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ABSTRACT Electric vehicle traction systems often incorporate a field-oriented induction motor drive
system with a proportional-integral (PI) speed controller having fixed gains. However, under external
disturbances and parameters variation, the speed regulator performance may degrade. This work proposes
solutions for tuning the PI gains of the speed regulator by using a high-gain adaptive controller, which
automatically adjusts the PI controller gains based on the motor speed tracking error. To overcome gains drift
caused by sensor noise, potentially leading to instability, modifications like the sigma, dead-zone, and epsilon
method are applied to the adaptive law. Preliminary simulations and experimental results show that the
epsilon modification-based high-gain controller outperforms the sigma and dead zone modifications for the
induction motor drive system. Therefore, rigorous experimental validation of the epsilon-modified high-gain
controller on an indirect field-oriented induction motor drive system is demonstrated for the following cases:
square wave speed reference tracking, external disturbance rejection, detuning, field weakening, as well as
different initial conditions for gains. Finally, the controller’s performance is also investigated on a prototype
electric vehicle (EV) traction system that consists of a 2.2 KW induction motor powered by a 400V, 6.6 A.h
Li-ion battery bank. The experimental results on the prototype EV traction system validate a better speed
tracking performance as compared to the fixed gains PI controller while requiring almost the same amount
of current.

INDEX TERMS Electric vehicle, induction motor drive, speed regulation, indirect field orientation, high-
gain adaptive controller.

I. INTRODUCTION
A. LITERATURE REVIEW
Proportional-Integral (PI) controllers are popular for speed
regulation of an Indirect Field-Oriented (IFO) induction
motor drive system [1]. PI gains are tuned using different
techniques to provide an adequate speed response. In [2],
a detailed comparison is presented among PI tuning tech-
niques; namely, trial-error (TE-PI), Cohen-Coon (CC-PI),
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and Ziegler-Nichols (ZN-PI). However, speed regulation with
fixed PI gains degrades under disturbances such as motor
loading and motor parameters variations like, rotor resistance
variations. Therefore, adaptive PI gain tuning has been
investigated, with recent advancements exploring predictive
strategies [3] and the application of neural networks [4].
Gain scheduling, a form of adaptive control, pre-sets different
PI gains for known motor operating regions. However, this
strategy is insufficient when dealing with numerous unpre-
dictable combinations of external loading, speed references,
and the difficulty of capturing the nonlinearity of the plant [5].
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Therefore, fuzzy-logic and neural networks are used [6],
[7], [8] for online gains scheduling. Furthermore, in [9],
a fuzzy logic-based algorithmwith a Genetic Algorithm (GA)
based optimization routine adaptively tunes the PI gains for
an induction motor drive system. An online identification
method for the rotational moment of inertia is used as input
to a neural network in [10]. Offline training is performed on
this neural network so that it outputs the proper PI controller
gains [10]. However, the application of these controllers is
complex as a fuzzy controller requires setting up membership
functions, and a neural network requires choosing hidden
layers, number of neurons, and subsequently gathering a
lot of experimental data for training the developed neural
network.

Non-identifier-based rules, which have gained prominence
due to their reduced need for extensive data [11], can
compute PI controller gains without computing, estimating,
or observing plant parameters [12]. In [13], self-tuning laws
for PI gains employ the error magnitude and the direction of
the change of the controller output with respect to controller
input. Novel auto-tuning algorithms for PI gains have been
developed [14], [15]. PI gains are validated through simple
root-locus analysis [13]. In [16], the authors employ a particle
swarm optimization (PSO) algorithm to tune the various PI
controllers presented. An automated quantitative feedback
theory (QFT)-based PI tuning method is demonstrated by
[17] to highlight the superiority of the proposed PI tuning
method over conventional tuning. A novel Field Oriented
Control (FOC) vector structure, for a six-phase induction
motor drive is presented by [18]. This structure integrates a
PI controller tunedwith a radial basis function neural network
(RBF-NN) along with sliding mode (SM) nonlinear control.

A high-gain adaptation rule consists of adaptation and
feedback laws [12]. The adaptation law uses an error signal
to compute PI gains; these gains are used to generate the con-
troller command signal in the feedback law [12]. High-gain
adaptation techniques are utilized in many applications [19]-
[20]. In [19] a high-gain controller is used to develop an
underactuated underwater quadcopter-like vehicle. In [21],
a high-gain controller tunes the controller’s kp and ki gains
for a four-wheeled mobile robot. A magnetic levitation
system [20] uses a high gain law to tune the PI gains of a
controller, whose output is passed through a first-order filter.

Application of the high-gain adaptive law tuning method
on an IFO induction motor drive can suffer from stability
problems. Adaptive gains in a PI controller may drift and not
converge to a specific value in the presence of noise [12].
To overcome such issues due to gain drifting, several basic
modifications are proposed for high-gain adaptation such
as sigma [22], dead-zone also known as λ-tracking [23],
epsilon [24], and optimal [25] control based modifications.
Further adjustments to these modifications are made in [26]
and [27] to ensure better stability and transient response.
Various results in the literature also suggest that further
research is required to enhance the stability and performance
of such controllers [28]. A survey of the available literature

shows that a study on the effects of high-gain adaptation to
tune PI controller gains for an IFO induction motor, is not yet
performed.

Modified high-gain controllers have the potential to
outperform fixed PI gain controllers and, at the same
time, have a simpler implementation than [6], [27], [29],
and [30]. Additionally, the high-gain, modified controllers
have demonstrated their potential in various applications.
For example, in the dynamics of autonomous vehicles,
an optimal control-based approach has been adopted for
effective regulation [31]. Therefore, this work explores the
potential of an adaptive PI controller using gain management
modifications inspired by high gain adaptive controllers,
on an induction motor driven EV traction system.

B. CONTRIBUTIONS OF PROPOSED WORK
The main contributions and novelty of the paper are
summarized as follows:

• A comprehensive analysis of sigma, dead-zone, and
epsilon-modified high-gain adaptive PI controllers on
induction motor systems is presented, by incorporating
such modifications in both simulation and experimenta-
tion.

• Simulations indicate that the epsilon-modified high-
gain controller significantly outperforms the others,
providing enhanced speed tracking and adaptive gain
control under various input conditions.

• Experimental assessments validate the robustness and
versatility of the epsilon-modified controller, with tests
covering real-world operational challenges such as
disturbance rejection and field weakening.

• The epsilon-modified controller has been implemented
in a prototype electric vehicle traction system, demon-
strating improved optimization of battery usage and
overall drive performance.

In this study, a first-of-its-kind comprehensive investigation
of sigma, dead-zone, and epsilon-modified high-gain adap-
tive PI controllers is carried out on an induction motor drive
system, both in simulation and experimental setups. These
high-gain modification schemes are first simulated under step
reference input conditions at the motor-rated speed, with
detailed comparative analysis of the speed tracking, torque
commanded, current profile, kp, and ki gain adaptation for
each scheme.

Simulations showed that among these modification strate-
gies, the epsilon-modified high-gain controller significantly
outperforms its counterparts. Therefore, an in-depth experi-
mental assessment of this controller was conducted, where
both step and square wave speed references were applied.
While these modifications have been previously studied with
advanced adaptive controllers, this study marks the first
instance of such analysis being applied to simple adaptive PI
controllers.

Further, to make this controller suitable for various
operational regimes, we introduce an innovative exploration
of different initial gain values upon gain resetting due
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to changes in operating conditions. The effects of these
varied initial conditions and resetting values are meticulously
observed and compared.

The epsilon-modified high-gain adaptive controller is
further tested for motor operation under low-speed tracking,
disturbance rejection, detuning, and in the field weakening
region. To underscore the superiority of our proposed
controller, its performance is contrasted against that of a
conventional fixed gains PI controller. Unlike traditional
PI controllers that rely on fixed gains, the proposed con-
troller continually fine-tunes the gains, offering an adaptive
advantage that significantly enhances speed regulation per-
formance.

Lastly, this study extends its examination to real-world
applications, by applying the epsilon-modified high-gain
adaptive PI controller to a prototype electric vehicle traction
system. The induction motor drive system is powered using
a 400V, 6.6 A.h Li-ion battery bank. A comprehensive
experimental study is conducted to understand the impact
of PI gain adaptation using epsilon-modified high-gain on
the battery current, state of charge, voltage drop, speed
tracking, and torque command current. To the best of authors’
knowledge, this is the first study to analyze the impact
of such an adaptive PI controller, and the gain adaptation
techniques on a prototype electric vehicle traction system,
offering insights for potential practical applications.

II. ELECTRICAL VEHICLE INDUCTION MOTOR DRIVE
SYSTEM
A. DYNAMIC MODELING OF INDUCTION MACHINE
Induction motors are widely used in the industry because
of their reliability, robustness, low cost, and self-starting
behavior. It is a singly-excited machine, meaning that the
power is supplied to the stator circuit only [32], and
then voltage is induced in the rotor circuit, hence the
name induction motor. Induction motors are also called
asynchronous motors because the stator magnetic field speed,
or the synchronous speed, ωe, is not synchronized with the
motor rotor circuit speed, ωr [32]. The stator magnetic field
speed, ωe, is defined as in Equation (1).

ωe =
4π fse
p

(1)

where fse is the applied electrical system frequency in hertz,
and p is the motor’s number of poles.

Writing the dynamic equations of an induction motor in
the stationary frame of reference is a tedious task as six
voltages and currents should be accounted for [33]. Nonethe-
less, three-phase quantities of induction motors are mostly
represented using a two-axis synchronously rotating frame
of reference known as the direct-quadrature, dq−frame. This
two-axis representation allows the induction motor to be
modeled and later controlled like a DC motor [33]. The
dq−reference frame represents different rotor and stator
quantities, like voltages, currents, and fluxes, in one rotating
reference. The dynamic equations of an induction motor in

the synchronously rotating dq−reference frame are often
used and are shown in Equations (2) - (6) [33].

disd
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The dispersion coefficient, σ , is computed as in Equation (7),

σ = 1 −
Lm2

LrLs
(7)

where Lm,Lr ,Ls are the mutual, rotor and stator inductances,
Rr and Rs are the rotor and stator resistances, respectively.
The rotor time constant is τr , load torque is Tload and the
friction coefficient is fc. Equations (2)- (6) demonstrate the
nonlinearity of an induction motor, as the state variables
are multiplied by one another. This nonlinearity creates
challenges in controlling the induction motor outputs i.e.
speed seen in Equation (6) and torque seen in Equation (8).

Te =
3pLm
2Lr

(φrd isq − φrqisd ) (8)

Onemethod to eliminate the dependency of the state variables
on one another so that speed and torque can be directly and
linearly controlled is known as Field Oriented Control (FOC).

B. FIELD ORIENTED CONTROL OF INDUCTION MOTOR
An indirect field-oriented induction motor drive system
(shown in Figure 1) is one of the most widely adopted
techniques for electric vehicle traction systems. The Field
Oriented Control (FOC) technique utilizes the rotor’s position
along with two-phase currents to produce a torque control
signal. Rotor flux-oriented FOC is achieved by controlling
the three-phase stator currents so that the rotor field is forced
to align along the d−axis. Aligning the rotor flux on the
d−axis decouples the flux and speed. Therefore, d−axis
current is used to control the flux, and the q−axis current is
used to control the torque. The decoupling of the d−axis and
q−axis currents, or the flux and torque currents, emulates the
performance of a DC motor and allows the implementation
of DC motor control techniques, such as PI controller, on the
induction motor. The induction motor flux is established by
i∗sd , later the torque is controlled by i∗sq. This is analogous to
establishing the flux using field current in DC motors, then
controlling the torque by armature current. Conventionally,
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the speed regulator shown in Figure 1 is implemented
using a PI controller. However, this work attempts to
improve the speed regulator performance using a PI controller
whose gains are adaptively tuned using high-gain techniques
and associated gain modification schemes. Therefore, the
background discussion about high-gain adaptive controllers
is included in the following section.

The equations aligning the rotor flux on the d−axis are
shown in Equation (9)- (10),

φrq =
dφrq

dt
= 0 (9)

φrd = φr = k (10)

where k is a constant. Combining Equations (9) and (10) with
Equation (6) and Equation (8) results in FOC torque and slip
expressions in Equations (11) and (12), respectively.

Te =
3pLm
2Lr

φrd isq (11)

ωsl =
Lmisq
τrφrd

(12)

The slip calculator shown in Figure 1 produces the desired
slip given by Equation (12). This slip is the necessary and
sufficient condition to guarantee the decoupled control of flux
and torque of the induction machine.

III. HIGH GAIN ADAPTATION SCHEMES FOR PI
CONTROLLER
If the motor drive system PI gains for the speed regulator are
kept constant, the drive system performance degrades with
change in the motor operating conditions. As a solution, this
work implements a high-gain adaptation technique that auto-
matically adjusts the gains based on the motor speed tracking
error. A simplified schematic of the proposed adaptive PI
controller configuration is shown in Figure 2. However, when
high-gain adaptive PI tuning is utilized, instability occurs
when this controller is tested on an induction motor. This
is because the high-gain adaptive PI gains keep increasing
boundlessly under external disturbances and encoder noise,
thusmaking the system unstable. To overcome this instability,
sigma, dead-zone, and epsilon modifications are applied
to the high-gain adaptive law. The PI controller gains are
adapted using the proposed sigma, dead-zone, and epsilon
high-gain adaptive modification techniques to adjust the
torque command current, isq. The sigma, dead-zone, and
epsilon modifications are described in sections III-A, III-B,
and III-C.
The speed error signal, e(t), is defined in Equation (13),

where ωref is the reference speed and ωr is the measured
motor speed. Depending on the error signal, the high-
gain adaptation formula is used to derive the PI gains:
i.e. proportional, kp, and integral, ki gains. The kp and ki
gains are computed using Equation (14) and Equation (15),
respectively.

e(t) = ωref − ωr (t) (13)

FIGURE 1. Indirect field oriented control block diagram for induction
motor.

k̇p(t) = µae2(t) (14)

k̇i(t) = µbe2(t) (15)

µa and µb are user-defined positive constants that determine
the weight by which the error squared signal impacts the
rate of change of the kp and ki gains, respectively. The block
diagram for high-gain adaptive control to produce adaptive PI
gains is shown in Figure 3.

Equations (14) and (15) and Figure 3 demonstrate that if
an error signal is present, then the gains increase boundlessly.
In the IFOC of an induction motor, the error signal is present
as speed references and motor loading keeps changing.
Moreover, even if the motor operates at a constant speed
with a constant loading, the motor shaft encoder noise
contributes to creating a non-zero error signal. Therefore,
a standard high-gain adaptive PI-based controller is prone
to instability. Thus modifications are desired which are
presented in subsections III-A, III-B, and III-C. Stability
analysis of these gains is not themain focus of this work. Brief
comments are presented in the Appendix A related to stability
of the gains when the modification schemes mentioned in this
paper are used.

A. SIGMA MODIFICATION FOR GAINS ADAPTATION OF PI
CONTROLLER
To overcome the boundless increase of kp and ki, sigma
modification [22] adds a damping term that limits the gains
increase as shown in Equations (16)- (17) where σa to σd are
predefined positive constants.

k̇p(t) = σae2(t) − σbkp(t), kp(t) ≥ 0 (16)

k̇i(t) = σce2(t) − σdki(t), ki(t) ≥ 0 (17)

The damping factors σbkp(t) and σdki(t) in Equa-
tions (16) and (17) reduce the gains rate of change depending
on the values of the gains. In sigma modification, the values
of the gains converge to steady-state solutions [22]. However,
the gains’ convergence does not necessarily cause the speed
error to converge to zero. The reason can be illustrated by
noting that in Equations (16)- (17), when the error signal has
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a large magnitude, the e2(t) terms dominate, thus the gains
increase. The increase in kp and ki causes the motor speed,
nm, to increase and become closer to the reference speed,
nref . As the error signal decreases, the damping terms become
prominent and start to decrease the gain thus the motor speed
decreases. As the motor speed tracking error increases, the
e2(t) terms dominate again, and so on. The block diagram of
the sigma modification gain adaptation is shown in Figure 4.

B. DEAD-ZONE MODIFICATION FOR GAINS ADAPTATION
OF PI CONTROLLER
A straightforward solution to the issues mentioned above
related to sigma modification, is to stop gain adaptation as
soon as the speed error is within a reasonable predefined
bound, λ. Stopping gain adaptation prevents the gains from
changing as noted in sigma modification. This method is
known as dead-zone or λ−modification, and it is defined in
Equations (18) and (19) for kp and ki, respectively.
Variables αa−d are positive predefined constants. The

gain adaptation technique shown in the first lines in
Equations(18) and (19) is the same as sigma modification
Equations (16) and (17). However, the second line of Equa-
tions(18) and (19) is what defines dead-zone modification.
The additional lines state that when the error magnitude
reaches or becomes lesser than a user-defined limit λ, the
gains rate of change is set to zero thus the gains hold their
current values without any further change.

Although, theoretically, the speed tracking error converges
to zero and kp and ki gains converge to a specific value, dead-
zone modification has its own limitations. First, dead-zone
adaptation might stop during transients in the motor speed
response. Therefore, the adapted gains could be either too
high or too low. Second, the user-defined constant λ should
be chosen for the full motor speed range. This is challenging
because the motor speed range is relatively large and the
speed tracking performance varies for different speed ranges.
Speed tracking is better for high speeds compared to low-
speed tracking.

k̇p(t) =

{
αae2(t) − αbkp(t), |e(t)| ≥ λ

0, |e(t)| < λ
(18)

k̇i(t) =

{
αce2(t) − αdki(t), |e(t)| ≥ λ

0, |e(t)| < λ
(19)

Also kp(t), ki(t) ≥ 0 in both Equations(18) and (19).

C. EPSILON MODIFICATION FOR GAINS ADAPTATION OF
PI CONTROLLER
A solution to the sigma and dead-zone modification gain
adaptation limitations is known as epsilon modification,
shown in Equations (20) and (21), where ϵa to ϵd are positive
predefined constants.

k̇p(t) = ϵae2(t) − ϵbkp(t)|e(t)|, kp(t) ≥ 0 (20)

k̇i(t) = ϵce2(t) − ϵdki(t)|e(t)|, ki(t) ≥ 0 (21)

FIGURE 2. Proposed adaptive gains PI controller schematic.

FIGURE 3. The kp and ki adaptation using high-gain block diagram.

FIGURE 4. Sigma modification block diagram.

This modification works as follows; when the error mag-
nitude is large, ϵae2(t) and ϵce2(t) terms dominate and
cause the gains to increase. Increased gains reduce the error,
therefore, the damping terms ϵbkp(t)|e(t)| and ϵdki(t)|e(t)|
decrease the values of the gains in proportion to the
error magnitude. Finally, when motor speed converges
to the reference speed, gain adaptation stops. The block
diagram of the epsilon modification gain adaptation is shown
in Figure 5.
The kp and ki gains computed by these high-gain modifi-

cations are used to generate the control command, u(t). The
control command for IFOC induction motor represents the
torque command current, i∗sq. Therefore, u(t) is limited by an
upper i∗sq,max and lower i∗sq,min bounds, as demonstrated in
Equation (22). Also note that the kp, ki gains must be non-
negative, this can be easily ensured by setting a lower bound
saturation limit of zero when any of the proposed high-gain
adaptation schemes are used.

u(t) = i∗sq = kp(t)e(t) + ki(t)
∫
e(t)dt,

where i∗sq,min < u(t) < i∗sq,max (22)
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FIGURE 5. Epsilon modification block diagram.

TABLE 1. Sigma, dead-zone, & epsilon modification constants for step
simulation.

D. PERFORMANCE METRICS
Metrics that evaluate the speed tracking error signal are
integral squared error (ISE), integral absolute error (IAE), and
integral time absolute error (ITAE). The equations for which
are shown in Equations (23) - (25), respectively.

IAE =

∫
|e(t)|dt (23)

ISE =

∫
e2(t)dt (24)

ITAE =

∫
te(t)dt (25)

The ISE amplifies higher magnitude errors as noted in the
e2(t) term. Therefore, overshoot and undershoot effects are
more prominent. IAE reports the integral of the error signal,
thus, a response with a large overshoot and small settling time
might score the same as a response with a small overshoot
and large settling time. ITAE accounts for the duration and
magnitude of the error signal. The mean absolute value of i∗sq
quantifies the quadrature current i∗sq magnitude commanded
by each controller. This is shown in Equation (26), where N
is the number of commanded quadrature current samples.

i∗sqavg. =
1
N

N∑
k=1

|i∗sq[k]| (26)

IV. SIMULATION STUDY OF HIGH-GAIN ADAPTIVE
CONTROL TECHNIQUES FOR IM DRIVE SYSTEM
Simulation results are obtained for sigma, dead-zone, and
epsilon-modified high-gain adaptation schemes for tuning PI
controller gains. The total simulation duration is 10 seconds;
in the first five seconds a step reference of the rated speed
1500 rpm is applied to the IFO induction motor drive system.

TABLE 2. Simulation evaluation for sigma, dead-zone, and epsilon.

FIGURE 6. Simulation (a) Speed tracking, (b) Isq, (c) kp gains, (d) ki gains.

At the fifth second, the motor is loaded with 2 N.m. The
load is applied to investigate the performance of each gain
adaptation technique to disturbance rejection. The constants
σa to σd , αa to αd and ϵa to ϵd used in Equations (16)- (21)
are shown in Table 1. The speed tracking and commanded
quadrature current along with the gain adaptations over time
for each technique are plotted in Figure 6. The overall
performance evaluation for the three high-gain modifications
is summarized in Table 2. All three modifications require
about the same torque command current. The maximum
quadrature current consumption difference occurs between
sigma and epsilon modifications, it is equal to 0.0016 A with
a percentage difference of 0.18%. After the load application,
sigma modification speed tracking has a steady-state error
which is emphasized by having the largest IAE and ITAE
values. In Figure 6, the kp and ki adaptations for sigma
modification are decreasing until the gains reach steady-state
values. The speed tracking performance of the dead-zone
modification is relatively the best as indicated by the lowest
IAE and ISE values. However, as can be seen in Figure 6, the
dead-zone modification stopped kp, and ki gains adaptation
directly after the speed step input is applied. The reason is that
the λ for dead-zone adaptation seen in Equations (18) and (19)
is set to 90 rpm. The value of λ is found based on the trial-
and-error method. The value of λ should be large enough
to prevent the gains from decreasing, based on Equations
(18 and 19), as a small speed-tracking error reduces the
gains. At the same time, the value of λ should be small
enough to obtain a proper speed transient response. As for
epsilon modification, the gains converged to a value after
a speed step input is applied. When the load is applied at
the fifth second, the kp and ki values adapt by increasing.
In this modification, gains increase to adapt to changes
whenever an error is present. As for the speed tracking
performance for epsilon modification, it has a superior ITAE
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which can be noted in Figure 6 as the error converges faster.
Epsilon modification IAE and ISE values are comparable
to the dead-zone modification with percentage differences
of 5.05% and 2.89% respectively. Therefore, based on the
simulation investigation, Epsilon modification is selected for
further experimental trials. It does not require an additional
tuning parameter (such as λ in dead-zone modification) and
has a lower steady-state error when compared with sigma
modification.

V. PROTOTYPE IM DRIVE AND OVERALL EV TRACTION
SYSTEM
The IFO drive system experimental setup consists of a
DC power source, a three-phase power inverter, a Siemens
induction motor, current sensors, a dSPACE data acquisition
board, and a computer. The power inverter converts a fixed
DC bus voltage which is coming either from an AC/DC
converter or from a battery bank to a three-phase AC signal.
The induction motor current and speed are measured using
LEM current sensors and an encoder. The overall prototype
EV traction system is shown in Figure 7.

A. BATTERY BANK AND THREE-PHASE POWER INVERTER
Lithium-ion (Li-ion) batteries are extensively researched
and used in battery-powered electric vehicles (BEVs) [34].
The reasons for Li-ion batteries’ popularity are superior
performance in terms of high energy and power density,
negligible memory effect, and low self-discharge rate [35].

State of charge (SOC), state of health (SOH) are some
evaluation metrics of a battery’s state [35]. SOC measures
the amount of charge available in a battery compared to the
battery’s full charge capacity at the beginning of a discharge
cycle. It informs the user of the remaining battery runtime
and enables protection from over-discharging and also allows
fault detection [34], [35]. The simplest and most commonly
used method to estimate SOC is through Coulomb counting
because it is relatively easy to implement and has a simple
structure, seen in Equation (27).

SOC(t) = SOC(t0) −
1
Cc

∫ t

t0
i(t)dt (27)

In Equation(27), SOC(t0) is the initial value of SOC and Cc
is the battery capacity factor in A.s. The current i(t) is defined
to be positive if the battery is discharging, and negative if the
battery is charging. As can be seen from Equation (27), SOC
computation depends heavily on the accuracy of the initial
value of SOC(t0) and the accuracy of the method used to read
or compute the current. A small error in current readings can
accumulate over time due to the integration effect. Therefore
it is advised to use accurate sensors when this method is used
to estimate SOC. The details of the individual battery and the
overall battery bank are shown in Table 5.
The three-phase power inverter, seen in Figure 7, converts

the DC voltage into an AC voltage. The inverter used consists
of six IGBTs (Insulated-Gate Bipolar Transistors), two in
each leg. An IGBT three-phase inverter is used because it

TABLE 3. Siemens induction motor specifications.

TABLE 4. Current sensor specifications.

TABLE 5. Battery bank specifications.

is compact in size, operates with a switching frequency of
up to 20 kHz, and contains many protective systems such
as overvoltage, overcurrent, and overtemperature protection.
IGBTs are semiconductor devices that combine the simplicity
of the gate drive of a metal-oxide-semiconductor field-effect
transistor (MOSFET), and the high current-withstanding
abilities of the Bipolar Junction Transistor (BJT). Because of
their high current handling and voltage-blocking capabilities,
IGBTs are used in applications that require medium to high
power.

B. INDUCTION MOTOR, CURRENT SENSOR, ENCODER,
AND DSPACE 1103 BOARD
The induction motor to be tested is a three-phase squirrel
cage motor shown in Figure 7. The specifications of this
motor are noted in Table 3. Two current sensors, connected
to two phases, are used to operate an induction motor with
IFOC. These measured phase currents are then transformed
into dq−currents, as shown in Figure 1. Therefore, the control
of flux and torque can be established. The specifications of
the LEM LA-25 NP current sensors are shown in Table 4.

The encoder resolution is 1024 pulses per revolution
and it is mounted at the back of the motor. The current
sensor and encoder readings are processed by the dSPACE
1103 board. A dSPACE 1103 is a Digital Signal Processor
(DSP) board with an A/D and D/A converter resolution of
16 bits, 16 multiplexed channels, and a quad-core AMD x86
processor. It offers fast processing and real time interface
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FIGURE 7. Overall experimental setup.

FIGURE 8. Speed step (a) and square (b) tracking for fixed gains and
epsilon-modified high-gain (Case 1 and 2).

(RTI). RTI is important to process the data input and
output from analog-to-digital converter (ADC), digtial-to-
analog converter (DAC), and the encoder input readings. The
software interfaced with the experimental setup is MATLAB
Simulink 2013a. The computer on which the software is
present has an Intel Xeon processor, and Windows 10, 64-bit
operating system.

VI. EXPERIMENTAL RESULTS
A. PERFORMANCE EVALUATION FOR SPEED STEP &
SQUARE REFERENCE TRACKING
The effect of resetting the adapted PI gains as the motor speed
reference becomes zero is studied. Since these modifications
are done on an adaptive PI controller, the effect of different
initial values is studied. The speed tracking errors and i∗sq
averages of the fixed PI gains based controller, and the
proposed adaptive PI gains based controller with the different
resetting values are tabulated in Table 6. Case 1 to 5 represent
different (kp and ki) resetting values of (0,0), (0.08, 0.013),
(0.1, 0.0175), (0, 0.0175) and (0.1,0), respectively. For clarity,
only two of these cases are shown in Figure 8. It can
be noted that adaptation using epsilon-modified high-gain
produces a better speed tracking performance and commands
the same or lower i∗sq and rms value of phase current Ia(rms)
compared to the conventional fixed gains PI controller. The
speed tracking errors for all five cases are also shown
in Figure 9.

FIGURE 9. Speed step (a) and square (b) tracking error for fixed gains and
epsilon-modified high-gain.

Case 1 starts with the lowest kp and ki reset values, which
result in a small overshoot value and a long time for the
speed tracking error to converge to zero. As the reset values
of kp and ki are increased to 0.08 and 0.013, respectively,
the overshoot increases, and the time for the speed tracking
error to converge to zero decreases. However, in Case 2 IAE,
ISE, and ITAE are higher than Case 1. Case 3 introduces an
additional increase in the kp and ki reset values to 0.1 and
0.0175. The speed tracking performance of this controller
becomes similar to the fixed gains PI controller as noted
in Figure 9. Therefore, it is concluded that any further
increase in kp and ki reset values will not have a positive
effect on controller speed tracking performance. Case 4 and
Case 5 validate the effects of having the initial conditions
and reset values to have either ki value (0, 0.0175) or kp
value (0.1 0), respectively. For the (0, 0.0175) case, the
highest speed overshoot is observed due to the high ki value
adaptation as seen in Figure 9. Nonetheless, the speed error
converges to zero faster than any other resetting case. On the
contrary, Case 5 has the lowest speed overshoot and the
longest time for speed error convergence to zero. The speed
error computation at a defined time enables a fair comparison
of the control schemes. At the 12th second, the speed tracking
error magnitude for fixed gains PI controller is 5.68 rpm,

VOLUME 12, 2024 95979



S. A. Albarri et al.: EV Traction System Performance Enhancement Using a High-Gain Adaptive Controller

TABLE 6. Performance evaluation for fixed gains PI controller and epsilon-modified high-gain adaptive PI controller for speed step and square tracking.

FIGURE 10. Low speed tracking (a) Speed tracking, (b) i∗sq, (c) kp gains,
(d) ki gains.

Case 1 is 7.32 rpm, Case 2 is 6.72 rpm, Case 3 is 5.67
rpm, Case 4 is 1.465 rpm, and Case 5 is 10.25 rpm. Setting
the initial ki gains gains to non-zero positive values, based
on the operator’s knowledge of the actual parameters, can
accelerate the convergence of the ki gains. This adjustment
facilitates quicker speed-tracking error convergence. This is
because a non-zero positive gain value is likely to be closer
to the actual and possibly optimal gain value, as opposed
to a gain of value zero. Conversely, if the initial ki gains
are set to zero, i.e. further from their optimal values, the
convergence process will be slower, leading to delayed speed-
tracking error convergence. This resetting process also does
not require knowledge of the actual optimal gain values.

B. PERFORMANCE EVALUATION UNDER LOW SPEED
TRACKING
The controller performance under low speed tracking is
an important controller performance testing metric. The
speed tracking and commanded quadrature current, i∗sq,
of the conventional fixed gains and adaptive gains based
PI controller are plotted in Figure 10(a) and (b). Moreover,
the gains adaptation for each technique is plotted in
Figure 10(c) and (d). The performance analysis of each
controller scheme for low speed tracking is presented in
Table 7. Furthermore, the epsilon modification constants,
shown in Equation (20) and (21), used for low speed tracking
are tabulated in Table 10.

TABLE 7. Performance evaluation for low speed tracking test.

The low-speed regulation of the epsilon-modified high-
gain adaptive controller is worse than that of the fixed gains PI
controller. This can be seen when the speed starts oscillating
around the values of 100 rpm in Figure 10(a). The epsilon
modification speed tracking error oscillates between 82 and
112.8 rpm, whereas, the fixed gains PI controller speed
tracking error oscillates between 87.9 and 110 rpm. The 1

speed is calculated based on these speed oscillations at the
steady state value and are shown in Table 7. Nonetheless, the
epsilon-modified high-gain adaptation outperforms the con-
ventional fixed gains PI controller with lower i∗sq consump-
tion. The epsilon modification average i∗sq commanded is
0.1050 A compared to 0.1267 A for fixed gains PI controller.
The speed tracking steady-state is not reached for fixed
gains and epsilon-modified high-gain adaptive controller as
noted by the motor speed oscillating around the reference
value.

C. PERFORMANCE EVALUATION UNDER DISTURBANCE
REJECTION
In disturbance rejection test, as the motor operates at its
rated speed of 1500 rpm, a step load disturbance of 1 N.m
is added and later removed. The speed and commanded
quadrature current profiles, i∗sq for fixed and adaptive gains
PI controllers are shown in Figures 11(a) and (b). Moreover,
the PI gains are plotted in Figure 11(c) and (d). Figure 11
demonstrates that epsilon-modified high-gain adaptive PI
controller outperforms fixed gains PI controller in terms of
speed response to a step load while commanding almost
the same amount of current. A detailed evaluation of the
performance of the two controllers is presented in Table 8.
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FIGURE 11. Disturbance rejection (a) Speed tracking, (b) i∗sq, (c) kp gains,
(d) ki gains.

TABLE 8. Performance evaluation for disturbance rejection test.

The epsilon-modified high-gain adaptive PI managed to
outperform the fixed gains PI controller with the same amount
of average commanded quadrature current. When the 1 N.m
load is added, the fixed gains controller speed decreased to
1375 rpm whereas the adaptive gains PI controller speed
decreased to 1453 rpm. As for the gain adaptation in
Figure 11(c) and (d), kp and ki gains didn’t experience many
changes as the speed error is small. The presence of the small
error and the high-gains values cause kp gains adaptation
over time to decrease as the second term, −ϵbkp|e(t)| in
Equation (20) dominates. This occurs as a direct result of the
choice of the ϵa to ϵd constants, seen in Table 10.

D. PERFORMANCE EVALUATION UNDER DETUNING
The speed controller testing under the detuning condition
is yet another important metric for evaluating the controller
performance. To perform the detuning test as the motor
operates at its rated speed of 1500 rpm, the rotor time constant
of 3.8 is changed to half its value, 1.9. The forceful changes
in the rotor time constant are shown in Figure 12. The wrong
value of the rotor time constant is fed to the IFO scheme. The
resulting speed and commanded quadrature current profiles
for fixed gains and adaptive gains PI controllers are shown
in Figure 13(a) and (b). Moreover, the PI gains adaptation
is plotted in Figures 13(c) and (d). The epsilon modification
constants ϵa, ϵb, ϵc, and ϵd are are chosen as shown in
Table 10. The constants for this test are chosen to prepare the
epsilon-modified high-gain adaptation scheme to handle any
sudden speed tracking error unrelated to the speed reference
change.

FIGURE 12. Rotor time constant for detuning test.

FIGURE 13. Detuning (a) Speed tracking, (b) i∗sq, (c) kp gains, (d) ki gains.

TABLE 9. Performance evaluation for motor operation under detuning.

The detailed evaluation for the controller’s performance
under detuning is presented in Table 9. The adaptive PI
controller outperforms the fixed gains PI controller in terms
of speed regulation noted in lower IAE, ISE, and ITAE
values in detuning. Moreover, the motor speed for fixed
gains PI controller decreases to 1479.5 rpm compared to
1492.7 rpm for the adaptive gains.When themotor is detuned,
the adaptive kp and ki gains, shown in Figure 13(c) and (d),
increase from 0.2128 and 0.033 to 0.2483 and 0.03857,
respectively. The commanded quadrature currents for both
PI controllers are somehow equivalent with 0.2694 A for the
fixed gains and 0.2658 for adaptive gains PI controllers.

E. PERFORMANCE EVALUATION UNDER FIELD
WEAKENING
The work presented in this paper attempts to investigate
the controllers’ performance under almost all kind of motor
operating conditions. Therefore, the motor operation in the
field weakening region is considered as well. In the field
weakening region, above the motor rated speed, the motor
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flux is reduced to decrease the motor back EMF because the
input voltage has already reached at its rated value. Themotor
flux is linearly decreased by commanding a lower i∗ds when
the reference speed ωref surpasses the rated speed of 1500
rpm. Equation (28) is used to obtain i∗ds for every speed input.
Figure 14 plots i∗ds as a function of time.

To test if the epsilon-modified high-gain adaptive PI
controller can track the speed in field weakening, a step
input of 600 rpm is applied followed by a linear increase in
the speed till it reaches 2500 rpm. The epsilon modification
constants used for the field weakening test are tabulated
in Table 10. The speed tracking and quadrature current
profiles are shown in Figures 15(a) and (b). Furthermore,
the PI gain adaptation for each controller is shown in
Figures 15(c) and (d). Both controllers are able to track
reference speed commands in the field weakening region.
The speed tracking performance of both controllers is almost
the same as there are no abrupt changes in the speed input.
However, the mean absolute commanded quadrature current
by the fixed PI controller is 0.3096A, which is higher than the
epsilon-modified high-gain adaptive PI controller, 0.2981 A.

i∗ds =

{
0.90, ωref < 1500rpm
−0.0003ωref + 1.35, 1500 ≤ ωref ≤ 2500rpm

(28)

VII. PERFORMANCE ASSESSMENT OF
EPSILON-MODIFIED HIGH-GAIN ADAPTIVE PI
CONTROLLER ON A PROTOTYPE ELECTRIC VEHICLE
TRACTION SYSTEM
After rigorously testing the proposed controllers’ perfor-
mance under various motor operating conditions, finally the
controllers are tested on the EV traction system while being
powered by the 400 V Li-ion battery bank. This section
presents the experimental data gathered over the duration of
a NEDC drive cycle for fixed and adaptive gains PI controller
on a prototype electric vehicle traction system. Subplots (a)
and (c) in Figure 16 contain the speed tracking profile and
subplots (b) and (d) provide the speed tracking error signal
for fixed and adaptive gains PI controllers, respectively. The
speed tracking error signal attains its highest overshot values
at low speed tracking. It is evident that the adaptive PI gains
outperforms the fixed PI gains. The speed tracking error for
the adaptive gains PI controller ranges between -23.44 and
20.9 rpm. Whereas, the speed tracking error for the fixed
gains PI controller ranges between -40.12 and 33.2 rpm. The
adapted kp and ki gains are plotted in Figure 17. The gains
values are reset whenever the motor reference speed is zero.
The kp gain is reset to 0.08 and the ki is reset to 0.2. These
resetting values are found by trial-and-error method; different
resetting values are tried and the one with the best overall
performance is chosen. The gain adaptation overshoots at low
speeds due to the worse overall performance of the induction
motor in low speeds. This increase in the gains value occurs

FIGURE 14. Commanded stator direct current for field weakening test.

FIGURE 15. Field weakening (a) Speed tracking, (b) i∗sq, (c) kp gains, (d) ki
gains.

FIGURE 16. Overall speed tracking performance for fixed (a and b) and
adaptive gains (c and d) PI controller for EV traction system.

FIGURE 17. Gains adaptation for NEDC drive cycle (a) kp and (b) ki .

when the higher speed tracking error magnitude occurs as
seen in subplots (b) and (d) in Figure 16.
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TABLE 10. The values of ϵa, ϵb, ϵc and ϵd for all experimental tests.

TABLE 11. Performance evaluation for BEV application.

FIGURE 18. Battery (a) Quadrature Current, (b) SOC, (c) Output Current,
and (d) Voltage Drop.

To further investigate the performance of the controller
on an EV application, the motor control effort i∗sq and the
battery current are plotted in Figure 18(a), (c) respectively.
The fixed gains PI controller consistently consumes higher
current from the battery compared to the adaptive gains PI
controller. This is also evident by the lower value of SOC
reached by the fixed gains PI controller, 0.9711 compared to
0.9719 for adaptive gains PI controller. The battery output
current and voltage are plotted in Figures 18(c) and (d). The
battery current consumption for the fixed gains controller on
average is 0.3549 A and for the adaptive gains controller
is 0.3447 A. Moreover, the torque command current by the
adaptive gains controller is 0.9988 A compared to 1.033 A by
the fixed gains PI controller. For both controllers, the battery
bank is charged to obtain a starting voltage around 380 V
as observed in subplot (d) of Figure 18. However, at the
end of the NEDC drive cycle the battery bank voltage is
378.19 V for fixed gains PI controller and 378.69 V for

adaptive gains PI controller. Table 11 quantifies the results
obtained in Figures 16-18 for adaptive gains PI controller
in comparison to the fixed gains PI controller. The adaptive
PI gains controller outperforms the fixed gains using the
IAE, ISE, and ITAE evaluation metrics as seen in Table 11.
Based on the superior performance evaluation metrics values,
the conclusion drawn is that adaptive high-gain epsilon
modification controller outperforms fixed gain PI controller
and therefore can be employed in electric vehicle traction
systems. It is also worth considering that the test shown here
is only over a duration of 1200s where was for a real-life
EV application, such small improvements over time have the
potential to add-up to larger performance benefits and lower
battery degradation.

VIII. CONCLUSION
This work implemented and evaluated the performance of
sigma, dead-zone, and epsilon-modified high-gain adaptive
techniques to auto-tune PI controller gains of an IFO
induction motor drive system. The controllers’ comparison
showed that epsilon modification had superior gain adap-
tation performance. Therefore, the second part of the work
focused on a rigorous experimental validation of the high-
gain epsilonmodification for PI gains adaptation applied to an
IFO-based induction motor drive system. For step and square
input tracking, the effect of different sets of initial conditions
and resetting values is studied. It is found that using small
values of initial gains and reset values for kp and ki such as
0.08 and 0.013 enhance the overall gain adaptation and speed
tracking performance while maintaining relatively the same
torque command current.

Motor operation for disturbance rejection, under detuning,
and in the field weakening region is also evaluated for the
epsilon-modified high-gain adaptation of PI gains. For all
the performance evaluation tests, the performance of epsilon
modification is compared with the performance of the con-
ventional fixed gains PI controller. In disturbance rejection
tests, the PI controller with adaptive gains outperforms the
fixed gains controller in terms of speed tracking by scoring
lower IAE, ISE, and ITAE. Moreover, the speed tracking
enhancement occurs with a lower torque command current
of the adaptive gains PI controller (1.1015 A) than the fixed
gains PI controller (1.1170 A). When the motor is operated
under detuning, the speed tracking of the adaptive gains PI
controller and the torque command current is also found to
be better than the fixed gains PI controller as noted by lower
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IAE, ISE, ITAE and average commanded quadrature current
values. Finally, the adaptive PI gains are also able to perform
well when the motor is operating in the field weakening
region.

Motivated by the overall better performance of the adaptive
gains PI controller, the adaptive PI gains technique is applied
to an IFO electric vehicle prototype traction system. NEDC
drive cycle was used so that the PI gains adaptation is
evaluated for different speed ranges. The adaptive gains
PI controller is able to regulate the speed with a lesser
error range of -23.44 to 20.9 rpm compared to -40.12 to
33.2 rpm for fixed gains PI controller with lower battery
current consumption and torque command current. The
lower battery energy consumption of the high-gain epsilon
modification based adaptive controller for a short time
duration NEDC drive-cycle test shows that for the case of
long EV operation time; there may be significant energy
savings while providing better speed tracking. Thus, overall
high-gain epsilon modification based adaptive controllers
have a great potential for EV traction system applications.

APPENDIX
The full-fledged stability analysis involving the gain adapta-
tion schemes and the PI speed controller is not the focus of
the current work. This work is more interested in examining
the effects of using such gain modifications on a prototype
EV tracking system. In the following subsections, we provide
some comments related to how stability analysis may be
approached.

A. COMMENTS ON STABILITY ANALYSIS FOR SIGMA
MODIFICATION
The equations for gain adaptation using sigma modification
can be easily morphed in the state space form ẋ = Ax + Bu,

where x = [kp ki]T , A =

[
−σb 0
0 −σd

]
, B = [σa σc]T , and

u = e2. From this, it is obvious that the system of equations
in 16, 17 is a stable LTI system. As long as the error stays
bounded the gains stay bounded too. If the PI controller that
uses these gains drives the error e to zero, the gains converge.

B. COMMENTS ON STABILITY ANALYSIS FOR DEAD ZONE
MODIFICATION
If the speed error is less than λ, then the gains do not change.
On the other hand, if the error is greater than or equal to λ

then the discussion exactly as in section VIII-A holds with
the following equations ẋ = Ax + Bu, where x = [kp ki]T ,

A =

[
−αb 0
0 −αd

]
, B = [αa αc]T , and u = e2.

C. COMMENTS ON STABILITY ANALYSIS FOR EPSILON
MODIFICATION
In equations 20, 21 let x = [kp ki]T then consider the
candidate Lyapunov function V (x) = 1/2(xT x) = (1/2)k2p +

(1/2)k2i . Then the time derivative of V can be written as
V̇ (x) = −|e(t)|(ϵbk2p (t)+ ϵdk2i (t))+ e2(t)(ϵakp(t)+ ϵcki(t)).

If the values of kp and ki are such that kp(t)2 is greater than
kp(t) and ki(t)2 is greater than ki(t), and if the PI controller
makes the |e(t)| < 1 then e(t)2 < |(e(t))|. Further, if ϵb,
ϵd are selected such that ϵb > ϵa and ϵd > ϵc then we
have |e(t)|(ϵbk2p (t) + ϵdk2i (t)) > e2(t)(ϵakp(t) + ϵcki(t)).
This gives V̇ (x) < 0 which makes the gains kp and ki
converge. Now clearly for the above to hold the gains kp, ki
have to be non-zero, otherwise if kp = 0 and ki = 0 then
V̇ (x) = 0. Which means the gains do not change. Based
on this observation, rather than starting the gain adaptation
process from kp = 0 and ki = 0, if the process is started
such that kp, ki have non zero values, then it is possible that
the gain convergence could be faster and thus better speed
tracking performance would be obtained faster than the case
of initializing the gains from zero.
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This article represents the opinions of the author(s) and
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