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ABSTRACT In a flexible manufacturing shop, the cooperation of Automated Guided Vehicles (AGVs)
and machines is more in accordance with the real production situation. A scheduling problem of flexible
manufacturing shop floor considering the transportation time is studied. The dual resource integrated
scheduling issue with multiple AGVs and multiple machines is modeled by mixed-integer programming
(MIP). An improved Hybrid Discrete Salp SwamAlgorithm (HDSSA) is proposed to optimize the maximum
makespan. A three-layer coding scheme based onworkpiece, machine andAGV is adopted to realize the SSA
adapted to the discrete combinatorial problem. The purpose of a designed heuristic initialization approach
in decoding is to raise the quality of the algorithm’s initial solution. The idea of differential variation
is implemented into the HDSSA to increase its global search capability through variation and crossover
operators. To enhance the HDSSA’s local search ability, a variable neighborhood search depending on
problem feature is introduced to the optimal individual of each iteration. To prove the effectiveness of the
algorithm improvement strategy and the proposed HDSSA, comparative experiments are conducted with
other algorithms through standard instances. The results of the experiments suggest the proposed approach
is capable of successfully resolving the integrated scheduling problem considering transportation time.

INDEX TERMS Flexible manufacturing shop scheduling, multi-AGV scheduling, salp swarm algorithm,
variable neighborhood search, integrated scheduling.

I. INTRODUCTION
With the promotion of Industry 4.0, the production mode of
multi-species, small batch and personalization has become
the norm. With its advantages of high efficiency and reli-
ability, and strong environmental adaptability, Automated
Guided Vehicles (AGVs) realizes automation and flexi-
ble distribution of workshop logistics, which is the key
aspect to enhance the adaptability of the flexible production
workshop [1]. However, the traditional flexible job shop
scheduling problems (FJSP) often ignore the handling time
of workpieces and materials or consider the handling time
in the processing time. In contrast to the FJSP, the flexi-
ble job shop scheduling problem with AGVs transportation
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times (FJSPT) necessitates cooperation between AGVs,
machines, workpieces, and other resources to reflect the
advantages of vehicles. The addition of the AGV alloca-
tion problem leads to more complex constraints between
resources such as machines, workpieces, and processes in
FJSPT. The integrated scheduling of AGV resources and
equipment resources is harder to solve because it involves
more complexity and uncertainty. This is because the process-
ing order of the job, the matching relationship between the
transportation task and the AGV, and the matching relation-
ship between the job and the machine must all be considered
simultaneously.

Within the context of a flexible manufacturing system
(FMS), the problem of dual resource integrated scheduling
of machines and AGVs is broken down into the following
four subproblems: machine selection, process sequencing,
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AGV assignment, and AGV path planning. Bilge et al. [2],
[3], [4] developed the first integrated scheduling model for
AGVs and machines considering transportation time and
solved the model by an exact algorithm.

Although exact algorithms can solve the optimal solution
of the problem, it is hard to obtain approximate optimal
solutions to big-scale problems in reasonable periods. There-
fore, several intelligent optimization algorithms have been
used to address machine and AGV scheduling problems in
recent years. Considering the use of AGVs and the maximum
makespan, Liu et al. [5] provided an enhanced flower polli-
nation algorithm (FPA) to deal with simultaneous scheduling
problems of equipment and aerial vehicles. Zhu et al. [6]
solved the hybrid flow-shop scheduling mathematical model
with machine-AGV joints and renewable energy using an
optimum foraging algorithm (OFA). However, the models in
the above literature lack consideration of machine flexibility.

For the integrated scheduling problems of AGVs in flexible
job shop, Bekkar et al. [7] camp up with a greedy heuris-
tic algorithm based on iterative insertion method to solve
the FJSP by taking workpiece handling time into account.
To handle workpiece and transportation scheduling in the
FMS, Homayouni et al. [8] suggested a local search-oriented
heuristic algorithm. Wang et al. [9] proposed an improved
hybrid discrete difference evolutionary algorithm to solve
the integrated scheduling of multi-loaded AGVs considering
power constraints. However, AGVunloaded and loaded states
are not distinguished during transportation. In the actual
transportation process, AGV completes a transportation task,
which is divided into two stages: no-load and load. Thus,
Hu et al. [10] proposed an improved iterative local search
method, and it selects AGVs using a rule of first come,
first served (FCFS). Liu et al. [11] proposed a distribution
algorithm with a low-carbon scheduling heuristic strategy
to solve a low-carbon scheduling optimization problem that
integrated multispeed flexible manufacturing and multi-AGV
transportation.

The problem of integrating AGVs and machines with
scheduling has a high degree of complexity, and research
on integrated scheduling has focused on the following types
of approaches. In terms of exact algorithms, Ham [12] pro-
poses a constrained planning method for dealing with the
simultaneous scheduling problem of job shop production
and material transportation. In the level of simulation meth-
ods, Erol et al. [13] proposed a joint scheduling method
for AGVs and machines in manufacturing systems based
on multi agent-based systems (MAS). As machine learn-
ing algorithms such as deep reinforcement learning (DL)
and reinforcement learning (RL) as well as transfer learning
(TL) have strong data processing and environment interaction
capabilities in mining historical scheduling data [14], [15].
Sun et al. [16] proposed an integration algorithm framework
based on convolutional neural network and deep reinforce-
ment learning, which expresses the environment state by
combining the information extraction of analytic maps by

CNN and artificial features and provides a new solution for
the integrated scheduling of machines and AGVs in man-
ufacturing systems. At present, optimization algorithms of
machine and AGV integration scheduling problem aremainly
focused on intelligent optimization algorithms, such as A,
such as genetic algorithms (GA) [17], [18], discrete whale
optimization Algorithms (WOA) [19] and hybrid particle
swarm algorithms (PSO) [20].
Although the above algorithms can obtain a better opti-

mal solution, once the number of processes, machines, and
AGVs in an instance have changed, the algorithms need to
be to be designed according to the problem characteristics
to obtain an optimal solution. Therefore, there is no gener-
alized method that can solve all FJSP problems in an exact
optimal way, which is the ‘‘No Free Lunch Theorem’’ [21].
Among them, Mirjalili et al. [22] introduced the salp swarm
algorithm (SSA), a novel kind of group intelligence algorithm
with the benefits of little computation, few control param-
eters, and easy operation. It has been effectively used to
address scheduling problems in job shops. For instance, while
Zhao et al. [23] proposed an improved SSA to solve the FJSP,
and Niu et al. [24] offered an adaptive SSA to solve the
flexible job shop scheduling problem with the transportation
time. The above studies confirm that the SSA can effectively
solve the shop floor scheduling problem.

The integrated scheduling of AGV and machine is more
complicated than the traditional flexible shop scheduling
problem. Its research has important academic significance
and practical value and will become a research hotspot in
the field of intelligent manufacturing. Based on clarifying
the concept of integrated scheduling problems, this paper
studies machine and AGV integrated scheduling problem in
the FMS from two aspects of model and algorithm. A mixed
integer programming (MIP) model is constructed, and an
improved SSA algorithm is proposed, which is helpful to the
research and development of AGV and machine-integrated
scheduling. This work makes four primary contributions:
First, an improved hybrid discretized slap swarm algorithm
(HDSSA) is proposed to solve benchmark cases of the FJSPT
that are small and medium in size. The discretization oper-
ation of the SSA is realized by a three-three-layer encoding
based on the transformation of the solution space. Second, the
algorithm’s convergence speed and the quality of the initial
solution are intended to be enhanced by a heuristic popula-
tion initialization strategy. Third, to balance the algorithm’s
performance in both local search and global exploration,
the two-step control factor and adaptive update weights are
introduced to the position update formulation. Fourth, the
mutation and crossover operations of differential evolution
idea are introduced into the SSA to improve algorithm’s
global search capability. Meanwhile, to avoid the algorithm
from falling into local optimality, the variable neighborhood
search (VNS) algorithm is integrated into the SSA to perform
variable neighborhood search for the optimal individual after
each iteration.
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Finally, simulation experiments are used to verify the
feasibility of the algorithm improvement strategy and
the effectiveness of the HDSSA for solving the FJSPT.
The influence of population initialization method and dif-
ferent improvement strategies on the solution results of the
algorithm is analyzed.

II. PROBLEM DESCRIPTION AND MATHEMATICAL
MODEL
A. ABBREVIATIONS AND ACRONYMS
The dual-resource integrated scheduling model of AGVs
and machines in a flexible manufacturing shop with AGV
transportation time can be described as: The flexible man-
ufacturing system is composed of a set n of workpieces to
be processed, a set m of machines, and a restricted number
of AGVs responsible for handling workpieces. Each work-
piece contains one or more processes; the order between
the processes is predetermined, and each process is pro-
cessed by at least one optional machine. Each AGV can carry
the workpiece between any two machines. AGVs can move
workpieces between any two machines within a certain trans-
portation time. Every machine has a buffer zone where AGV
can be parked. The loading and unloading of workpieces on
AGVs can be accomplished with the buffer zone.

The AGV transporting workpieces may be separated into
two phases: no-load trip and load trip. In the case of unloaded
travel, the AGV needs to travel from the present position to
the destination location to pick up the workpiece, while in the
case of loaded travel, the AGV picks up the workpiece and
transports it from the station to the location of the processing
machine.

To simplify the flexible manufacturing shop AGV and
machine dual resource integration scheduling problem con-
sidering AGV transportation time, the following conditions
are assumed:

1) At the initial moment, all workpieces are in a state to
be machined, all machines are idle, and all workpieces
can be machined at the zero moment.

2) The starting position of all workpieces and AGVs is in
the load/unload (LU) area, and all AGVs and machines
are accessible at the zero moment.

3) Each workpiece can only be processed on one machine
at a time for each process, and no interruption is
allowed once processing has begun. The time spent
loading and unloading theworkpieces is counted as part
of the machining time, and the machining time for each
operation on optional machines is known.

4) There are sequential constraints on the process of the
same workpiece and no constraints on the machining
sequence between different workpieces.

5) Each autonomous guided vehicle has a maximum unit
load capacity, and AGV can only transport a single
piece of equipment at a time.

6) AGV loading and unloading workpiece time is not con-
sidered, machine setup time processing is calculated in
the processing time.

7) All AGVs have a unit load capacity, and each AGV can
only carry one workpiece at a time.

8) The AGV transportation route between any two
machines is fixed, and the travel time is simply pro-
portional to the distance between the machines.

9) Not considering AGV variability, such as AGV trans-
portation speed, single charge transportation distance,
and charging time.

10) Path conflicts, collisions, and deadlocks between
AGVs are not considered.

11) The loading and unloading times of the AGV can be
ignored.

TABLE 1. Parameters and descriptions.
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B. MATHEMATICAL MODEL
1) PARAMETER SYMBOLS AND DEFINITIONS
To establish the problem model, the following symbols and
variables are introduced, as shown in Table 1.
The constraints of the decision variables are as follows:

X (k, ij)

=

{
1, if the operation Oi(j) is processed on machine k
0, else

XP (k, pqij)

=


1, if operation Oi(j) is processed on machine k after

operation Op(q)
0, else

Y (v, ij)

=

{
1, if task Ai(j) selects AGV Av for transportation
0, else

YP (v, pqij)

=

{
1, if task Ai(j) is transported on Av after task Ap(q)
0, else

2) TIME NODE MODEL
1) The machining starts time of the operation Oi(j) on the

machineMk .

When the process and its immediately preceding process
are machined on the same machine, the start time of the Oi(j)
is equal to the end time of the Oi(j−1). In all other cases, the
start time of the Oi(j) is equal to the end time of the load state
of transportation task Ai(j−1). The start time of machining the
Oi(j) on the machine is calculated by Equation (1):

T s (k, ij)

=



T e (k, i (j− 1)) ,

m∑
k=0

n∑
p=1

hp+1∑
q=1

XP (k, pqij) × (i− p+ 1)

× (j− l) = 1

max


LT e (v, ij) ,

m∑
k=0

n∑
p=1

hp+1∑
q=1

T e(k, pq)

×X (k, ij) × X (k, pq) × XP(k, pqij)

 , else

(1)

2) The machining end time of theOi(j) on the machineMk .

The end time of machining theOi(j) on themachine is equal
to the sum of the start time of the Oi(j) and its machining time
on the corresponding machine, as shown in equation (2):

T e (k, ij) = T s (k, ij) +

m∑
k=0

X (k, ij) × T (k, ij) (2)

3) The start time of the no-load state of transporting the
operation Oi(j) on Av.

The start time of the no-load trip of the AGV transportation
task is divided into two cases, as shown in Equation (3): when
is the first transportation task on the corresponding AGV, its
start time of the no-load trip is 0; otherwise, the start time of
the no-load trip is calculated according to the formula for the
other cases:

ET S (v, ij) =


0,

g∑
v=1

n∑
p=1

hp+1∑
q=1

YP (v, pqij) = 0

g∑
v=1

n∑
p=1

hp+1∑
q=1

LT e (v, pq) × YP (v, pqij) , else

(3)

4) The end time of the no-load state of transporting the
operation Oi(j) on Av.

When a workpiece’s initial process is being transported,
which also happens to be the AGV’s first transport job,
or when the process being carried is being processed on
the same machine as its immediate previous one, the AGV
transport task does not have an unloaded transport status.
In all other circumstances, the end of the unloaded state is
larger than the unloaded AGV’s arrival time and the prior
process’s completion time. The end time of the unloaded trip
of the AGV transportation task is represented by equation (4):

ET e (v, ij)

=



ET s (v, ij) ,

m∑
k=0

n∑
p=1

hp+1∑
q=1

XP (k, pqij) × (i− p+ 1) × (j− q)

= 1or

 g∑
v=1

n∑
p=1

hp+1∑
q=1

×YP (v, pqij) = 0 and j = 1



max



ET s (v, ij) +

g∑
v=1

n∑
p=1

hp+1∑
q=1

m∑
k=0

m∑
k ′=0

X (k, i (j− 1))

×X
(
k ′, ij

)
× YP (v, pqij) × Y (v, ij)

×ET
Mk′

Mk
,T e (k, i (j− 1))


, else

(4)

5) The start time of the load state executing the operation
Oi(j) on Av.

The running process of AGV can be divided into three
states: no-load, load and waiting. When the AGV’s no-load
trip is over, if the process Oi(j−1) immediately preceding the
AGV’s transportation task corresponding to the Oi(j) is com-
pleted, the AGV immediately enters the load state; otherwise,
it needs to wait for the completion of the Oi(j−1) in the buffer
zone of themachine before it can enter the load state. The start
time of the load state of the AGV transportation task Ai(j) is
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represented by equation (5):

LT s (v, ij) =

{
ET e (v, ij) ,ET e (v, ij) = T e (k, i(j− 1))
ET e (v, ij) +WT (v, ij) , else

(5)

6) The end time of the load state of transporting the oper-
ation Oi(j) on Av.

As illustrated by Equation (6), the end time of the load state
of the AGV transporting task A is separated into two cases:
If the Oi(j) is processed on the same machine as its immedi-
ately preceding process, therewill be no load state of theAGV
if process A is processed on the same machine as its imme-
diately preceding process Oi(j−1). Otherwise, there should
be a load state of the AGV that is greater than the arrival
time of the load and the completion time of the processing
of process Op(q), which is processed before the Oi(j), on the
machine corresponding to the Oi(j).

LT e (v, ij)

=



LT s (v, ij) ,

m∑
k=0

n∑
p=1

hp+1∑
q=1

XP (k, pqij)

× (i− p+ 1) ×(j− l) = 1

max


LT s (v, ij) +
g∑
v=1

m∑
k=0

m∑
k ′=0

X (k, i (j− 1))

×X
(
k ′, ij

)
×Y (v, ij)LT

Mk′

Mk
,T e (k, pq)

 , else

(6)

3) THE FORMULATION OF MIP MODEL
The following mathematical model, objective function, and
constraint conditions are set up to address AGV and machine
joint scheduling problem in a flexible manufacturing shop:

Objective : minCmax = min
(

n
max
i=1

T(i)
)

(7)

m∑
k=1

X (k, ij) = 1 (8)

T e (k, ij) = T s (k, ij) +

m∑
k=1

X (k, ij) × T (k, ij) (9)

T s (k, ij) ≥ LT e (v, ij) ,

T s (k, ij) ≥ T e (k, pq) · (1 − XP (k, pqij)) ,

∀i, p ∈ {1, 2, . . . , n} , ∀j, q ∈ {1, 2, . . . , hi} (10)

T s (k, ij) ≥ T e (k, i (j− 1)) · (1 − XP (k, i(j− 1))) (11)
g∑
v=1

Y (v, ij) = 1 (12)

ET s (v, ij) ≥ LT e (v, pq) ·
(
1 − YP(v,pqij)

)
,

ET s (v, ij) ≥ T s (k, ij)

∀i, p ∈ {1, 2, . . . , n} , ∀j, q ∈ {1, 2, . . . , hi} (13)

ET e (v, ij) = ET s (v, ij) +

g∑
v=1

Y (v, ij) × ET (v, ij) (14)

LT s (v, ij) ≥ LT e (v, ij) ,LT s (v, ij) ≥ T e (k, i (j− 1)) (15)

LT e (v, ij) = LT s (v, ij) +

g∑
v=1

Y (v, ij) × LT (v, ij) (16)

The objective function (7) represents the maximum com-
pletion time of all workpieces. Constraint (8) states that any
one process can only be executed on one machine at the same
moment. Constraint (9) assures that the machining comple-
tion time on the machine for each workpiece is equal to the
sum of the start machining time and the necessary machining
time. Constraint (10) demonstrates that the starting process-
ing time of each workpiece on the machine depends on the
arrival time of the AGV transporting the workpiece and
the larger value of the end processing time of a process on the
machine. Constraint (11) indicates that the processing start
time of any process for each workpiece is not less than the
end processing time of the previous process. Constraint (12)
assures that no more than one workpiece can be traveled
by an AGV at one time. Constraint (13) states that each
AGV’s the unloaded departure time is at least greater than
its previous carried workpiece’s load finish time and its start
processing time. Constraint (14) ensures that the unloaded
end transportation time of each AGV is equivalent to the total
of the unloaded start time and the unloadedmovement time of
the AGV between machines. Constraint (15) represents that
the start transportation time of each workpiece depends on the
larger unloaded arrival time at the machine of each AGV and
the machining completion time. Constraint (16) indicates that
the AGV’s entire end transportation time is equivalent to the
total of its start transportation time and the load movement
time between machines.

III. METHODOLOGY
The flexible manufacturing shop machine and AGV dual
resource integration scheduling problem is an extension of the
FJSP, which contains three dimensions of process sequenc-
ing, machine selection, and AGV scheduling and belongs to
the discrete combinatorial optimization problem. However,
the basic SSA works on optimization problems in the con-
tinuous domain.

Therefore, this section presents an improved hybrid dis-
crete salp swarm algorithm to solve the constructed MIP
model. First, the continuous solution space of SSA is
mapped to the discrete solution space through a con-
version mechanism to accommodate the discrete search
process of the algorithm. Meanwhile, the idea of differ-
ential variation is presented to perturb the process, AGV,
and machine coding to enhance the algorithm’s capac-
ity for global search. Finally, the variable neighborhood
search algorithm is fused into the improved SSA to per-
form a local search for the optimal individual in each
iteration to avoid the HDSSA from falling into local
optimality.
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FIGURE 1. Coding scheme.

A. ENCODING AND DECODING SCHEME
Given that the flexiblemanufacturing shopmachine andAGV
integration scheduling problem consists of three scheduling
subproblems: process sequencing, machine assignment, and
AGV assignment. A three-stage coding approach is used to
construct the scheduling solution. The first row is the Opera-
tion Sequencing Code (OSC), while the Machine Selection
Code (MSC) and AGV Assignment Code (VAC) are the
second and third rows, respectively.

A flexible job shop scheduling coding schemewith 3work-
pieces, 3 machines, and 2 AGVs is shown in Figure 1. Each
vector in the OSC represents the number of the workpiece,
and the times of occurrences of the job number from left to
right corresponds to the number of processes of the work-
piece.

FIGURE 2. Schematic diagram of discretized process coding for LPV rule.

Each element of the machine selection code and AGV
assignment code represents the machine number and AGV
number selected for the workpiece process, respectively.

The solution space of the SSA algorithm is continuous,
the process ranking codes are discrete points in the solution
space. Therefore, the algorithm’s continuous solution space
needs to be transferred to the discrete solution space so as
for the SSA to be effective in tackling discrete combinatorial
optimization problems. For the flexible manufacturing shop
floor integrated scheduling problem, each one-dimensional
vector of each SSA individual location corresponds to one
process. It can be represented by a [0, 1] random number,
and a fixed sequence number starting from 1 is set from
left to right to correspond to the random number one by
one. Then, the random numbers are ordered from smallest to
largest using the LPV (Largest Position Value) rule [25]. The
discrete encoding of the individual is constructed based on

the mapping number corresponding to each random number.
Finally, according to the process number, each workpiece is
converted into a process sequence for decoding. The specific
transformation process is shown in Figure 2.

B. HEURISTIC POPULATION INITIATION
The algorithm’s convergence speed and solution quality are
highly dependent on the quality of the initial solution. After
determining the process sequencing code, it is necessary to
confirm the MSC and the VAC. Since each process has a
different set of optional machines, if the random selection
method of sorting coding is adopted, a certain number of
invalid solutions will be generated. Therefore, we design a
heuristic initialization method based on the principles of the
earliest arrival of the AGV to the workpiece to be handled and
the earliest completion of processing by the machine.

This method first gets the next process to be manufactured
in the scheduling sequence, the available time and position
that each AGV has completed its last task assignment, and
the time of completion at which each machine is able to
handle the operation. Then, the AGV at the current position
or the load/unload (LU) area is selected to load the work-
piece i. Finally, the machine to be used for the process is
selected. Repeat the above operation until all processes have
been decoded, and the AGV assignment code and machine
selection code can be determined. The decoding steps for the
heuristic method are as follows:

1) Step1: Randomly initialize the OSC, traverse each
process of the OSC, determine the codes of machine
selection and AGV assignment.

2) Step2: Get the available time T (v, q) and location
L (v,Mk ′) of each AGV and the available time of each
machine T (m, p).

3) Step3: Determine whether the Oi(j) is the first process
of Ji. If yes, skip to Step (1); otherwise, skip to Step 4.

• (1) Determine whether there is an idle AGV in
the load/unload (LU) area. if so, select an AGV
in the LU area to carry the workpiece. Otherwise,
traverse all the AGVs and select the one with the
shortest unloading time to the LU to transport the
workpiece.

• (2) After determining the AGVs for the handling
process, the earliest machine to complete the pro-
cess is selected under the conditions of satisfying
the AGV resource constraints and the processing
machine constraints.

• (3) Calculate time of departure of this AGV from
the LU:

LT s(v, q) = T (v, q) + ET LUMk
(17)

• (4) Update the available time and position of
AGVs:

T ∗(v, q)

= LT s(v, q) + ET
Mi(1)
LU ,L∗(v,Mk ) = L(v,Mi(1))

(18)
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• (5) Update the available time of allocated
machines and calculate the completion time of
workpieces:

T e (k, i1)

= max
{
T (v∗, q),T (m, p)

}
+ T (k, i1) (19)

4) Step4: Obtain the completion time of the process
T e (k, i (j− 1)) that is required to be completed imme-
diately prior to the workpiece and the Mi(j−1) that
operates it.

• (1) Determine whether there is an idle AGV on the
buffer of the machine in the process immediately
prior to the workpiece; if so, select that AGV for
handling; otherwise, select the AGV that arrived
at the machine earliest.

• (2) Calculate the time at which the vehicle leaves
the machine Mi(j−1):

LT s(v, q)

= max
{
T (v, q) + ET

Mi(j−1)

Mk
,T e (k, i(j− 1))

}
(20)

• (3) Select the earliest machine to complete the
process Oi(j) while satisfying the AGV resource
constraints and processing machine constraints.

• (4) If the optional machine for the Oi(j) is different
from the processing machine of the preceding pro-
cess (Mi(j) ̸= Mi(j−1)), update the available time
and position of the assigned AGV:

T ∗(v, q) = LT e(v, q) = LT s(v, q) + ET
Mi(j)
Mi(j−1)

,

L∗ (v,Mk) = L(v,Mi(j)) (21)

• (5) Calculate the workpiece completion time and
update the machine’s available time:

T e (k, ij) = max
{
T

(
v∗, q

)
,T (m, p)

}
+ T (k, ij)

(22)

5) Step5: Iterate through each process of the OSC and
output the AGV assignment code, machine selection
code, AGV load time, no-load time, and job completion
time.

Based on the coding scheme in Section III-A and the
decoding approach in Section III-B, to facilitate the under-
standing of the FJSPT, a scheduling scheme containing five
workpieces, eight machines, and 3 AGVs for transportation is
randomly generated, and its Gantt chart is shown in Figure3.

The AGV1 is used as an example to illustrate the process of
handling workpieces and the processing of workpieces. The
transportation process of A1: The A1 loads workpiece J2 from
the LU and travels with the load to the M2. ➔ After the J2 is
unloaded, the AGV drives with the empty to the LU (loading
workpiece J1) and then travels with load to theM1.➔Waiting
in the buffer zone of theM1 for theO1(1) to be completed, then
load the J1 and drive to the buffer zone of the M4 with the

FIGURE 3. The Gantt chart for the 8-5 instance scheduling solution.

load. ➔ The O2(1) is transported to the M5 by AGV after
processing on the M2, where it waits in the buffer zone for
the O2(2) to be completed. ➔ Continue loading the J2 from
the M5 to the M4 with the load, wait in the buffer zone
of theM4 until the O2(3) is completed, and then load the J2 to
the LU.

C. DUAL ADAPTIVE STEP CONTROL WEIGHTING
STRATEGY
The standard SSA algorithm has two flaws: it converges
slowly and is prone to local optimization during the iterative
phase. This section aims to improve the global search capa-
bilities of the SSA by including two important step-length
control factors(ω1 and ω2) into the position update formula
of leaders in salp population. The leaders’ position update
formula in the SSA with the introduction of two step-size
control factors is shown in Equation (23):

x1j (t) =

{
ω1 × Fj + c1

((
ubj − lbj

)
c2 + lbj

)
, c3 ≥ 0.5

ω2 × Fj − c1
((
ubj − lbj

)
c2 + lbj

)
, c3 < 0.5

(23)

where, Fj denotes the jth dimensional food source location.
The w1 acts in the first half of the algorithm to expand the
algorithm’s global search range, and the w2 acts in the second
half of the algorithm to expand the algorithm’s local search
capability. The w1 and w2 cooperate with each other in the
whole stage of the algorithm to improve the drawbacks of
the inefficient search of the SSA. The parameter c1 is the
most important parameter in SSA, which gradually changes
with the increase of the number of iterations and finally
approaches 0, and its value is updated by the following for-
mula model.

c1 = 2e−(4t/T ) (24)

The parameter c2 and c3 are random numbers distributed in
[0, 1]. The c2 controls the step size of the leader’s movement
while searching in the jth dimension, the c3 determines the
positive or negative direction of the leader’s movement.

The formulas for the two critical step control factors w1
and w2 are as follows:

ω1 = (1 − t/Tmax + 1)2 exp (−2π (t/Tmax)) (25)

ω2 = (2 − 2t/Tmax + 1)2 exp (−2π (t/Tmax)) (26)
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where, t is the current number of iterations and Tmax is the
maximum number of iterations.

The position change of the follower in the standard SSA
algorithm belongs to the behavior of undefined following,
which is not affected by any random parameter. It depends
entirely on the influence of the position of the ith individual
and the (i-1)th individual of the last iteration. This updating
mechanism leads to a local optimum stagnation problem and
will limit the search efficiency of the algorithm in the later
iteration.

To enable the follower to search locally in the vicinity of
the better solution, this paper modifies the follower position
update formula and proposes an adaptive inertial position
update model. The formula for calculating the inertia weight
coefficients proposed by adopting the literature [26] is as
follows:

ω3 = (ωmax − ωmin) ·
e10 − µt

e10 − µt + λ
+ ωmin (27)

where, the ωmax and ωmin indicate the highest and values of
the weights, respectively. The λ and µ are constants, which
are set toωmax = 0.9,ωmin = 0.2, λ = 3, andµ = 0.04 in this
paper. The value of ω3 decreases down in a nonlinear way as
the program iterates.

The new follower position update equation introducing the
inertia weight adjustment strategy is as follows:

x ij (t) =
1
2

(
x ij (t − 1) + ω3x

i−1
j (t − 1)

)
(28)

The overall search capacity of the algorithm is enhanced by
using larger inertia weights in the early iterations. To reduce
the impact of the previous follower on the subsequent fol-
lower and enhance the algorithm’s convergence accuracy,
lowering the inertia weights in later stages of the algorithm
can cause the subsequent follower to exploremore thoroughly
in the domain of the superior solution.

D. PERTURBATION MECHANISMS BASED ON MUTATION
AND CROSSOVER OPERATIONS
Given that the genetic algorithm possesses superior global
search capability, while the difference-based mutation and
crossover operations reduce the complexity of the operation.
Differential Evolutionary algorithms (DE) have also been
applied by Wang et al. [9] to address machine and multi-load
AGV scheduling in FMS. To increase the SSA’s capacity for
global search, the original SSA is improved by introducing
the idea of differential variation and fusing variation and
crossover operators, as shown in equation (29):

X t+1
i =pm⊗F1(X ti )+pc⊗F2

(
V t
i ,X

t
i
)
+F3

(
f
(
U t
i
)
, f

(
X ti

))
(29)

where, pm is the mutation probability; F1 denotes the muta-
tion operation. The mutated individual V t

i is obtained after
performing themutation operation on the target individualX ti .
The pc is the crossover probability, and the F2 is the crossover
operation. The experimental individual U t

i is obtained by the

crossover operation between the V t
i and the X ti . The f (U

t
i )

and f (X ti ) are the fitness of the U t
i and the X ti , respectively.

F3 is the selection operation, which compares the fitness of
the two individuals and selects the one with higher fitness to
enter the next generation.

Based on the characteristics of the three layers of coding
above, variant operations are performed for process, AGV
and machine code, respectively. For the operation sequence
code (OSC), the IPOX [27] crossover operator is used in the
following way: First, the set of workpieces Ji is divided into
two non-empty complementary subsets at random: S1 and S2.
Second, the process position belonging to S1 in the parent
process codeP1 is reserved for the child codeC1. The position
of the process belonging to S2 in the parent process code P2
is reserved in the same position of the child code C2. Finally,
the process number belonging to S2 in P2 is copied to the
remaining position of C1, and the process number belonging
to S1 in P1 is copied to the remaining position of C2, keeping
the original order. Taking three jobs with different processes
for each job as an example, as shown in Figure 4.

FIGURE 4. IPOX crossover operator for OSC.

For AGV assignment code (VAC), a two-point crossover
operation is used. First, the two selected parents randomly
generate two crossover points. Then, the corresponding AGV
numbers in the parent’s code between the two set crossover
points are exchanged.

For machine selection code (MSC), the MPX [28]
crossover operator is used. The procedure is as follows: First,
a set M consisting of integers 0 and 1 with length equal to the
parent’s encoding is randomly generated. Sequentially, the
machine serial number of the parent code P1 at the position
corresponding to 1 in M is copied to the same position in the
child code C1. Then, the machine serial number of the parent
code P2 at the position corresponding to 1 in M is copied
to the same position in the child code C2. Finally, the other
machine serial numbers in the parent codes P1 and P2 are
retained in the child codes C1 and C2. The detailed procedure
is shown in Figure 5.

FIGURE 5. MPX crossover operator for MSC.
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E. LOCAL SEARCH STRATEGY
The local search strategy is designed to prevent premature
convergence and improve the SSA’s neighborhood search
capability. By altering the neighborhood structure in response
to the characteristics of the problem, the VNS algorithm can
avoid the algorithm falling into local optimum and expands
the search space of the algorithm. Therefore, this section
designs three neighborhood structures to search for neigh-
borhood solutions that can change the maximum completion
time. After each iteration, the neighborhoods of operation
sequence code, machine selection code and AGV arrange-
ment code of individual are explored, respectively. Based on
the features of the FJSPT, three neighborhood structures are
constructed, as shown in Figure 6.

FIGURE 6. Example of N1, N2 and N3 for OSC, VAC and MSC, respectively.

1) Neighborhood structure of operation sequence codeN1:
Randomly select two coding positions, the two posi-
tions correspond to the ith and jth two processes.
Then, the codes corresponding to the two positions are
exchanged.

2) Neighborhood structure of AGV assignment code N2:
First, process j in the process of workpiece i is ran-
domly selected. Then, the AGV number at the original
process location is replaced with another AGV that is
chosen at random from the group of optional AGVs.

3) Neighborhood structure of machine selection code N3:
Randomly selects process j among the processes of
workpiece i. Then, other machine numbers are ran-
domly selected from the set of selectable machines to
replace the machine numbers at the original process
locations.

Based on the above three neighborhood structures, the
specific steps of variable neighborhood search are as follows:

Step1: The optimal solution in the population is taken as
the initial solution S. Select the set of neighborhood struc-
tures Nk , (k = 1, · · · , kmax) for shaking phase and the set
of neighborhood structures Nl, (l = 1, · · · , lmax) for local

search. Initialize the parameter and choose stopping criteria:
k = 1, kmax = 3, lmax = 40.

Step2:Repeat the following sequence until the termination
condition is satisfied: If k > kmax , then the current solution
S is taken as the currently searched optimal solution Sbest ,
and the optimal solution in the original population is updated;
otherwise,it enters Step3.

Step3: Sharking: a perturbation solution S ′ is generated by
passing the current solution S through the k th neighborhood
Nk (S).

Step4: Local search:

(1) The perturbed solution S ′ is taken as the initial solu-
tion; set l = 1.

(2) If l > lmax then output the local optimal solution S ′;
otherwise, go to step (3).

(3) Find the best neighbor S′′ of S in Nl(S). If f (S ′′) <

f (S ′), then S ′
= S ′′, l = 1; otherwise, set l = l + 1

and go to step(2).

Step5: Move or not: if f (S ′′) < f (S), then S = S ′, go to
step4; otherwise, set k = k + 1, go to step2.

F. THE IMPLEMENTATION OF HDSSA
The hybrid discrete salp swarm algorithm that was developed
by improving the fundamental SSA, and the overall process
for the proposed HDSSA is as follows:

Step1 Input scheduling information: workpiece processing
information, AGV number and workshop system layout. Ini-
tialize the control parameters of the HDSSA: the population
size Pop, maximum number of iterations Tmax , probability of
mutation Pm, and probability of crossover Pc.

Step2 Evaluation: According to the design coding scheme
and the priming approach proposed in Section III-B, the Pop
individuals are coded by the three layers of process, AGV,
and machine coding vectors as into an initial population. The
historical optimal solution for each target individual and the
global optimal solution for the target population are computed
by decoding.

Step3 Update population: According to the improved SSA
position update method in Section III-C to update the posi-
tion of the leader and the follower respectively: introduce
double-step control coefficients and adaptive parameters to
adjust and optimize the updating of the leader and the leader’s
position method respectively, update the fitness of the target
population Pop, and record the current optimal solution.
Step4 Mutation and cross perturbation: according to the

mutation probability, the mutation operation is carried out
on the individual process vector, AGV vector, and machine
vector, respectively, to obtain the mutation population Pop1.
According to the crossover probability, the crossover opera-
tion is conducted on the target population Pop and the variant
population Pop2 to obtain the test population Pop3.
Step5 Selection: The fitness values of the test individuals

and the target individuals are judged, and the better individ-
uals are selected to enter the next generation for local search
using the VNS algorithm.
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Step6 Local search: The optimal individual in the popula-
tion is used as the initial solution. Then, the current optimal
individual is obtained, and the target population is updated
by performing variable neighborhood search based on the
neighborhood structure Nk for individual’s process sequenc-
ing, machine selection, and AGV assignment, respectively.

Step7 Termination: judge whether the algorithm reaches
the termination condition; if the algorithm termination con-
dition has not been met, go to Step3; otherwise, output the
global optimal solution.

Algorithm 1 is the pseudocode of the HDSSA algorithm,
and Figure. 7 is its flowchart.

Algorithm 1 The Pseudo-Code of SSA
1 Initialize the swarm size and positions of

population considering ub and lb
2 While (end condition is not satisfied) do
3 Calculate the fitness of each search salp,

save F as the location of food sources
4 Update c1 by Eq. (24)
5 for each salp(xi) do
6 if i == 1 (leder) then
7 Update the position of leading salp by Eq.(23)
8 else if (follower)
9 Update the position of follower salp by Eq.(28)
10 end if
11 end for
12 Modify positions of salps base the upper and

lower bounds of variables
13 Apply the greedy search corresponding to each

salp position
14 if rand < Pm then
15 Execute the differential variation mechanism by

Eq.(29)
16 Update F if there is a better solution
17 end if
18 Choose the optimal individuals for variable

neighborhood search
19 Update the food source location
20 end while
21 Return the food position F

G. COMPUTATIONAL COMPLEXITY
The computational complexity is an important property that
reflects the operational efficiency of algorithms. The com-
putational complexity of the classical SSA depends on the
population size(N ), dimensions(D), and the computational
amount of objective function(Cof). Therefore, according to
the solving steps of the SSA algorithm and the calculation
method of time complexity, the time complexity of basic SSA
algorithm is O(Tmax(N × D) + N × Cof (D))).
For HDSSA, it has been discussed in Section III that

the heuristic population initialization, adaptive strategy, dif-
ferential evolutionary mechanism, and local search are the
main computational steps of HDSSA. There are changes in

FIGURE 7. The flowchart of the improved HDSSA.

the exploitation phase and hence the updated computational
complexity for all procedures is given by:

1) Assuming that the number of machines is m and
the time to calculate the load time of machines is
t1, the complexity for heuristic initialization is given
by O(0.5N × D + 0.5N × D × (m × t1) =

O(N × D).
2) After initialization, the run time complexity of evaluat-

ing the current population is given byO(N ×Cof (D)+
t1 × D) = O(N × (Cof (D) + D)).

3) By assuming that the computation times of the two-step
control factor (ω1 and ω2) and the adaptive inertia
weights ω3 are t2 and t3, the computational complexity
of the HDSSA update position for this process is given
by O(N × D× t2 + N × t3) = O(N × D).

4) In the iterative search, the computing time for executing
the DE mechanism is t4, then the complexity of the
mutation scheme isO(N×D×t4) = O(N×D), and the
computational time complexity of updating the global
optimal solution is given by O(N ).

5) The time to construct the neighborhood is assumed to
be t5 and the complexity of the local search is given by
O(kmax × lmax × Cof (D) × N × t5) = O(Cof (D)).

Based on the above aspects, ignoring the coefficients of the
higher order terms and the lower order terms,the total com-
plexity of the HDSSA for Tmax number of iterations is given
by 3O(N×D)+O(N×(D+Cof (D)))+O(N )+O(Cof (D)) =

O(Tmax(N × D + Cof (D))), so, its time complexity belongs
to the same order of magnitude and is the same as that of the
classical SSA.
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TABLE 2. Comparison of optimization results of benchmark functions.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTS AND PARAMETERIZATION
To verify the effectiveness of the improved HDSSA, it was
evaluated on various benchmark problems from the literature.
Problem set 1 is a partial arithmetic example proposed by Fat-
tahi et al. [29], which considers 2 to 12 different jobs and 4 to
48 operations processed in flexible job shop environments
with 2 to 8 machines, named SFJS01-10 and MFJS01-10,
respectively. Problem set 2 was proposed by Deroussi and
Norre [30]. These instances make use of the FJSP1–10 job
sets and four layouts that were initially proposed by Bilge
and Ulusoy [2] for JSPT.

The difference from the original is that all machines are
duplicated, so that each operation can be executed on two
machines with the same processing time. Problem set 3
is proposed by Kumar et al. [31] Job sets in problem
set provided by Bilge and Ulusoy have been modified by
Kumar et al. by including alternative machines where each
operation can be done by three alternative machines. The
instances can be found at https://fastmanufacturingproject.
wordpress.com. The test results are comparedwith previously
published literature.

The simulation environment is the Win 10 system, AMD
Ryzen 7-4800H CPU @ 2.9 GHz, RAM 16.0 GB, and
programmed by MATLAB R2022b. The parameter settings
have a significant impact on the performance of algorithm,
the parameter selection criteria are measured by the quality
of the solution and the running time of the algorithm.We con-
duct orthogonal experiments by Taguchi’s method [32] to
benchmark the mean deviation of the solution and the

mean running time thus determining the relevant param-
eters. The proposed HDSSA algorithm consists of four
main parameters such as population size, number of iter-
ations, variance probability and crossover probability. The
parameters of Pop,Tmax ,Pm and Pc are tried to be selected
from {50, 100, 200} , {100, 200, 300} , {0.6, 0.7, 0.8} and
{0.5, 0.6, 0.7} respectively. Based on the results of several
calculations, the algorithm had the best performance when
the parameter Pop was set to 100, the number of iterations
was set to 200, and the variation and crossover coefficients
were set to 0.7 and 0.5, respectively, while other algorithmic
parameter settings were in accordance with Ref.

B. EXPERIMENTAL ANALYSIS OF BENCHMARK
FUNCTIONS
To verify the performance of the HDSSA algorithm,
the algorithm optimization search test is performed by
10 benchmark functions. In this section, the HDSSA,
SSA, TACPSO(Time varying Acceleration Coefficients
Particle Swarm Optimization) [33], ESCA(Exponentially
Improved Exponential Sine Cosine Algorithm) [34], and
IGWO (Improved Grey Wolf Optimizer) [35] are compared.
To ensure the fairness and accuracy of the experiments, the
same population size (50) and maximum number of itera-
tions (500) were set in the comparison experiments. Table 2
gives the mean and standard deviation of the algorithms after
30 experiments, with the best results of the tests highlighted
in bold. The fitness values of the algorithms are expressed as
the mean of the results of, and the stability of the algorithms
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FIGURE 8. Convergence curves of selected functions.

is expressed as the standard deviation of the results of the
30 experiments.

For the five uni-modal functions (F1, F3, F4, F5, and F6),
the HDSSA exhibits notable benefits in terms of mean and
standard deviation, as shown in Table 10. For the multi-modal
function functions F9, F10, and F12, HDSSA has the best
performance among all the algorithms compared. For func-
tion F11, HDSSA algorithm converges better than IGWO in
terms of convergence speed.

Additionally, HDSSA performs similarly to the TACPSO
and IGWO algorithms in F15 mean value; however, HDSSA
has the most stable solution performance in terms of standard
deviation.

The convergence accuracy curves for each benchmark test
function solved by the algorithm are plotted in Figure 8. Due
to the required exploration phase, an algorithm’s initial phase
converges slowly. However, later in the iteration, it is impor-
tant to fully utilize the algorithm’s development phase, which
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TABLE 3. Comparison results of HSSA and RSSA.

results in a faster convergence to the optimal solution in the
later stages compared to the exploration phase, allowing the
algorithm to converge to the optimal solution more quickly in
the later stages.

Though it performs some functions slightly less well than
others, the HDSSA algorithm’s convergence curve always
converges to the optimal value at the end of the iteration.
Furthermore, the proposed HDSSA algorithm’s convergence
curves exhibit a noteworthy downward trend across most test
functions, suggesting that the enhanced HDSSA algorithm
outperforms all other compared algorithms in terms of con-
vergence speed. Therefore, the proposed HDSSA algorithm
can produce better global optimal solutions through itera-
tions, as evidenced by the convergence curve of the improved
HDSSA algorithm being closer to the optimal solution on ten
classical test functions.

C. COMPARISON OF INITIALIZATION METHODS
To verify the viability and effectiveness of the proposed
heuristic population initialization method, this section will
conduct a comparison experiment between the heuristic pop-
ulation initialization method and the completely random
initialization method based on the standard SSA algorithm.
The SSA algorithm with completely random initialization is
named RSSA, and the SSA algorithm with heuristic initial-
ization is named HSSA.

The results of the comparison between the heuristic ini-
tialization method and the completely random initialization
method are shown in Table 3. To evaluate the impact of the
proposed heuristic initializationmethod on the initial solution
quality, we recorded the completion times of the initial and
optimal solutions for 2 groups of populations. Meanwhile,
the percentage of efficiency improvement (PEI) is set as
a comparison indicator, and the percentage of efficiency
improvement was calculated by cheuristic−crandom

crandom
%.

As shown in Table 3, the quality of the initial solu-
tions obtained by heuristic initialization are all better
than those obtained by random initialization. The optimal

solutions obtained by the heuristic population through the
SSA algorithm are all better than the optimal solutions
obtained by the random population. The completion time of
the initial solution of the heuristic population is 64.188 s less
than that of the random population, and the completion time
of the optimal solution of the heuristic population is 11.886 s
less than that of the random population through HDSSA.

For instances SFJST07, HSAA can obtain almost the same
optimal solution as RSSA in Figure 9. Comparing the mean
value of solutions for 30 runs of the algorithm, RSSA gets
an initial solution of 444.57 and HSSA can obtain its initial
solution of 423.30. HSSA improves the quality of the initial
solution by 4.78% compared to RSSA. In the MFJST01-
MFJST05 instances, as the solution space of the instances
increases, the enhancement efficiency of HSSA relative to
RSSA in obtaining the initial and optimal solutions increases
gradually. Therefore, the proposed heuristic initialization is
effective and feasible to enhance the quality of the algorithm
solution and accelerate the convergence speed of the SSA
algorithm.

FIGURE 9. The differences between random initialization and heuristic
initialization methods.

D. ANALYSIS OF IMPROVEMENT STRATEGIES
To illustrate the effectiveness of the improved strategies
for the standard SSA algorithm, this section will conduct
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TABLE 4. Comparison results of SSA algorithms with different improvement strategies (SFJST01- SFJST10).

TABLE 5. Comparison results of SSA algorithms with different improvement strategies (MFJST01-MFJST10).

comparative experiments on HDSSA, SSA, and SSA vari-
ants. The slap swarm algorithm with double step size and
inertia weighting strategy is named ASSA, the slap swarm
algorithm with differential variational operator is named
GSSA, the slap swarm algorithmwith variable domain search
strategy is named VSSA, and the synthesized and improved
slap swarm algorithm is named HDSSA.

Problem set 1 consisting of twenty small and medium
sized problems was selected for comparison experiment. The
proposed SSA variant algorithms with different improve-
ment strategies, HDSSA and the LACH (Late Acceptance
Hill Climbing Algorithm) [8] are compared. The compari-
son results for the small-sized problems SFJST01-SFJST10
are shown in Table 4, and the comparison results for the
medium-sized problems MFJST01-MFJST10 are shown in
Table 5. The Cmin

max represents the optimal value obtained
after 20 runs of each algorithm, and the Cavg

max represents the
average value obtained after 20 runs of the algorithm. The
CPU represents the running time of algorithms.

In the comparison results in Tables 4 and 5, the pro-
posed HDSSA algorithm achieves better optimal solutions in
both small-scale and medium-scale arithmetic cases. In the

SFJST01-10 and MFJST01–10 instances, the optimal solu-
tions of HDSSA relative to the base SSA algorithm are all
significantly improved. Compared to the SSA algorithm, the
ASSA algorithm has the same optimal solution as the SSA for
the 10 algorithms in Table 4. With the increase in the problem
size of the examples in Table 5, the optimal solution of the
ASSA algorithm is better than that of the SSA algorithm. This
indicates that the dual adaptive step-size control weighting
strategy can balance the global and local search ranges of the
standard SSA algorithm. However, the relatively poor solu-
tion results of the ASSA algorithm indicate that the algorithm
may fall into a local optimum in the later stages of the search.

Comparing the optimization results of GSSA and SSA
algorithms, the optimal solutions of the GSSA algorithm are
better than the SSA algorithm in 4 instances in Table 4, and
the optimal solutions of all 10 instances in Table 5 are better
than the SSA algorithm. This indicates that the perturbation
mechanism based on variation and crossover can expand the
scope of global search and make the algorithm’s possibility
of discovering a better solution larger.

Comparing the optimization results of the VSSA algorithm
and the SSA algorithm, the optimal solution and average
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FIGURE 10. Convergence Curve of the algorithm using different improved strategy.

TABLE 6. Comparison results for the instances in Problem Set 2.

value of the VSSA algorithm are smaller than those of the
SSA algorithm in both sets of algorithms. This indicates that
the introduction of the variable neighborhood search strategy
can effectively prevent the SSA from falling into local opti-
mality in the late iteration, which enhances the local search
ability of the SSA.

In summary, the HDSSA has faster convergence speed in
the early iteration compared with the SSA and ASSA. Com-
pared with GSSA, it can search for a better solution in the late
iteration, effectively avoiding falling into local optimality.
Meanwhile, the HDSSA also reflects the feasibility of hybrid
improvements. It not only balances the algorithm’s global
optimization and local search ability but also can obtain
better solutions in a shorter iteration period. Therefore, the
improvement strategy proposed in this paper for the basic
SSA algorithm is effective. The convergence curves of the
SSA algorithm adopting different improvement strategies for
solving some instances are shown in Figure 10.

E. ALGORITHM COMPARATIVE EXPERIMENT
To further validate the feasibility of the proposed HDSSA
algorithm, this section compares it with the previously
published papers by means of 10 FJSPT instances in
Problem Set 2. This problem set is the FJSPT prob-
lem with transportation constraints. The proposed HDSSA
algorithm is compared with the following algorithms/
heuristics:

1) TS [36] (A tabu search procedure by Zhang et al.)

2) MSB [37] (A modified shifting bottleneck heuristic
method)

3) GAME [18] (The IGA as an add-in for Microsoft
Excel® spreadsheet-based solution)

4) HDPSO [20] (A hybrid discrete particle swarm opti-
mization, HDPSO)

The comparison results of the maximum completion time
and percentage deviation of the above algorithmswith respect
to the improvedHDSSA are shown in Table 6. The percentage
deviation was calculated by equation (30). Positive values of
the percentage deviation indicate that the proposed HDSSA
is better than the compared algorithms, while negative values
indicate that the proposed method performs worse.

Dev =
MCHDSSA −MCComparison Algorithms

MCHDSSA
(30)

where, the MCHDSSA represents the best result in terms of
make span obtained by repeating the HDSSA algorithm sev-
eral times and the MCCompared algorithms represents the make
span of the solved instances of the compared algorithms.

From the statistical results in Figure 11, the HDSSA
algorithm outperforms the TS algorithm in solving Problem
Set 2 with optimal solutions for all 10 instances. Except
for the FJSP6, the HDSSA algorithm outperforms the MSB
algorithm in solving the optimization results of the remain-
ing 9 instances. Comparing the HDSSA algorithm with the
GAME method, the FJSP3 and FJSP5 instances were able to
achieve the same results. Though five sets of instances were
slightly lower than the GAME method, the optimal solutions
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FIGURE 11. Comparative curves of experimental results for different algorithms.

of the remaining three instances outperformed the GAME
method.

Comparing the results of the HDPSO algorithm and the
HDSSA algorithm, HDSSA can obtain the same optimal
solutions as HDPSO for the FJSP1, FJSP4, and FJSP5
instances. The optimization results for five sets of instances
in Result Problem Set 2 show a more significant improve-
ment with respect to the HDPSO algorithm. Although the
completion times of FJSPT2 and FJSPT9 are slightly lower
than those of the HDPSO algorithm, the mean values of the
optimal solutions are better than those of the HDPSO.

According to the optimization results of Problem Set 1 and
Problem set 2, the HDSSA can search for the optimal results
of the problem better than the SSA and other comparative
algorithms. The HDSSA has a good global search capability,
which can avoid falling into the local optimal solution too
early. For the flexible manufacturing shop machine and AGV
integration scheduling problem, the HDSSA could find a
shorter completion time efficiently. Meanwhile, it effectively
proves that the improvement strategy proposed in this paper
is feasible and effective. This indicates that the HDSSA used
for the integration scheduling problem can find solutions that
are more efficient and effective in terms of utilizing resources
and optimizing the overall production process.

F. INFLUENCE OF AGV NUMBER ON MAKESPAN
To study the influence of the number of AGVs in the work-
shop on the makespan of the system, HDSSA is used to solve
the makespan when the number of vehicles A in problem set 3
is 2-6 respectively. The results are shown in Table 7.
From Table 7, the solution results of the HDSSA algorithm

gradually decrease as the number of AGVs increases, but
when the number of AGVs reaches 5, the decreasing trend
of the maximum completion time tends to stabilize.

To explain the effect of AGV quantity change on schedul-
ing efficiency, the marginal effect theory in economics is
introduced to analyze the effect of AGV quantity on the
completion time of the experimental case. Marginal utility
(MU) is the utility of increasing or decreasing the revenue
of a good or service for each new or reduced unit of the
good or service. In this paper, goods are referred to as AGV,

TABLE 7. Experimental test results of different numbers of AGVs in
Problem Set 3.

FIGURE 12. The change diagram of completion time with the number
of AGVs.

and benefits are referred to as makespan. The formula for
evaluating the marginal effect of AGV is as follows:

MU =
1Cmax

1A
(31)
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where, the 1Cmax is the difference in completion time, and
the 1A is the difference in the number of AGVs.
The graph of completion time with the number of AGVs in

each case in Table 7 is shown in Figure 12(a). The results of
Table 7 are transformed and calculated by equation (31), and
the AGV marginal effect curve for each instance is plotted as
shown in Figure 12(b).

Table 7 and Figure 12 show that with the increase in the
number of AGVs in the workshop, the total completion time
shows a decreasing pattern, but for every additional AGV, the
marginal effect shows a decreasing pattern.When the number
of AGVs increases to 6, the marginal effect decreases to 0.
At this time, the completion time is no longer affected by
the number of AGVs but is constrained by the machining
process and machining time, so the increase in the number
of AGVs cannot further improve the scheduling efficiency of
the workshop.

V. CONCLUSION AND FUTURE WORKS
Aiming at the dual resource scheduling problem of machines
and AGVs in flexible job shops, this paper proposes an
improved hybrid discrete slap swam algorithm (HDSSA).
The main work is reflected in the following three aspects:

1) A mixed integer planning model is made with con-
straints on process resources, machine resources, and
AGV resources for the flexible manufacturing shop
integrated scheduling problem that takes AGV trans-
portation time into account. The MIP model considers
the loaded and unloaded states of the AGV and
minimizes the maximum completion time as the opti-
mization objective.

2) A series of improvement strategies for the standard
SSA algorithm are proposed. A 3-layer coding method
based on process, machine and AGV is designed to
realize the continuous solution space discretization of
coding. A heuristic initialization based on the earliest
arrival of AGV, or earliest end of machine processing is
proposed to improve the quality of the initial solution.
A double-step control factor is designed to adjust the
leader position updating method, and an inertia weight-
ing strategy is introduced in the follower position
movement. The differential variation idea is introduced
into the SSA to enhance the algorithm’s global search
capability by variation operator and crossover operator.
A local search strategy based on problem features is
designed to integrate the variational domain search
algorithm into the improved Slap Swarm algorithm to
avoid the algorithm falling into the local optimum.

3) The HDSSA algorithm is compared with other intelli-
gent algorithms and their optimization results through
numerical experiments on the benchmark problem. The
results show that the proposed improvement strategy
for the standard SSA algorithm is feasible. In most
cases, the HDSSA algorithm can effectively solve the
AGV and machine integration scheduling problems in
a flexible manufacturing shop.

In future research, we will change the machine-AGV inte-
gration scheduling model and constraints to consider things
like AGVs’ power, multiple loads, and paths that conflict with
each other. At the same time, multi-objective optimization of
the machine-AGV integrated scheduling problem in flexible
manufacturing systemswill be carried out in conjunctionwith
green scheduling theory.
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