per months $1,200 $1,200
i3
Subtotal ltgzrvgcgia]t;n $5900 | $10,100
Notes: [1] The costs are average costs found on the market.
[2] The mean costs are used for subtotals.
[3] For a typical non-towered general aviation airport with 4 entrance taxiways
TABLE 11. Comparison of the proposed system with the commercially available systems.
Operation Aircraft Aircraft Approximate
System Accuracy C(I))unt Type" Tail Cgft(z)
]S)t:\rlli(iil;?e High accuracy if no visual obstruction S:;EE uter NA NA $10,000)
]S)t aqdalone High accuracy if no visual obstruction Cpmputer C_omputer Cpmputer $15,000
evice #2 vision vision vision
(AAéfomate d 1- Misses landing ops an.d qpiet airc.raft
Acoustical 2- Over/undercount ops in airport with Acoustic NA NA $15,0004
Counter) closely arranged taxiways
1- Counts depend on average radio
transmissions which drastically changes
at different flight situations
g{zl;lg & 2- Identification Fle.ficier}cy because Radio
ADS-B-based | Many g'eneral aviation aquaft are not records NA ADS-B $7,000)
counter) yet e_q_u1pped with the rgquued avionics.
Additionally, many equipped aircraft
do not have Mode S transponders
(required for aircraft identification)
1- Counting deficiency because many
Vantage gen?ral avigtion aircraf't are not yet
(Radar + equipped with the re;qmred avionics Transponder | NA Camera NA®
Video) 2- No strategy for aircraft type . detection
recognition in cases where no stencilled
tail number

Notes: (1) Direct aircraft type recognition and not by cross referencing the tail number or aircraft ID identification result. This feature is usefull specifically for cases where the tail

number is not imprinted on fuselage.

(2) For a typical non-towered general aviation single-runway airport. Costs are approximated and may vary for all systems depending on the runway lengths and entrances.
(3) Hardware, software, installation, and maintenance costs for one year are included.
(4) Hardware and software costs are included based on Muia and Johnson [6]. Multiple counters are needed for longer runways. Three counters are considered for a single

5,500 ft runway.

(5) Hardware and software costs are included based on Invisible Intelligence [73].

(6) No data is available

could potentially decrease for airports with fewer than four
entrance passages to the runway.

Three commercially available systems commonly used
by the aviation community for airport operational data
collection are the Automated Acoustical Counter (AAC),
the General Audio Recording Device (GARD), and Vantage.
The GARD system relies on radio records for operation
counts and uses ADS-B for aircraft identification. Con-
versely, Vantage is a transponder-based counter system that
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employs tail number camera detection for identification tasks.
In contrast to these, our proposed system offers superior
accuracy and more comprehensive information, as detailed
in Table 11. It’s worth noting that the tabulated costs for
the AAC and GARD systems do not include installation
and maintenance expenses, and cost data for Vantage is
currently unavailable. Although cost comparisons can vary
depending on the airport layout, our proposed system
(i.e., standalone devices) has the potential to offer higher
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accuracy than other systems, provided there are no visual
obstructions.

The newly developed devices present a viable alternative
to the current systems. Unlike acoustical and radio-based
counters, which cannot identify the type or model of
an aircraft, standalone device #2 can accurately identify
aircraft by recognizing their tail numbers and integrating
this data with the FAA database to gather detailed aircraft
information. On the other hand, transponder-based counters
face identification limitations as they require aircraft to be
equipped with a specific type of transponder (i.e., Mode
S transponders), which is not common in many general
aviation fleets. This issue is resolved by the proposed system,
which is solely based on computer vision. It operates as a
self-sufficient passive system, independent of any onboard
avionics equipment. Furthermore, this new system can
recognize the aircraft type independently of tail number
detection, a distinct advantage over current camera systems
like Vantage.

Future research directions should emphasize the enhance-
ment of hardware components in edge devices, with the
objective of augmenting processing capacities and minimiz-
ing hardware errors. Alongside hardware improvements, it is
also critical to advance software components to achieve better
accuracy and enhance processing efficiency. In this context,
exploring various techniques for optimization, such as model
pruning, quantization, and knowledge distillation, could
play a pivotal role in reducing the size and computational
demands of deep learning models. This optimization is
anticipated to significantly reduce processing times. Imple-
menting a lightweight deployment strategy by removing
non-essential connections between neurons and setting
insignificant weight parameters to zero can help decrease
processing time [74]. Collectively, these improvements can
bring us closer to achieving optimal precision in both aircraft
operation counting and aircraft identification. To facilitate
further research, we have published the code, which can
be found at https://github.com/Mohammad9292/Aircraft-
Detection-Edge/tree/main.
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