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ABSTRACT Multi-label zero-shot learning expands upon the traditional single-label zero-shot learning
paradigm by addressing the challenge of accurately classifying images containing multiple unseen classes,
which are not part of the training data. Current techniques rely on attention mechanisms to tackle the
complexities of multi-label zero-shot learning (ZSL) and generalized zero-shot learning (GZSL). However,
the generation of features, especially within the context of a generative approach, remains an unexplored area.
In this paper, we propose a generative approach that leverages the capabilities of Conditional Variational
Autoencoder (CVAE) and Conditional Generative Adversarial Network (CGAN) to enhance the quality
of generative data for both multi-label ZSL and GZSL. Additionally, we introduce a novel ‘‘Regressor’’
as a supplementary tool to improve the reconstruction of visual features. This Regressor operates in
conjunction with a ‘‘cycle-consistency loss’’ to ensure that the generated features preserve the key qualities
of the original features even after undergoing transformations. To gauge the efficacy of our proposed
approach, we conducted comprehensive experiments on two widely recognized benchmark datasets: NUS-
WIDE and MS COCO. Our evaluation spanned both multi-label ZSL and GZSL scenarios. Notably, our
approach yielded significant enhancements in mean Average Precision (mAP) for both datasets. Specifically,
we observed a 0.2% increase in performance on the NUS-WIDE dataset and a notable 2.6% improvement on
the MS COCO dataset in the context of Multi-label ZSL. The results clearly demonstrate that our generative
approach outperforms existing methods on these widely-recognized datasets.

INDEX TERMS Conditional variational autoencoder, conditional generative adversarial network,
generalized zero-shot learning, regressor, zero-shot learning.

I. INTRODUCTION
In the current era, deep learning models have achieved
remarkable performance in various computer vision applica-
tions, includingmedical imaging [1], image classification [2],
[3], object detection [4], [5], self-driving cars [6], and
agriculture [7], among others. Single-label classification,
which involves categorizing a single object in an image, has
been extensively studied in image classification tasks. For
this purpose, large datasets such as ImageNet 21K [8] and
ImageNet 1K [9] have been compiled for evaluating deep
learning models. However, it is important to note that natural
images frequently feature multiple objects and concepts,
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underscoring the importance of multi-label classification.
In multi-label classification, the objective is to independently
classify multiple objects present in an image [10], [11], [12],
[13], [14], [15], [16].

Recurrent neural networks [17], [18], attention mech-
anisms [19], [20], and label correlation [21], [22] have
demonstrated significant success in the field of multi-label
classification. However, despite these advancements, the
challenge of multi-label zero-shot classification remains
unresolved. This problem involves classifying images into
new and unseen categories during testing, without any
visual examples available during training [23], [24]. Multi-
label ZSL can be viewed as an extension of multi-label
classification. It tackles scenarios where the objective is
to classify images into categories that are entirely new
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and unseen during training. Moreover, a broader framework
known as GZSL has emerged. In contrast to traditional ZSL,
GZSL handles test images from both categories that were
encountered during training (seen classes) and those that were
not (unseen classes).

Single-label GZSL has garnered significant attention in
recent years [24], [25], [26], [27], [28], [29], [30], [31].
These techniques heavily rely on generative models, i.e.,
Generative Adversarial Network (GAN) [32] and Variational
Autoencoder (VAE) [33], to create novel features for classes
that were not seen during training. Generative approaches
have emerged as the dominant paradigm for single-label
GZSL [25], [28], [30], [31], as they can generate synthetic
features for unseen classes by learning the underlying
feature distribution from the seen classes. However, the
development of feature generators for multi-label Zero-Shot
Learning (ZSL) and GZSL paradigms has received limited
exploration. In this study, we tackle the challenging task of
developing a feature generator for multi-label ZSL and GZSL
classification.

In recent times, there has been a growing interest in
adopting a generative approach for multi-label ZSL and
GZSL. Earlier methods leveraged Generative Adversarial
Network (GAN) [32] and Variational Autoencoders (VAE)
[33] to generate visual features for unseen classes, utilizing
side information [34], [35], [36], specifically in the context
of ZSL and GZSL. But in the context of multi-label ZSL and
GZSL, to the best of our knowledge, the proposed approach
is generative in nature and has not been previously explored.

In our prior research [37], we presented a method
for generating global image-level embeddings through an
identifiable VAE-based generative network. This method
involved incorporating two additional VAE networks to
map individual modalities to their respective latent spaces.
In contrast, our current study introduces an innovative
model that combines a CVAE and CGAN, along with a
Regressor Network. This extension to work in the context
of Multi-label ZSL and GZSL is that real-world images
often contain multiple objects and concepts, necessitating
the need for Multi-label classification techniques. In contrast
to single-label classification where each image is associated
with a single class label, Multi-label classification allows
images to be associated with multiple class labels simulta-
neously. Therefore, addressing Multi-label ZSL and GZSL
involves handling the complexities of associating semantic
information with each of these labels in a coherent manner.

The motivation behind this research lies in addressing
the challenging problem of ZSL and GZSL. This research
aimed to explore the generative approach that aims to
exploit the connection between CVAE and CGAN to convert
this conventional Multi-label ZSL problem to a supervised
learning problem by generating visual features against all
unseen classes using their class semantic attributes as side
information. By combining the capabilities of CVAE and
CGAN, the proposed generative approach aims to harness the
advantages of both to improve the quality of the generated

data. This combination leverages the structured latent space
of CVAE and the adversarial training of CGAN to generate
diverse and high-quality data samples while adhering to
specific conditions or class labels. This is motivated by
the idea that better-generated data can lead to improved
recognition and classification of previously unseen classes.
The introduction of a ‘‘Regressor’’ as an additional tool
is motivated by the need to enhance the reconstruction
of visual features. This Regressor works in conjunction
with a ‘‘cycle-consistency loss,’’ ensuring that the generated
features maintain the essential characteristics of the original
features even after transformations. This process aims to
improve the overall quality and fidelity of the generated
visual features. This innovative methodology transforms the
Multi-label ZSL problem into a more familiar supervised
learning setting by utilizing class semantic information as
side information, ultimately advancing the field by achieving
superior performance compared to existing state-of-the-art
approaches on standard datasets.

Notably, the sole commonality between our previous
and current work is the utilization of the Attribute-level
feature fusion technique. This technique is employed to
generate global image-level embedding of semantic infor-
mation. These distinctions underscore the progression of our
research and the distinctive contributions made in the present
investigation.

However, the primary contributions of this paper are
outlined as follows: 1) We have introduced an innovative
generative approach that combines the capabilities of two
distinct methods, namely CVAE and CGAN, to enhance
the quality of generative data for Multi-label ZSL and
GZSL.; 2) We have also introduced ‘‘Regressor’’ as an
additional component, which ensures that the generated
features retain the qualities of the original features even after
transformations; 3) Inspired by [38], we leveraged attribute-
level feature fusion technique to generate semantically con-
sistent disentangled representations using the corresponding
semantic information of the multi-label data, which in result
will convert this conventional multi-label ZSL and GZSL
problem to a conventional supervised learning problem; and
4) We evaluate our proposed model on two standard datasets:
MS COCO [39] and NUS-WIDE [40]. The experimental
results demonstrate that our approach achieves significantly
better results for both multi-label ZSL and GZSL on both
datasets.

II. RELATED WORK
In this section, we will review the literature related to
multi-label ZSL and GZSL.

A. TRADITIONAL ZSL AND GZSL
ZSL was first introduced by [41], where attribute-based
classification was performed to recognize unseen classes.
Earlier works on ZSL mainly focused on learning a mapping
function between visual and semantic features [42], [43],
[44]. In the proposed work by [42], an attentive region

VOLUME 12, 2024 94991



M. Gull, O. Arif: Multi-Label Zero-Shot Learning With Adversarial and Variational Techniques

embedding network, is comprised of two branches: the
Attentive Region Embedding (ARE) and the Attentive
Compressed Second-order Embedding (ACSE). Both ARE
and ACSE employ their respective embeddings and map
them to the semantic space to calculate the compatibility
loss. Reference [45] also defines a compatibility function
to perform a mapping from image visual features to its
semantic space. They have introduced three types of semantic
embeddings i.e., attributes, hierarchical embedding, and
unsupervised word embeddings. Among these embeddings,
unsupervised word embeddings have achieved good per-
formance on all datasets. A direct method for learning a
mapping function [44] employs a convex combination of
class label embedding vectors, eliminating the need for
additional training. To adopt the structure of the semantic
space, an approach proposed by [46] utilizes the semantic
relationships between categories. The classes in the given
set are categorized into three distinct groups based on
their characteristics: identical, semantically similar, and
semantically dissimilar relative to a reference class.

Depending on the type of embedding space, conventional
methods of ZSL are divided into three categories: (1) visual
features space is selected as embedding space and the
semantic features are projected to visual features space [47],
[48]. To address the hubness problem, they have adopted the
visual features space as an embedding space and mapped
the semantic features onto these visual features space. They
introduced three distinct modalities for semantic embedding,
namely single modality, multiple modality, and RNN encod-
ing. (2) Semantic space is considered as an embedding space
and visual features are mapped to it [44]. (3) Both visual
and semantic features are mapped to a common embedding
space [43], [45], [49]. The work proposed by [43] introduces
a two-branch framework aimed at achieving high intra-class
similarity and low inter-class similarity. This is accomplished
by learning a latent embedding space that simultaneously
projects visual and semantic features into a joint embedding
space. The embedding function that is responsible to perform
any sort of mapping can be either linear [29], [41], [44] or
nonlinear [50].

Recently, ZSL has been considered as a missing data
problem, and the focus is on generating visual representations
for unseen classes to perform classification [30], [31], [36],
[51]. Generative models are utilized to learn probability
distributions of a given dataset, enabling the generation of
similar data. In scenarios where visual data is lacking, such
as in ZSL, generative models offer a solution by generating
the missing visual data based on the established correlation
between semantic information and corresponding visual
examples. Subsequently, the combination of existing visual
data with the generated data is employed in a supervised
learning approach. To address the missing data problem,
recent methods use the following generative models i.e.,
Variational Autoencoders (VAE) [33] and Generative Adver-
sarial Network (GAN) [52] for visual features generation.

VAE [33] is a probabilistic model that involves a probabilistic
Encoder E and a probabilistic Decoder D. GAN [52] is a
generative model utilized for data generation. It comprises
two fundamental elements: a generator and a Discriminator.

The f-CLSWGAN [31] is a generative model based on
GAN, comprising a conditional generator and a conditional
Discriminator. The core component of their proposed model
is a Discriminator network trained on seen classes, aiming to
minimize the classification loss. In [36] another GAN-based
approach is proposed that incorporates semantic knowledge
in the form of the knowledge graph. The f-VAEGAN [31]
represents a generative model designed to address the
challenges associated with ZSL and few-shot learning. The
proposed framework integrates the strengths of both GAN
and VAE networks, to generate the visual features against all
unseen classes. The f-VAEGAN [31] operates effectively in
both inductive and transductive settings.

GZSL is considered a more realistic and challenging task
as compared to conventional ZSL. In GZSL, the test images
can come from both seen and unseen classes. Many of the
GZSL methods also learn a mapping function between visual
and class-semantic features, where the nearest neighbor
classifier is further used to perform classification [46], [53],
[54]. Similarly, a popular approach for GZSL is to consider
it as a missing data problem [3], [30], [31], [34], [51], [55],
[56], [57]. In order to tackle the issue of missing data,
contemporary approaches employ generative models such
as VAE [33] and GAN [52] to generate visual features.
A conditional VAE-based framework is proposed by [55]
for visual features generation, where the task is to learn
the underlying probability distribution of an image using its
semantic information also as an input. A VAE-based method
SE-GZSL [56] is composed of an Encoder and a Generator
network, leveraging class attributes as semantic information
to generate visual features for previously unseen classes.
In addition, an attribute Regressor has been introduced to
enhance the reconstruction quality of the generated data by
offering feedback to the generator.

Another VAE-based generative model [34] uses distribu-
tion alignment and cross-reconstruction loss for latent space
alignment. In another approach, [3] combines VAE and GAN
network along with the Regressor to constrain the generated
visual features back to their respective class-semantic infor-
mation to further improve the features generation process.
OCD-CVAE [58] introduces an overcomplete distribution
by employing a conditional VAE for both seen and unseen
classes. The primary aim of the overcomplete distribution
is to enhance the network’s generalizability by generating
samples that exhibit greater proximity to other classes.
To gain the advantages of both generativemodels, specifically
the GAN and VAE, Zero-VAE-GAN [59] propose a joint
generative model and employs attributes as class-semantic
information to generate features. Boomerang-GAN [60]
introduces a novel model utilizing CGAN. It generates
unseen visual samples from semantic embeddings and
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introduces a cycle-consistent loss to translate these visual
features back into semantic embeddings. Comprehensive
experiments conducted on multiple datasets demonstrate
that Boomerang-GAN surpasses previous state-of-the-art
methods in both recognition and segmentation tasks within
ZSL and Generalized ZSL settings.

In the context of GZSL, where test images can belong to
both seen and unseen classes, generativemodels likeVAE and
GAN are employed to address the challenge of missing data
by generating visual features for the unseen classes.

B. MULTI-LABEL CLASSIFICATION
Multi-label classification is a complex task that involves
classifying multiple objects or concepts within a given image.
This task is typically more challenging than standard single-
label classification. The simplest approach for Multi-label
classification is to train a binary classifier against each label
present in the training data [12], [61]. Along with this to
capture label correlation there are also few graph-based [16],
[62], [63] and structure-based learning techniques [13], [64].
To establish connections among multiple labels, [62] utilizes
a knowledge graph. Moreover, to adequately capture the
interdependencies between seen and unseen class labels,
they employ a label propagation mechanism within the
semantic space. A Graph Convolutional Network (GCN)
based Multi-label classification model [16], builds a directed
graph over the object labels, where each label in the
graph corresponds to word embeddings of a specific label.
To facilitate the learning of structure and parameters,
an integrated Bayesian framework rooted in the conditional
graphical lasso (CGL) [63] has been devised. This framework
presents an efficient approach for acquiring image-dependent
label structures. The problem of Multi-label classification is
addressed by utilizing a combined framework of recurrent
neural network (RNN) and convolutional neural network
(CNN) [13]. This framework enables the learning of a
shared low-dimensional image-label embedding, effectively
capturing the semantic relationship between labels and
images. Despite previous efforts, a comprehensive framework
was proposed [64] that effectively utilizes both semantic
and spatial relationships among labels for Multi-label image
classification. This approach incorporates image-level super-
vision to gain a thorough understanding of the underlying
relations between labels.

Vision transformer-based techniques have garnered sig-
nificant interest due to their exceptional ability to capture
global dependencies [65], [66], [67]. In the context of image-
label classification, [66] framework employs Transformers to
leverage the intricate dependencies existing between labels
and visual features. Reference [66] explores the viability of
incorporating specialized transformer modules as a means
to tackle inherent challenges encountered in CNNs. A novel
architecture, termed Multi-label Transformer, has been
devised, which integrates window partitioning, in-window
pixel attention, and cross-window attention techniques

to significantly enhance the performance of Multi-label
image classification tasks. Reference [67] have introduced
a two-stage framework, called Query2Label, designed for
Multi-label classification tasks. In this framework, a label
embedding is employed as a query to extract class-specific
features from a feature map generated by a vision backbone.
These extracted features are then utilized for subsequent
binary classifications.

C. MULTI-LABEL ZSL AND GZSL
While successful in multi-label classification, existing mod-
els encounter challenges when confronted with unseen
classes, thereby restricting their practical usability. ZSL
methods, specifically, rely on class semantic information,
such as attributes, to identify classes not encountered during
training. The concept of attribute-based classification was
initially introduced by [68]. Furthermore, [42], [53] aimed
to develop a function that maps semantic and visual features
for conventional ZSL, where the focus is solely on unseen
classes. In the context of GZSL, a more realistic scenario
compared to conventional ZSL, a test image may belong to
either seen or unseen classes. Numerous GZSL approaches
have emerged, aiming to learn a function for mapping both
semantic and visual features [53], [69]. GZSL has been
treated as a missing data problem, with recent methods
incorporating GAN [32] and VAE [33] as generative models
for visual feature generation [25], [30], [31]. However, it is
crucial to note that existing ZSL and GZSL frameworks are
constrained to single-label classification and lack effective-
ness in handling multi-label ZSL and GZSL scenarios.

Extensions of multi-label classification, Multi-label ZSL,
and GZSL can be considered as natural progressions. These
methodologies center around aligning the visual embeddings
of images with their corresponding label embeddings and
establishing connections between labels, both seen and
unseen. Various studies, including [3], [70], [71], delve into
identifying label correlations as a means of classification,
revealing relationships among different labels. Addressing
the semantic diversity between labels and images, Semantic
Diversity Learning (SDL) [72] pinpoints principal embed-
ding vectors for images, assigning higher weights to samples
with the greatest semantic diversity. Conversely, approaches
like LESA [73] and BiAM [74] employ attention modules
for multi-label classification, to pinpoint the presence of
each label within an image. For the synthesis of multi-label
features, GMLZL [38] introduces a GAN-based model that
utilizes multi-class semantic information.

The Aligned Dual-modality Classifier (ADDS) [75] incor-
porates a soft constraint mechanism to effectively align
textual and visual features, thereby improving general-
ization in multi-label classification. ADDS introduces a
novel transformer decoder as the dual model decoder and
employs Pyramid-Forwarding, a unique adaptation method.
Additionally, for unbiased multi-label Zero-Shot Learning
(ZSL), [76] addresses the training process of the ML-ZSL
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classifier. This is achieved by integrating class-specific region
information through a channel attention mechanism, estab-
lishing a correlation between local and global information
of the samples. Notably, this approach is non-generative,
as the refined semantic features are mapped into a joint
visual-label semantic embedding space. ML-Decoder [77]
proposes an attention-based classification head to improve
label prediction using queries. To ensure scalability for a large
number of classes, they introduce a novel group-decoding
scheme that efficiently handles a significant number of
classes. These studies collectively contribute to the progress
of multi-label ZSL and GZSL by employing a shared
projection matrix to propagate information from seen classes
to unseen classes, facilitating generalization.

III. METHODOLOGY
We begin by examining the baseline model for feature
generation, followed by an explanation of the attribute-level
feature fusionmodule responsible for producing semantically
consistent fused multi-label visual features for all unseen
classes.

A. PRELIMINARY
The problem formulation for multi-label ZSL and GZSL is
outlined as follows. Let Y denote the set of class labels,
which is partitioned into two sets as Y = Y s

∪ Y u, and
Y s

∩ Y u
= φ, where Y s represents the seen class labels

present in the training data, and Y u represents the unseen
class labels. Here, x ∈ X s is the set of encoded features of
multi-label images, and y ∈ {0, 1}s denotes the corresponding
multi-hot labels from the set of seen class labels Y s, with p
positive classes present in the image. The category-specific
class-level embeddings are utilized as side information and
are represented as a(k) = {a(kj), ∀j : y[j] = 1}, where
|a(k)| = p. Given sets U and S, the objective of multi-label
ZSL and GZSL is to learn classifiers fzsl : X → {0, 1}U and
fgzsl : X → {0, 1}S+U respectively. In ZSL, the exploration
domain is confined to unseen classes only, whereas in GZSL,
the exploration domain encompasses both seen and unseen
classes.

B. FEATURE GENERATION
In this section, we commence the discussion with CVAE [78]
and CGAN [32] as the base of our model. CVAE is a type of
probabilistic model. It consists of two main parts: an Encoder
and a Decoder. The Encoder qφ(z|x, a(y)) takes as input both
an image’s visual features x and class-semantic information
a(y). It then maps this input to a lower-dimensional space
called a latent vector z. The Decoder pθ (x̃|a(y), z) also called
a Generator, takes the latent vector z and class-attributes a(y)
as input to generate image’s visual features x̃. The objective
function of CVAE is to minimize the following loss function:

LCVAE = Eqφ (z|a(y),x)[logpθ (x|z, a(y))]

− DKL(qφ(z|x, a(y))||pθ (z|a(y))) (1)

where on the R.H.S of equation 1, the first term repre-
sents reconstruction error, i.e., to minimize the difference
between image visual features and reconstructed features
and the subsequent term represents the Kullback-Leibler
divergence between qφ(z|a(y), x) and pθ (z|a(y)). Kullback-
Leibler divergence serves as a quantitative measure to assess
the dissimilarity between two given distributions.

CGAN is an extension of the traditional GAN that
enhances the generative process by introducing conditional
information. CGANs are particularly useful for generating
data with specific attributes or characteristics, such as
generating images based on class attributes, styles, or other
conditions. A CGAN consists of two primary components:
a conditional Generator G and a conditional Discriminator
D. The conditional Generator G(z, a(y)) is a neural network
that takes two inputs: a random noise vector z and class-
attributes a(y). The Generator task is to generate data samples
x̃, that adhere to the provided class-attributes and follow
the distribution of the real data. By incorporating the class
attributes as input, the Generator can produce samples that
belong to specific classes or exhibit desired characteristics.
While the conditional Discriminator D(x, a(y)) is another
neural network that takes as input both the class-attributes
a(y) and the visual feature x. Its role is to determine whether
the given input pair corresponds to real visual features x
from the actual dataset or whether it’s a generated/fake visual
feature x̃ produced by the Generator. TheDiscriminator’s task
is to distinguish between real and fake samples based on the
provided class attributes.

The training of a CGAN involves a two-player minimax
game, similar to the standard GAN framework. The Gener-
ator G aims to generate realistic visual features x̃ that can
deceive the Discriminator D into believing they are real.
It tries to create samples that closely resemble the distribution
of real data while satisfying the provided class attributes.
Simultaneously, the Discriminator D strives to correctly
classify between real visual features x and fake/generated
visual features x̃ while considering the associated class-
attributes a. It is trained to improve its ability to distinguish
between real and fake samples. The iterative process of
training involves these two components competing against
each other. As training progresses, the Generator becomes
better at producing samples that align with the desired
attributes, and the Discriminator improves its capability to
differentiate between real and generated samples.

Mode collapse is a significant challenge in the realm of
GAN, where the Generator becomes fixated on producing
a narrow range of data samples, thereby lacking diversity
and variation in its outputs. This phenomenon can lead to
a suboptimal generative process, as the Generator fails to
capture the entire complexity of the real data distribution.
To overcome the mode collapse issue, we rely on the most
stable training method i.e., Wasserstein GAN (WGAN) as
it provides more stable and meaningful gradients during
training, which can lead to improved generation quality. The
objective function of the Wasserstein GAN with condition a
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FIGURE 1. Overview of the attribute-level feature fusion process to
generate global image-level embedding.

is as follows:

LWGAN = E[D(x, a(y))] − E[D(x̃, a(y))]
− λE[(||∇x̂D(x̂, a(y))||2 − 1)2] (2)

where E[.] represents the expected value operator, which
signifies taking the average value of the expression within the
square brackets.WhileD(x, a(y)) andD(x̃, a(y)) represent the
joint distribution of visual and semantic features. Specifically,
D(x̃, a(y)) corresponds to the distribution of both visual
and semantic features for unseen classes, while D(x, a(y))
represents the distribution for seen classes. Moreover, x̃ =

G(z, a(y)), x̂ = αx + (1 − α)x̃ serves as a mechanism
for generating visual features, where α follows a uniform
distribution α ∼ U (0, 1). This operation aids in the
synthesis of diverse visual attributes. The parameter λ stands
as the penalty coefficient, which contributes to the overall
optimization process.

C. MULTI-LABEL FEATURE GENERATOR
To produce multi-label features, we have applied a fusion
method referred to as attribute-level fusion (ALF), as outlined
in the work by [38].

1) ATTRIBUTE-LEVEL FEATURE FUSION
We utilize the attribute-level feature fusion approach as rep-
resented in Figure. 1. In the attribute-level fusion approach,
the goal is to generate fused multi-label visual features
for unseen classes while considering the inter dependencies
among the image labels. This approach takes into account
the class-semantic information associated with various labels
present in the image. To derive a comprehensive image-level
global visual features, the attribute-level feature fusion
method combines the individual class-semantic information.
This fusion process involves aggregating the semantic
information associated with positive labels found in the
image. One way to achieve this is by averaging the individual
class-semantic information, denoted as a(yj), and the global

image-level embedding aµ is defined as:

aµ =
1
n

∑
j:y[j]=1

a(yj), (3)

We then integrate this attribute-level feature fusion module
to our proposed generative model.

D. THE PROPOSED MODEL
It has been shown that combining CVAE and CGAN [3],
[30], [59] approach to generate visually meaningful and
semantically coherent features for classes that the model
has not seen during training. As shown in Figure. 2 our
proposed generative approach for ZSL and GZSL has an
Encoder E(x) : X × A → Z , that Encode the input
visual features of an image x along with global image-level
embedding aµ to a latent features space z. This global
image-level embedding aµ is generated by an attribute-level
fusion module by utilizing class-level semantic information
a(y). A Generator/Decoder G(z, aµ) : Z × A → X , takes
the latent features vector z along with global image-level
embedding aµ, and produces the reconstructed visual features
representation x̃. A Discriminator D : X × A → R evaluates
the compatibility between a pair of visual features x and
global image-level embedding aµ and maps them to a
compatibility score. The optimization function of both CVAE
and CGAN is as follows:

LCVAEGAN = LCVAE + γLWGAN (4)

where the Decoder of the CVAE and the Generator of the
CGAN are designed to share the same set of parameters. This
means that the same network architecture is used for both the
Decoder and the Generator. This allows the model to combine
the strengths of both CVAE and CGAN in generating
high-quality visual features for unseen classes. As the CVAE
loss involve a reconstruction loss and a regularization term.
The reconstruction loss ensures that the generated features
are similar to the input features, while the regularization term
encourages the latent features to follow a specific probability
distribution. While, the WGAN loss focuses on training the
Generator and Discriminator in a way that they converge
more stably. Instead of using traditional adversarial losses,
it employs a Wasserstein distance metric that offers a more
meaningful and stable measure of the difference between
probability distributions. Standard GANs are known to be
sensitive to the choice of hyperparameters and often suffer
from issues such as mode collapse and training instability.
In the context of CGAN, using WGAN for training the
Discriminator can result in a more stable and reliable process
of conditional image generation. This approach ensures
that the Discriminator provides meaningful feedback to
the Generator, enabling it to generate high-quality images
that closely match the conditioning information (e.g., class-
attributes) while addressing some of the challenges associated
with traditional GAN training. The hyperparameter γ is used
to control the balance or weighting of losses from both the
CVAE and the WGAN components.
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FIGURE 2. Our proposed Generative approach for Multi-label ZSL and GZSL combines CVAE and CGAN. We have used an
Encoder E that encodes the visual features of an image x along with global image-level embedding aµ to a latent feature
space z . The Generator G(z,a) generates visual features x , given its global image-level embedding aµ and latent vector z of
the encoder as an input. A Discriminator D maps the pair of visual features and global image-level embedding to a
compatibility score. The Regressor works as a regularizer, that will perform visual to-semantic features mapping.

In earlier generative approaches [30], [35], [79] for ZSL
and GZSL, faced difficulty in generating visual features
that accurately represented the real distribution of training
data. This discrepancy between the distribution of generated
visual features and the actual distribution of real training data
posed a challenge during the training of classifiers, especially
when dealing with unseen classes. Essentially, the generated
features weren’t closely aligned with the characteristics of the
real data.

So, to address this issue, we propose to combine CVAE and
CGAN along with an additional component, i.e. Regressor.
The Regressor in the proposed model serves a role that
is conceptually opposite to that of the Generator/Decoder
mentioned in previous work by [25]. The Generator/Decoder
maps global image-level embedding aµ to visual features
x̃. In contrast, the Regressor in the current model maps
the generated or reconstructed visual features x̃ back to
their corresponding global image-level embedding aµ. The
main purpose of the Regressor is to enforce a connection
between the generated or reconstructed visual features and
their associated class attributes. It makes sure that the
generated features align with the expected characteristics
of the class they are supposed to represent. This process
ensures that the generated visual features are not only visually
coherent but also semantically meaningful and consistent
with their assigned class attributes. The Regressor’s role
can be likened to the concept of ‘‘cycle consistency’’ loss,
which was introduced by [80]. Cycle consistency loss is
often used in tasks like image-to-image translation to ensure
that an image can be translated to another domain and then

back again without losing important information. Similarly,
in this proposed model, the Regressor ensures a ‘‘cycle’’ of
consistency between visual features and class attributes. This
means that the generated visual features should be mapped
back to the same class attributes they were generated from,
creating a coherent loop of transformation. The Regressor
loss is as follows:

Lcyc = Eaµ∼P
aµ
s ,z∼PE(z|x,aµ)

[||aµ − R(G(aµ, z))||22]

+ Eaµ∼P
aµ
u ,z∼PE(z|x,aµ)

[||aµ − R(G(aµ, z))||22] (5)

where P
aµ
s and P

aµ
u in 5 denote the distribution of seen and

unseen classes attributes, respectively. Furthermore, we have
a cycle consistency loss in terms of a Regressor R(G(z, aµ))
that maps the reconstructed visual representations x̃ back
to their global image-level embedding aµ for good visual
features generation. So, our unified Generative approach for
GZSL trains the following combined loss function:

Lloss = min
G

max
D
LCVAEGAN + βLcyc (6)

where β is the hyperparameter that weights the Regressor
loss.

The training begins with the pre-training of the CVAE.
Equation 1 likely refers to the main objective or loss function
used to train the CVAE. However, in the context of CVAE,
the loss function usually consists of a reconstruction loss
and a regularization term. The reconstruction loss ensures
that the generated features are similar to the input features,
and the regularization term encourages the latent features

94996 VOLUME 12, 2024



M. Gull, O. Arif: Multi-Label Zero-Shot Learning With Adversarial and Variational Techniques

to follow a specific probability distribution. Pre-training the
CVAE allows the model to learn a good initial representation
of the data distribution and the latent space. It stabilizes the
training process. As, training a CGAN from scratch can be
challenging and prone to mode collapse, where the Generator
produces limited variety of samples. The pre-trained CVAE
provides a more stable starting point for the CGAN. After
pre-training the CVAE, the entire Generative model is trained
using equation 6. It is used as the objective or loss function
for this training and it combines the various components
of the model, including the CVAE, CGAN, and Regressor,
along with relevant loss terms to guide the training process.
This equation ensures that all components work together to
generate realistic, semantically rich visual features for both
seen and unseen classes.

To enhance the resilience of the visual feature generation
process, we have adopted a strategy that involves creating
multi-label features to train the ultimate multi-label ZSL and
GZSL classifier. This strategy encompasses the formation
of multi-label combinations that include both unseen classes
and combinations comprising a mix of seen and unseen
classes. To achieve this, we begin by assembling multi-label
combinations consisting of seen classes from the training
dataset. Subsequently, we introduce a degree of randomness,
following a method outlined in [38], by associating these
seen classes with their nearest unseen counterparts. This
proximity is determined based on the embeddings of their
respective class representations. As a result, this process
yields a collection of diverse multi-label combinations. These
combinations include instances exclusively featuring unseen
classes as well as combinations that encompass both unseen
and seen classes. The primary aim of this approach is to
enhance the model’s ability to generalize during the training
phase. By exposing the model to scenarios where it must
recognize objects it has never encountered before, we prepare
it for the challenges of ZSL and GZSL. In these scenarios,
the model must apply its knowledge to identify entirely new
classes, thus requiring robust generalization capabilities.’’

Further depending on the task to be solved, whether
multi-label ZSL or GZSL, both seen and unseen classes
samples are utilized to train the final classifier i.e., softmax,
alongwith the Binary cross entropy lossBCE(fzsl(x̃a), yu) and
BCE(fgzsl(x̃a), yu+s) for both multi-label ZSL and GZSL.

IV. EXPERIMENTS
A. DATASETS
We conducted an extensive evaluation of our proposed
approach for multi-label ZSL and GZSL using two
widely recognized benchmark datasets: MS COCO [39]
and NUS-WIDE [40]. The NUS-WIDE dataset comprises
269,648 images that have been meticulously categorized into
81 classes by human annotators. This dataset encompasses
a total of 925 labels, which were derived from tags provided
by Flickr users. In line with the approach adopted by previous
works such as [73] and [81], we designate the 925 labels as

‘seen labels,’ while the remaining 81 labels, which have been
human-annotated, are considered ‘unseen labels’. The MS
COCO dataset features 123,287 images spanning 80 distinct
categories, including a validation set with 40,504 images and
a training set comprising 82,783 images. For our multi-label
ZSL and GZSL experiments, we follow the same class split
as used in [38], consisting of 15 unseen classes and 65 seen
classes.

In these experiments, we employed two common types
of data splits [82]: instance-first and label-first. Following
established methodologies [73], [81], we chose to utilize
the instance-first split for the NUS-WIDE dataset. This
decision was made after careful consideration of the label-
first protocol’s drawbacks on the NUS-WIDE dataset. In the
standard NUS-WIDE dataset split, there are 81 human-
annotated classes designated as unseen and 925 machine-
annotated classes as seen. Implementing a label-first protocol
resulted in an imbalanced distribution of training and
testing data. This significant data distribution disparity
raised concerns about the integrity of the training process.
Therefore, we concluded that maintaining the instance-first
data split for the NUS-WIDE dataset was crucial to ensure
a more balanced distribution of training and testing data,
thus facilitating robust model training and evaluation. For
the MSCOCO dataset, we adopted a label-first split with a
ratio of 65/15 for seen/unseen classes, as proposed by [83].
This decision was driven by specific considerations aimed at
preserving the semantic integrity of instances associated with
unseen labels throughout the training process. By preserving
instances related to unseen labels for testing and utilizing
instances with known labels for training and validation,
we aimed to mitigate potential biases and ensure a more
reliable training process compared to the instance-first split.

In our experiments utilizing the NUSWIDE andMSCOCO
datasets, we encountered unique challenges inherent to these
datasets that directly influenced the efficacy of our proposed
framework. Firstly, both datasets consist of images with
varying levels of pixel quality and resolution. The NUSWIDE
dataset, in particular, encompasses a wide range of image
qualities due to its diverse nature, including both professional
and amateur photography. Similarly, the MSCOCO dataset
contains images captured under different lighting conditions
and environments, leading to variations in pixel quality.
Secondly, the presence of small objects within images was
prominent in both datasets. In NUSWIDE, images often
contain multiple objects of interest, some of which may be
small or partially occluded, requiring the model to accurately
detect and classify them. Similarly, the MSCOCO dataset
features a plethora of object categories, including numerous
instances of small objects that pose a challenge to recognition
algorithms. Lastly, considering multiple viewpoints was
crucial for achieving robust performance on both datasets.
Images in NUSWIDE andMSCOCO can depict objects from
various angles and perspectives, necessitating the model to
generalize effectively across different viewpoints to ensure
accurate classification.
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FIGURE 3. Description of the proposed model combining CVAE and CGAN for ZSL and
GZSL.

By addressing these dataset-specific challenges through
tailored preprocessing techniques, we were able to enhance
the performance of our framework on the NUSWIDE and
MSCOCO datasets. Our experimental results underscore
the importance of considering factors such as pixel/image
quality, small objects, and multiple viewpoints in the context
of Multi-label ZSL and GZSL, thereby contributing to
the advancement of ZSL methodologies. These benchmark
datasets provide a robust foundation for assessing the
performance of our proposed approach in the context of
multi-label ZSL and GZSL scenarios. Furthermore, they
enable us to make meaningful comparisons with state-of-the-
art methods. Besides NUSWIDE and MS COCO, we also
have the Open Images dataset [84], which is the largest multi-
label dataset. However, due to limited resources, we were
unable to perform experiments on this dataset.

B. EVALUATION PROTOCOLS
To measure the performance of our proposed generative
approach, we employ two performance metrics: F1 score and
meanAverage Precision (mAP). Thesemetrics are commonly
used in the field and have been utilized in previous works
such as [73] and [81]. The mAP metric is used to assess
the label retrieval accuracy of the model. It measures how
well the model ranks the correct labels for each image,
indicating the model’s ability to assign the most relevant
labels. A higher mAP value indicates better performance in

terms of label retrieval. On the other hand, the top-k F1
score measures the prediction accuracy of the model. It takes
into account both precision and recall and is particularly
useful in multi-label classification scenarios. By considering
the top-k most probable labels for each image, the top-k
F1 score evaluates how well the model predicts the correct
labels. Higher values of the top-k F1 score indicate more
accurate predictions. By using these evaluation metrics,
we can quantitatively assess the performance of our proposed
generative approach for multi-label ZSL and GZSL, and
compare it with other state-of-the-art methods on standard
datasets.

C. IMPLEMENTATION DETAILS
Following the methodologies described in [73] and [81],
we employed the pre-trained VGG-19 model to extract
features from the NUS-WIDE and MSCOCO datasets.
Specifically, we utilize the output of the FC7 layer, consisting
of 4096 image-level visual features, as input to our model.
We implement the Encoder, Generator, Discriminator, and
Regressor network as a feed-forward neural network with
a different number of hidden layers. The Encoder and
the Discriminator comprises a single hidden layer with
4096 hidden units, while the Generator and the Regressor
comprise two hidden layers with 4096 hidden units. The
architecture of the Encoder, Generator, Discriminator, and
Regressor networks was carefully chosen to strike a balance
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between model complexity and performance. The specific
configurations, such as the number of hidden layers and units,
were determined through experimentation and empirical
observations. We also considered prior literature and existing
best practices in similar tasks to inform our choices. The
latent vector z is set to 64 against the Encoder network for
all the datasets. To incorporate class semantic information,
we employ Glove vectors [85]. These vectors serve as
a representation of the semantic information associated
with each class. This approach has been widely adopted
in existing literature and has shown promising results in
handling semantic embeddings for improved performance
in Multi-label ZSL and GZSL tasks. We use Adam for
optimization and a constant learning rate of α = 0.001 for
all the datasets. We use β = 0.01 and γ = 0.01 for all
the datasets. The optimization parameters, including the
learning rate (α), regularization parameters (β and γ ), and
latent vector size (z), play a crucial role in training the
model effectively. The determination of these parameters
was exclusively conducted through rigorous cross-validation
procedures, ensuring that our model’s performance is robust
and generalizable. Detailed parameter values are provided
in Table 1 for reference. In each experiment, we generate
300 visual depictions for each unseen category, facilitating
comprehensive evaluation and analysis of our proposed
approach. These implementation specifics provide a solid
foundation for training and evaluating our proposed model
on Multi-label ZSL and GZSL tasks. The model took 3 days
to train using a GPU.

TABLE 1. Summary of the parameter configurations for both multi-label
ZSL and GZSL.

V. RESULTS
In this section, we conducted a thorough evaluation of our
proposed model in comparison to state-of-the-art techniques,
addressing both the multi-label ZSL and GZSL tasks. The
outcomes of these assessments, as outlined in Table 2 and
Table 3, offer valuable insights into the efficacy of our
approach and its superiority over existing methods. To com-
prehensively gauge our model’s performance, we employed
two evaluation metrics: the mean Average Precision (mAP)
and the F1 score across different K values (Top-K pre-
dictions). Furthermore, we computed the Precision (P)

and Recall (R) metrics for each F1 score, facilitating a
comprehensive analysis of our model’s capabilities. Among
the spectrum of approaches explored for multi-label ZSL
and GZSL, one of the standout state-of-the-art methods is
CONSE [69], which leverages a convex combination of class
embedding vectors to establish associations between images
and their corresponding semantic embedding space.

The LabelEM [86] approach introduces a classification
strategy based on attributes, linking each class with its
corresponding semantic information. Fast0Tag [81] deals
with prioritizing relevant tags over irrelevant ones by
identifying primary directions in the word vector space.
Attention per Label [87] utilizes bilinear attention networks
to effectively incorporate vision-language data. In the context
of multi-label ZSL and GZSL classification, both LESA [73]
and BiAM [74] embrace a shared multi-attention mechanism,
facilitating multi-label recognition, the detection of previ-
ously unseen labels within an image, and the identification
of relevant regions for each label.

In recent developments, ML-Decoder [77] has made a
noteworthy contribution by introducing a novel attention-
based classification head applicable to various classification
tasks, including multi-label ZSL. GMLZSL [38] presents
a GAN-based generative model that leverages multi-class-
semantic information through a cross-level feature fusion
approach, thereby enhancing visual feature generation.
SDL [72] offers a method designed to promote semantic
diversity among image labels by assigning higher weights
to samples that exhibit greater diversity. In contrast to its
counterparts, ML-ZSL [76] pioneers an innovative strat-
egy for unbiased multi-label ZSL. It incorporates distinct
class-specific regions into the training process of the
classifier, reinforced by the Pyramid Feature Attention (PFA),
which effectively bridges global and local information within
samples, ensuring a balanced class representation. Lastly,
the ADDS framework [75] introduces a flexible constraint
to enhance the alignment of visual and textual features
in multi-label classification. Within this framework, they
introduce the DM-Decoder, a pioneering transformer decoder
that facilitates the fusion of semantics from dual-modal
sources. Remarkably, their feature generation approach for
multi-label ZSL and GZSL demonstrates superior perfor-
mance compared to other state-of-the-art methods on both
datasets.

The comparative analysis conducted on the NUS-WIDE
dataset for the conventional multi-label ZSL task reveals
noteworthy findings. Initially, ADDS [75] exhibits perfor-
mance comparable to other methods, achieving an mAP
score of 36.5%. Meanwhile, ML-ZSL [76] attains F1 scores
of 37.7% and 36.0% at K = 3 and K = 5, respectively.
However, our proposed approach surpasses the performance
of both ML-ZSL [76] and ADDS [75], alongside TGF [88],
achieving F1 scores of 36.8% and 36.6% at K = 3 and K =

5, respectively. This enhancement underscores the efficacy of
our model in accurately predicting labels for unseen classes.
Transitioning to the GZSL task on the NUS-WIDE dataset,
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ML-Decoder [77] emerges as a frontrunner, outperforming
existing methods with an mAP score of 19.9%. However,
our proposed method presents a significant advancement,
achieving an mAP score of 22.5%. This represents a
substantial absolute gain of 2.6% over ML-Decoder [77].
Furthermore, in terms of F1 scores, our approach excels
in comparison to ML-Decoder [77] and other approaches,
yielding F1 scores of 24.6% and 28.9% at K = 3 and K =

5, respectively. These outcomes validate the efficacy of our
model in precisely predicting labels for both seen and unseen
classes, positioning it as a leader in GZSL tasks against other
methods.

When evaluating the MS COCO dataset, GMLZSL [38]
emerges as a standout among the array of state-of-the-art
methods, showcasing remarkable performance across both
multi-label ZSL andGZSL tasks. In the realm of conventional
multi-label ZSL, GMLZSL achieves an impressive mAP
score of 52.2% and a noteworthy F1 score of 43.5% at
K = 3. Nevertheless, our proposed approach attains further
enhancement over GMLZSL. It secures an mAP score of
53.2% and an elevated F1 score of 46.0% at K = 3,
showcasing an absolute gain of 2.5% in F1 score. This
distinction underscores the heightened performance of our
model. Furthermore, at K= 5, our proposed model maintains
an F1 score of 40.4%. In the realm of multi-label GZSL
tasks, GMLZSL stands out with an mAP score of 35.3%
and F1 scores of 46.7% and 46.4% at K = 3 and K =

5, respectively. However, our proposed approach exhibits
superior performance, surpassing GMLZSL’s benchmarks.
Notably, our model achieves an enhanced F1 score of 46.4%
at K = 5.
These findings demonstrate that our proposed approach,

leveraging the combined strengths of conditional variational
autoencoders (CVAE) and conditional generative adversarial
network (CGAN) architectures along with a Regressor net-
work, offers a robust and innovative solution for Multi-label
ZSL and GZSL tasks. By integrating generative modeling
techniques, our model not only synthesizes samples but
also effectively addresses the challenges posed by unseen
classes, surpassing the performance of existing generative
approaches. Notably, among the methods we compare
against, only GMLZSL employs a generative approach
similar to ours. However, our proposed model exhibits
superior performance evenwhen compared to this established
generative method.

Moreover, our research endeavors have culminated in a
robust and innovative approach that addresses the challenges
of Multi-label ZSL and GZSL. Through the integration of
attribute-level fusion and cutting-edge techniques, we have
achieved substantial enhancements in performance on both
NUS-WIDE and MS COCO datasets. Additionally, careful
architectural design choices are made to strike a balance
between expressiveness and computational efficiency. Fac-
tors such as the number of layers, the dimensionality of latent
spaces, and the connectivity patterns within the network
are optimized to maximize the model’s capacity to capture

complex data distributions while minimizing computational
overhead. Furthermore, our experimentation involves a broad
spectrum of datasets. By subjecting our method to such
diverse datasets, we aimed to comprehensively evaluate its
ability to generalize across various data types. Our proposed
generative approach was employed in these evaluations,
showcasing their efficacy in processing a wide array of visual
inputs.

We generated multi-label combinations, incorporating
both unseen classes and combinations composed of a mixture
of seen and unseen classes, for visual feature generation. This
involved utilizing global image-level embedding, leading
to improved generalization during testing and an enhanced
overall performance. Our model, meticulously compared
against an array of state-of-the-art methods, consistently
demonstrates superior results. To better generalize we
Notably, in both conventional multi-label ZSL tasks and
the more complex multi-label GZSL tasks, our proposed
methodology showcases remarkable proficiency, achieving
remarkable gains in mean Average Precision (mAP) and F1
score. This underscores its efficacy in accurately predicting
labels for both seen and unseen classes, effectively surmount-
ing the challenges posed by these intricate learning scenarios.

We also provide a nuanced analysis of model performance
across individual classes by reporting Average Per-Class
Accuracy for each dataset as depicted in Figure.,4 and 5.
This analysis offers insights into the model’s effectiveness
in accurately classifying specific categories within each
dataset. Complementing the quantitative analysis, we provide
qualitative insights into the performance of our method
through a selection of images. Figure. 6 and 7 showcase
instances where the proposed method excels in capturing
intricate details, leading to accurate classification even in
challenging scenarios. These qualitative insights offer a
deeper understanding of the proposed method’s capabili-
ties, emphasizing its robustness across various real-world
scenarios.

Building upon the observed trends in class-wise accuracy
and the qualitative assessments, we delve into the implica-
tions of our results and discuss how the proposed method
contributes to the broader field ofMulti-label ZSL andGZSL.
The combination of quantitative and qualitative analyses
reinforces the robustness and versatility of our approach.

A. ABLATION STUDIES
1) COMPONENT ANALYSIS
In this section, we evaluate the effects of different objective
functions of the proposed model, along with their results.
We conduct a detailed analysis of individual components of
the proposed Generative model to gauge their performance
and effectiveness when operating independently. The out-
comes of these components on two standard datasets are
displayed in Tables 4 and 5, reflecting both conventional
and generalized settings. To examine its efficacy in both
scenarios, we integrated the Regressor with CVAE and
CGAN.
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TABLE 2. We conduct a comparative evaluation of the latest techniques for Multi-label ZSL and GZSL on the NUS-WIDE dataset. Our analysis includes the
use of mAP and F1 score, with K values chosen from the set 3, 5. The most favorable results are emphasized in bold, while a dash (’-’) indicates instances
where the methods either do not provide their outcomes or have not conducted experiments with the datasets.

TABLE 3. We conduct a comparative evaluation of the latest techniques for Multi-label ZSL and GZSL on the MS COCO dataset. Our analysis includes the
use of mAP and F1 score, with K values chosen from the set 3, 5. The most favorable results are emphasized in bold, while a dash (’-’) indicates instances
where the methods either do not provide their outcomes or have not conducted experiments with the datasets.

FIGURE 4. Class-wise prediction accuracies on MS COCO Dataset.

In our pursuit, we undertake the fusion of the Regressor
with two diverse components: CVAE and CGAN. The
initial case in this exploration involves the combination of
LCVAE+LCYC , wherein the CVAE is harmonized with the
Regressor.

This amalgamation utilizes the Encoder to generate a
compact latent vector z, derived from a fusion of image
visual features x and global image-level embedding aµ,
which the Decoder subsequently utilizes to reconstruct the
datapoint x̃ along with global image-level embedding aµ.
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FIGURE 5. Class-wise prediction accuracies on NUS-WIDE Dataset.

FIGURE 6. Comparison of predictions on test samples from the MS COCO dataset. The results depict
the Top-5 predictions for Multi-label GZSL. ’*’ denotes unseen labels, with green text indicating True
Positive predictions and red text indicating apparent incorrect predictions.

The second conjuncture unfolds as the amalgamation of
the Regressor with CGAN, represented as LWGAN+LCYC .
This configuration involves latent feature vector z and global
image-level embedding aµ as inputs, culminating in the
generation of the reconstructed visual features x̃.

By individually investigating three distinct variants involv-
ing the Regressor coupled with CVAE and CGAN, we gain
valuable insights into their performance across both con-
ventional and generalized ZSL settings. On evaluating these
combinations within both the conventional and generalized
contexts, it becomes evident that their isolated efficacy falls
short of optimal performance. Remarkably, the third synthesis
stands as the vanguard, outperforming its predecessors by
seamlessly integrating all three components, namely LWGAN ,
LCVAE , and LCYC . Notably, the fusion of LWGAN , LCVAE ,

and LCYC emerges as the pinnacle, showcasing superior
performance due to the comprehensive incorporation of all
components. This observation underscores the pivotal role
each component plays in collectively enhancing performance,
a finding consistently resonant in both conventional and
generalized contexts. This insight advances our understand-
ing of the intricate interplay of objective functions and
their cumulative impact on the effectiveness of the proposed
generative model for ZSL.

2) ANALYZING γ ON NUS-WIDE DATASET
In our study, we systematically manipulate the value of
aparameters, γ , to comprehensively assess their influence on
the overall system performance. Through empirical analysis,
we have carefully examined the consequences of varying
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FIGURE 7. Comparison of predictions on test samples from the NUSWIDE dataset. The results depict the
Top-5 predictions for Multi-label GZSL. ’*’ denotes unseen labels, with green text indicating True Positive
predictions and red text indicating apparent incorrect predictions.

TABLE 4. Ablation Study: Analyzing the components of our proposed model on the NUS-WIDE dataset for Multi-label ZSL and GZSL.

TABLE 5. Ablation Study: Analyzing the components of our proposed model on the MS COCO dataset for Multi-label ZSL and GZSL.

TABLE 6. Analyzing the impact of hyperparameter γ on NUS-WIDE dataset for Multi-label ZSL and GZSL.

these parameters and have made noteworthy observations.
As γ is a scalar value that we can adjust. By changing the
value of γ we can control the contribution of theLWGAN to the
total loss that is defined in Equation 4. If γ is large, it means
that the LWGAN loss has a higher weight, and the model will
be more influenced by the adversarial training aspect of the
WGAN. On the other hand, if γ is small, the reconstruction

loss from the LCVAE will have a larger impact on the total
loss.

Our investigations have led us to a pivotal finding.
Specifically, whenwe set γ = 0.01, a remarkable stabilization
of the training process occurs on the NUS-WIDE dataset.
These results are succinctly summarized in Table 6, where
we present the outcomes of our experimentation. This
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configuration of γ appears to yield a favorable balance,
conducive to reliable and consistent training outcomes.
In practical terms, the model’s training will be more
focused on the reconstruction aspect of the LCVAE , and
the adversarial aspect introduced by the LCGAN will have
less influence. Furthermore, an intriguing pattern surfaces
from our experimentation. We have scrutinized the impact
of deviating from the aforementioned parameter value and
found a consistent trend. Notably, for values other than
0.01, we did not observe any discernible improvement
in performance. This underscores the significance of the
specific parameter value we have identified, emphasizing
their efficacy in optimizing system performance.

VI. CONCLUSION
Our study presents an innovative generative framework
designed to tackle the challenges of both multi-label ZSL
and GZSL. This approach leverages the combined strengths
of CVAE and CGAN to generate visual representations
for previously unseen classes. By utilizing latent space
vectors from the CVAE and global image-level embeddings
as inputs for the Generator/Decoder, we establish a robust
foundation for visual feature synthesis. To ensure the stability
of the CGAN during training, we implement the Wasser-
stein GAN technique, which guides the generation process
towards features that are conducive to accurate classification.
Additionally, a complementary Regressor functions as a
regularizer, enhancing the fidelity of feature reconstructions
through cycle consistency loss by mapping the generated
visual representations back to their corresponding global
image-level embeddings. The integration of Softmax clas-
sifier training for both seen and unseen classes further
refines the system for classification tasks after augmenting
the unseen class data. Our approach incorporates attributes
as supplementary information for visual feature generation
and undergoes empirical evaluation on two benchmark
datasets: NUS-WIDE and MS COCO. Notably, our method
proves effective in both multi-label ZSL and GZSL sce-
narios, highlighting its versatility and potential to advance
state-of-the-art solutions in the field.
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