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ABSTRACT Artificial Intelligence (AI) has made tremendous progress in anomaly detection. However,
Al models work as a black-box, making it challenging to provide reasoning behind their judgments in a Log
Anomaly Detection (LAD). To the rescue, Explainable Artificial Intelligence (XAI) improves system log
analysis. It follows a white-box model for transparency, understandability, trustworthiness, and dependability
of Machine Learning (ML) and Deep Learning (DL) Models. In addition, Shapely Additive Explanation
(SHAP), added to system dynamics, makes informed judgments and adoptable proactive methods to optimize
system functionality and reliability. Therefore, this paper proposed the Shapely eXplainable Anomaly
Detection (SXAD) framework to identify different events (features) that impact the models’ interpretability,
trustworthiness, and explainability. The framework utilizes the Kernel SHAP approach, which is based on
Shapley values principle, providing an innovative approach to event selection and identifying specific events
causing abnormal behavior. This study addresses the LAD by transforming it from a black-box model into a
white-box one, leveraging XAl to make it transparent, interpretable, explainable, and dependable. It utilizes
benchmark data from the Hadoop Distributed File System (HDFS), organized using a Drain parser, and
employs several ML models, such as Decision Tree (DT), Random Forest (RF), and Gradient Boosting
(GB). These models achieve impressive accuracy rates of 99.99%, 99.85%, and 99.99%, respectively. Our
contribution are novel because no earlier work has been done in the area of Log Anomaly Detection (LAD)
with integration of XAI-SHAP.

INDEX TERMS Explainable artificial intelligence, Shapley additive explanation, Hadoop distributed file
system, machine learning.

I. INTRODUCTION

Anomaly is a focal point in Machine Learning (ML) and
data mining [1]. Its significance extends across diverse
sectors, including cybersecurity, financial resources, man-
ufacturing, and energy [2]. It plays a pivotal role in Al
applications, such as network security, fraud detection,
healthcare, energy, event prediction, program verification,
and problem diagnosis [3]. In such applications, log analysis
is essential in detecting malicious activities, investigating
security incidents, and identifying potential vulnerabilities
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in systems and networks [4], [5], [6]. Analyzing these logs,
anomaly detection identifies deviations from normal behavior
in a data set. However, most of the ML-based anomaly
detection techniques work as a black-box [7]. Therefore,
a novel field, XAI [8] addresses this issue by enhancing the
transparency, accountability, interpretability, and trustwor-
thiness of ML models. DARPA launched the ‘““Explainable
Al (XAI) Program™ in early 2017 to develop ML models
that are both highperforming and comprehensible to human
users, enabling them to trust and manage Al systems and
similarly, NIST introduced four ground principles and rules
for XAI systems in 2020 [9]. These principles include the
explanation, meaningful, accuracy, and knowledge limitation.
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Different methods and techniques have been developed to
make AI models explainable. They work with a distinction
between interpretability, explainability, transparency, and
trustworthy models, which are distinguished from post-
hoc interpretations These are additional methods used to
ensure transparency for multifaceted black-box models.
These models integrate both local and global justification
generation for individual input or for the entire model [10].
Industry 5.0 principles require AI models to be interpretable,
human-in-the-loop, and transparent [11]. Anomaly detection
and system failure categorization are critical components
of predictive maintenance [12]. It enables organizations to
reduce system downtime, improvement of maintenance cal-
endars and enhances operational performances. Maintenance
professionals may avoid unexpected failure by applying
machine learning approaches to predict when a system will
fail. Several problems arise as a result of the absence of
explanation in Log Anomaly Detection (LAD) [13], [14].
First, it is important to note that end users may need help com-
prehending the detection models. Second, there is sometimes
a disconnect between forecasts and explanations because
ML models frequently make predictions without providing
explicit explanations for the judgments they make. Third,
there needs to be more transparency in the prediction process,
making it challenging to understand the reasoning behind the
predictions. Finally, issues of unfairness need addressability
in the prediction process [3], [15]. In this regard, XAl
aims to develop Al models with trust and accuracy [16].
It uses both extrinsic and intrinsic techniques to validate
the model’s forecasts. It also entails creating algorithms and
procedures for creating understandable and transparent Al
models.

Similarly, Explainable Anomaly Detection (XAD) is the
process of gaining valuable insights from a model designed
to detect anomalies. These insights are pertinent to the corre-
lations identified within the data or obtained via the model.
The significance of this information lies in its capacity to
provide significant insights into the anomaly detection issues
that the end user is investigating [17]. An overview of XAD
and traditional ML models are shown in Figure 1. Therefore,
this study aims to move from black-box models to white-
box models, making the LAD process more transparent,
interpretable, explainable, and reliable making it SXAD.
Various ML models are implemented using benchmark
system logs data HDFS as proof of the effectiveness of
SXAD. However, to the best of our knowledge, efforts
have not been made to find the main causes of anomalous
events forecasted by the model in LAD for transparency,
interpretability, and explainability. Therefore, this research
aims to fill this gap by conducting a comprehensive analysis
of the anomalous events detected by the model in LAD, with
a focus on identifying the underlying causes. By uncovering
the factors contributing to anomalous predictions, we seek to
enhance the transparency, interpretability, and explainability
of the model’s outputs, thus providing valuable insights for
system administrators and stakeholders.
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The contributions of our study are presented below:

o The proposed framework enhances the performance of
ML black box model in identifying and forecasting
large-scale system failure using SHAP which improve
understandability, transparency and trustworthiness
in LAD.

« Using the Kernel Explainer approach, we effectively
identified key events as feature in log data towards
prediction of system failure.

« We evaluate the impact and performance of our method-
ology by compared it with existing methods thereby
offering a comprehensive understanding of its overall
effectiveness.

o Our contribution demonstrate the importance of XAl
in identifying system log anomalies as a essential step
towards achieving Industry 5.0 goals for large scale
system failure prevention.

The remaining paper is divided into different sections.
Section II analyzes the literature review. Section III describes
the suggested framework. Section IV discusses the results,
evaluation, and performance metrics. Section V concludes the
study and VI provides the future directions.

Il. RELATED WORKS
Anomaly detection analyses log data of heterogeneous
systems such as system logs [4], [18], [19], [20], [21], event
logs [22] and various other logs [23], [24], [25], [26], [27].
The anomaly detection techniques find anomalous behaviors
in logs that depart from conventional systems. There are
two major classes with approaches to logs: supervised and
unsupervised models. The former requires training data
collection with labeled examples for regular and anomaly
classes. It is not easy to access reliable representative
models for anomaly classes. A different kind is the no-
training-data-required unsupervised LAD model. In [18], the
researchers explored the link between sequences of system
logs and behavior patterns to detect anomalies within Hadoop
data. This approach improved F-Score by 13%. The study
needed more explanations and transparency concerning the
results obtained. A similar study, [19], utilized ML with
the Word2Vec algorithm for log mining. The technical
approach included RF, MLP, and Gaussian NB. The achieved
accuracy was 90%. The study need to offer explanations and
transparency regarding the results that were obtained.
Similarly, [20] focused on anomaly detection in big data
system logs using DL. The technical approach involved Log
Parsing and logkey2vec techniques, with Convolutional Neu-
ral Network (CNN) employed. The achieved performance
metrics included precision, recall, and F1-measure of 95%,
95%, and 96%, respectively. The study should have explained
the transparency regarding the obtained results. Wang et al.
[21] applied a DL-based approach for anomaly detection in
system logs. They technically included the use of TF-IDF for
preprocessing and feature extraction, with Long Short-Term
Memory (LSTM) used as a model. The achieved performance
metrics included an impressive Fl-score of 0.99. However,
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FIGURE 1. An Overview of XAD and traditional ML model.

the study did not provide explanations as well as transparency
regarding the results. On the other hand, the study needed
to provide more interpretability and transparency about is
findings.

Log anomaly is an unsupervised technique that was
designed to discover anomalies in unstructured logs sequen-
tially and quantitatively. In [22], the authors examined
log anomaly using LSTM. An approach for classifying
log anomalies, which is independent of the device being
utilized, with a specific focus on switch log data [23].
ML techniques were incorporated TF-IDF for preprocessing
and positive-unlabeled for learning Support Vector Machine
(SVM) for modeling. Notably, this approach showcased
remarkable performance, achieving a notable F1 score
of 99.51%, along with Macro-F1 of 95.32% and Micro-F1
of 99.74%. However, the study did not provide explanations
in relation to its findings.

In [24], a “Crude” method is proposed to enhance the
detection of error accuracy in distributed systems on a big
scale by combining console logs and usage resource data. The
approach involved clustering, employing mutual information
and entropy for preprocessing, and implementing Hierarchi-
cal clustering with PCA. The achieved true positive rate was
80%. However, the study did not provide explanations, inter-
pretability, or transparency regarding its findings. In addition,
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Jia et al. [25], proposed anomaly diagnosis through a method
called “Logsed,” which involves mining control graphs that
are time-weighted in transactional operational logs. The
technical approach encompassed control flow graph and
template mining, while the approach to feature extraction
involved time-weighted control flow graphs. The method
achieved a Precision and Recall of 80%. However, the study
did not provide explanations, interpretability, or transparency
regarding its findings. In [26], LogEvent2vec, a method for
identifying anomalies in extensive IoT logs, is proposed.
For parsing and preprocessing, ML techniques such as
Drain and Word2Vec are employed. In terms of modeling,
Neural Networks (NN), RF, and Naive Bayes (NB) are
utilized. The approach yielded remarkable outcomes, with a
precision of 94.7%, a recall of 94.0%, and an F1 measure
of 0.94. Nevertheless, the study needed more elucidation,
comprehensibility, and clarity about its results. Table 1
presents quick access to the state-of-the-art comparison of
various techniques.

In [27], a cluster-based approach is presented. It organizes
feature vectors of logs into groups with high similarity across
members of the same cluster as opposed to vectors from
different clusters. Atypical clusters comprise only a handful
of data points. Xie et al. [28] the focus is on developing a
guided model with confidence for addressing anti-concept
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TABLE 1. Comparison among state-of-the-art techniques.

Ref. Dataset Preprocessing Techniques Performance Explanation | Transparency
[4] System Log Log Parsing LSTM TP:100%, FP:38.2% to 1.1% for 10% data No No
[18] System Log Erroneous Behavior Clustering F-Score Improved by 13% No No
[19] System Log Word2Vec Algorithm RFE, MLP Accuracy:90% No No
[20] System Log Log Parsing logkey2vec CNN Precision 95% Recall 95, F1-Measure 96 No No
[21] System Log Word2vec, TE-IDF LSTM Accuracy, Precision, Recall, F1-score: 0.99 No No
[22] System Log Template2Vec LSTM Precision 0.95 Recall 0.94 F1 Score:94 No No
[23] Switch Log TF-IDF SVM F1 score: 99.51, Macro-F1: 95.32 Micro-F1: 99.74 No No
[24] Console Log MutualInformation En- PCA True Positive rate 80% No No

tropy
[25] Transactional Template Mining Graph Precision, Recall: 80% No No
Log
[26] Event Log Drain RF, NB, NN Precision: 94.7% Recall: 94.0% F1 Measure: 0.94 No No
[27] System Log Drain LR,.DT,SVM Precision, Recall, F1-score: 0.99% No No
[28] System Log Parsing Confidence Precision: 98.2% Recall: 95.2% F1 Measure: No No
Guided 96.7%
Parameter
[29] Execution Template Mining Graph Average Precision: 90% Recall =80% No No
Log
Proposed | System Log TF-IDF and Mean DT, RE, GB Precision,Recall,F1 Measure = 0.99% Yes Yes
Method

drift in dynamic logs. A precision of 98.2%, a recall of
95.2%, and an F1-measure as high as 96.7% were among the
performance criteria that were accomplished.

In [30] proposed LogCluster, a system for organizing log
sequences that handle atypical sequences to help developers
spot issues at a glance. The cluster centroid determines the
representative sequence. Furthermore, in [31], the authors
proposed the Log3C framework to combine system Key
Performance indicators (KPIs) to identify significant issues
in service systems. For efficiency, they suggested a cascading
clustering approach. At last, they employ a multivariate linear
regression model to pinpoint the critical factors contributing
to a decline in KPIs.

Several DL based methods for detecting log anomalies
have appeared in recent years. In [32], the authors proposed
the LogRobust for information retrieval from unstable log.
In [33], the authors utilized Natural Language Processing
(NLP) and Information Retrieval (IR) methods to get
informative data from logs. In [34], the author used a
Generative Adversarial Network (LogGAN) for construct a
lack of abnormal data. Similarly, other AI models have also
been used in the literature, such as transfer learning [35],
and federated learning (FL) [36]. In order to investigate the
“black box’’ nature of ML and the expansion of Al across
a range of fields, XAl has been implemented in a number
of areas, including cyber security, finance, health care,
and industry [8]. Explainable Artificial Intelligence (XAI)
increases the interpretability and transparency of anomaly
detection models [7]. However, to the best of our knowledge,
efforts have not yet been made to find the main cause of
anomalous events forecasted by the models in LAD for
transparency, interpretability, and explainability. Therefore,
this research aims to fill this gap.

Ill. PROPOSE METHODOLOGY
This study proposes a framework called Shapely eXplainable
Anomaly Detection (SXAD) for log data analysis. Though
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the selection of DT, RF, and GB in our proposed method-
ology has their unique strengths, DT offers transparency
in decision-making, while RF tackles high dimensionality
and overfitting, and GB excels in predictive accuracy [37],
[38]. We use multi-model approach that ensures a robust
and versatile model, backed by empirical evidence of
success in HDFS dataset. By leveraging the strengths of
these techniques, we aim to deliver both accuracy and
interpretability, tailored to our research objectives. RF and
GB can become very complex models, particularly when
used in ensemble fashion, potentially leading to overfitting.
Using a simpler DT alongside them can help balance model
complexity with performance. Each individual DT in the
ensemble can be analyzed to understand how it makes
decisions and which features it considers most important.
Figure 2 illustrates the proposed SXAD framework, which
consists of four phases: (1) data preparation, (2 models used,
(3) log anomaly detection, and (4) explanation using XAI-
SHAP. A step-wise methodology is mentioned below:

A. LOGS

Logs provide the essential and required data for an anomaly
detection mechanism. The steps involved in the anomaly
detection of logs include:

1) Collection: The large data-intensive systems frequently
produce logs,these logs typically include a timestamp
and a log message describing what happen at that
moment. Logs are collected first for subsequent use
since they include useful information. Logs play a
crucial role in various fields, including anomaly detec-
tion, software development, system administration,
and more [19], [20], [21], [22].They give significant
insights into the working of systems, applications, and
networks.

2) Dataset: Real-world log records, especially ones with
tags used for evaluation, are either limited or mostly
kept secret. Loghub [39] is a free place to store
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FIGURE 2. The proposed SXAD framework.

and study sixteen (16) different types of logs from
distributed systems, super-computers, OS, cellular
devices, servers, and stand-alone software. We use
the HDFS log because it is the most researched
dataset labeled by various researchers. HDFS consists
of logs made by Hadoop. These instances run on
over 200 Amazon EC2 nodes spread across the
network. It has a total of 575,0561 blocks in the
log datasetamong which 16,838 were recorded as
anomalous by Hadoop experts [40], [41]. HDFS
is a distributed file system specifically designed to
handle large-scale data processing tasks on commodity
hardware. Its ability to scale across hundreds, or even
thousands, of nodes makes it a cornerstone technology
for organizations grappling with massive volumes of
data. By utilizing the HDFS dataset in our research,
we directly engage with a crucial aspect of big
data management, showcasing the applicability of
our findings in real-world scenarios. Furthermore,
our utilization of DT, RF, and GB algorithms on
the HDFS dataset underscores the practical signifi-
cance of our approach. These algorithms are widely
employed in various industries to extract actionable
insights from complex datasets. By demonstrating
the effectiveness of these algorithms on the HDFS
dataset, we not only validate the relevance of our
research but also provide valuable insights that can
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inform decision-making processes in data-intensive
environments [42]. Our research endeavors to bridge
the gap between theoretical frameworks and practical
applications by employing cutting-edge algorithms on
the HDFS dataset. By showcasing the utility of our
approach in addressing real-world challenges, we aim
to contribute meaningfully to both academic discourse
and industry practices.

3) Log Parsing: Data in unstructured logs is typically free-
form. Log parsing and obtaining a library of event
templates are necessary to facilitate the classification
of unstructured logs. Depending on a user-specified
set of parameters, each log entry can be converted
into a specific event template (constant component)
(variable part). Figure 3 shows log parsing action.
It illustrates the block size with block ID and event
numbers processed by log parser from unstructured
logs. We used Drain [43], an efficient log parser, to log
parsing in the proposed framework.

B. FEATURE EXTRACTION

We encode the events in the parsed logs to employ ML
models as numerical feature vectors our data approach uses
a well-known open-source toolkit [27]. We apply the Term
Frequency Inverse Document Frequency (TF-IDF). It is a
numerical statistic used in NLP and IR techniques for feature
extraction [44].
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FIGURE 3. An insight of log parsing.

C. NORMALIZATION

Normalization techniques are used to measure the signif-
icance of a word within a document or a corpora by
considering how frequently the term appears in the document
and how rarely it appears in the rest of the corpora using zero
mean normalization. Mean normalization is a method used to
normalize a dataset by adjusting its values to have zero mean
and equal variance. This method is utilized in ML and data
analytics to preprocess data [45].

D. ML MODELS FOR LOG ANOMALY DETECTION

1) DECISION TREE (DT)

While a simple DT is not a black box model, it explains itself
eloquently and it inherently reveals the important features in
a simple prediction system. However, It is quite difficult for
humans to fully grasp the reasoning behind every prediction
in a complex DT. An explanations is require to help break
down the complex logic in a simpler way. They can offer
more details about why a specific prediction was made for
a particular data point. This can be crucial for building trust
in the model’s decisions, especially in critical applications.
These explanations can help uncover potential biases in
the data or the model’s training process. By understanding
how the model uses features, it can identify if certain
features are having an unfair or unintended influence on
the results. Black boxes include RF, SVM, and other neural
networks like CNN and Auto-Encoder. White-box models,
such as Logistic Regression and Decision Trees, are naturally
interpretable [46], [47]. The examination of classification and
regression problems with a DT is an example of supervised
learning [37]. Depending on predetermined input features,
a recursive data partition is performed to conclude the
dependent variable. The algorithm builds the tree until it
reaches a stopping criterion.It stops selecting features to
separate the data depending on metrics including information
gain, gain ratio, and the Gini index. Following the decision
path down, the tree can then be utilized to predict novel
data inputs. We configured the DT model with the default
parameter.

2) RANDOM FOREST (RF)
The RF utilizes a collection of DTs to produce more reliable
and accurate forecasts [37]. Each decision tree in an RF
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model is unique because it is trained using a distinct sample
of the data and a separate set of characteristics. The RF
approach employs a bagging strategy during training in which
numerous DTs are constructed, each trained using a bootstrap
sample of the data from the entire dataset. While deciding
how to divide a node in the DT, the algorithm randomly
chooses some qualities to consider. When dealing with
high-dimensional datasets or models with a large number
of trees, RF models may show slower prediction generation
than other techniques. Despite their reliability, RF models
can nevertheless experience overfitting if not fine-tuned [38].
We employ a RF Classifier with the following features.
It creates a collection of 10 DTs, each tree can reach a
maximum depth of 10 levels. To divide a node within a
tree, a minimum of 2 samples is necessary and we ensure
consistency and reproducibility by utilizing a fixed random
seed of 10.

3) GRADIENT BOOSTING (GB)

Gradient Boosting (GB) is an advanced ML technique
popular for its remarkable predictive model and versatility
as part of the ensemble learning family [48]. GB constructs
a robust predictive model by combining the strengths of
multiple simpler models, often decision trees. At its core,
GB addresses the limitations of individual models by
sequentially refining predictions, each step correcting the
errors of its predecessors. The gradient concept guides this
iterative process, highlighting how the model’s performance
can be enhanced. By iteratively building upon weak learners,
It uncovers intricate patterns within data that might elude
individual models, resulting in a powerful and finely-tuned
predictive engine. We configured GB Classifier with the
settings, to employ an ensemble of 10 DTs. There are no con-
straints on the maximum depth of each tree. Reproducibility
and consistent results are guaranteed by using a fixed random
seed of 10.

4) SXAD

The understand the workings of the SXAD framework we
need to understand first, what are the Shapley values. The idea
of Shapley values is derived from cooperative game theory,
which allocate a player’s share to the output of an entire
game [49]. This assumes the presence of a cooperative game
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Algorithm 1 SXAD Framework
Input : HDFS Dataset
Output: Key Features (Events)
Procedure Data Parsing using Drain Parser and
extracting features using TD-IDF

Normalize Features using zero-mean;
Procedure Log Anomaly Detection Models Training

Initialize Training and Testing Sets;
Initialize Models;
Models < Models U {Decision Tree (DT),
Random Forest (RF), Gradient Boosting (GB)};
for each Model in Models do
Train Model using Training Data;
Models «<— Models U {Trained Model};
end
Procedure Log Anomaly Detection Models Testing

Initialize Detected Anomalies;

for each Model in Models do
Apply Model to Testing Data to predict

anomalies;
Detected Anomalies < Detected Anomalies
U {Predicted Anomalies};
end
Procedure Explain Anomalies using SHAP

Initialize Explanations as an empty set;
for each Anomaly in Detected Anomalies do
Use SHAP to explain the prediction of Anomaly

for key feature;
Visualize the explanations in the Explanations set;
end

in which a group of players collaborates to achieve a common
objective. Shapley values represent the marginal constituency
of each player towards the outcome. Shapley values are an
idea acquired from the writing of insightful game hypotheses
to evenly credit a player’s commitment to the final product of
a game [50]. These values catch the negligible commitment
of every player to the outcome. By assuming, in our study,
that each log record is a player in a game where the forecast
determines the payoff, we may use this method to interpret
the log anomalies. Numerically (1):

(D] — |x| — I)!
=3 PR o - o

x—(D—i)
D = Feature set
X = Subset of features
i = Particular feature
y = Function that gives prediction

E. SHAP
SHAP is a ML interpretability approach that is model-
independent [51]. The benefit of SHAP is that when
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employed in ML, it enables a computationally effective
appraisal of Shapley values. It can be mathematically
represented as (2):

M
g =¢o+ > ¢ +3 )
Jj=1
g  =model of explanation
z €{0,1}
M =1 means a presence of the feature and 0 means
otherwise, z’ represents the vector
M = Maximum size of coalition

¢; = Attribution for a particular feature

LAD has various issues related to interpretability, account-
ability, transparency, and trust. The complex algorithms used
for anomaly detection can make it difficult to interpret why
certain events are flagged as anomalous, which can lead to
a lack of transparency and trustworthiness in the system.
Moreover, false positives and false negatives can further
erode stakeholder trust in the effectiveness of the system [3].

Log Collection
(HDFs)

!

Preprocessing

DT | RF | GB

Log Parsing

(drain)
Feature
Model
Extraction Selection Perfurmavnca
(TF-1DF) Evaluation

Normalization
(Mean)

k.

SXAD
(Explanation)

Visualization |+«—]

FIGURE 4. Flowchart of proposed SXAD framework.

XAI provide solutions to these challenges by increasing
the interpretability and transparency of anomaly detection
systems. XAI techniques like feature importance, rule-
based systems, model interpretation, and human-in-the-
loop approaches can help stakeholders understand the
decision-making process of anomaly detection systems and
increase their trust in the framework’s capability to correctly
distinguish and respond to anomalous events [47] and [48].
This paper proposes an SXAD Framework (Figure 2) using
XAI-SHAP as a stepwise introduction about the working
of the framework architecture is already defined earlier to
better understand the methodology. After log collection,
we parsed the HDFS dataset using Drain [39] to convert
unstructured to structured logs, then applied TF-IDF [40]
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and Mean Normalization [41] for feature extraction and
normalization, and then applied various ML models (DT,
RF, and GB) separately for Anomaly Detection, followed
by the SHAP framework [17]. Analysis and results of the
applied model with SHAP are discussed in the Result section.
The working of the proposed SXAD architecture is depicted
as a flowchart in Figure 4. In our work, Shapely values
are the features of our dataset that contribute to the role
towards model interpretability and explainability. The SHAP
framework helps us to improve anomaly detection by pro-
viding explainability and increasing the interpretability and
transparency of black box ML models [47]. The framework
can identify which features are most important for detecting
anomalies and help explain why certain events are being
flagged as anomalous. By interpreting how the ML model
is making decisions, stakeholders can better understand the
system’s decision-making process and increase their trust in
its ability to accurately identify and respond to anomalous
events [45]. The XAI-SHAP framework can also incorporate
human professionals in the process of determining the course
of action, further improving the accuracy and effectiveness
of the system [49]. We provide the interpretable, explainable,
and transparent analysis of the LAD framework using SHAP
with numerous visualization explanations and interpretation
techniques like Feature Importance, SHAP Summary Plot,
and SHAP Force Plot. The detailed analysis of each step is
mentioned below for easy understanding for the reader in the
section mentioned below.

F. SHAP FEATURE IMPORTANCE

SHAP (Shapley Additive exPlanations) feature importance
plot is a graphical representation of the effect of every feature
on the model’s predictions [52]. It is based on the Shapley
values, which quantify the contribution of every feature.

The importance plot of the three (3) models by SHAP
feature displays the most important features ranked by their
absolute Shapley values, to the model output features to be
displayed.

The SHAP feature importance plot is composed of a
horizontal bar chart wherein each bar symbolizes the effect
of a feature on the model’s outcome. As depicted in
Figure 5, 6, and 7 bar plots display SHAP values, illustrating
the overall significance of each feature. This significance is
determined by calculating the mean absolute value of each
feature throughout the entirety of the dataset. The length
of the bar represents the magnitude of the Shapley values.
As the plot result shows the most important event (feature) is
cf9b33dc and 797b9c47 in both DT and RF models. So we
can further investigate the role of the most important event
(feature) by analyzing the template of event ID.

G. SHAP SUMMERY PLOT

The SHAP (SHapley Additive exPlanations) summary plot
is like a graph showing each feature’s importance in a
ML model. It does this by summing up how each feature
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FIGURE 5. The importance plot by SHAP Feature using DT.

affects the model’s predictions for the entire dataset. The
idea behind this graph comes from Shapley values, which
help determine the contribution of all the features to the
model’s prediction [52]. In the SHAP summary plot, every
dot represents a single incident in the dataset, and they are
all on a scatter plot. The X-axis shows the size of the SHAP
value, which tells us how much a feature affects the model’s
prediction. On the Y-axis, we can see the name of the feature.
The color of each dot shows the feature’s value for that
specific instance — blue means it is a low value, and red means
a high value.

As shown in Figure 6, 7, and 8 for the SHAP summary plot
using various implemented ML models, There is observable
evidence that suggests a correlation between the value of a
certain attribute and its influence on the prediction outcome.

From a visualizing and analysis perspective, the horizontal
axis reflects the SHAP values associated with both high
and low predictions. Meanwhile, the vertical axis, centered
at zero (0.0), signifies no substantial effect on prediction
outcomes. To clarify, a SHAP value of zero (0.0) suggests
minimal influence on predictions, or values approaching zero
indicate lower-quality predictions. Conversely, high-quality
predictions, where SHAP values deviate significantly from
zero, indicate either positive or negative correlations.

H. SHAP FORCE PLOT

The SHAP force plot is a type of graph that provides a detailed
explanation of the output of an ML model for a single instance
as for local explanation on HDFS dataset. Each instance
represents a feature as a vertical bar in the plot, with the length
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FIGURE 6. The importance plot by SHAP feature using RF.

797b9c47
cfob33dc
2f313c72
fac2c191
d7507dle
46f6e99a
0d168c98
bb837bbd
be6f070c
6caae5bd
d23206¢c6
2elcfOaa
53c00e5f
b0023896
fa05ffa7
b46e298a
6f83a284
5e47c5c3
4ed2a0c0

5ac8245b

0.000 0.005 0.010 0.015 0.020 0.025 0.030
mean(|SHAP value|) (average impact on model output magnitude)

FIGURE 7. The importance plot by SHAP feature using GB.

of the bar exhibiting the feature’s importance in determining
the model’s prediction. Every feature’s contribution to the
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FIGURE 8. The summary plot by SHAP using DT.

prediction depicts the plot with an arrow pointing toward that
influence [53]. The horizontal bar in the model represents
the baseline value, corresponding to the average forecast
throughout the entire dataset. The feature bars are assigned
colors corresponding to their respective feature values, where
blue shows a low value and red indicates a high value.

The SHAP force plot is an effective tool for evaluating the
results of an ML model for a singular instance. Through a
comprehensive examination of the plot, we can get insight
into how each characteristic influences the forecast, enabling
them to discern the most significant aspects of that specific
occurrence. This tool can help users acquire a comprehensive
insight into the model’s action, enabling them to make well
-informed judgments grounded in the predictions generated.

Figure 7 shows a particular log data insight using a
forced plot of how various events contributed to model
interpretability toward prediction. Red indicates features that
increased the model’s score, while blue indicates features that
decreased the score.

IV. RESULT AND DISCUSSION

Given that LAD constitutes a binary classification task,
we utilize precision, recall, and F1 score to assess its
accuracy. In LAD precision measures the proportion of
detected anomalous logs accurately identified as anomalies
among all logs predicted as anomalies, while recall assesses
the percentage of anomalies correctly identified by a model
among all actual anomalies, with the F1 score representing
the harmonic mean of precision and recall.
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FIGURE 9. The summary plot by SHAP using RF.

A confusion matrix is a helpful instrument for analyzing
the effectiveness of a classification model that is frequently
employed in ML model evaluation techniques. The confusion
matrix is a tabular representation of the model’s predictions
relative to the actual target variable values. It is commonly
used to evaluate the model’s accuracy, recall, and F1 score [3].
The confusion matrix comprises four(4) fundamental compo-
nents: true negatives (TN), true positives (TP), false negatives
(FN), and false positives (FP).

True Positives (TP): The count of accurately classified
positive observations. It represents the count of anomalies
accurately identified by the model.

True Negatives (TN): The count of accurately anticipated
negative observations.

False Positives (FP): The count of instances that were
inaccurately classified as positive. It indicates the count of
normal logs incorrectly predicted as anomalies by the model

False Negatives (FN): The count of instances that were
inaccurately classified as negative. It signifies the count of
anomalies that the model fails to detect.

By examining these four elements, we can derive several
evaluation metrics:

A. ACCURACY
It measures the overall correctness of the model’s predictions
and is calculated as

TP + TN

Accuracy = 3)
TP+ TN + FP + FN
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FIGURE 10. The importance plot by SHAP using GB.

B. PRECISION

Precision focuses on the proportion of correctly predicted
positive observations out of all positive predictions, and it is
calculated as

. P
Precision = —— 4)
TP + FP
Precision indicates how reliable the positive predictions

are.

C. RECALL
Recall is also known as true positive rate or sensitivity.
It measures the proportion of correctly predicted positive
observations out of all actual positive observations, and it is
mathematically known as:

TP

Recall = ——— (5)
TP + FN

Recall shows the model’s ability to find the positive
instances correctly.

D. F1 SCORE

As a harmonious balance between precision and recall, the
F1 Score gives a single measure of a model accuracy that
covers both of these aspects. The calculation of F1 Score is
as follows:

FlScore — 2 x (Prfc.ision X Recall) ©)
Precision + Recall
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FIGURE 11. A view of force plot depicts the feature contribution at particular instances.

As we applied various ML models individually with the
help of KernelSHAP method, which is a model agnostic
XAI approach applies on benchmark HDFS system log.
XAI-SHAP to deeply analyze the performance of the ML
Model by leveraging the power of XAI-SHAP and its
various interactive and interpretability visualization guidance
to better understand the SXAD framework performance, like
the role of key features contribution, its base value and impact
towards model interpretability, trust and transparency. We use
a 70:30 ratio dataset for the ML model and experiments are
performed using the machine whose configurations are given
below in Table 2.

TABLE 2. System details.

Processor | Core™17-9700 CPU @ 3.00 GHz
RAM 32 GB
oS Windows 11 Pro 64 Bit

The results of using several different ML models are
presented in Table 3. accuracy, precision, recall, and F1-
measure are shown in percentage with four decimal digits All
ML models are mentioned with performance along wit their
accuracies.

TABLE 3. Model performances using various algorithms.

Model | Accuracy Precision | Recall F1-Measure | TN FP | FN | TP

DT 99.9884 99.9710 99.9559 | 99.9971 167467 | 0 5 5047
RF 99.8516 99.8791 99.8791 | 99.8779 167464 | 3 7 5045
GB 99.9947 99.9947 99.8791 | 99.8779 167467 | 0 7 5045

All ML model efficiencies are remarkable but a compari-
son given values of the confusion matrix of all models shows
approximately the same result in terms of True Negative
(TN). The DT and GB model show approximately the
same result among all models in terms of TP and False
Positive FP values. In contrast, the traditional ML models are
unable to provide an explanation, transparency, and feature
contribution role toward model interpretability. Therefore,
the XAI-SHAP model is developed to support both local
and global model interpretability as well as transparency,
trust, and explainability. The contribution of the top five
events (features), in Table 2, of model interpretability towards
positively detecting anomalies in the log. In addition, Table 3
shows the events (features) that contributed very little or did
not affect model interpretability.

So at the end, we identify those key contributions of events
(feature) towards positive model interpretability across all the
models using a comparison of result in Table 1 and Table 2
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TABLE 4. Table 4: Showing key five events (Features) effectively
contribution towards model prediction.

Model | Events Contribution
(Features)
DT cf9b33dc.
fac2c191
797b9c47
d7507dl1e
2£313c72
RF cf9b33dc
2elcfOaa
b0023896
79769c47
0d168c98
GB 797b9c47
cf9b33dc
2f313c¢72
fac2c191
d7507d1e

Positive

Positive

Positive

TABLE 5. Showing ineffective five key events (features) towards model
predication.

Model | Events Contribution
(Features)
DT bb837bbd
46f6e99a
be6f070c
6caaeSbd
0d168c98
RF d6115493,
bb837bbd
53c00e5¢,
be6fo7oc,
6caaeSbd
GB 46f6¢99a,
0d168¢98,
bb837bbd,
bebfo7oc,
6caae5bd

Very Less / No Effect

Very Less / No Effect

Very Less / No Effect

results. The SXAD also facilitates the identification of those
events (features) that can influence the model interpretation
both positively and negatively (based on visualization results
and data) in the future. So we provide these results, although
they are very scarce, as we discover in our log data after
detailed analysis of various visualization results as provided
in Table 5.

We have further explored as the root-cause behind the
system failure with the aid of event templates from system
logs, and with the help of the SHAP Feature importance Plots.
We determined the important event id as features contribution
towards interoperability of LAD as shown in Table 7, we can
examine and investigate this further as a step toward the
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TABLE 6. Showing most influenced events (Features) contribution
towards model predication.

S.No | Key Common Events
1 cf9b33dc

2 79769c47

3 fac2c191

4 d7507d13

5 2f313¢72

TABLE 7. Showing most influenced events ID (features) with its
corresponding event template.

Event ID | Event ID Template

ct9b33dc | Unexpected error trying to delete block blk_<*>.
BlockInfo not found in volumeMap.

79769c47 | Received block blk_<*> of size <*> from /<*>

fac2c191 | BLOCK* NameSystem.addStoredBlock: Redundant
addStoredBlock request received for blk_<*> on
<*#>:50010 size <*>

d7507d13 BLOCK* ask <*>:50010 to replicate blk_<*> to
datanode(s) <*>:50010

2f313¢72 | BLOCK* NameSystem.addStoredBlock: blockMap
updated: <*>:50010 is added to blk_<*> size <*>

Predicted Classes

Normal (0) Anomaly (1)

Normal (0) True Negative (TN) False Positive (FP)

Actual Classes

Anomaly (1) False Negative (FN) True Positive (TP)

FIGURE 12. Confusion matrix.

explanation, transparency, and interpretation of log anomaly
detection.

Our proposed framework and its results show all aspects
of XAI-SHAP facilitation towards model interpretability,
transparency, trust and explanation for LAD using the
benchmark dataset HDFS System Log. As identification of
key events contributing positively and negatively towards
model interpretability, identification of such events has no
role in model prediction. Furthermore, such critical events
may influence interpretability or system performance in the
future if taken in correlation. These key events can be further
investigated in performing tasks such as troubleshooting,
performance improvement, and debugging of the system.XAI
improves LAD by explaining the causes of anomalous events.
This reduces the amount of work required to handle false
alarms while also increasing trust in the system by explaining
why detection’s happened. XAI also enables effective
troubleshooting through the root-cause analysis and allows
security specialists to configure the system to compliance
their specified requirements. Overall, by leveraging log
anomaly detection with XAI in Industry 5.0, organizations
can achieve a significant reduction in system failures. This
translates to increased efficiency, reduced downtime, and a
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more sustainable and human-centric approach to industrial
maintenance.

V. CONCLUSION

This study explains SXAD utilization in detecting log
anomalies using XAl, which is based on SHAP. An extensive
HDFS dataset is utilized with a highly accurate Drain
parser. Several ML models, such as DT, RF, and GB, are
employed, showing remarkable accuracy levels. Furthermore,
the suggested methodology incorporates various evaluation
metrics, including precision, recall, and F1-Score, to facilitate
a comprehensive examination of the performance measures.
The objective of the presented method is to offer a solution
that is more trustworthy, transparent, and interpretable in
order to detect anomalies in logs. By comparing significant
features, we determine the most impactful events (features)
have on enhancing interpretability in all models. The
proposed SXAD framework makes it easier to recognize
occurrences (features) that have the potential to influence
model interpretation in either a favorable or unfavorable
way. A more in-depth investigation of the underlying
causes of failures, a knowledge of the roles that feature
contributions play in anomalies, and interpretation through
a variety of visualization techniques are all made possible
by the proposed framework. Our efforts also highlight the
significance of applying XAI to detect anomalies in system
log which might causes large-scale system failure, in order
to realization the aim of Industry 5.0. Our contribution are
novel in the area of LAD because no earlier work has been
done, establishing the way for future research and progress
in the field of LAD.

VI. FUTURE WORK

Machine learning model need fairness. Our future work will
extend our contribution to reduction in fairness and biasness
in XAI models as is critical for ethical consideration.
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