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ABSTRACT Combinatorial optimization has wide applications from industry to natural science. Ising
machines bring an emerging computing paradigm for efficiently solving a combinatorial optimization
problem by searching a ground state of a given Ising model. Current cutting-edge Ising machines achieve fast
sampling of near-optimal solutions of themax-cut problem. However, for problemswith additional constraint
conditions, their advantages have been hardly shown due to difficulties in handling the constraints. In this
work, we focus on benchmarks of Ising machines on the quadratic knapsack problem (QKP). To bring out
their practical performance, we propose fast two-stage post-processing for Ising machines, which makes
handling the constraint easier. Simulation based on simulated annealing shows that the proposed method
substantially improves the solving performance of Ising machines and the improvement is robust to a
choice of encoding of the constraint condition. Through evaluation using an Ising machine called Amplify
Annealing Engine, the proposed method is shown to dramatically improve its solving performance on the
QKP. These results are a crucial step toward showing advantages of Ising machines on practical problems
involving various constraint conditions.

INDEX TERMS Combinatorial optimization, Ising machine, quadratic knapsack problem.

I. INTRODUCTION
Combinatorial optimization is an important research area
with applications in various fields such as artificial intelli-
gence and operations research. For example, the knapsack
problem and its variants are famous and well-studied com-
binatorial optimization problems with numerous applications
including production planning, resource allocation, and port-
folio selection [1]. Theoretically, combinatorial optimization
problems are often hard to solve exactly within a reasonable
amount of time due to their NP-hardness. Therefore, various
heuristics and meta-heuristics have been developed for deal-
ing with large-scale combinatorial optimization problems.

Ising machines offer a new computing paradigm for
tackling hard combinatorial optimization problems [2]. Ising
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machines search a ground state of a given Ising model,
a model in statistical mechanics involving binary variables
(called spins) and their interactions, and thus can be used
for optimization over binary variables. For problems with
additional constraint conditions on binary variables, the
penalty method is typically used [3]. A constraint on binary
variables x = (x1, · · · , xn) is translated into a penalty term
Hcon(x) added to the objective functionHobj(x) with a positive
coefficient λ > 0 to construct an unconstrained binary
optimization problem

minimize Hobj(x)+ λHcon(x)

subject to x ∈ {0, 1}n, (1)

to which an Ising machine is applied. There exist several
types of Ising machines depending on the way of physical
implementation: examples are quantum annealers [4], [5],
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coherent Ising machines [6], [7], and specialized-circuit-
based digital machines [8], [9], [10], [11], [12]. These
machines enable fast sampling of near-optimal solutions on
the max cut problem, which is naturally formulated with an
Ising model.

However, for problems with additional constraint condi-
tions on binary variables, the superiority of Ising machines to
other methods has not been observed. For example, previous
benchmark results [13], [14], [15], [16] on the quadratic
knapsack problem (QKP) and quadratic assignment problem
(QAP) show that Ising machines are not competitive with
existing (meta-)heuristic solvers. A critical performance issue
is that Ising machines do not necessarily output feasible
solutions, i.e., solutions satisfying constraints. The penalty
coefficient λ in (1) is required to be large for outputs to be
feasible, but large λ tends to degrade the objective value.
This trade-off also makes it difficult to fairly compare the
performance of Ising machines with that of other heuristic
solvers. Therefore, it is crucial to resolve the trade-off to
establish practical utility of Ising machines.

In this study, we focus on the benchmark of Ising machines
on theQKP [17]. TheQKP is awell-studied practical problem
involving one inequality constraint over binary variables.
Although it is presumably suitable for solving with Ising
machines, existing Ising machine benchmarks [15] on the
QKP only deal with relatively easy instances that can be
solved by exact methods due to the difficulty in handling the
constraint for Ising machines. Therefore, we explore a way
to overcome this problem and enable effective performance
comparison with existing heuristic solvers. The application
to the QKP is taken as the first attempt in this direction and
would be extended to other problems in the future.

Several methods to encode an inequality constraint into
penalties have been proposed for applying Ising machines to
the QKP [18], [19], [20], [21], since the choice of encoding
methods has impacts on controlling the trade-off between
the feasibility and objective value. Nevertheless, none of
them have achieved better results than other heuristic solvers
or even a simple greedy method. Moreover, each encoding
method has different advantages and disadvantages, making
it difficult to select the appropriate method for a given
instance.

We take another approach to enhance the performance of
Ising machines by exploiting the problem structure. We pro-
pose to incorporate efficient two-stage post-processing into
the solving process using an Ising machine. The post-
processing consists of repair and improvement procedures
(Fig. 1). First, the repair procedure converts the output
of the Ising machine, if it is infeasible, into a feasible
solution. The obtained feasible solution is improved by
a local improvement procedure. Since Ising machines are
suited for global search, the improvement procedure takes a
complementary role to achieve further improvement via local
search. Although the post-processing consists of well-known
greedy algorithms [17], [22], [23], the combination with Ising
machines has not been fully explored so far. We believe

FIGURE 1. Conceptual figure of effect of two-stage post-processing. ‘‘Raw
solutions’’ denote outputs of Ising machines, which are often infeasible
when penalty coefficient λ is small (dashed line on ‘‘Critical domain’’).
Tuning of λ typically involves finding λcritical which achieves best
trade-off between feasibility and objective. Repair procedure for
infeasible solutions enables us to obtain feasible solutions even for
smaller λ. Improvement procedure further enhances feasible solutions
with local operations. Optimal penalty coefficient λoptimal is found to be
much robust to choice of encoding methods for inequality constraint,
in contrast to λcritical which heavily depends on encoding methods (see
Section IV).

it is valuable to thoroughly examine the effectiveness of
the post-processing approach as it seems to be a promising
straightforward way to resolve the technical issue.

We conduct simulation experiments on medium-sized
QKP instances using simulated annealing. The results show
that the combined use of the repair and improvement
procedures provides the synergistic effect on gaining the
solving performance, achieving optimal solutions on more
than 80% of the test instances within a reasonable time.
Besides, we find that the post-processing greatly reduces
the dependency of the solving performance on the choice of
encoding methods of the inequality constraint into penalties,
which might make practical use of Ising machines much
easier.

We evaluate the performance of Amplify Annealing
Engine (AE) [24], one of the state-of-the-art Ising machines,
with our method on a data set of large QKP instances of
size ranging from 1000 to 2000. AE combined with the post-
processing achieves best known solutions on 77.5% of test
instances and a small optimality gap on the rest instances.
This result significantly exceeds the previous benchmark
of Ising machines on the QKP [15], [16]. This is also
the first result that an Ising-machine-based solver achieves
a performance comparable to previous heuristics on the
QKP [25], [26], [27], [28].

Our contribution is summarized as follows:

• We propose a method to solve the QKP with Ising
machines combined with the post-processing consisting
of the repair and improvement procedures to overcome
the difficulty in handling the constraint condition.

• Through simulation experiments on medium-sized
instances, we show that the post-processing is effective
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in obtaining optimal solutions and making the perfor-
mance robust to a choice of encoding methods.

• We show that the proposed method dramatically
improves the solving performance of a state-of-the-
art Ising machine on the QKP despite its simplicity,
exceeding the previous benchmark results of Ising
machines.

Since the proposed method is implemented on the basis
of well-known naive algorithms, we expect that it can be
extended and enhanced to show the advantage of Ising
machines over previous heuristic methods on the QKP and
other problems in the future. Therefore, our findings are
a crucial step toward showing the practical utility of Ising
machines.

The rest of the paper is organized as follows. Backgrounds
are explained in Section II. We introduce the proposed
method in Section III. The simulation experiment is con-
ducted in Section IV.We evaluate the proposed method using
the Ising machine in Section V. Related work and future work
is discussed in Section VI. Section VII concludes this paper.

II. PRELIMINARIES
A. ISING MACHINES
We briefly review backgrounds on Ising machines. An Ising
model is a model in statistical mechanics consisting of a
number of binary variables si ∈ {±1}, i = 1, · · · , n called
spins and their interactions. The energy of a state s =
(s1, · · · , sn) ∈ {±1}n is defined as

H =
∑
i,j

Jijsisj +
∑
i

hisi, (2)

where Jij ∈ R represents the pairwise interaction between
spin si and sj and hi ∈ R, i = 1, · · · , n is called external field.
A ground state of the Ising model is a state s that minimizes
the energy H . Ising machines implement fast heuristics
to search a ground state of the Ising model by analog
computation using quantum annealing [29] or degenerate
optical parametric oscillators [6], or by digital algorithms
such as simulated annealing and simulated bifurcation [12]
with massive parallelization.

The problem of finding a ground state of an Ising model
can be also formulated as a quadratic unconstrained binary
optimization (QUBO) problem [3], which is a class of
optimization problems over binary variables xi ∈ {0, 1}, i =
1, · · · , n defined by a square matrix Q ∈ Rn×n as follows:

minimize x⊤Qx (3)

subject to x ∈ {0, 1}n. (4)

The objective value x⊤Qx is also called the energy of x.

B. QUADRATIC KNAPSACK PROBLEM
The quadratic knapsack problem (QKP) [17] is a general-
ization of the well-known knapsack problem and defined by
data of n items and the knapsack capacity C . Each item i
is associated with a weight wi > 0 and a profit pi ≥ 0.

In addition, for each pair i, j (i < j) of items, a pairwise
profit pij ≥ 0 is defined and it is added to the total profit
when both items are put into the knapsack. The QKP asks to
maximize the total profit maintaining the total weight within
the knapsack capacity. Namely, it is formulated as

maximize H (x) :=
n∑
i=1

pixi +
n−1∑
i=1

n∑
j=i+1

pijxixj

subject to
n∑
i=1

wixi ≤ C,

xi ∈ {0, 1}, i = 1, · · · , n. (5)

We define pij := pji for i > j to ease notation. We assume
wi and C are integers and satisfy mini wi ≤ C <

∑n
i=1 wi

to avoid triviality. The QKP is an NP-hard optimization
problem and the state-of-the-art exact solver can only solve
some QKP instances of size up to 1500 in a reasonable
time [30]. To solve large QKP instances efficiently, various
heuristic approaches including the tabu search [26], [31],
swarm optimization [32], dynamic programming [25], greedy
randomized adaptive search procedure (GRASP) [26], and
evolutionary algorithm [27], [33] have been proposed.
The current best heuristic solver is based on the iterated
hyperplane exploration approach [28].

As a particular problem structure, it is well-known that an
optimum of the QKP is attained on the edge of the space of
feasible solutions. Precisely, the following holds. For a proof,
we refer to Appendix A.
Proposition 1 (cf. [23]): For a QKP instance defined

as (5), an optimum is attained by a solution x ∈ {0, 1}n

satisfying C −maxi wi <
∑n

i=1 wixi ≤ C .
The QKP can be reformulated as QUBO in the following

way [31]. First, an integer slack variable z ≥ 0 is introduced
to represent the inequality constraint

∑n
i=1 wixi ≤ C as an

equality constraint
∑n

i=1 wixi + z = C . By transforming the
equality constraint into a penalty term in the standard way,
we get a quadratic optimization problem:

minimize −H (x)+ λHineq(x, z), (6)

Hineq(x, z) =

(
n∑
i=1

wixi + z−C

)2

, (7)

where λ > 0 is a sufficiently large positive number. To further
translate it into a QUBO problem, the integer variable z
is represented by binary variables typically with binary
expansion [31]. That is, taking sufficiently large integer D >

0 which is an upper bound of z, z is represented by

k := ⌊logD⌋ + 1, R := D+ 1− 2k−1,

z =
k−1∑
i=1

2i−1yi + Ryk (8)

using additional binary variables y1, · · · , yk ∈ {0, 1}.
Other encoding methods of the integer variable are proposed
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and evaluated for the use of Ising machine (without post-
processing) [18], [19], [20]. Their performance will be
compared in Section IV under the existence of post-
processing.

We remark that a local optimum of the QUBO problem (6)
does not necessarily correspond to that of the QKP (5).
Recall that a local optimum of an optimization problem over
binary variables is defined as the objective value of a feasible
solution for which any flip (i.e. changing value from 0 to
1 or 1 to 0) of a variable cannot improve the objective value
maintaining feasibility. For example, we consider a trivial
feasible solution x = (0, · · · , 0) which clearly does not attain
a local optimum of the QKP. In the QUBO setting, a solution
with x = (0, · · · , 0) and y which gives z = C corresponds to
the solution. In fact, it attains a local minimum of the QUBO
problem (5) for large λ since flipping xi for any i ∈ {1, · · · , n}
leads to a change of the objective value by−pi+λw2

i > 0 and
similarly flipping yi for any i ∈ {1, · · · , k} increases the
objective value. In other words, a flip of xi in the QKP is
realized by multiple flips involving auxiliary variables yi in
the QUBO form. Hereafter, unless otherwise noted, we use
the word ‘‘local’’ in the sense of the QKP and not of QUBO.

C. CHALLENGES IN ISING MACHINES SOLVING QKP
Since the QKP can be naturally formulated with a quadratic
objective function of binary variables as above, it is pre-
sumably suited for benchmarks of Ising machines. However,
in contrast to the max-cut problem on which Ising machines
have achieved successful results [7], [12], evenmedium-sized
QKP instances that can be handled by exact methods are not
adequately optimally solved by Ising machines or simulation
in the previous studies [15], [19], [20]. The biggest challenge
is that Ising machines might output solutions violating the
inequality constraint since the constraint is imposed only
implicitly with the penalty term.

There is a trade-off that a large penalty is required to
obtain feasible solutions with high probability whereas it
also degrades the objective value. As shown in Section IV
below, the recently proposed encoding methods of the
inequality constraint [18], [19], [20] have a role to control
this trade-off. Nevertheless, their improvement in Ising
machine performance is not satisfactory, since they are still
outperformed by a simple greedy method (see simulation
results in Section IV). Our approach is to directly resolve
the trade-off by incorporating local post-processing into Ising
machines, instead of exploring the optimal encoding method.

III. PROPOSED METHOD
We propose to incorporate post-processing utilizing the prob-
lem structure into the solving process with Ising machines.
The post-processing consists of two steps: repair and
improvement. The repair procedure converts an infeasible
solution into a feasible solution. It is commonly used for
other meta-heuristics such as evolutionary algorithms [27],
[34]. The improvement procedure takes a feasible solution
as an input and improves the objective value by locally

Algorithm 1 Post-processing on QKP
Input: Solution x = (x1, · · · , xn) ∈ {0, 1}n (possibly infeasible),

Profits (pi)i, (pij)ij, Weights (wi)i, Capacity C
Output: Feasible solution x
1: for i = 1, · · · , n do
2: ei ← (pi +

∑i−1
j=1 pjixj +

∑n
j=i+1 pijxj)/wi

3: while
∑

k wkxk > C do
4: Take j ∈ argmin{ei | xi = 1}
5: xj ← 0 ▷ Remove an item
6: Update (ei)i
7: for j s.t. xj = 0 in decreasing order of ej do
8: if

∑
k wkxk + wj ≤ C then

9: xj ← 1 ▷ Add an item
10: Update (ei)i
11: for i s.t. xi = 1 in increasing order of ei do
12: for j s.t. xj = 0 in decreasing order of ej do
13: if

∑
k wkxk − wi + wj ≤ C and eiwi < ejwj − pij then

14: xi ← 0, xj ← 1 ▷ Swap items
15: Update (ei)i
16: return x

modifying the solution. Both procedures are building blocks
of most heuristic combinatorial optimization algorithms,
often combined with randomized operations to enable global
search [28], [35]. In our case, they are used deterministically
(i.e., without randomness) following a greedy strategy,
since Ising machines have a role in the global search.
We expect that Ising machines and the local post-processing
work complementarily to efficiently enhance the solving
performance. One important advantage of the proposed
method is that the repair procedure enables us to set the
penalty coefficient λ in (6) to small values and to tune λ
according to the objective value, not to the rate of feasible
solutions, since obtained solutions are always feasible. This
effect, coupled with the local improvement, helps us to obtain
the optimal solution more easily with Ising machines, as we
will see in Sections IV and V. We explain the details of the
method below.

A. POST-PROCESSING ALGORITHM ON QKP
Both the repair and improvement procedures are built
upon well-known greedy heuristics used in the previous
studies [17], [22], [23]. We review the ideas of both
procedures briefly to make the argument self-contained.

For the repair procedure, we note that an infeasible solution
can be made into a feasible solution by removing several
items from the knapsack since the weights are positive
and there is a trivial feasible solution x = (0, · · · , 0).
To reduce the loss of the objective value, items to be
removed are selected one by one greedily. On the simple
knapsack problem with the linear objective, a greedy strategy
is typically based on a metric called efficiency defined by a
ratio of the profit and weight of the item. In the QKP, the
efficiency ei(x) of item iwith respect to an incumbent solution
x is defined as

ei(x) :=
pi +

∑i−1
j=1 pjixj +

∑n
j=i+1 pijxj

wi
. (9)
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Consequently, item i with xi = 1 achieving minimum ei(x)
is removed iteratively until the constraint is satisfied. Note
that this greedy removal operation is previously used for a
constructive heuristic with an input x = (1, · · · , 1) [22], [23].

The improvement procedure consists of so-called fill-up
and exchange (FE) operation [17], which is widely used
in heuristic methods on the QKP [25], [27]. The fill-up
operation puts items into the knapsack unless it violates the
capacity constraint. Then, the exchange operation replaces
an item in the knapsack with another item that is not
in the knapsack, so that it improves the objective value
maintaining feasibility. In other words, the fill-up operation
modifies a feasible solution to a local optimum, and the
exchange operation searches neighborhood local optima.
In our method, the order of item selection for FE operation is
again based on the greedy strategy with the efficiency ei(x).
An item to be included in the knapsack is chosen following
the descending order of ei(x) and an item to be removed from
the knapsack is chosen following the ascending order of ei(x).

The overall process is summarized in Algorithm 1. Every
time the solution x is changed, the efficiency ei is updated
with computational cost of order O(n). The total complexity
of the algorithm is O(n3) in the worst case, but the number of
the exchange operation (which is the bottleneck) is typically
much less than n2, and so the algorithm runs practically fast.
Indeed, a quadratic scaling of the processing time is observed
in our experiments in Section V.

The post-processing above is closely related to a greedy
heuristic proposed by Billionnet and Calmels [23]. Their
method is to first obtain a feasible solution with the greedy
removal operation for x = (1, · · · , 1) and then apply the
FE operation. In particular, when the penalty coefficient λ
in (6) is set to 0, then the optimal solution is obviously
x = (1, · · · , 1). Thus, for sufficiently small λ, an Ising
machine with the post-processing outputs the same solution
as the one obtained by the greedy method.

The ideas of the repair and improvement procedures are
not new as mentioned above. Besides, more elaboration on
the post-processing can be made to improve the solving
performance further with additional computational costs.
In this study, however, the specific implementation is not
of much interest. Rather, we aim to show that combining
the simple post-processing based on the well-known ideas
effectively overcomes the critical performance issue of Ising
machines, which does not seem to be understood well in the
existing studies [15], [18]. The simplicity of the proposed
method is preferable in terms of extensibility: establishing
the effectiveness with the naive implementation leads to
expectation that the approach also works on other problems.

IV. SIMULATION EXPERIMENTS
We validate the proposed method via simulation of Ising
machines on the basis of simulated annealing (SA) that
takes a QUBO problem as an input. Note that most digital
Ising machines are based on SA [8], [9], and also SA is
treated as a classical counterpart of quantum annealing [36],

[37]. Therefore, controlled experiments with SA provide
informative insights on the use of Ising machines. For a test
bed, we use a data set of 100 medium-sized QKP instances
generated in the previous study [38]. There are 10 generated
instances for each combination of the problem size n ∈
{100, 200, 300} and density d% of the objective function for
d ∈ {25, 50, 75, 100} except for (n, d) = (300, 75) and
(300, 100). Specifically, the pairwise profit pij (i < j) is non-
zero with probability d/100 in the generation procedure. The
exact optimal solutions of these instances are known and the
data set has been used in the existing benchmark of Ising
machines [15], [19], [20]. Things to be verified are as follows:
(i) better solutions (in particular, the optimal solutions)
are obtained by utilizing the post-processing and (ii) the
computational cost for the post-processing is sufficiently
small compared to the rest of the whole process. Furthermore,
we re-evaluate various encoding methods of the inequality
constraints [18], [19], [20] under the existence of the post-
processing to verify the robustness of the proposed method.

A. COMPUTATIONAL SET-UP
Each QKP instance is translated into a QUBO problem (6)
with binary encoding (8) of the integer variable z where the
upper bound D of z is set to the capacity C . The penalty
coefficient λ is varied for λ = 2i, i = −6,−5, · · · , 6, 7. For
each λ, SA is executed 10 times to obtain 10 solutions. The
setting of SA is as follows. We use the public implementation
of SA on D-Wave Ocean SDK1 of version 6.4.1. In the
algorithm, the temperature is successively decreased from the
initial value to the end value, iterating an inner loop consisting
of Monte-Carlo (MC) steps for all variables. Following the
previous studies [18], [19], the number of inner loops is
set to 106 and the initial and end temperatures are set to
nmaxi,j |Qi,j| and 0.1, respectively. Here, Qi,j is the QUBO
matrix for (6), i.e.,∑

i,j:i≤j

Qi,jx̂ix̂j = −H (x)+ λHineq(x, z), (10)

where x̂ = (x1, · · · , xn, y1, · · · , yk ) is a vector of the
whole variables including y1, · · · , yk in (8). The experiment
program is coded with python 3.11.4 and run on a CentOS
(version 7.6.1810) server with Intel Xeon Gold 6130 chip.

We set SA without post-processing (which we simply call
SA) and the greedy algorithm described in Section III as
baselines, and compare them to SA with the repair and/or
improvement procedure (which we call SA-R, SA-I, and
SA-RI, respectively). We summarize the compared methods
in Table 1. The quality of a solution is evaluated via the
optimality gap

Optimality Gap =
Sbest − S
Sbest

× 100 (%), (11)

where Sbest is the optimal value for the QKP instance and S
is the objective value of the solution. For methods other than

1https://github.com/dwavesystems/dwave-ocean-sdk
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FIGURE 2. Optimality gap (line graph) and number of instances on which feasible solutions are obtained with SA (bar chart) for each problem size n
of QKP instances. Optimality gap for SA and SA-I is plotted only for λ producing feasible solutions on all instances. By combining repair and
improvement procedures, SA-RI achieves smaller optimality gap than greedy method.

TABLE 1. Description of compared methods.

the (deterministic) greedy method, the optimality gap is taken
as the minimum over all feasible solutions obtained for each
λ. For SA, we also count the number of instances on which a
feasible solution is obtained, for each λ. The optimality gap
for SA and SA-I is reported only for instances on which they
obtain at least one feasible solution.

B. RESULTS
1) OBSERVATIONS FROM TUNING OF PENALTY
COEFFICIENTS
The optimality gap of each method aligned with the penalty
coefficient λ averaged over instances of the same size are
shown in Fig. 2. We also show the rate of the number of
instances where SA outputs at least one feasible solution
(which we call valid instances) as bar charts. For SA and SA-
I, the optimality gap is plotted only when feasible solutions
are obtained on all instances for each λ and not shown
otherwise. The first thing to observe from the results of
SA is that the rate of valid instances increases for large
λ, whereas large λ degrades the optimality gap. Therefore,
SA achieves its smallest optimality gap on the minimum λSA
among those giving feasible solutions on all instances, i.e.,
λSA = 32 for n = 100 and λSA = 64 otherwise. Note that
the best optimality gap of SA is much worse than that of the
greedy method. Since the greedy method runs several orders
of magnitude faster than SA, we conclude that SA without
post-processing is completely inferior to the greedy method
on theQKP.When the repair method is applied, the optimality
gap of SA-R roughly extrapolates that of SA, as expected.
Accordingly, the optimality gap of SA-R achieves smaller
values than that of SA for λ < λSA. A similar phenomenon
was observed by Fukada et al. [39] on a variant of the QAP.

TABLE 2. Number of medium-sized instances optimally solved.

This result indicates the effectiveness of tuning λ based on the
objective value instead of the rate of feasible solutions, which
is realized thanks to the repair procedure. The optimality
gap is further reduced after combining with the improvement
procedure. Although using only either of the two procedures
is not sufficient to outperform the greedy method, SA-RI
using both procedures achieves a smaller optimality gap
than that of the greedy method. This suggests that the
two procedures improve the solving performance of Ising
machines synergistically. Note that as λ gets closer to 0,
the optimality gap of SA-RI converges to that of the greedy
method. This is expected as we argued in Section III, that is,
SA outputs the trivial solution x = (1, · · · , 1) for extremely
small λ. The same argument applies to SA-R; as λ → 0,
the optimality gap converges to that of a weak version of the
greedy algorithm that only repairs x = (1, · · · , 1).
There are two other interesting observations from Fig. 2

regarding the optimal penalty coefficient. One is that penalty
coefficient λ minimizing the averaged optimality gap of SA-
RI seems independent of the problem size n. We discuss
this phenomenon in Section IV-D, where the dependence of
the optimal λ on instance data including n and other factors
is analyzed quantitatively. The other observation is that λ
minimizing the optimality gap of SA-R and that of SA-RI
completely differ: λSA-R for SA-R is near 0 and λSA-RI for
SA-RI is around 2 for all problem size n. We analyze this in
detail in Appendix B-A.
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TABLE 3. Average optimality gap (%).

TABLE 4. Average processing time.

2) RESULTS ON BEST OPTIMALITY GAP
The number of instances on which each method achieved the
optimal solution is reported in Table 2. We also summarize
the optimality gap averaged over 10 instances for each pair
(n, d) in Table 3. SA achieves the optimal solutions on only
two instances among 100 instances in total. Although SA-R
achieves the optimum on several instances, the total number
of such instances is less than that of the greedy method.
SA-I obtains the optimal solutions more frequently than SA-
R and the greedy method, but its averaged optimality gap
is worse than the others. This means that the quality of
solutions of SA-I has much variance over instances, which is
often undesirable. SA-RI, the proposed method, successfully
attains the optimum on 82 instances in total and achieves the
smallest optimality gap for all pairs of (n, d). These results
clearly demonstrate the effectiveness of combining the repair
and improvement procedures as the post-processing for SA.
For full results on each instance, see Appendix B-B.

3) RESULTS ON PROCESSING TIME
We evaluate the computational overhead of the post-
processing. The average processing time for each process
is reported in Table 4. In addition to the execution time of
SA and the repair and improvement procedures, we include
the processing time to create the input QUBO object after
reading data of the corresponding QKP instance as the
‘‘Formulation’’ column. We see that time for each process
increases roughly with an order of n2. Note that we report
processing time before the post-processing in seconds and
time for the post-processing in milliseconds. The time

required for the post-processing is more than 1000 times
less than that of the annealing, and also much less than
the formulation. Therefore, the proposed method improves
the accuracy with a negligibly small amount of additional
computational cost.

C. DEPENDENCY ON ENCODING METHODS
As described in Section II, the previous studies [18], [19],
[20] suggest that other encoding methods of the slack
variable z in (6) than the standard binary encoding (8) might
enhance the quality of solutions obtained by Ising machines.
Since their evaluation has been conducted without any post-
processing, we re-evaluate various encoding methods with
the proposed post-processing in this section. We report
simulation results based on SA here since it reproduces
well the results of the previous studies [18], [19], [20] as
shown below. We also conducted the same experiment with
a real Ising machine and obtained mostly similar results, see
Appendix B-A for details.

The setting is as follows. We consider the following five
variations of encodingmethods of z in the QUBO problem (6)
of the QKP. The first is the binary encoding shown in (8).
Recall that it involves k auxiliary variables y1, · · · , yk with
k = ⌊logD⌋ + 1, where D denotes the upper bound of z. The
second is the unary encoding defined as

z =
D∑
i=1

yi, (12)

which involves D auxiliary variables y1, · · · , yD. The third
is the hybrid encoding [19], which hybridizes the unary
and binary encoding. As it has several degrees of freedom,
we adopt the following form close to a method called HE(1)
in the previous experiment [19]:

z =
k∑
i=1

yi +
2k∑

i=k+1

2 yi, k := ⌈D/3⌉. (13)

The hybrid encoding involves 2⌈D/3⌉ auxiliary variables.
The fourth is the one-hot encoding, which uses an additional
penalty term Honehot and modify the objective function of the
QUBO problem as

−H (x)+ λ
(
Hineq(x, z)+ Honehot

)
, (14)

defining

z =
D∑
i=0

iyi, Honehot =

(
D∑
i=0

yi − 1

)2

. (15)

The one-hot encoding involvesD+1 auxiliary variables. The
last is the offset encoding [20], which set z to a constant

z = Woffset (16)

with some small number Woffset ≥ 0. Since z does not
work as a slack variable any more, the offset encoding
does not preserve the equivalence of the optimization
problems. Nevertheless, Bontekoe et al. [20] reported that it
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FIGURE 3. Performance comparison among various encoding methods of inequality constraint on 100 medium-sized QKP instances. (a)(b) Choice of
encoding methods controls trade-off between rates of feasible solutions and objective values. (c) Solving performance of proposed method is much
less dependent on choice of encoding methods.

outperformed other encoding methods. We set Woffset =

3 following the previous result. All methods other than the
offset encoding involve the upper bound D of z. Note that it
suffices to set D to a value greater than or equal to maxi wi
to translate the QKP to the QUBO problem preserving the
optimum according to Proposition 1. On the other hand, since
methods other than the binary encoding uses O(D) auxiliary
variables, D should be sufficiently small to effectively apply
Ising machines. Therefore, we set D to maxi wi in this
experiment. Other settings are identical to those in the earlier
experiment.

We remark that an output of Ising machines or SA can
have a positive penalty Hineq(x, z) > 0 (or Honehot > 0 for
the one-hot encoding) even if the solution x is feasible. Such
situations include a case where z ̸=

∑
i wixi, as well as a case

where
∑D

i=0 yi ̸= 1 for the one-hot encoding. It is in contrast
to the previous evaluation [18] treating the solution as feasible
only when it has zero penalty, and this difference in definition
could lead to different results. In particular, for the one-hot
encoding above, it is actually not necessary to impose the one-
hot constraint

∑D
i=0 yi = 1, since the inequality constraint

can be satisfied even when
∑D

i=0 yi = 0 or
∑D

i=0 yi ≥ 2.
Note that this fact is also used in the previous study [20].
Therefore, the aforementioned case where x is feasible and
Honehot > 0 can particularly often occur, and we indeed
observed this phenomenon in our experiment.

Fig. 3 shows the results over various λ. Fig. 3a shows
the rate of feasible solutions (we call FS rate) over all
instances for each encoding. On all methods, a larger penalty
coefficient results in a high FS rate. Among the tested
encoding methods, the binary encoding leads to the lowest,
while the offset encoding achieves the highest. The difference
might be explained by the number of flips of auxiliary
variables yi required for a flip of a variable xi, which is
mentioned in Section II. More precisely, multiple MC steps
in SA are required to realize a single flip on the QKP. The
offset encoding uses no auxiliary variables, and thus the
penalty Hineq might be easily decreased by local operations
in SA, leading to the high FS rate. In contrast, a lot of MC
steps are required for changing the value of z for the binary

encoding, resulting in a low FS rate. The redundancy of
the representation (i.e. representing a value of z by multiple
combinations of values of y1, y2, · · · ) in the unary and hybrid
encoding might help to make the number of required MC
steps small [18], and thus they give the intermediate results.
For the one-hot encoding, most solutions violate the one-hot
constraint and as a result obtain a similar redundancy, which
again explains the intermediate result. The optimality gap of
the feasible solutions obtained by SA is shown in Fig. 3b.
Here, we plot the optimality gap for λ that obtains a feasible
solution on more than half of all instances to exclude outlier
values. Again, for all methods, a smaller penalty coefficient
leads to better objective values. The hybrid, unary, and offset
encodings achieve a lower optimality gap than the others, due
to the high FS rate at small λ. These results on the FS rate and
optimality gap agree well with the previous studies [18], [19],
[20].

Fig. 3c shows the optimality gap for each method com-
bined with the post-processing. Interestingly, after the post-
processing, the difference among the encoding methods gets
almost negligible and all methods reach a similar minimum
optimality gap at the similar value of λ. A subtle exception is
the offset encoding; SA-R with the offset encoding attains the
minimum optimality gap at λSA-R = 0.5, unlike the others.
This is presumably because fixing the slack variable z to a
constant changes the effect of penalty Hineq on the behavior
of SA. The overall result indicates that the proposed method
is much robust to the choice of encoding methods, compared
to SA without post-processing. A fundamental reason for the
somewhat surprising similarity of the post-processed outputs
over the various encoding methods is unclear and might be
related to the behavior of the SA algorithm. Since a precise
algorithmic analysis is beyond the scope of this paper, further
investigation is left as future work.

For a quantitative performance comparison, we summarize
the number of instances optimally solved and the optimality
gap for each encoding with the proposed method in
Table 5 and 6. We see that the binary and one-hot encodings
slightly outperform the other methods on average in terms
of both metrics. In particular, among the binary, unary, and
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TABLE 5. Number of medium-sized instances optimally solved.

TABLE 6. Averaged optimality gap (×0.01 %).

one-hot encodings, the unary encoding performs the worst
(by a possibly negligible margin), in contrast to the previous
evaluation without the post-processing [18]. In other words,
whether or not a specific encoding method performs well can
be easily changed by additional operations. This leads to an
insight important to practitioners that performance evaluation
of Ising machines should be carefully done in a practical
situation when it involves pre- or post-processing of the
problem or solutions.

D. ANALYSIS OF OPTIMAL PENALTY COEFFICIENTS
In the earlier experiments, we observed that the optimal
penalty coefficient λSA-RI for the proposed method varies
depending on the problem instances (see Appendix B-B for
full results including λSA-RI for each instance). The optimal
penalty coefficient could be estimated by some representative
features of the instance data [39]. In this section, we analyze
λSA-RI over the tested instances to utilize the result for solving
larger instances in the later section.

As representative features of the QKP, we consider the
problem size n, density d of the objective function, and
tightness ratio α = C/

∑
i wi of the inequality constraint.

Note that the tightness ratio α has not been mentioned in
the QKP literature, whereas it is recognized as an important
factor in the context of the multi-dimensional knapsack
problem [34], [40]. We expect that n has weak correlation
with λSA-RI, as we see from Fig. 2 for each n. On the other
hand, the density d involves the scale of the increase in the
objective value for putting an item into the knapsack. Since it
is typically considered that the scales of the objective function

TABLE 7. Regression coefficients for optimal penalty coefficients.

TABLE 8. Number of medium-sized instances optimally solved.

and penalty should be balanced when applying the penalty
method, we expect that λSA-RI tends to be large for large d .
We model λSA-RI as the product of the features by

λEstimate = Ancndcdαcα , (17)

where A, cn, cd , and cα are parameters to be fit. We show
the results of log-linear regression on λSA-RI for the
tested 100 instances in Table 7. As expected, the resulting
coefficient for n is close to 0 and that for d is a large
positive value. The coefficient cα for α is negative, which
means that λ should be lowered for large capacity C . This
might be because large α implies that feasible solutions
occupy a large fraction of the total space {0, 1}n, and thus
the penalty is not required to be much emphasized for solving
the QKP. Note that the overall analysis is on a data set created
following a specific procedure of instance generation, and the
result might depend on the distribution of problem instances.
Since larger instances used in the later section are based on
the same generating protocol as that of the instances used
above, we make use of the analysis result to solve the larger
instances.

V. EVALUATION USING ISING MACHINE
In this section, we evaluate the proposed method using one
of the state-of-the-art Ising machines, Amplify Annealing
Engine (AE) [24], on a broader set of QKP instances. Our
aim in this experiment is to verify that the proposed method
works also for a high-performance Ising machine as well
as for naive SA. We use large QKP instances for which
exact methods require high computational time to solve.
We compare the performance of the Ising machine with that
of existing heuristic solvers.

A. SETTING
In addition to the medium-sized instances in Section IV, we
use another group of QKP instances generated in the previous
study [26]. There are 10 instances for each combination
of the problem size n ∈ {1000, 2000} and density d ∈

97686 VOLUME 12, 2024



K. Ohno et al.: Toward Practical Benchmarks of Ising Machines: A Case Study on the QKP

TABLE 9. Number of best known solutions obtained and average optimality gap (×0.01 %).

TABLE 10. Performance comparison of AE-RI and each baseline.

{25, 50, 75, 100} of the objective function in the data set.
Their exact optimal solutions have not been known and the
current best known objective values are reported by Chen
and Hao [28]. Therefore, we use their result to compute the
optimality gap (11) in which Sbest denotes the best known
objective value.

The computational environment is the same as in Sec-
tion IV. We provide additional details on the use of the Ising
machine. We use AE of version 0.7.4 with A100 GPU. The
timeout for the execution of AE is set to 0.01n seconds for
problem size n, which is comparable with that of the existing
solver [28]. We use Amplify SDK [24] of version 0.11.2 to
translate the QKP into a QUBO problem and input it to AE.
The slack variable z is encoded into binary variables by binary
expansion (8) with D = C .

The penalty coefficient λ is heuristically varied as

λ = a
d
100

√
1/α, a = 1, 2, · · · , (18)

using the density d and tightness ratio α = C/
∑

i wi, based
on the result in Section IV-D. The upper bound of a is set
to 10 for medium-sized instances and 20 for large instances,
which is found to be sufficient to obtain good solutions with
the proposed method. The Ising machine is executed 10 times
to sample 10 solutions for each λ. The solutions are evaluated
by optimality gap with and without the post-processing.

We compare the performance of AE with and without the
post-processing. We call them AE, AE-R, AE-I, and AE-RI,
respectively, following the same notation in Table 1. We use
the greedy method described in Section III as a baseline.
Besides, the results of the following heuristic solvers tailored

for the QKP are taken from the existing papers [27],
[28] and included as baselines: dynamic programming with
fill-up and exchange (DP+FE) [25], GRASP combined
with tabu search (GRASP+Tabu) [26], improved quantum-
inspired evolutionary algorithm (IQIEA) [27], and iterated
hyper-plane exploration approach (IHEA) [28]. We also use
Gurobi [41], one of the state-of-the-art commercial solvers,
to provide an insight into performance comparison with a
general-purpose method. For each instance, we run Gurobi
(version 9.1.2) with a time limit of 1 minute and report the
best solution found.

B. RESULTS
We discuss the benchmark results on medium-sized and large
QKP instances. For the full results on each instance, we refer
to Appendix B-C. Since the best known solutions (BKS)
produced by the IHEA algorithm are used for evaluation,
IHEA trivially achieves zero optimality gap for all instances
and thus is omitted from the results.

The results on the medium-sized instances are summarized
in Table 8. For the previous methods, we omit the results
since these instances are rather easy to reach optimality, and
refer to the original results [28]. For the instances of size
n = 100, AE successfully obtains the optimal solutions
without the post-processing. As n increases, however, the
number of instances solved optimally by AE decreases.
Meanwhile, the post-processing enables us to obtain the
optimal solutions on all instances of sizes up to 300.
The result ensures that the proposed method can further
enhance the solving performance of the state-of-the-art Ising
machine.

The results on the large instances are shown in Table 9.
The averaged optimality gap for AE and AE-I are omitted
in Table 9 since they could not obtain a feasible solution
on some instances for every (n, d). AE-RI achieves the
best known solutions on 62 instances out of 80 instances,
whereas AE obtains the best known solution on only
one instance. Also, the greedy method performs poorly
compared to other methods. Note that the greedy method
applies the same local operations as the post-processing.
Therefore, the result indicates that global search by the
Ising machine and local search by the post-processing work
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TABLE 11. Average running time (second) to sample a solution.

FIGURE 4. Processing time of processes in AE-RI. Lines are fitted with
log-log regression. The execution time of AE is set to O(n) and the other
processes empirically take O(n2) runtime.

well in a complementary manner in the proposed method.
Furthermore, AE-RI achieves comparable results with other
heuristic solvers. This is the first result to achieve such high
accuracy on the large-scale QKP using Ising machines, which
might shed the light on the practical utility of Ising machines.
To compare the performance of AE-RI and each baseline
more directly, we also provide a result of statistical testing
of the AE-RI performance against each baseline in Table 10.
We conducted the one-sided Wilcoxon rank sum test with a
null hypothesis that the performance of AE-RI is not better
than a baseline. More precisely, we count the number of QKP
instances on which AE-RI achieved a larger/smaller objective
value than each baselinemethod and calculate the test statistic
and p-value. The result shows that AE-RI indeed performs
significantly better than the greedy and DP+FE methods,
while it does not hold for other baselines. In summary,
although our result significantly outperforms the previous
benchmarks of Ising machines, there is still a performance
gap between Ising machines and the state-of-the-art heuristic
solvers such as IHEA. Filling the gap could be an important
milestone for further software and hardware development of
Ising machines.

We report the computational time of the proposed method
in Table 11. The processing time for formulation, repair, and
improvement procedures shows an expected scaling behavior
extending Table 4 to larger n. The execution time of AE
is around the timeout we set. We plot the processing times
against the number of variables n in Fig. 4 with log-log
regression curves. As in the case of SA-RI, we observe the
quadratic scaling of processing time for formulation, repair,
and improvement procedures. Overall, the results imply

that the post-processing causes negligible computational
overhead also for the Ising machine.

Averaged running time to obtain one solution for each
baseline is also listed in Table 11. For methods other than the
greedy method and Gurobi, the results are taken from the pre-
vious studies [27], [28]. We do not intend a fair comparison
of running time across the baselines, due to differences in the
computational environments. Moreover, since AE is a cloud
service involving queue and communication time, defining a
reasonable metric on computational time is itself a hard task.
Here, we just aim to get insights into the scaling behavior
of running time. The IHEA algorithm scales quite well for
large n, and thus the comparable amount of time has been
adopted for the timeout of AE in our experiments. Further
precise benchmarks including evaluation of practical solving
time should be conducted in the future after establishing
a method for Ising machines to achieve sufficiently high
accuracy.

VI. RELATED WORK AND DISCUSSION
There are several previous studies aiming to solve the QKP
using Ising machines [15], [18], [19], [20]. All of them
use relatively easy QKP instances which can be handled by
exact methods. Our work is the first to solve large QKP
instances ranging from 1000 to 2000 variables with Ising
machines. Parizy and Togawa [15] propose an improvement
algorithm for feasible solutions of the QKP, but their rate
of instances optimally solved is only 77% with a high-
performance Ising machine while ours achieves higher rates
using naive SA. The difference might be caused by the use
of the repair method. The other studies explore a good way
of encoding inequality constraints [18], [19], [20]. Our work
takes a completely different approach and shows that an
encoding method is not an important factor for accuracy
on the QKP under the existence of the post-processing as
in Section IV.
The comprehensive experiments in the previous sections

show that the naive post-processing leads to drastic improve-
ment of solving performance of SA and the Ising machine.
This finding is somewhat surprising given the simplicity
of the method, and seems to have been overlooked by the
existing studies. Considering that the Ising machine hardware
is rapidly evolving to obtain better results and there could
be room for enhancing and extending the post-processing,
it also indicates the possibilities that Ising machines
will be competent with other heuristic approaches in
the future.

The proposed method could be extended to other problems
on which a greedy heuristic is known. Such problems may
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involve other types of constraints such as one-hot constraints.
For example, the max k-cut [42] problem, a generalization
of the max cut problem, admits an efficient implementation
of a greedy local search algorithm [43]. On the other hand,
Ising machines do not performwell on the max k-cut problem
as it involves a lot of one-hot constraints. We expect that
the post-processing approach using the greedy local search
can be utilized to develop a high-performance Ising machine-
based solver.Wewill investigate such extensions in our future
work.

VII. CONCLUSION
Toward more practical benchmarks of Ising machines, we
proposed a method to solve the QKP with Ising machines
using the two-stage post-processing. The repair and improve-
ment procedures improve the solving performance of Ising
machines synergistically. From an empirical study using
both simulation and an Ising machine, we demonstrated the
effectiveness of the proposed method. We found that the
performance of the proposed method was much less depen-
dent on a choice of the encoding methods of the inequality
constraint. Evaluation on large QKP instances showed that
the Amplify Annealing Engine with the proposed post-
processing achieved comparable performance with Gurobi
and other heuristic methods tailored for the QKP, which is
an important step toward practical utility of Ising machines.
Future work includes the extension of the proposed method
to other optimization problems and establishing a reasonable
benchmarking framework considering computational time
required for Ising machines.
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