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ABSTRACT Clipping is one of the non-linear distortions commonly introduced due to microphone
saturation during speech recording. Present work focuses on the effect of clipping in the task of prosody
modification. Since, F0 contour and duration are the important prosodic parameters, the present work studies
the effect of clipping in the manipulation of F0 and duration of a given speech. Epoch based prosody
modification is considered as the popular method to generate waveforms with good perceptual quality
by scaling F0 contour and duration of the given speech by fixed scaling factors. Therefore, present work
studies the effect of waveform clipping on the perceptual quality of prosody modified speech. Deviations
in the estimation of epochs (which are used as the analysis pitch marks) and method used for generating
the waveform are the two ways wherein perceptual quality in epoch based prosody modification can be
compromised. The work proposed in this paper examines, effect of clipping on the aforesaid stages of epoch
based prosody modification affecting the perceptual quality of the generated speech. Zero frequency filtering
(ZFF), a simple and popular method, is chosen as the epoch estimation algorithm for epoch based prosody
modification presented in the paper. Based on comparative epoch estimation performance analysis carried out
by introducing various amplitude clipping levels, epoch identification rates are confirmed to be unchanged,
irrespective of the level of clipping distortions present. However, due to saturation in the waveform samples,
the waveform generation stage of the prosody modification was observed to be affected to the level which
was proportional to the clipping distortions present in the signal. A variational mode decomposition (VMD)
based signal approximation of the prosody modified speech is proposed to reduce the non-linear effect due to
clipping. At the gross level, the re-estimated speech signal obtained from the VMD modes observed to have
improved the perceptual quality of the pitch and duration modified speech. The improved perceptual quality
of VMD based re-estimation of prosody modified speech was confirmed from subjective and NIST-STNR
based objective assessments. Further, VMD based refinement is proposed as an alternative to local mean
subtraction for trend removal in conventional ZFF of speech for the accurate epoch estimation. Comparative
performance analysis carried out on CMU arctic database, confirmed improvement in the identification
accuracy for the epochs estimated by using VMD based trend removal in ZFF algorithm.

INDEX TERMS Clipping distortion, epochs, perceptual quality, prosody modification, variational mode
decomposition, zero frequency filtering.
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I. INTRODUCTION
Development of data driven End-to-End speech systems
marked phenomenal advancement in the field of speech and
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language processing. Performances of these systems depend
solely on the large amount of data collected. Among the large
repository of databases prepared by crawling from various
internet sources, utterances with non-linear distortions such
as clipping are commonly present [1]. Therefore, the work
presented in the paper focuses to explore the effect of clipping
distortions in the analysis and processing of voice quality
parameters of prosody such as F0 and duration in speech
signals.

Clipping distortions in speech occur due to saturation of
microphones as a result of improper calibration of automatic
gain control (AGC), rise in loudness of speakers during
recording and generation of speech files without properly
normalizing the waveforms. According to Harvella and Stern,
amplitude clipping (clip by amplitude) for a speech signal is
mathematically expressed as given in Eq. 1 [2].

sc[n] =

{
s[n], s[n] ≤ |τ |

|τ∥, sgn(s[n]), s[n] > |τ |
(1)

According to Eq. 1, samples are assigned a constant value
for all the amplitudes of s[n] above τ . For a speech signal
normalized between [−1, 1], the percentage of clipping is
given by the factor (1 − τ ) × 100.

Figure 1, shows the speech waveform and amplitude
histograms for various clipping amplitudes. A significant
change in the distribution of amplitudes (Figure 1((g)-(j)))
affect signal characteristics as compared to that of the given
speech signal having no clipping distortion (Figure 1(f)).
It has to be noted that Figure 1 demonstrates the clip by
amplitude as reported by Hansen et al. in [1]. However, clip
by sample measured in (%) is computed as the ratio of the
samples contaminated by clipping to the total number of
samples present in the given speech utterance. In the Figure 1,
the clip by amplitude level by Eq. 1 for clipping amplitude
of 0.99 (0.1%) corresponds to 0.01% clip by sample level,
approximately. Similarly, extreme clip by sample level of
13% corresponds a clip by amplitude level of 99% (clipping
amplitude of 0.01).

There are many works reported for restoring clipped sam-
ples of speech signals in the context of audio inpainting [3],
[4]. By subjecting the speech signal to auto regressive (AR)
modeling, Janssen et al. [5] proposed a method to restore
contaminated samples due to clipping. By the higher order
AR modeling of speech, authors could estimate samples
distorted by amplitude and temporal clipping which provided
minimum error in a least square (LS) sense [5]. Although,
there were earlier attempts to restore the distorted speech
samples in speech by localized estimation of time and
frequency, optimization based approaches were popularized
by the unpublished work by Selesnick based on LS opti-
mization [6]. LS method proposed by Selesnick, estimates
the missing samples in a waveform by optimizing the second
order derivative of the smoothness of the estimated samples
of each frame. As an extension to the estimation of missing
samples, the speech de-clipping was achieved by minimizing

the third derivative of mean square energy of estimated
samples. Exploiting the sparse coding representation for
compressed sensing, Adler et al. proposed an audio inpainting
algorithm for speech declipping [3]. The speech declipping
was formulated as an inverse problem of audio frame
reconstruction using the constrained orthogonal matching
pursuit algorithm. The sparse modeling was carried out
using Gabor dictionaries. Motivated by the audio inpainting
work proposed by Adler et al., Kritic et al., proposed an
iterative hard thresholding (IHD) based approach which was
used for faster convergence and generating the dictionary of
sparse code vectors for estimating the sparse representation
of the input speech frame. Declipping was then considered
as the inverse problem to reconstruct the signal from the
partial observation of signal samples from the given speech
frame [7]. Harvilla and Stern reported the effect of clipping
on the speech recognition performance [2]. A significant drop
in word error rates were observed as the clipping amplitude
thresholds were increased. Further, the work by Harvilla
et al. proposes a speech declipping algorithm by combining
Selesnick’s LS based unconstrained sample estimation and
IHT based sparse coding representation proposed by Harvilla
and Stern [2]. In the proposed work, the speech samples were
estimated to be above the clipping threshold, τ which was
known a priori. A constrained blind amplitude reconstruction
algorithmwas then used for the estimation of clipped samples
for the inverse sparse reconstruction in the least square sense.

In addition to the aforesaid optimization based approaches
for speech declipping, there are a few works on audio
inpainting recently reported in the literature which are
based on deep neural networks, particulary on generative
modeling [4], [8], [9]. However, most of the works on audio
inpainting using generative modeling focused predominantly
on the temporal clipping where audio samples were missed
for a long gap of 100 ms to a few seconds using various
generative adversarial network (GAN) architectures [4], [8].
The recent work by Hansen et al. studied the effect of
clipping distortion severities on performances of speech
system by taking speaker identification task as the case [1].
Here, the speech amplitude clipping was introduced in the
range of 0 to 15% (clipping by samples). The first part of
the study showed the effect of clipping on speech quality
assessment parameters, non-reference NIST supported signal
to noise ratio (STNR), waveform distortion assessment
(WADA-SNR), PESQ and blind source separation (BSS)
based measure which are treated as the objective measures
that reflect the comparative mean opinion scores obtained
by conducting subjective evaluation [10]. As reported by
Hansen et al., when clipping levels were increased, the
speech quality parameter measures were found to be reduced
proportionately. Further, presence clipping observed to have
a significant adverse impact on the equal error rates (EER)
of state of the art speaker identification systems (SID).
Excluding the distorted speech files while building the
speaker models showed no degradation in EER. Finally,
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FIGURE 1. Waveform and amplitude histograms of original speech ((a) and (f)), speech with clip by
amplitude levels of 0.1 ((b) and (g)), 0.5 ((c) and (h)), 0.8 ((d) and (i)) and 0.99 ((e) and (j)).

the work concluded with the remarks that there were no
noticeable differences in the performances of systems when
the clipped samples were under 1%.

Similar to the works by Hansen et al. and Harvilla
et al. where the effect of speech clipping was studied by
considering speaker identification and speech recognition,
respectively as the cases, the present work explores the effect
of clipping in prosody manipulation and attempts to improve
the perceptual quality of the prosody modified speech.
Prosody manipulation is one of the stages in many speech
synthesis applications such as synthesis of emotions [11],
speaker anonymization [12] for privacy preservation and
so on. Modifying the pitch (F0) contour and duration of
the given speech signal is termed as prosody manipula-
tion [13] [14], [15], [16], [17], [18]. Pitch synchronous
overlap (PSOLA) applied in time domain (TD- PSOLA),
frequency domain (FD-PSOLA) and on linear prediction (LP)
redual (LP-PSOLA) are the popular methods for achieving
prosody modified speech [19], [20]. Considering the simple
and computationally efficient algorithmic implementation,
epochs estimation using ZFF of speech is used to extract the
analysis pitch marks for the studies presented in this paper.
Other well performing epoch estimation methods include
dynamic programming projected phase slope algorithm
(DYPSA) [21] [22], Integrated linear prediction residual
(ILPR) [23], Speech event detection using residual excited
and mean based signal (SEDREAMS) [24] and so on.
By keeping the prosody modification as the task, the
objectives of the work presented in the paper are formulated
to address the following issues:

• To check the effect of clipping distortions on he accuracy
of epochs estimate for prosody modification

• To device methodologies to reduce the effect of clipping
distortion in pitch marks estimation and waveform
generation stages of prosody modification

To reduce the effect of clipping on the perceptual quality
of the prosody modified speech, restoration of the clipped
samples are essential. The clipped samples can be restored
by computing the best estimates of predominant variations
at the time-frequency scale around dominant frequencies.
There are a few signal processing tools which compute
the time-frequency estimated for the restoration of the
waveforms. Among those methods popular one is empirical
mode decomposition (EMD) based signal approximation
by estimating intrinsic mode functions (IMF) [25]. EMD
computes IMFs iteratively by estimating the signal extrema
from the amplitude envelopes. In the case of signal contami-
nation by clipping, the envelopes are distorted and therefore
the IMFs computed from the signal extrema may not be
reliable. As an alternative, variational mode decomposition
(VMD) based method for computing IMFs is introduced
which out performed EMD in the presence signal distortions
due to noise [26]. In VMD, IMFs representing the AM-FM
components are used to reconstruct the signal to reduce
the clipping distortion. The unique aspect of VMD which
motivated us to propose for the enhancement of clipped
speech is the estimation of signal samples of IMFs by
constraining the signal variations around the prominent
frequencies compared to IMF signal mode decomposition in
EMD. In EMD, IMFS are estimated iteratively computing
extreme points obtained from amplitude envelope of the given
speech signal [27].
Therefore, the proposed novelties of the paper are listed

below:
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• Studies carried on the effect of clipping on epochs
estimation from clipped speech

• Proposing a refined epoch estimation approach for
clipped speech signals using VMD

• An attempt to improve the perceptual quality of pitch
and duration modified clipped speech signals using
VMD

The proposed organization of the paper is given below:
Section II describes the formulation of variational mode
decomposition for estimating the IMFs in speech signals.
Studies on the effect of clipping in estimation of epochs are
given in Section III. An alternate refinement is proposed for
conventional ZFF method for the robust estimation of epochs
is provided in Section IV. A VMD based method for reducing
perceptual distortions due to clipping has been described in
Section V. Section VI summarizes the work with remarks
on the permissible levels of clipping so that distortions
introduced in prosody modified speech are perceptually
unnoticeable.

II. VARIATIONAL MODE DECOMPOSITION FOR
ESTIMATING INTRINSIC MODE FUNCTIONS
OF SPEECH
The VMD decomposes the given speech signal into real
valued signals which are termed as intrinsic modes and are
conveniently called as modes. Mode decomposition is carried
out by minimizing the bandwidth of frequency variations
around the center frequency of each mode. Therefore,
estimating modes and their center frequencies are formulated
as quadratic programming optimization problem which is
shown in Eq. 2.

min
(sk ,ωk )

K∑
k=1

∥∂t [(δ(t) +
j

π t
) ∗ sk (t)]e−jωk t∥22

subject to : s(t) =

K∑
k=1

sk (t) (2)

where, K is the number of modes which is specified by the
user and ωk is the center frequency of each mode sk (t). The
objective function of the quadratic programming problem
shown in Eq 2, is set to minimize the bandwidth of each
mode sk (t) around the center frequency ωk . The mode band
width optimization problem is constrained to reconstruct the
signal by adding all modes. In Eq 2, the bandwidth of each
mode, k , is computed by deriving the analytic signal and
modulating the one sided spectrum to the baseband with
center frequency, ωk . In this way, each mode is compact
with respect to the bandwidth around its center frequency.
The required modes and the center frequencies are estimated
by solving the quadratic programming optimization using
quadratic penalty term and Lagrangean multipliers, λ, for
adding the reconstruction constraint. Eq. 3 combines the
constraints with the mode bandwidth objective function using
Lagrangean multipliers. The parameter variable α in Eq. 3 is

the quadratic penalty on the bandwidth constraint.

L(sk , ωk , λ) = α

K∑
k=1

∥∂t [(δ(t) +
j

π t
) ∗ sk (t)]e−jωk t∥22

+ ∥s(t) −

K∑
k=1

sk (t)∥22

+ ⟨λ(t), s(t) =

K∑
k=1

sk (t)⟩ (3)

Eq. 3 has been solved using alternate direction multipliers
method (ADMM) to estimate modes from the given signal
s(t) [28], [29]. Subproblems to update each mode,sk and
ωk are solved in the frequency domain by applying Fourier
Parseval’s relation [26]. The expression for mode update in
the spectral domain is given in Eq. 4.

sn+1
k = arg min

ŝk ,skϵX
α∥jω[(1 + sgn(ω + ωk ).ŝk (ω + ωk )∥22

+ ∥ŝ(ω) −

∑
k

ŝk (ω) +

ˆλ(ω)
2

∥
2
2} (4)

ωn+1
k = argmin

ωk

∫
∞

0
(ω − ωk )2|ŝk (ω)|2dω} (5)

Eq. 4 and Eq. 5 iteratively estimate each mode,sk (Eq. 4
and central frequency of each mode ωk , where n corresponds
to the sample index. Both the equations ensure that for
every iteration, bandwidths of estimated modes, ŝk , with
the estimated central frequency ω̂k , are minimized. Stopping
criteria for the iterative ADMM is set when the absolute
difference of the bandwidths in the successive iterations falls
below ϵ.

A. VMD FOR APPROXIMATING CLIPPED SAMPLES
As described by Dragomiretskiy et al., according to the
requirements, constraints of the optimization problem given
in Eq 3 can be modified. In the context of restoration of
clipped sample amplitudes, the equality constraints for the
prefect reconstruction of the signal from the modes need not
be enforced. This is true with many of the VMD based signal
denoising applications reported earlier [26], [30]. For the
estimation of approximate sample amplitude values during
the estimation VMD modes, the update of Langrangean
multipliers (λ) for combining the perfect reconstruction
constraints from the modes are turned off. Hence, λ term
given in the Eq. 4 vanishes and the resulting estimated
modes provide approximate sample amplitude for the clipped
amplitudes in the original signal.

III. EFFECT OF CLIPPING IN EPOCH ESTIMATION
The focus of the present work is to first analyze the effect
of clipping on epoch estimation. Epochs represent analysis
pitch marks, the accuracy with which pitch marks are
estimated is crucial in generating prosody modified speech
with better perceptual quality. In earlier works, we have
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FIGURE 2. Effect of clipping in epoch estimation. The waveform, output of the zero frequency
resonator, zero frequency filtered signal, estimated epochs and differenced EGG representing
reference epochs of original speech ((a)-(e)), clipped speech above 0.25 absolute amplitude
((f)-(j)) and clipped speech above 0.52 absolute amplitude ((k)-(o)).

shown how deviations of estimated epochs adversely affect
perceptual quality of the prosody modified speech [31], [32].
Therefore, it is essential to check the effect of clipping
in epoch estimation performance and device methodologies
for the improvement. The ZFF algorithm is chosen as the
method for estimating epochs from clipped speech signals
[33], [34], [35].

In ZFF method, the differenced speech signal is integrated
four times. Two times integration of a sequence corresponds
to filtering through resonator located at 0 Hz which is termed
as zero frequency resonator (ZFR). Speech is then filtered
through a cascade of two resonators to obtain a polynomially
growing/decaying sequence with a better roll-off. To compute
variations due to epochs, the local mean substraction is
carried out using a window length equivalent to average
pitch period of the given signal. The local mean subtracted
signal is named as zero frequency filtered signal (ZFFS).
The positive zero crossings of the ZFFS are hypothesized as
the epochs in speech. Eventhough, there are a few studies
reported earlier which addressed issue of trend removal
of the ZFR output by local mean subtraction using fixed
length windows to derive ZFFS [16], [36], [37]. Presence
of spuriously estimated epochs were observed in speech
segments with rapid F0 variations such as in the case of
emotions, laughter, vocal singing and so on. However, for
clean speech signals with moderate noises, ZFFS derived
using fixedwindow length provided reliable epoch estimation
as compared to other existing epoch extraction alogorithms.
Less computational complexity, reliable performance and

reduced tuning parameters are the factors that makes ZFF
method a default choice for reliable epoch estimation
[38], [39].

The subplots in Figure 2((a)-(e)) show the voiced segment
of clean speech (a), corresponding ZFR output (b), ZFFS (c),
estimated epochs (d) and the corresponding differenced EGG
segment (e) showing the groundtruth epoch locations as the
prominent negative peak. It has to be noted that the epoch
locations estimated from speech plotted in the subplot (d)
coincide with the negative peaks of the differenced EGG.

The performance measures used to assess an epoch
estimation algorithm are the identification rate (IDR), miss
rate (MR), false alarm rate (FAR) and epoch identification
accuracy (IDA) [21], [24]. Epoch identification rate is
computed as the number of estimated candidate epochs
identified within larynx cycle defined by the reference
epochs. Missing rate gives the count of reference larynx
cycles where there are no estimated epochs. False alarm
is where there are more than one epochs estimated within
the larynx cycle. Finally, epoch identification accuracy
gives the standard deviation of the sample deviations of
candidate epochs with respect to reference epochs of the
given larynx cycle. Table 1 provide the epoch estimation
performance of ZFF method when evaluated using CMU-
Arctic Database [40]. The Arctic database has simultaneous
speech and EGG recordings obtained for 1132 phonetically
balanced utterances. Three speakers (two male (JMK and
BDL) and one female (SLT)) of CMU-Arctic database
are considered for the epoch performance evaluation. All
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TABLE 1. Epoch estimation performance of ZFF of speech for 3 Speakers
in CMU-Arctic database with reference epochs derived from
corresponding EGG recordings.

the speakers speak US-accented English language. Each
utterance in the Arctic database is stereo recorded in a clean
noise free anechoic studio with speech and EGG signals
in left and right channels, respectively. As reported by
Murty et al., ZFF showed superior performance compared
to DYPSA, Hilbert envelope and group delay (GD) epoch
estimation algorithms.

Various amplitude thresholds were put ranging from (0.1 to
0.9) to the speech waveform which was normalized in the
range [−1,1].

To check the effect of clipping in the estimation of
epochs, speech samples were contaminated at various levels
by clip by amplitude for various values of τ . Different
levels of clipping distortions were introduced according to
Eq. 1, as shown in earlier section. Eventhough, there are
differences in measuring clipping levels in speech signals,
clipping is introduced by setting the amplitude threshold.
Harvilla et al. compute the clipping percentages based on the
threshold [2]. However, Hansen et al. computed the clipping
percentage as the percentage of samples in the speech
signal which were affected by the amplitude threshold. For
instance, an amplitude threshold, τ = 0.1 results in a
clipping percentage of around 10% when computed from the
amplitude histogram of the speech samples [1]. In the present
work, both clip by amplitude and clip by sample methods are
used for introducing clipping distortions.

To study the effect of clipping in epoch estimation, the
clipping threshold τ varied in steps from 0.1 to 1. The
τ variations inturn result in variation of 0%-15% samples
affected by clipping distortion (where 0% being no samples
affected by clipping distortion for a τ = 1). Subplots
in the Figure 2 ((f)-(i) &(k)-(l)), show the variation in
the segments of ZFR output, ZFFS and estimated epochs.
In comparison with the original unclipped signal segments
plotted in Figure 2 ((a)-(e)), there are no changes observed in
the characteristics of ZFR and ZFFS segments. Further, it has
to be noted that there are no significant deviations introduced
in estimated epochs from the waveform with clipping
distortions. To check the statistical consistency of visual
analysis of a voiced segment for various clipping levels, the
performance measures were computed for all utterances of
CMU-Arctic database with three speakers (BDL, JMK and
SLT) by varying tau from 0.1 to 1 in the steps of 0.1. Figure 3
plots IDR and IDA measures versus clipping amplitude τ .
The analysis of Figure 3 reinforces the inference drawn from
the visual analysis of the epoch estimation. However, Figure 3
indicates that the epoch IDR and IDA showed marginal drop

when the clipping threshold was kept very low at τ = 0.1
which corresponds to 10-15% clip by sample percentage
of the speech utterance. The IDR and IDA measures are
remained same as the performance obtained for the unclipped
version of CMU arctic database shown in the Table 1. Based
on the comparative performance analysis, clipping distortions
were not affecting the epochal information present in speech.
This also hints us the possibility of reliable estimation of
excitation source features that can be computed from the
epochs such as strength of excitation (SoE), instantaneous
pitch and so on.

x(t) = 6t2 + cos(10π t + 10 ∗ pi ∗ t2)

+

{
cos(60π t), t ≤ 0.5
cos(80π t − 10π), t > 0.5

(6)

Figure 4 plots the modes of non-stationary signal x(t) as
indicated in the Eq 6. It has to be noted that the nonlinear
trend in the signal has been captured by mode 1 as plotted in
Figure 4 (b). The remaining non-stationary components are
captured by other two modes as indicated in the subplots (c)
and (d). Motivated by this example of extracting non-linear
functional components of the given signal, trend in the ZFR
output can be estimated using VMD. The mode representing
the non-linear trend can be discarded and the subsequent
reconstructed signal can have ZFFS characteristics.

IV. REFINED VMD BASED TREND REMOVAL IN ZERO
FREQUENCY FILTERING BASED EPOCH ESTIMATION
In ZFF method,the output obtained by passing speech signal
through a cascade two ZFRs is subjected to local mean
substraction using fixed length windows for deriving ZFFS.
However, in the case of speech signals having rapid pitch
variations adaptive windows have to be used for estimating
epochs reliably. For instance, if the pitch of a speech segment
is high, local mean substraction with longer window causes
missing of epochs where as use of short window length
introduces spurious epochs [16], [36]. There are many post
processing methods proposed earlier to adaptively estimate
the window lengths and smoothing the ZFFS signal obtained
from the conventional ZFF method to remove spurious zero
crossings. In this section, the effectiveness of VMD for the
trend removal from ZFR output is proposed to estimate the
variations due to epochs.

Motivation: As described by Dragomiretskiy et al., VMD
can be used to decompose the given non-stationary sequence
into its constituent modes [26]. We are regenerating the same
example which is given in [26] as a motivation for the trend
removal of ZFR using VMD. As an example, Eq. 6 shows
a synthetically generated signal having non-linear and non-
stationary components.

Figure 5 demonstrates the trend removal from ZFR
output using VMD. Similar to the example described
earlier, the nonlinear polynomial growth/decay trend has
been represented by one of the modes when the ZFR
output is subjected to VMD. Figure 5(b) plots the growing
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FIGURE 3. Variations in epoch IDR and IDA for different clipping amplitude thresholds,τ . (a) The
epoch identification rate and (b) epoch identification accuracy.

FIGURE 4. Constituent components of a non-linear and non-stationary signal. (a) The signal x(t),
(b) the mode representing the trend in the signal represented by the component, 6t2, (c) second
mode representing the non stationary component cos(10πt + 10 ∗ pi ∗ t2) and

(d)

{
cos(60πt), t ≤ 0.5
cos(80πt − 10π), t > 0.5

. (example given by Dragomretskiy et al. in [26].

non-linear trend captured by the mode 1 of ZFR output
plotted in Figure 5(a). Subplots ((c)-(e)) show the subsequent
first modes obtained from VMD of the signal reconstructed
by discarding the mode signal plotted in Figure 5(b). The
process of trend removal is depicted in the following block
diagram shown in Figure 6. The output sequence from the
ZFR is subjected to initial VMD to derive five modes.
Since the predominant trend in the ZFR sequence is the
polynomially growing/decaying function, the first mode
captures the trend. Therefore, the subsequent processing

has been carried out by discarding the estimated trend.
The first level trend removed sequence is differenced (an
operation equivalent to pre-emphasis filtering) prior to
further subjecting the sequence to VMD. A series of 3
decompositions are carried on the sequence obtained from
the first level of VMD. The modes which are discarded
or included on each decomposition have been indicated in
Figure 6 red and green colors, respectively. The differenced
first mode from the 4th level of VMD is considered as the
trend removed sequence and is equivalent to ZFFS derived
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FIGURE 5. Proposed VMD based trend removal from ZFR output. (a) ZFR output obtained as the
output of two ZFRs in cascade (b) the non-linear polynomially growing trend captured by the VMD
(c) VMD Mode 1 obtained from the reconstructed signal by discarding the non-linear trend function
in (b) (second VMD iteration) (d) VMD mode 1 obtained by subsequent decomposition of mode in
(c), (e)mode 1 obtained from VMD of mode in (d) treated as the final trend removed ZFR output
whohse zero crossings are hypothesized as epochs (plotted in red color) and (e)corresponding ZFFS
degment obtained by local mean subtraction in the conventional ZFF method.

from the local mean subtraction of ZFR output in ZFF
method. The positive zero crossings of the trend removed
sequence are hypothesized as the epochs in the given speech
signal.

Figure 7 plots the probability density function of epoch
deviations for various epoch deviations,η (in ms). The
distribution of epochs for various epoch deviation, η has
been computed for three speakers in CMU arctic database.
From the Figure 7, it has to be observed that more epochs
have been estimated with reduced epoch deviation for ZFFS
obtained using proposed VMD based trend removal (black
colored line plot) than the conventional ZFFS obtained
by local mean subtraction (red colored line plot) in ZFF

method. The peak values of the density function of proposed
method are located close to reference epoch locations as
compared to the conventional ZFF method. However, for the
SLT speaker, both the density curves obtained from both
the methods are coinciding which indicates the comparable
epoch identification accuracies. Other epoch estimation
performancemeasures such as IDR,MR and FARwere found
to be similar for both trend removal methods.

Figure 9 plots IDA obtained for proposed VMD based
trend removal for various clipping amplitudes. It has to
be note that for extreme clipping (τ ≤ 0.2) a signifi-
cant rise in the epoch deviation was observed. However,
as obtained for the conventional ZFF, the deviations are
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FIGURE 6. Block diagram for the proposed trend removal method from the sequence of ZFR output using VMD. Red color arrows indicate
the discarded VMD modes and green color arrows indicate modes considered for subsequent processing. The trend removed ZFR
provides the ZFFS.

FIGURE 7. Probability density function of epoch deviations by considering the epoch deviation as the
random variable for (a) BDL, (b) JMK and (c) SLT speakers of CMU arctic database.

noticeable for larger percentages of clipped samples in the
waveform. For moderate clipping levels (clip by sample
<10%), IDA measures more or less remain intact. Apart
from IDA, epoch IDR, MR and FAR showed same values
as obtained for clean speech independent of the clipping
levels present. The google drive link to the MATLAB
programs implementing the proposed epoch estimation
algorithm using VMD is provided in the following link:
https://forms.gle/7y5bVSFcDST3HEv8A.

For the comparative analysis of the proposed trend removal
for ZFF using VMD, we have compared with the conven-
tional ZFF method. However, Table 2 provides an extended
performance comparison of the proposed refinement to ZFF
algorithm with well known techniques such as group delay
(GD), DYPSA and Hilbert envelope of linear prediction (LP)
residual based epoch estimation method. Table 2 shows that
the conventional ZFF significantly performs better than other
methods in terms of IDR, MR, FAR and IDA. However, the
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FIGURE 8. (a) A segment of original speech (b) corresponding clipped segment (clipping above
0.5 amplitude), (c) duration modified original speech segment (for the duration scale factor of
1.5),(d) duration modified segment for the clipped speech, (e) duration modified clipped speech
segment with VMD based declipping, (f) pitch modified speech segment for the original speech
segment (with pitch period scaling factor 0.8), (g) pitch modified clipped speech segment and
(h) declipped pitch modified speech using VMD.

FIGURE 9. The IDA computed for various clipping amplitudes (τ ) ranging from
0.01 to 0.9.

proposed VMD based refined trend removal method in ZFF
further improves the epoch estimation performance.

V. RESTORATION OF CLIPPED SPEECH SAMPLES USING
VARIATIONAL MODE DECOMPOSITION FOR
PROSODY MODIFICATION
Restoration of the speech samples are proposed to be
achieved by considering predominant variations around the
central frequency of various VMD modes for reconstruction.
The restoration of samples which are contaminated by
clipping are re-estimated through Equations 4 and 5 of
VMD. In the prosody modification task, synthesis pitch
marks are derived according to the pitch and duration

scaling factors from the sequence of analysis pitch marks
(epochs) estimated from the original speech. Based on the
experimental studies presented in Section III, the effect of
clipping on the estimation of epochs is not significant. Since,
the goodness of synthesis pitch marks depends only on the
estimated epochs and prosody modification scale factors, the
level of clipping distortions present in the original speech
samples has no influence on the second stage of prosody
modification. However, the third stage of waveform synthesis
involves copying or resampling the samples in the original
pitch cycles to fill the modified pitch periods (obtained from
the second stage) of the sequence. Hence, the contamination
of samples due to clipping causes significant reduction of
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TABLE 2. Performance comparison of proposed method with conventional ZFF, Hilbert envelope of linear prediction residual (HE-LPR), DYPSA and group
delay (GD) methods in CMU arctic database.

perceptual quality of the generated prosody modified speech.
To reduce the effect of clipping on the prosody modified
speech samples, the generated waveform is subjected to
VMD. The refined waveform is reconstructed by using the
VMD modes having predominant frequency variations. The
methodology is similar to the VMD based signal denoising
reported in various studies [26], [30], [42].
Figure 10 represents the steps involved in the VMD

based enhancement of prosody modified speech. As per
the block diagram following are the steps involved in
the proposed VMD based speech enhancement to reduce
perceptual distortion introduced due to clipping:

• Modes are derived from the prosody modified clipped
speech using VMD

• Speech signal is reconstructed by discarding higher
modes which predominantly capture the noise compo-
nents due to distortions

Figure 8 plots the pitch and duration scaled segments of
original and clipped versions of speech. The clipped segment
is generated by saturating the amplitude values above
0.5 as shown in Figure 8(b). The duration modified speech
segment for a duration modification of 1.5 is plotted as a
subplot (c) in Figure 8 which is a stretched version of original
speech segment plotted in subplot(a). Figure 8 (d) and (g)
show the duration and pitch modified segments of clipped
segment (subplot(b)), respectively. From the plots, clipping
distortions can be observed in the amplitude envelopes
of pitch and duration modified segments as compared to
corresponding unclipped versions plotted in Figure 8 (c)
and (f). Figure 8 (e) and (h) show the proposed VMD based
reconstruction applied on the duration and pitch modified
speech segments, respectively. Compared to clipped pitch
and duration modified segments, VMD based processing of
prosody modified speech reduced the envelope distortion to
some extent. To improve the perceptual quality of waveforms
which are plotted in Figure 8 (e) and (h), first 4 VMD
modes are added by discarding the 5th mode. Following
section presents the empirical studies on the effect of number
of VMD modes used for declipping the pitch and duration
modified speech.

Assessment of VMD based declipping on the perceptual
quality of the prosody modified speech has been carried out
using (1) objective evaluations and (2) subjective evaluations.

A. OBJECTIVE EVALUATION
A non-reference widely accepted speech distortion measure
known as Signal-To-Noise Ratio supported by NIST (NIST-
STNR) has been used to measure the level of amplitude
distortions present in the prosody modified speech [43],
[44]. NIST-STNR estimates the distortion measures based
on the histogram energy distribution of clusters in voiced
speech regions and noise/silence regions. Compared to
PESQ objective measure, NIST-STNR scores quantify the
amplitude distortions irrespective of the perceptual quality
variations due to scaling of prosodic features. Therefore,
for the comparative performance analysis of the prosody
modified speech, we prefer to use the NIST-STNR measure
over PESQ measure.

For the objective assessment of the pitch and duration
modified speech signals, the NIST-STNR measures are
computed for various pitch modification factors such as
0.5, 0.8, 1.2 and 2, and clip by sample levels 0.1, 1 and
10 %. Speech utterances, one file each selected from male
and female speakers of phonetically balanced CMU-arctic
database, are used for objective and subjective assessment.
Table 3 provides NIST-STNR values obtained for various
durationmodification factors and percentages of clipping dis-
tortions. Higher values of STNR indicate reduced distortions
present in the signal. The appropriate clipping amplitudes
were selected from the cumulative amplitude distribution of
samples in the given speech signal for introducing required
levels of clipping distortions.

In Table 3, STNR values are obtained for different duration
scale factors 0.5 (extreme time-down scaling), 0.8 (moderate
time down-scaling), 1.2 (moderate time up-scaling) and
2.0 (extreme time up-scaling). For duration modification,
irrespective of the scale factors and clip distortion levels,
STNR showed significantly lower values for clipped speech
as compared to unclipped duration modified speech signals.
Variations in the STNR values obtained for the original and
clipped version of the same speech files reinforce the results
reported by Hansen et al. in [1]. Equivalent variations can
be observed while comparing the STNR values obtained for
duration modified signals of original and clipped versions.
For instance, duration modified speech with 10% clipping
distortions showed lower STNR value (54.5 for File1) as
compared to its unclipped duration modified signal (52 for
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FIGURE 10. Proposed enhancement of prosody modified speech using VMD. The red color lines (u4 and u5) indicates the
higher VMD IMFs to be discarded and the green colored lines indicate the modes to be retained.

TABLE 3. NIST-STNR measures estimated for duration modified speech for various clipping levels.

File 2). By observing the overall results in Table 3, the
proposed VMD based declipping showed improved STNR

values under all levels of clipping distortions. According
to Table 3 signals reconstructed using 3 VMD modes
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TABLE 4. NIST-STNR measures estimated for pitch modified speech for various clipping levels.

obtained slightly better mean STNR for moderate duration
modification factors.

Table 4 presents STNR values obtained for pitch modifi-
cation for the extreme and moderate levels of pitch scaling.
In contrast with the duration modification, STNR values
obtained for pitch modification showed variations for the
male (File1) speaker in particular. Lower STNR values are
obtained for proposed VMD based enhancement for extreme
levels of pitch modification factors (0.5 and 2). The reason for
the reduced STNR is the distortions introduced at the time of
manipulation of pitch cycles during the pitch modification.
However, for moderate pitch scaling factors, STNR obtained
for VMD based signal approximation provided higher values
as compared to the clipped pitch modified speech. This trend
was observed for both the files consistently. However, the
speech file corresponds to the female speaker (File2) showed
less variation in STNR values as compared to Male speaker
(File 2). The general rise in the pitch contours in females
causes reduced dynamic range of clipped samples present
in shorter epoch intervals is the reason for the lowered dis-
tortions. Where as dynamic range of number of samples per
pitch cycle modified is higher as compared to that of female
speakers. STNR values obtained from male speakers (File1)
for extreme pitch modification (pitch modification factors
(2.0)) showed reduced variations as compared to extreme
pitch period down scaling factor (0.5). Further, excluding
the STNR variation obtained for extreme pitch scale factors,
VMDbased signal approximation provided improved percep-
tual quality for moderate levels of pitch scaling.

B. SUBJECTIVE EVALUATION
A perceptual evaluation study has been conducted for
assessing the perceptual quality of the pitch and duration
modified speech with various level of clipping distortions.
The clip by sample level of 0.1% has been omitted as signals
with such distortions are perceptually indistinguishable as
compared to unclipped original signals. For a comparative
analysis with respect to the objective measures, the same files
(Male and Female) and prosodic scale factors are used for
subjective evaluations as well. People in varied age group of
20-60 years who are aware of various distortions present in
speech signal are chosen as the subjects for the perceptual
evaluation of pitch and duration modification. Pitch and
duration modified files were generated for 4 modification
factors (0.5,0.8,1.2 and 2), 3 clipping levels (1% and 10%),
3 VMD approximation signals (using 3,4 and 5 modes). A set
of 74 stimuli (2 files × 4 Scale Fact. × 3 clip level (0%,1%
and 10 %) × 3 + 2 Orig. Files ) were generated each for
duration and pitch modification. The subjects were asked to
rate each file presented to them in five point scale according
to the level of distortions present. Subjects were explained
with the relevance of each scale used for rating as given in
the Table 5. The process of rating the files was demonstrated
through a pilot study to subjects who participated in the
subjective evaluation. The files used for pilot study were
different from that used in the actual perceptual evaluation.
The filenames of each of the generated files were encoded to
avoid the chances of getting biased opinions from the subjects
towards a particular method or a set of methods.
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TABLE 5. Description of the opinion score based ratings used in the perceptual evaluation.

TABLE 6. Mean opinion scores obtained for duration modified speech.

TABLE 7. MOS ratings obtained for pitch modfication.

Table 6 shows the mean opinion score (MOS) ratings
obtained for each method by taking the average of opinion
scores received. It has to be noted that for moderate
modification factors (0.8 and 1.2), VMD based declipping
obtained an improved MOS ratings. Confidence intervals
computed from the mean and standard deviation of scores
obtained from all subjects for a given level of clipping
distortion and modification factors are included in the
MOS Table. Lower the confidence level indicates higher
variance in the ratings provided by the subjects. Even
though, there are improvements in MOS ratings for other

extreme duration modification scale factors, the statistical
confidence of the scores were less than 80% compared
to that of 99% confidence levels computed from opinion
scores obtained for moderate factors. Among the VMD based
declipping, inclusion of 3, 4& 5modes were not havingmuch
perceptual relevance as the MOS ratings obtained for each of
the approximated files provided similar scores with higher
standard deviation.

Table 7 shows theMOS ratings obtained for pitch modified
files. Similar to perceptual evaluation conducted for duration
modification, the same scaling factors were used for pitch
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modification. Essentially, the original pitch contours were
varied from half to double the pitch scale. Similar to the
observation made from the perceptual studies of duration
modification, the VMD based speech approximation hasn’t
received any gain in the perceptual quality for extreme
scale factors (0.5 and 2.0) as compared to that of clipped
speech. However, pitch manipulation by moderate scale
factors (0.8 and 1.2) provided improved MOS ratings.
The STNR objective measures also supported the relative
improvement in MOS ratings for moderate scale factors in
pitch modification.

VI. SUMMARY AND CONCLUSION
In the paper, we have presented studies on the effect of
clipping on pitch and duration (prosody) modification of
speech signals. Accurate estimation of epochs as the analysis
pitch marks in epoch based prosody modification is one of
the crucial stages in the epoch based prosody modification
which is followed by the stage of deriving synthesis pitch
marks according to prosodic scale factors. The final stage
of prosody modification is the waveform reconstruction to
get the prosody modified speech. The study presented in
this paper explores how clipping distortions present in the
speech signals at various levels affect different stages of
prosody modification. The major contribution of the present
work is the proposed usefulness of signal reconstruction
by using estimated IMFs to improve the perceptual quality
of the clipped waveforms. The reconstruction of prosody
modified speech was affected by clipping distortions at
the moderate level showed improved perceptual quality
when reconstructed using VMD modes. The effectiveness
of VMD as a declipping algorithm for the task of prosody
modification has been confirmed from the improved STNR
objective measures and subjective evaluation based MOS
ratings obtained for various clipping levels and moderate
prosody modification factors.

Since the accuracy of estimated epochs is another crucial
factor in determining the perceptual quality of prosody
modified speech, the work presented in the paper showed a
study on the effect of clipping on deviations of the estimated
pitch marks. We have used ZFF based epoch estimation as
the analysis pitch mark estimation algorithm for prosody
modification. Based on the experimental investigations
carried out as a part of this study, the performance of epoch
estimation remained intact for moderate levels of clipping
distortions present in the signals. This result was expected as
the periodicity of the signal remains unaffected even in the
presence moderate levels of clipping distortions. However,
to further improve the epoch identification accuracy, local
mean substraction operation of ZFR output sequence in
ZFF method has been replaced by VMD. Due to local
mean subtraction over fixed window lengths corresponding
to average pitch period, introduced more deviations in the
estimated epochs. As an alternative, effectiveness of VMD
in capturing non-linear polynomial growth/decay function
from the given sequence is exploited to estimate the ZFFS in

ZFF method. The estimated epochs using VMD as the trend
removal method in ZFR output provides epoch estimation
with reduced epoch deviations with respect to the reference
epochs estimated from EGG. To Summarize the contributions
of the present work:

• Effectiveness of VMD based approximation to improve
the perceptual quality of prosody modified speech for
moderate scale factors in speech signals with clipping
distortions

• VMD based trend removal has been proposed as an
alternative to local mean subtraction in conventional
ZFF for the estimation of epochs in speech

• Based on the experimental studies, the accuracy of
estimated epochs are found to be least affected by
clipping distortions present in the original speech

Even though, reconstruction of prosody modified speech
using combinations of VMD modes provides better percep-
tual quality based on STNR and MOS ratings, computational
complexities involved when the given clipped speech signal
is subjected to VMD iteratively. Similar increase in compu-
tational complexity is observed when VMD is used for trend
removal for epoch estimation in ZFF. Further, VMD provides
promising results as a signal approximation algorithm for
moderate pitch and duration modification factors. However,
for extreme prosodic scale factors, statistical consistencies
of VMD based declipping were observed from STNR and
MOS ratings. Similarly, for clipping levels of more than 10%
of waveform samples, VMD based trend removal module
showed more deviation than the conventional local mean
subtraction in ZFF. VMD showed more dependency on
fidelity parameters and bandwidth constraints to improve the
epoch identification accuracy for the signals with more than
10% of the total samples affected by clipping. From our
experimental studies carried out on clipped speech signals
for prosody modification, application of VMD as a trend
removal in ZFF method should be restricted to only moderate
levels of clipping (≤ 10%) for better estimation of epochs.
Since VMD is applied iteratively for epoch estimation,
the time complexity of the proposed VMD based epoch
estimation is on a higher side which is the major limita-
tion of the proposed epoch estimation method. However,
the computational complexity of the VMD based clipped
speech enhancement is similar to that of the EMD based
approach.
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