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ABSTRACT Deep reinforcement learning (DRL) has emerged as a promising technique for optimizing the
deployment of unmanned aerial vehicles (UAVs) for data collection in wireless sensor networks (WSNs) and
Internet of Things (IoT) applications. With DRL, UAV trajectory can be optimized, optimal data collection
points can be determined, sensor node transmissions can be scheduled efficiently, and irregular traffic
patterns can be learned effectively. In view of the significance of DRL for UAV-assisted IoT research in
general and, more specifically, its use for time-critical applications, this paper presents a review of the
existing literature on UAV-aided data collection for WSN and IoT applications related to the application
of DRL to minimize the Age of Information (AoI), a recent metric used to measure the degree of freshness
of transmitted information collected in data-gathering applications. This review aims to provide insights into
the state-of-the-art techniques, challenges, and opportunities in this domain through an extensive analysis of
a sizable range of related research papers in this domain. It discusses application areas of UAV-assisted IoT,
such as environmental monitoring, infrastructure inspection, and disaster response. Then, the paper focuses
on the proposed works, their optimization objectives, architectures, simulation libraries and complexities of
the variousDRL-based approaches used. Thereafter discussion, challenges, and some opportunities for future
work are provided. The findings of this review serve as a valuable resource for researchers and practitioners,
guiding further advancements and innovations in the field of DRL for UAV-aided data collection in WSN
and IoT applications.

INDEX TERMS
Age of information (AoI), data acquisition, deep reinforcement learning (DRL), drones, energy-efficiency,
Internet of Things (IoT), scheduling, trajectory, unmanned aerial vehicles (UAVs), wireless sensor networks
(WSN).
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I. INTRODUCTION
The utilization of unmanned aerial vehicles (UAVs) for
data collection in wireless sensor networks (WSNs) and
IoT applications has gained significant attention due to
their rapid mobility and maneuverability. In both rural and
urban monitoring scenarios, UAVs deliver sensed data from
remote areas to designated destinations, such as base stations.
These data-gathering applications are vital in time-critical
applications such as medical supply delivery and disaster
scenarios where life could be at stake. Ensuring timely data
delivery is crucial in such applications. This necessitates a
clear definition of the concept of timely data delivery. The
Age of Information (AoI) metric has recently been proposed
to define timeliness in wireless communication applications,
particularly, those that involve the transfer of data from source
to destination.

A. AGE OF INFORMATION
AoI can be defined as the elapsed time since the most
recent update packet generated at the source node was
received at its destination [1]. AoI and its variants (average
AoI, peak AoI, sum AoI, weighted sum AoI etc) have
thus become popular in recent times as they could help
to quantify the freshness of collected information in data-
gathering applications, including data sensed by ground-
based devices (such as sensors and internet of things (IoT)
devices) and transported by UAVs. The evolution of AoI
largely depends on the underlying system assumptions and
several examples can be found in literature, for instance,
[2], [3], [4], [5]. Similarly, AoI characterization has gained
popularity and is scattered in different portions of literature.
As a result of the strict AoI requirement for real-time status
updates and applications, researchers have studied AoI-
aware UAV-assisted wireless transmission in the IoTs [5].
AoI applications extends beyond UAVs and involves other
real-world applications such as caching, energy harvesting
networks, networked monitoring and cyber physical systems,
as well as data-analytics applications, information-oriented
systems and the IoTs [6]. Particularly, IoT applications
constitutes one of the most popular sensing applications
which have experienced unprecedented growth in the last
couple of years.Many of these applications require data either
in real-time or in a very fresh state. An industrial robot,
for instance, is an example of IoT application that requires
data sensing and timely delivery of information. Artificial
intelligence may be used to analyze the data collected by
these robots or sensor nodes deployed within the factory to
optimize the production process in a timely fashion [7].

B. THE RISE OF DRL FOR AOI MINIMIZATION IN
UAV-ASSISTED IOT
Researchers have focused on minimizing AoI in UAV-
assisted IoT applications using machine learning-based
methods. Particularly, most researchers formulate complex
optimization problems with diverse constraints that cannot

be effectively solved by traditional optimization algorithms
especially due to the dimension of the problems such
as the UAV trajectory and the large number of sensor
node transmissions to be scheduled. Thus, most authors re-
formulate the problem as a Markov Decision Process (MDP)
which is a prerequisite to using reinforcement learning-based
algorithms to solve the formulated problems.

However, because many of these problems are multi-
dimensional with large discrete or continuous spaces, differ-
ent classes of deep reinforcement learning algorithms have
been adopted. This is a very technical subject, and previous
surveys [8], [9], [10] have not captured this technicality, even
though they have provided a large understanding of the nature
of problems solved and a general classification of aspects
and objectives. One of the findings in these works is the
predominance of deep reinforcement learning methods for
solving the associated problems, leaving a gap to thoroughly
review and study these works from a DRL perspective, espe-
cially since it is the heart of the technicality of the proposed
solutions and the most fundamental background that new
researchers should understand and acquire. This review aims
to fill that gap by providing a broad understanding of the
proposed solutions using DRL while identifying the classes
of algorithms, their objectives, the MDP formulation, and
their algorithms, as well as discussing some of the interesting
insights that could be derived from the problem formulation
and DRL algorithms used in the discussed works.

This survey provides an overview of DRL techniques,
their applications, and the challenges associated with their
implementations. The key concepts and advancements of
various DRL-based implementations of a wide range of
research papers have been reviewed and summarized. This
survey aims to provide an overview of recent advancements,
challenges, and applications of DRL in UAV-aided data
collection. By examining the recent techniques, this survey
aims to contribute to the development of effective DRL-
based solutions for data collection in UAV-assisted systems
towards improving trajectory optimization, energy manage-
ment, scheduling planning, and other important aspects, and
objective functions.

The survey covers various aspects of DRL, including an
introduction to reinforcement learning and the role of neural
networks, classes of RL algorithms, Bellman’s Equation
and common model-free RL algorithms. Subsequently,
the proposals using DRL in both single and multi-agent
environments for AoI minimization in UAV-assisted wireless
communication are presented. Particularly, in this paper,
we include papers that have not considered a terrestrial BS
or data center [5], [11], [12], [13], [14], [15] as opposed to
the prior two surveys on this subject [8], [9] that exclude
these works. Next, the MDP formulation for the DRL
framework in these works was explained in details including
relevant equations and mathematical representations for the
states, actions, and reward functions. Then a comprehensive
overview of lessons learned from these works from diverse
technical perspectives are explicitly discussed. Moreover,
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the challenges associated with training DRL agents, such as
sample inefficiency, exploration in high-dimensional spaces,
stability of learning, and safety concerns, are presented.

II. RELATED SURVEYS, MOTIVATION AND
CONTRIBUTIONS
To the best of our knowledge, this paper stands as the
only survey targeted at the utilization of DRL for AoI
minimization in UAV-assisted IoT applications, classifying
the algorithms and providing details on different aspects
such as target objectives, MDP representations, simulation
libraries, algorithm complexities, and parameter settings,
as well as challenges and future considerations. A discussion
of some of the most relevant reviews related to AoI
minimization and the use of DRL for UAVs are provided in
what follows.

A. PRIOR SURVEYS ON AOI
Several researchers have reviewed different portions of AoI
literature different from the goal in this paper, for instance,
Yates et al. [16], provides a summary of contributions on
AoI research for low-latency cyber physical systems and
applications requiring time-stamped status updates. This
includes methods of analysis and evaluations and scenarios
involving single-hop and multi-hop networks. Abbas et al.
[17] provides an overview of AoI and its variants in
massive (large-scale) IoT networks focusing on queuing
policy, scheduling, stochastic modeling and multiple access
schemes. Similarly, Yu et al. [18] provided an overview of
AoI in cellular internet of things providing its requirements,
problem solving methods and challenges in addition to a
proposed prediction-based scheme for status updates. Wang
et al. [19] also presented a survey on AoI-optimal sampling
policies as well as packet management strategies with a focus
on resource and energy-constrained nodes. Amodu et al. [8],
[9] have presented surveys on AoI minimization in UAV-
assisted IoT where DRL was identified to be one of the
most common trends in performance optimization [8], and the
importance of design aspects such as trajectory optimization,
scheduling and energy management were emphasized [8].
None of these works have explored the use of DRL for AoI
minimization in UAV-IoT despite researchers have invested
huge amounts of time on this subject and very significant
achievements in this domain.

B. PRIOR SURVEYS ON THE APPLICATIONS OF DRL
Several related surveys have been conducted to explore the
application of deep reinforcement learning in the context
of unmanned aerial vehicles (UAVs). Table 2 provides a
summary of some of reviews on DRL applications in various
fields. These surveys provide comprehensive overviews of
DRL techniques, algorithms, and applications specific to
UAVs.

The authors [20] presented a comprehensive review on the
applications of DRL with respect to wireless communication

and networks. These include autonomous and decentralized
wireless network applications such as UAV and IoT in which
local decisions are required for optimal network performance
within an uncertain environment. In such networks, RL has
been deployed to obtain optimal policies for decision-
making, especially when there is a finite and small state and
action space, whereas DRL has been deployed for large-
scale networks in situations with a larger state and action
space. The authors provide a tutorial on both fundamental and
advanced concepts and models relating to DRL. The variants
and modifications aimed at solving communication and net-
working problems include data offloading, network security,
preserving connectivity, dynamic network access, wireless
caching, and data rate control. In addition, applications of
DRL for resource sharing and data collection are discussed,
with an exposition on challenges faced and open issues.

Although UAVs have gained popularity in a lot of civilian
and military applications such as traffic patrol, surveillance,
remote sensing, rescue operations, infrastructure inspection,
environmental monitoring, etc., the autonomous UAV oper-
ation itself poses a major challenge, especially in unplanned
circumstances. This has motivated the proposition of DRL
for guiding, navigating, and controlling the UAV amongst
other artificial intelligence algorithms. Thus the authors [21]
focus on a detailed description of DRL-based techniques
and identify their limitations for autonomous UAV control.
According to the authors, most works have focused on the
use of DRL for UAV control in simulation as opposed to real
field-test scenarios.

There has been an increasing demand for drones in
applications where UAVs are used autonomously to perform
tasks and avoid obstacles using reinforcement learning
algorithms. Choosing the right RL algorithm to tackle
navigation problems is thus essential, which motivates the
authors to identify the UAV navigation applications and tasks
and discuss the frameworks and simulation software used for
UAV navigation. The authors [22] classify RL algorithms
using certain characteristics such as features and use-cases for
different navigation problems to help technical experts select
the most suitable RL algorithms for their peculiar problems
and use-cases. Furthermore, gaps and opportunities for UAV
navigation research were identified.

Advancement in cooperative multi-agent systems for
carrying out complex tasks in a coordinative manner has
increased the popularity of UAV applications in recent years.
This motivates the authors [23] to study multi-UAV scenarios
and classify them into five groups based on their unique
tasks (coverage, communication, target-driven navigation,
computational offloading, adversarial search and game). The
authors systematically selected the works using DRL for
scalable and cooperative multi-UAV communication while
critically discussing some of their peculiarities and providing
future research directions via a critique of the current
assumptions and constraints in DRL-based collaborative
multi-UAV research.
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Modern cellular networks are largely characterized by high
inter-cell interference, particularly because of the universal
frequency reuse approach for maximizing spectral efficiency.
This is even more challenging as UAVs are introduced into
the cellular architecture, as the LOS links also contribute
to the level of interference, thus motivating the need for
interference management schemes. DRL-based interference
management was proposed [24] due to the challenges
of traditional solutions in which a priori knowledge of
channel information of interfering signals is required. Fur-
thermore, the authors discuss novel approaches to scale
and decentralize algorithms via multi-agent reinforcement
learning.

C. CONTRIBUTIONS
Through this survey, we aim to provide researchers, prac-
titioners, and enthusiasts with a thorough understanding of
the current state-of-the-art and developments in DRL for
AoI minimization in UAV-assisted IoT. By highlighting the
key techniques, applications, and challenges, we intend to
inspire further research and advancements in this exciting
and rapidly evolving field. Undoubtedly, DRL has many
potential applications and benefits for various domains
due to its ability to handle high-dimensional state and
action spaces, as well as solve very complex real-world
problems.

In this paper, we have used both Google Scholar and
Scopus databases for selecting the reviewed papers. For the
Scopus search, on June 29, 2023, we used the keywords
uav OR drone OR unmanned AND ‘‘age of information’’
OR ‘‘information freshness’’ OR ‘‘data freshness’’ AND
‘‘deep reinforcement learning’’ OR drl AND iot OR wsn
while excluding results on Edge computing to obtain the
papers reviewed in this study. Different from all the prior
surveys in Section II, this paper presents the following
contributions:

• An overview of UAV-assisted WSN/IoT applications
with a view to emphasizing the time criticality of some
of these applications.

• A summary of the overall landscape and proposals
using DRL for AoI minimization in UAV-assisted IoT
applications with their RL architectural setup.

• A classification of the proposals using DRL within
the framework of AoI-minimization for UAV-assisted
IoT into three categories: policy-based, value-based,
and actor-critic based on the DRL algorithms used for
problem-solving.

• A summary of literature based on the target objective
(trajectory, energy efficiency, scheduling) with the
benchmark algorithms for each proposal.

• A summary of algorithm complexities, simulation
libraries, and some derived lessons are provided.

• An exposition into challenges and future research
considerations within the framework of DRL for AoI-
minimization in UAV-assisted IoT.

TABLE 1. List of abbreviations.

D. PAPER ORGANIZATION
This review follows a general to specific organization style
where the paper is first positioned with respect to existing
literature, background technical information is first provided,
then the reviewed papers are summarized and details are
provided on their problem formulation, algorithms proposed
to solved the problems, simulation, complexity as well as
challenges and open research opportunities. Specifically,
this survey paper has the following structure: Section II-B
presents several surveys that explore the DRL applications in
UAVs environments, Section III highlights several common
UAV-assisted IoT applications, Section IV outlines the
common DRL algorithms, Sections V and VI presents recent
research works related to AoIminimization using DRL in sin-
gle and multi-agents architectural environments respectively,
Section VII provides summary of critical issues including
target objectives, algorithm complexities and parameters
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TABLE 2. Summary of review papers on Deep Reinforcement Learning (DRL) implementation in various domains.

setting in the discussed works, Section VIII presents some
of the challenges identified from the studies and proposes
opportunities in this research area. Finally, Section IX
concludes the paper. Acronyms and their meanings are
provided in Table 1 while a brief overview of the paper
structure is provided in Figure 1 for ease of navigation.

III. UAV-ASSISTED IOT APPLICATIONS
In this section, we highlight several UAV-assisted IoT
applications published in the literature. This is categorized
into monitoring, including industrial and structural as well
as environmental monitoring, smart city, data gathering,
security, health, agriculture and disaster management appli-
cations. Fig. 2 provides a visual summary of some of these
applications.

A. MONITORING APPLICATIONS
Integrated systems based on wireless sensor networks
(WSNs) and unmanned aerial vehicles (UAVs) with electric
propulsion are emerging as state-of-the-art solutions for large
scale monitoring [35]. Application references are highlighted
in various domains such as environmental, agriculture,
emergency situations and homeland security. UAV-assisted
IoT-based monitoring has been extensively studied in the
literature [36] especially for large-scale data collection
applications [37] and many more. In [38], multi-UAVs
network architecture has also been considered.

1) INDUSTRIAL AND STRUCTURAL MONITORING
UAVs have huge potential as sensing tools in the industry
because they can be used to proactively address many
problems. For instance, they can be used to facilitate decision
making and quantify production. They provide a very
consistent technological solution for event monitoring and
cost-saving data collection [39]. UAV assisted IoT has diverse
applications in industrial and structural monitoring. In this
respect, the authors in [40] deployed a pre-programmed
drone as a surveillance gadget to monitor illegal electrical
connections and terminate detected lines.

The authors in [39] propose a smart monitoring and
control system which integrates UAV into an industrial
control mechanism via an IoT gateway. Photos taken by the
UAV are computed in the cloud instantaneously and in a
systematic manner. In other words, the UAV performs visual
supervision and the service is integrated into the control loop
in an industrial concrete plant. The results indicate that it is
feasible for efficient and reliable system operations useful for
reducing waste and improving quality.

UAVs and WSNs are advantageous in bridge health
monitoring. Bridges are exposed to different forms of
damage after construction. Thus, it is important to perform
qualitative bridge maintenance to improve the lifetime of
bridges and their serviceability (thereby saving lives). In this
regard, bridge inspection is fundamental [41]. WSNs have
been identified as a very good alternative to visual bridge
inspection, however, it has its associated challenges such as
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FIGURE 1. Organization of this paper.

battery failure. Hence, using UAVs can help to overcome
these challenges for bridge health monitoring [41].

2) ENVIRONMENTAL MONITORING
Massive IoT networks facilitate a wide variety of real-time
applications requiring local decision making and remote
monitoring and control via sensors [42]. IoT devices are
deployed to observe physical phenomena, such as tempera-
ture, pollution and humidity levels [2]. Air pollution detection
is a typical environmental monitoring application of UAV-
IoT which affects both our natural environment and our
health [43]. Sensors can be placed in strategic areas to
perform such monitoring tasks in smart cities effectively.
In [44], the data acquisition system is incorporated in UAVs
within the edge computing and IoT framework for early

forest fire detection. An integrated self-configured UAV-
WSN architecture can also be used to facilitate the a scale
acquisition of environmental data [45]. UAVs can also be
temporarily used to monitor marine environments rather than
using close-range base stations or satellites which are costly
in terms of infrastructure [46].
Furthermore, UAV-assisted IoT is promising for capturing

greenhouse gas emissions [47]. Drone-enabled IoT relays
facilitate high speed data collection for remote environmental
monitoring [48]. UAVs can also be used for air quality
monitoring. For instance, toxic gas detection sensor array
can be mounted on UAVs [49] for accurate localization
and better data monitoring. Environmental pollution and air
quality monitoring is not only needed in towns and urban
areas but also in remote and rural areas. Such solutions have
been proven effective and economical in [50] in which Long
Range (LoRA) mounted drone has been deployed that allows
the operator to control the position of the drone to take
measurements with the results are displayed in real-time on
a web application. Such air monitoring solutions can also be
infused into the smart city frameworkwhereby processed data
is displayed on a mobile device or a computer as seen in [43].
Another aspect of the environment that can be effectively

monitored using UAV-assisted IoT is the detection of
wildfires. Particularly, the occurrences of a wildfire has
become frequent in certain part of the world and are usually
severe such as bushfire incidents in Australia. This makes
wildfire management and detection receive much attention.
There are several ways by which wildfire can be detected
but many of them have their shortcomings. For instance,
the use of satellite imaging and remote-cameras result in
late detection as well as poor reliability [51]. However,
UAV-assisted IoT wildfire detection solution can be used to
improve and optimize the detection probability even when
there are constraints in terms of cost. IoT devices detect
fires and report to UAVs which offer more reliable wildfire
detection as compared to satellite imaging.

B. SMART CITY
UAV plays a major role in the development of IoT for
smart environment and smart city applications [44]. The
use of UAV-assisted IoT in smart city can take various
forms. For instance, in an IoT Low Power Wide Area
Network (LPWAN) deployment for smart city applications,
UAVs can be deployed to collect data on residential’s
energy consumption which is useful in remote and rural
areas [52]. As mentioned earlier, air quality monitoring can
also be fused into smart city framework which include real-
time monitoring and aerial-ground sensing, such as the one
deployed in Peking and Xidian University in China [53].

C. DATA GATHERING
Data gathering is the most studied application of UAV-
assisted WSN/IoT based architecture. Most of the related
literature on ageminimization had focused on this application
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FIGURE 2. Popular UAV-assisted IoT applications.

and identified timely and safe data collection as the crucial
requirements of UAV-WSN operation. There have been
several studies on the deployment of UAV-WSN for data
gathering with their unique peculiarities [54], [55], [56], [57],
[58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68].
In order to further motivate the applications of UAV-IoT-
based data gathering, it is important to note that some of these
works are aimed at addressing unique problems. For instance,
[59] aims to reduce cost of multi-hop WSN transmissions
via a mobile data collector and UAV. Reference [63] aims at
addressing problems related to lack of real-time data, [62],
[65] aim at reducing energy consumption while [67] aims
to reduce congestion of several SN concurrent transmissions
to UAV. The work by [62] has shown that data gathering in
WSNs using UAVs provides an efficient solution in regards
to energy considerations.

D. SECURITY
UAV-assisted WSN/IoT also plays a significant role in
security. For example, drones have been extensively studied
as surveillance devices in smart cities [69]. Particularly,
quadcopter drones can be used as for border surveillance [70].
Hence, public safety applications would largely benefit
from drones [71]. The use of UAVs has been studied and
implemented as a cost-effective security system in IoT.
Similarly, an IoT-based drone surveillance for industrial
security applications has been developed [72]. A swarm of
UAVs can also be deployed to perform search missions [73].

UAVs can also be deployed in autonomous indoor flight
operations [74], [75], [76]. They have also proven useful
for crowd surveillance [77] as well as IoT emergency
communications [78].

E. HEALTH
One major use of drones in recent years has been in the
area of health related. Specifically, the COVID-19 pandemic
had increased researchers interest in drones, specifically
for delivering drugs, medical consumables and equipments.
Drones could also have been used to disinfect surroundings
and verifty the conformance of the public with social
distancing regulations. In [79], the role of UAV-assisted IoTs
in managing the COVID-19 impact was extensively studied.

F. AGRICULTURE
Agriculture is indeed another popular application of UAVs.
UAV-assisted IoT has a huge potential in agricultural
applications and has been widely studied [80], [81], [82],
[83], [84], [85], in particular for spraying pesticides [86], as a
management platform [87] and as an intelligent framework
for precision farming [88]. Moreover, the IoT-based edge
UAV swarms have been used for distributed aerial processing
in smart farming [89]. This architecture has few unique
advantages including cost savings [90], [91]. In the context
of UAV-assisted IoT, several critical issues have also been
studied such as UAV path optimization [92], and the use
of remote sensing drones as mobile gateways in precision
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agriculture [93]. Also, the integration of IoT and drones for
monitoring orchards from pests [94] and smart irrigation and
real-time field monitoring [95]. Drones-assisted IoT was not
only used to monitor crops [96] but also in animal [97] as well
as pest and diseases [98] monitoring. In summary, UAV-IoT
is promising in agricultural monitoring applications [99] and
this includes many sub aspects of agriculture including soil
monitoring [100] as well as wildlife [101] and water quality
monitoring [102].

G. DISASTER MANAGEMENT
The widespread deployment of UAVs in ad hoc environments
is attributed to their ability to provide dynamic solutions, such
as in search and rescue operations [103]. UAV-assisted WSN
plays a significant role in large-scale monitoring applications
including disaster management [37]. Communication in
pre-disaster scenarios is easy since infrastructure is fully
operational [104]. In disaster management, IoT has become
an integral part of data exchange [105]. It plays a vital role in
the effective detection andmanagement of natural disasters as
multiple SNs are deployed in a large area to observe physical
processes [42]. The role of SNs in disaster management
include to sense, collect, process, and send data to server
via sinks [105]. Sensors can be used in several applications,
especially in hard-to-reach places, and disaster and post-
disaster scenarios. For instance, sensors can be used for
searching, locating, and rescuing survivors in disasters [106].
The use of UAV-assisted IoT has been extensively studied for
disasters (see [107], [108]), rescue operations [109], [110]
and emergency services [111].

IV. REINFORCEMENT LEARNING AND ITS ALGORITHMS
A. BACKGROUND ON MARKOV DECISION PROCESS
Markov decision process (MDP) is a mathematical frame-
work used for modeling decision-making problems in which
the outcomes are partly random and controllable. Thus, any
decision-making problems can leverage on MDPs, including
those adopting reinforcement learning-based solutions since
the outcomes are under the control of an agent that makes the
decision and are partly random in nature [20]. Optimization
problems which can be solved via dynamic programming and
reinforcement learning find MDPs framework very useful.

MDP framework is defined by a set of states, S, action, A,
transition probability, p (from state s to next state s’ after the
execution of action, a), and the immediate reward, r , obtained
after the action is performed. For short it is represented by a
tuple representing (S,A, p, r) [20].

In several cases, state measurements are partially observ-
able, which motivates the use of partially observable
MDPs(POMDPs), a generalized MDP. For POMDPs-based
problems, the agents do not fully observe the states and
hence, they maintain a probability distribution of states
based on observations and observation probabilities [112].
Thus, POMDPs-based problems involve two additional

FIGURE 3. Typical RL architecture.

components in comparison to MDPs, i.e., a set of observa-
tions, and observation probabilities [112]. In the next section,
RL is explained.1,2

B. REINFORCEMENT LEARNING
Reinforcement learning (RL) is a machine learning training
method in which an agent makes decisions and takes actions,
observes the results of the actions, then adjusts the actions
to achieve optimal results. RL basically consists of an agent
and an environment. Since the agent acts on the environment,
it requires some feedback on how well it is acting which
is achieved via either a reward or penalty provided by the
environment (refer Fig. 3). Actions have effects on the
environment and make the environment change states. Based
on the feedback from the environment, either reward as
positive reinforcement or penalty as negative reinforcement,
the agent makes intelligent decisions via this learning or
training process.

With the aforementioned, an agent learns its environment
independently by taking random actions and observing the
reward or penalty over a long period of time to determine
which action provides it with the most reward. However,
since it needs to explore all the possible states, its actions
can lead to exploring unnecessary areas (that is areas with
low reward). Hence the agent’s learning process become
less efficient and time consuming. In situations whereby the
model of the environment is not known beforehand, these
model-free RL algorithms learn directly from experience or
trial-and-error and use the feedback they receive to update
their internal policies or value functions. Model-free RL
algorithms are known useful for solving complex problems.
On the other hand, if some information about the environment
or underlying process is known beforehand, model-based

1https://www.mathworks.com/videos/reinforcement-learning-part-2-
understanding-the-environment-and-rewards-1551976590603.html

2https://www.mathworks.com/videos/reinforcement-learning-part-3-
policies-and-learning-algorithms-1554395009678.html
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RL approach is preferred. Model-based RL algorithms learn
the dynamics of the environment from experience and use
the learned model to predict the outcomes of actions. This
approach takes a shorter time since not all areas of the state
space have to be explored unnecessarily.

1) THE RL AGENT
An agent is mainly composed of two interdependent com-
ponents namely policy and a learning algorithm. To choose
an effective policy, the nature of the underlying environment
should be taken into consideration. The policy function takes
the state as input and outputs the actions which can be
represented by a state-to-action mapping (via Q-function),
usually in tabular form with states as rows and actions as
columns, also known as the Q-table. Using this table, the
quality (Q) of the agent’s decisions can be activated based
on the desired objectives.

In many cases, there may be a very large number of
possible actions taken by the agent, which may be difficult
to capture in a table. In such cases, a continuous function is
used instead. However, this makes it particularly difficult for
us humans to learn the right parameters to predict the nature
of this function accurately ahead of time, especially for highly
complex or high-degree systems. Thus, a global function
approximator that can handle continuous state-action spaces
without needing a priori knowledge of structure is required.
This motivates the use of neural networks, especially when it
is impractical to use tables for a huge state-action space.

2) ROLE OF NEURAL NETWORKS
Neural networks constitute the basic ‘‘deep’’ component
of deep reinforcement learning. A neural network is a
group of nodes, or artificial neurons, connected in a way
that allows them to be functional as a universal function
approximator. Neural networks are used to represent policy
in the agent. Given the right combination of nodes and
connections (and weights), neural networks can mimic any
input-output relationship. We want a neural function that can
approximate complex functions that are difficult to solve;
thus, it is important to make choices to ensure the neural
network accurately captures the complexity of the problem at
hand without making it overly complex, thus making training
difficult. Since the neural network represents the brain of
the intelligent agent, it is important to identify the classes
of RL i.e., policy function-based, value function-based, and
actor-critic.

C. CLASSES OF RL ALGORITHMS
1) VALUE FUNCTION-BASED ALGORITHMS
In value function-based learning, a function takes a state and
a possible action as input and outputs the value of taking that
action. This value is the some of the total discounted rewards
from that state, so the policy (looks into the future), checks the
value of every action and chooses the action with the highest
value. In other words, the function criticizes the choices of

the agent as it looks at its possible action (critic). Value in
this case is beyond the instant reward from an action, it is the
maximum expected return in the future.

The agent learns these values as it takes random actions,
gets into a new state and collects the reward. Then the value
of the action from that state (quality) is updated based on the
reward using Bellman’s Equation.
Bellman’s Equation:Bellman’s Equation helps the agent to

solve the Q-table over time since it breaks up the problem into
simpler steps rather than solving the value of the state-action
pair in one step via dynamic programming. In Bellman’s
Equation, the value of a state-action pair is compared to what
is in the Q-table to obtain the error (inaccuracy in prediction).
The error is multiplied by the learning rate and the resulting
* value is added to the old estimate. If the agent finds itself
in the same state at a different time it would update the value
and tweak it when it chooses the same action. This it done
repeatedly until the true value of every state-action pair is
sufficiently determined to exploit the optimal path.

Value functions can handle continuous state space without
a lookup table (i.e. using a neural network). In this case, the
state observation and action are provided as input and the
neural network returns a value. However, for an infinite action
space, the use of the policy to check all possible actions will
be impossible. Using a neural network initial values can be
random and then the learning algorithm uses the Bellman’s
Equation (or its variant) to determine the new value and
update weights and biases in the network correspondingly.
If enough state space has been explored by the agent, it can
approximate the value function sufficiently well and select
optimal action at any given state. For the on-policy value
functions, the Bellman equations are represented as3

V π (s) = E
a∼π
s′∼P

r(s, a) + γV π (s′), (1)

Qπ (s, a) = E
s′∼P

r(s, a) + γ E
a′∼π

Qπ (s′, a′), (2)

in which s′ ∼ P is used to represent s′ ∼ P(·|s, a), showing
the next state s′ is sampled from the transition rules of the
environment; a ∼ π (·|s) is shortened as a ∼ π ; while a′

∼

π (·|s′) is represented as a′
∼ π in short form.

As for the optimal value function, the Bellman equations
are represented as4

V ∗(s) = max
a

E
s′∼P

r(s, a) + γV ∗(s′), (3)

Q∗(s, a) = r(s, a) + γ max
a′

Q∗(s′, a′)

s′∼P

(4)

One major difference between the Bellman equation for
both on-policy and optimal value functions is the presence or
absence of max over the actions. Thus, when the agent gets to
choose its action is influenced by the inclusion or exclusion
of the max. When included, it implies that the agent has to

3https://spinningup.openai.com/en/latest/spinningup/rl_intro.html
4https://spinningup.openai.com/en/latest/spinningup/rl_intro.html
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choose the action that leads to the highest value whenever it
chooses its action to act in an optimal fashion.

2) POLICY FUNCTION-BASED ALGORITHMS
Policy function-based neural network algorithms determine
the agent’s action. They can work with a stochastic policy in
which the policy outputs a probability of taking a decision
with exploration and exploitation probabilities factored in.
The probabilities are tuned towards a direction that produces
more reward over time. So the agent acts a certain way,
collects reward along the way and updates the network to
increase the probability of actions that yields the best reward.
However, using this method, the obtained result may lead to
a local maximum as it uses the policy gradient method.

3) ACTOR-CRITIC FUNCTION-BASED ALGORITHMS
Since action space needs to be small to appreciate the value
policy-based method, a combination of the actor (network
tries to take what it thinks it is the best action at a current
state) and critic then estimates the value of the state and action
(taken by the actor), we can develop a solution for continuous
action space since only a single action (taken by the actor)
needs to be evaluated rather than trying to find the best action
by evaluating all actions.

An actor chooses an action (policy function-based) that
is applied to the environment. The critic estimates what it
thinks is the value of the state and action pair and then
uses the reward to determine how accurate its prediction was
by determining the difference between the new estimated
value of the previous state and the old values of the previous
state from the critic network. The new estimated value is
based on the received reward and discounted value of the
current state. This is used to know whether things went better
than expected or not. This error is used by the critic to
update itself in the manner that the value function would,
to make a better prediction. So the actor updates itself based
on the response from the critic and error term to improve
its probability of taking actions in the future. This way
action and critic networks are combined together to learn the
optimal behaviour. The actor learns the right action using
the critic feedback. The critic learns the value function from
the reward to properly criticise the action of the actor. Using
the actor-critic method the best features of both policy and
value function algorithms can be taken advantage of and
both continuous state and action spaces can be handled by
the actor-critic and the learning process is faster when the
returned reward has high variance.

D. COMMON MODEL-FREE RL ALGORITHMS
In this section, a brief description of common model-free RL
algorithms is provided5 (refer Fig. 4).

1) VPO
Policy gradient algorithm functions by updating policy
parameters using stochastic gradient ascent on the policy

5https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

FIGURE 4. Common model-free RL algorithms using Q-learning, policy
and actor-critic functions.

performance (see Equation 5 below)

θk+1 = θk + α∇θJ (πθk ) (5)

They compute advantage function estimates using infinite-
horizon discounted return while using finite-horizon dis-
counted policy gradient formula. Exploration involves taking
random actions depending on the initial conditions and
training procedure and as time goes by the policy begins to
exploit rewards that it has found. However, the policy may
still get trapped in a local optimum.

2) TRPO
TRPO updates policies by taking the biggest possible step
for improving performance while satisfying the closeness
constraint on the old and new policies (i.e. how close they
are allowed to be). This constraint is expressed in a form
that can be related to (but not exactly) the distance between
probability distributions. TRPO avoids the problem in vanilla
policy gradients by which new and old policies are close
within the parameter space and thus large step sizes pose
risks.

3) DDPG
DDPG is an off-policy algorithm that can be used strictly
in environments characterized by continuous action spaces.
It basically involves learning a Q-function and learning a
policy. It uses Bellman’s equation to describe the optimal
action-value function, i.e., as a function approximator for the
Q-function.

4) TD3
Although DDPG does a good job, sometimes it fails when
the learned Q-function begins to overestimate the Q-values
which breaks the policy as a result of exploiting errors in the
Q-function. Twin Delayed DDPG can address this problem
by learning twoQ-functions instead of one. The smaller of the
two Q-values from the target in Bellman’s error loss function.
It also ensures the policy is not updated as frequently, i.e.,
once every two Q-function updates. Finally, it performs target

VOLUME 12, 2024 108009



O. A. Amodu et al.: DRL for AoI Minimization in UAV-Aided Data Collection

policy smoothing, in which it adds noise to the target action
to make it more difficult for the policy to exploit errors in the
Q-functions by smoothing out Q over changes in action.

5) PP0
In PPO, the motivation is similar to that of TRPO in which
they are concerned about taking the largest possible step for
policy improvement with the available data while preventing
an accidental performance breakdown. As opposed to TRPO
which uses a complex second-order method, PPO uses first-
order methods while using some techniques to ensure the new
policies are close enough to the old ones. They are easier
to implement and can perform as well as TRPO. They can
be used in environments with discrete or continuous action
spaces

6) SAC
Soft Actor Critic (SAC) optimizes a stochastic policy in
an off-policy manner thus integrating both stochastic policy
optimization and DDPG-type approaches. The policy is
trained to obtain the best trade-off between expected return
and randomness in the policy (entropy), thus, mimicking
the exploration-exploitation trade-off since when the entropy
is increased, more exploration takes place and learning is
accelerated. Similarly, it can prevent premature convergence.

E. MULTI-AGENT REINFORCEMENT LEARNING
This section provides a simple but intuitive background
on multi-agent RL systems.6 Multi-agent system involves
multiple agents sharing a common environment (refer Fig. 5)
such as a swarm of UAVs that operate in a formation
or several autonomous vehicles driving through the same
intersection. They could also be distributed controllers that
aim at accomplishing a common goal such as several smart
homes trying to schedule power. All these are examples of
cooperative agents since they work together to achieve a
common goal. In other cases, agents could aim at maximizing
their own personal goals (benefits) while minimizing those of
other agents (adversarial). It is possible to have systems with
both cooperative and adversarial multi-agent systems.

In designing multi-agent systems, it is important to clearly
define how agents should perform actions or coordinate
themselves. Sometimes it is better for agents to learn some of
its behaviour on their own without a shared reward function,
while in other cases, it is preferred that there is a common
reward function for all agents. This decision has its own trade-
offs, collaboration is facilitated by a shared reward, while
agents might be lazy (to learn and earn more rewards) as
compared to an unshared reward on the other hand a localized
reward breeds or intensifies competition (for the limited) at
the expense of the potential to earn more rewards (by the
agent) [113].

6https://www.mathworks.com/videos/an-introduction-to-multi-agent-
reinforcement-learning-1657699091457.html

For single-agent RL, the goal is to update the agents’ policy
as time goes by to maximize the reward. However, for multi-
agent RL, multiple agents interact with an environment and
each of those agents uses an RL mechanism to update their
policy over time.

Introducing multiple agents that learn and interact with
each other brings new challenges. For a decentralized learn-
ing architecture in which each agent is trained independently
from the others, each agent tries to accumulate the highest
reward regardless of the actions of other agents. New
information is shared between agents which is advantageous
with respect to the minimum communication overhead
involved and the simplicity of the system.

However, since the agent does not know how much of
the overall objective has been achieved by other agents they
can learn how to avoid repeating those actions that are not
required (due to the actions of other agents). Decentralized
architecture involves a trade-off between performance and
complexity.

For performance, it would be much better if agents shared
their experience (relative to the final objective). However,
since all agents are still in the learning process their policies
changewhichmakes it difficult for other agents to sufficiently
track/understand the dynamics of the environment as the
environment becomes non-stationary, thus making the MDP
time variant. RL algorithm expects a stationary environment.
Thus, the agents may not converge to a solution as each agent
continuously changes its policy. Although it is possible that
after a large number of episodes, agents can learn to work
together. However, such learning is not fully complete and
also depends on their prior states especially if the agents have
different characteristics i.e. not identical.

Centralized architecture (refer Fig. 6) requires some higher
level process that collects agents’ experiences and a policy
is learnt using the pool of collected information The policy
is learnt is then distributed back to the agents. This is
meritorious, especially in the case whereby each agent is
identical (i.e. they have the same observations in actions as
a single optimal policy would suffice each of them) i.e. that
will control their actions to achieve an overall aim. This
also reduces the amount of learning that takes place as each
agent learns from the experience of the other. A stationary
environment has also been created for the agent, as all agents
are considered as larger entities and know about the policies
of others.

V. SINGLE AGENT DRL-BASED SOLUTIONS
In this section, a list of summaries of various studies in
single UAV scenarios using model-free DRL algorithms to
minimize AoI is presented (refer Table 3). The organization
of this section is provided in Fig. 7.

In the next sections, works using various model-free DRL
algorithms in single UAV environments (as well as single-
agent) of value-based, policy-based and actor critic-based
classes have been identified and discussed. Table 4 provides
the list summary of the works using these DRL algorithms.
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FIGURE 5. Typical MADRL architecture with 3 agents.

FIGURE 6. Centralized and Decentralized MADRL architectures.

Table 5 provides comparison among different DQN-
based works using single agent based on the optimization
objectives, metrics used as well as benchmarks.

A. DQN-BASED ALGORITHMS AND THEIR TARGET
OBJECTIVES
1) DQN FOR OPTIMIZING TRAJECTORY
Considering the traffic patterns of IoT devices could be
diverse, such as fire alarm sensor as compared to temperature

sensor, the authors [3] study a scenario whereby UAV-assists
ground nodes with unknown traffic generation patterns.
The fact that IoT devices were assumed to transmit data
with different traffic patterns makes AoI minimization more
challenging, thus to maintain information freshness, the
authors formulated the online AoI-optimized UAV trajectory
planning problem as an MDP due to the complex association
and interaction pattern between the UAV and IoT devices
to find the optimal policy for efficient trajectory planning.
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TABLE 3. Summary of DRL-based algorithms in single UAV scenarios and their functions.

TABLE 4. DRL-based algorithms for single UAV scenarios.

The AoI was assumed to increase when the UAV does not
visit a SN and it increases when the SN nodes are visited.
This evolution of AoI for IoTDs can be represented as
follows

Ak,n =


kτ −

ik,n∑
j=1

δ[j], Ck,n = 1

Ak−1,n + τ, otherwise.

(6)

in which δ[j] is a random variable, ik,n is the index of
the newest packet at IoT device n as of time slot k , Ck
is the set of IoT devices covered by the UAV within time
slot k .

They devised a DRL-based A-TP (AoI-based Trajectory
Planning) algorithm which converges rapidly due to the
adoption of a randomized policy for pre-training the deployed
deep neural networks. Via extensive simulation, the authors
show that the proposed algorithm can significantly reduce the
AoI of the data collected by IoT devices and is robust even in
the dynamic environment considered.

2) DQN-BASED ALGORITHMS FOR OPTIMIZING
TRAJECTORY, ENERGY AND SCHEDULING PLANNING
The authors [15] study UAV-assisted wireless networks in
which a dispatched UAV wirelessly charges multiple ground
nodes using RF energy transfer, then the ground nodes
deploy the harvested energy for uploading sensed data to
the UAV. The authors formulate an optimisation problem to
minimise the average AoI of UAVs via the joint optimisation
of UAV trajectory, ground node information transmission,
and energy harvesting scheduling. The formulated problem
is a combinatorial optimisation problem with a set of binary
variables, which makes solving it difficult. Thus, the authors
reformulate the problem as a Markov process with a large
state space, and a DQN was deployed to find a near-optimal
solution using DRL. The authors constructed two networks,
one for evaluating the reward accrued by an action performed
in a current state and the other to predict realistic actions.
The authors also study the impact of energy punishment in
the reward function to save energy, however a trade-off was
observed with respect to AoI. Similarly, the authors show the
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FIGURE 7. Organization of Section V.

effect of packet size, transmit power, and GN distribution
area on the ground node’s AoI. The DQN algorithm was
shown to converge, and an improvement in AoI was observed
compared to other studied or baseline schemes.

The authors [115] investigate energy-efficient fresh data
collection in rechargeable rotary wing UAV-assisted IoT in
which a UAV leaves its initial location (with full energy)
to collect data from SNs in IoT and should reach its final
destination under a given time constraint. Particularly, a UAV
is dispatched from a depot (with full energy from its initial
location), flies over it to collect packets, and lands in its
final position. While it is flying, the UAV (with an assumed
circular coverage area) can harvest energy from charging
stations with a maximum recharging distance in order to
keep its battery level above the required threshold. The
goal is to minimise the weighted sum of the average AoI
and the average recharging price by jointly optimising the
UAV trajectory, scheduling, and energy recharging while
ensuring the remaining energy of the UAV should not be less
than a threshold. The formulated optimisation problem was
shown to be a constrained nonlinear integer programming
problem that is difficult to computationally solve. Thus, they
formulated the problem as a finite-horizon MDP, which was
solved by a proposed duelling double deep q network, i.e.,
the d3qn algorithm for the UAV to learn its trajectory, and
for scheduling, and energy recharging at each time slot.
Simulation results show that, compared to baseline policies,
the algorithm can reduce the weighted sum of AoI and
average recharging price significantly.

TABLE 5. Comparison on optimization objectives (T=trajectory, E=energy,
S = scheduling), metrics and benchmark algorithms using value-based
DRL algorithms in single UAV scenarios.

3) DQN-BASED ALGORITHMS FOR OPTIMIZING
TRAJECTORY AND ENERGY
DRL approach was deployed to achieve both data freshness
and energy-efficiency optimization for multi UAV navigation
in [123], in which the authors consider multiple UAV-BS
for providing connectivity to IoT devices for improving
information freshness. The authors formulate an energy-
efficient trajectory optimization problem for maximizing
energy efficiency via an optimal UAV-BS trajectory policy.
To ensure data freshness at the ground BS, the authors
incorporated energy and AoI constraints and propose an
agile DRL with an experience replay model to solve the
formulated problem. The state space is extremely large
which makes the proposed solution appealing as finding
the best trajectory policy is too complex for the UAV-
BS. The trained model (using the proposed solution) is
applied to achieve an effective real-time trajectory policy
for the UAV-BS to capture network states over time. The
proposed approach proves to bemore energy efficient than the
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baseline algorithm, greedy algorithm, and Deep Q network
approaches.

Learning-assisted UAV data collection for achieving
information freshness in IoT is the focus in [13]. Particularly,
this is because guaranteeing information freshness of energy-
limited UAVs can be very challenging. Thus, the authors
study the trajectory design of a multi-UAV system with a
large number of ground sensor devices that send information
to the UAV-BS with constraints on information freshness.
Thus, the paper considers the trajectory design of a single-
antenna multi-UAV-enabled communication network which
collects data from single-antenna IoT devices for maximising
energy efficiency with constraints in the AoI. In the studied
architecture, each ground device sends its information to
its associated UAV. The authors first formulated an energy-
efficiency maximization problem under safety distance, rest
energy, and AoI constraints. The non-convex nature of
the objective function and unknown dynamic environment
(unknown space of the UAV trajectory) motivated the authors
to propose the Deep Q network for efficient trajectory
design using the architecture in Fig. 8. Here, the state space
includes energy efficiency, AoI, and rest energy efficiency.
Similarly, an efficient reward function for energy-efficiency
maximization is adopted. The system is validated and
simulation results show that the proposed scheme achieves
a better energy efficiency performance compared with the
benchmark scheme.

4) DQN-BASED ALGORITHMS FOR OPTIMIZING
TRAJECTORY AND SCHEDULING PLANNING
The authors in [1] study a wireless network topology by
which battery-limited UAVs flies around to collect status
update packets from ground nodes which are observing some
physical phenomenon. The authors formulate the problem
of minimizing the normalized weighted sum AoI associated
with the observed physical processes in which the AoI metric
is described as

Am(t)=Aminm +t − ti−1,m, ∀t ∈ [ti−1,m, ti,m) i ∈ {1, . . ., nm}

(7)

in which Aminm : The minimum value of AoI, ti,m: The time
instant at which node m transmit an update packet.

This problem includes two major components which are
the optimizing the flight trajectory of the UAV as well as
how update packet transmissions are scheduled. The problem
was initially formulated as a mixed-integer programming
problem. Then, for a given scheduling policy, the authors
develop a convex optimization-based solution to determine
the optimal trajectory and update. The formulated NWAoI
minimization is provided as follows:

Ḡ(t1, . . ., tM ) ≜
1
τ 2

M∑
m=1

λm

nm+1∑
i=1

(ti,m − ti−1,m)2. (8)

However, given the combinatorial nature of this problem,
a finite horizon MDP with finite state and action spaces

was formulated as a complement to the convex optimization.
Finite-horizon dynamic programming could not be used
in this case due to computational practicality and thus a
neural combinatorial-based DRL is employed in view of the
large state space of the MDP. The deep RL architecture
is as shown in Fig. 9. This aims to obtain the optimal
scheduling policy given the derived equations and constraints
related to velocity, location and energy. For large-scale
scenarios with several nodes, DQN cannot learn optimal
scheduling, thus the authors proposed the use of a long short-
term memory (LSTM)-based autoencoder to map the state
space to a fixed-size vector representation. The proposed
neural combinatorial based DRL significantly performs
better than the baseline polices such as discretized state DQN
and weight-based policies with regards to the achievable
normalized weighted sum AoI per process.

The paper [121] focuses on addressing the challenge of bal-
ancing information freshness and energy consumption during
UAV-based data collection from IoT devices. To achieve this
the authors introduce an energy constraint taking into con-
sideration both the energy consumption for communication
and propulsion. Thus, the power consumption of the UAV is
modelled as

P̃(Vt ) = γ + P1

(√
1 +

V 4
t

4v40
−
V 2
t

2v20

) 1
2

+
1
2
d0ρs0AV 3

t , (9)

where γ = P0

(
1 +

3V 2
t

U2
tip

)
+, P0,P1 is the blade profile

power and derived power of the UAV in the hovering state,
Vt is the velocity of the UAV at slot t , Utip is the tip speed
of the rotor blade of the UAV, v0 is the mean rotor induced
velocity in the hovering state, d0 is the fuselage drag ratio, ρ
is the density of air, s0 is the rotor solidity, and A is the area of
the rotor disk. The authors formulated the problem as MDP
and deployed aDRL-based solution tominimize theweighted
sum of AoI to identify the best trajectory route for the UAV as
well as the optimal scheduling policy for SNs. Results show
the superiority of the proposed DQN-based solution for UAV-
assisted data collection as compared to the baseline schemes.

The authors in [116] deployed DDQN for achieving
information freshness in UAV-assisted IoT. In the studied
architecture, the BS sends the UAV to fly to SNs to
collect data while ensuring the UAV energy is more than
enough. Whenever UAV energy is low, it returns to the
destination. Data sampled by SNs is stored in a buffer
such that new packets replicate old ones before the UAV
collects them. In this case, the AoI is determined by data
sampling of each SN, the queuing waiting time, and the UAV-
aided transmission process. Thus, the sampling and queuing
process of SN impacts the UAV’s AoI optima trajectory
significantly, which has rarely been captured in prior studies.
The authors modelled the problem as MDP and defined
the state space, action space, and reward function. The
authors jointly optimize the flight trajectory of the UAV and
the transmission scheduling sequence of SNs. To overcome
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FIGURE 8. DRL Framework for UAV’s Trajectory [13].

FIGURE 9. Typical Example of the DRL Architecture [1], [122].

the dimension disaster, the authors propose a node data
collection algorithm based on double deep Q learning. The
proposed algorithm was compared to other algorithms, and
the authors show the system’s performance under different
sampling strategies. Via a large number of simulation
experiments, the authors show that the proposed DDQN that
the proposed algorithm can improve UAV AoI compared
to the baseline schemes and reduce the packet loss rate
of SNs.

The authors [122] focus on jointly optimizing UAV
trajectory and the efficient scheduling of energy constrained

ground nodes’ status update packets with the objective of
minimizing the weighted sum AoI. The authors formulate the
problem as a MDP with finite state and action spaces then
developed a DRL algorithm used to overcome the problem
of dimensionality associated with the formulated problem.
The algorithm consists of ANN for state space dimension
reduction and the RL component for optimization of the
policy. Abstracting different physical processes, results show
that the DRL-based approach significantly performs better
than the baseline policies such as random walk and distance-
based policies.

VOLUME 12, 2024 108015



O. A. Amodu et al.: DRL for AoI Minimization in UAV-Aided Data Collection

5) DQN-BASED ALGORITHM FOR OPTIMIZING TRAJECTORY
The authors [114] study the age-optimal data collection
problem for energy-constrained-UAV-aided IoT inwhich data
is sampled either in a random or fixed manner. Thus, in the
studied scenario, the authors jointly consider data sampling,
queueing, and UAV-aided relaying. This paper assumes a
sample and replace policy to update packets in the buffer
(i.e., new data replaces old ones). To obtain the age-optimal
trajectory, the authors formulate the problem as a finite-
horizon MDP taking buffer management into consideration
with the objective of minimising the weighted sum AoI,
packet drop rate, and UAV energy consumption. Due to
the ‘‘curse of dimensionality’’, the authors propose a DRL
(in this case, DQN-based learning) algorithm to design the
age-optimal trajectory for the UAV while also keeping the
packet drop rate to the bearest minimum. Via simulation, they
show that the proposed algorithm successfully reduces AoI
and packet drop rate (better than SARSA policy) based on
its experience having learned the network topology and SN
sampling status.

B. POLICY-BASED DRL ALGORITHMS USING SINGLE
AGENT
Table 6 provides comparison among different policy-based
works using single agent based on the optimization objec-
tives, metrics used as well as benchmarks.

1) PPO-BASED ALGORITHM FOR SCHEDULING PLANNING
DRL was deployed for achieving energy and AoI-efficient
data collection in rechargeable UAV-aided IoT in [125]. The
authors focus on optimizing the AoI in UAV-RIS assisted
IoT network in which RIS mounted on UAVs are deployed
for increasing the throughput capacity of the network by
functioning as relays between the BS and IoTD. The signal
transmission to IoTD will be affected by uncoordinated
UAVs or RIS phase shift elements. The authors developed
two model-free DRL approaches to minimize the average
sum of AoI in the network. Particularly, off-policy DQN
and on-policy PPO were used to solve the problem by
optimizing the RIS phase shift, UAV-RIS location, and IoTD
scheduling jointly. The stability and convergence of the two
algorithms were evaluated and the result showed that the
on-policy approach, i.e., PPO performed better than DQN
(off-policy) with respect to stability, and convergence speed
under different environment settings.

The authors in [124] focus on scheduling IoT devices and
dynamic UAV altitude control. The overall objective was to
minimize the expected weighted sum AoI of IoT devices’
sampled data, which depends on the channel conditions.
The studied network model thus incorporates the reliability
of the wireless channel and provides analytical charac-
terization. The problem is formulated as a mixed integer
non-linear programming problem; thus, linear and dynamic
programming cannot address this. Thus, the problem is
formulated as an MDP and the authors deploy an agent on

the UAV to make decisions at each time slot based on the
environmental dynamics it learns for obtaining the optimal
altitude. Particularly, higher altitude improves the LoS links
at the expense of weaker received signals due to higher
path loss. The hybrid discrete-continuous action space and
tight coupling of altitude and scheduling make the problem
challenging. Thus the authors deploy online DRL with PPO
to effectively solve the formulated problem

A solution towards the integration of UAV and RIS
focuses on optimising the phase shift of RIS elements
to improve different performance metrics [118]. Thus, the
authors focus on studying learning-based IRS-assisted age-
aware data collection in UAV-assisted IoT. The authors study
the potential of RIS-assisted UAV-enabled data collection
from IoT with its objective is to minimize the expected sum
AoI by optimizing UAV altitude, communication schedule,
and RIS phase shift. The network involves IoTD with
limited transmission capabilities that collect data (a stochastic
process), and sampled data is processed by the BS. The
authors study a single RIS deployed as a passive relay to
forward sampled data to the BS, considering the different
IoTD activation patterns. If the SNR exceeds the required
threshold, the data is sent to the BS while considering AoI
constraint. The authors formulated the framework as an
optimisation problem considering the SNR constraints, UAV
altitude constraints, and IoTD scheduling constraints with the
objective of minimising the expected sum AoI. Because the
optimisation problem is quite challenging due to the unknown
activation pattern of IoTD, the authors chose to apply PPO for
solving the mixed integer non-convex optimization problem
for learning the randomness of the IoTD activation pattern
and controlling the UAV altitude, RIS element phase shift,
and communication scheduling for minimising ESA. The
authors developed two baseline policies to evaluate the
effectiveness of the proposed algorithm: 1) random walk
policy in which the IoTD is randomly selected to relay
status update information along with the adjustment of the
RIS phase to ensure a reflected signal can be added at the
selected IoTD constructively while randomly changing the
UAV altitude. Also, the other policy is hovering with a
greedy policy, by which the UAV searches for the best height
that satisfies the reliability constraint for most of the IoTD.
The UAV then selects the IoTD with the maximum current
AoI. The policies compared with the baseline are adequate,
as the former policy exploits all the possible actions, which
may result in selecting actions that decrease the AoI, while
the latter policy always selects IoTD with a higher AoI
to relay their status updates. The authors observe that the
proposed algorithm can minimise ESA for a lower number
of IoTD since each IoTD enjoys more frequent scheduling.
However, for a large number of IoTDs, ESA increases as
more scheduling is needed to decrease ESA. Hovering with
a greedy policy performs better than the random walk policy
since it selects IoTDs with the highest value. The proposed
algorithm outperforms all the baseline algorithms as it can
learn the activation pattern of IoTD and adjust UAV altitude.
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TABLE 6. Comparison on optimization objectives (T=trajectory, E=energy, S = scheduling), metrics and benchmark algorithms using policy-based DRL
algorithms in single UAV scenarios.

FIGURE 10. Typical representation of the DQN architecture in [125].

Numerical results show that the proposed algorithm performs
well with respect to AoI.

C. ACTOR CRITIC-BASED DRL ALGORITHMS USING
SINGLE AGENT
Table 7 provides comparison among different actor critic-
based works using single agent based on the optimization
objectives, metrics used as well as benchmarks.

1) ACTOR CRITIC-BASED ALGORITHMS FOR OPTIMIZING
TRAJECTORY AND SCHEDULING PLANNING
UAV and RIS are promising for improving the capacity,
coverage and reliability of wireless communications [127].
As opposed to prior works which studied UAV-aided fresh
data collection in 2D environments, the authors [12] leverage
RIS to mitigate the impact of blockages due to buildings
on the AoI performance in a 3D urban IoT scenario. The
authors aim tominimise the AoI of all the IoTD by optimising
UAV flight trajectory, IoTD transmission scheduling, and
RIS discrete and shift. The problem is, however, challenging

due to the high correlation of channel information, complex
building distribution, and dynamic UAV trajectory. In such
cases, it is not possible or applicable to apply traditional
optimisation techniques, so the problem is reformulated
as an MDP while accommodating the optimization of
phase shift control of RIS and UAV trajectory as well as
IoTDs transmission scheduling. A DRL-based algorithm
(SAC-AO-RIS) combining soft actor-critic (SAC) [128] and
alternating optimisation (AO) was developed. SAC algorithm
with a high exploration ability is leveraged for learning
the UAV trajectory and scheduling policy of IoTD. Also,
a simple AO algorithm is used to effectively optimize
the RIS phase shift. To ensure the training procedure is
stable and converges well, the recent prioritized experience
replay technique was exploited. The authors show via
simulations that the proposed scheme can effectively reduce
the average episodic AoI as compared to the baseline
methods.

The authors in [119] focus on path learning for multiple
battery-recharged UAVs to optimize the age of information
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TABLE 7. Comparison on optimization objectives (T=trajectory, E=energy, S = scheduling), metrics and benchmark algorithms using actor critic-based
DRL algorithms in single UAV scenarios.

and power of IoT devices deployed in a geopgraphic area
which continually uploads data. Particularly, UAVs have
beeen deployed in this work due to the energy limitations
and poor channel conditions which makes it impossible
for IoTDs to transmit to the BS directly. Thus the mobile
data collector (UAV) is dispatched to gather IoTD data and
offload to BS. AoI-energy-aware data collection for UAV-
assisted IoT studied in this work aims to minimize the
weighted sum expected AoI, UAV propulsion energy, and
IoTD transmission energy via the joint optimization of UAV
flight speed, hovering location, and bandwidth allocation for
data collection. Due to the nature of the system dynamics,
the authors formulated the problem with respect to the
maximum tolerable AoI of IoTDs, transmission channel
constraints, and energy consumption. The problem was
modelled as an MDP and a twin delayed deep deterministic
policy gradient-based UAV trajectory planning algorithm
was proposed based on the architecture in Fig. 12 to solve
the problem by deploying the deep neural network for
feature extraction. Via simulations, the author showed that
the proposed scheme outperforms the deep Q network and
actor-critic-based algorithms with respect to achievable AoI
and energy efficiency.

In a RIS-assisted UAV wireless communication for
achieving information freshness in IoT, [126] jointly optimize
UAV flight trajectory, SN scheduling, and IRS phase shift
matrix. The problem is modelled as an MDP and a DRL
algorithm based on Twin delayed deep deterministic policy
gradient was proposed for learning and finding optimal UAV
trajectory and SN scheduling. For transmissions that have
been scheduled, the IRS is used for aligning signals and shifts
based on channel information. Via simulation, the authors
show that IRS-assisted UAV data collection can reduce SNs
AoI significantly.

In [120] the authors deploy A3C for UAV-assisted data
collection in WSN with EH, and the objective is to minimize
AoI while maximizing EH-powered UAV trajectory and
transmission opportunities of SNs. The A3C algorithm is
proposed to achieve real-time decision-making for the DRL
framework. The algorithm works as follows: Initially, all
workers, global and shared parameters, and the global shared
counter is initialized. The following is done in all episodes:
gradients are reset to zero, the initial energy is set to
maximum energy and the state is set to the initial state,
starting with the first slot to the last slot, the action is
executed according to the policy if sufficient energy is
available i.e energy is greater than the threshold energy.
After the action is taken, the position of the UAV and
its energy is updated, otherwise the UAV must remain in
the air for energy harvesting from ground nodes. The AoI
is updated and the cost is determined before it moves to
the next state, whenever there are no more update packets,
the actor adjusts and optimises the policy while the A3C
deploys entropy for increasing exploratory actions. The
global network parameters are then updated asynchronously
based on the cumulative gradients and pull parameters from
the global network.

2) ACTOR CRITIC-BASED ALGORITHM FOR OPTIMIZING
OTHER OBJECTIVE FUNCTIONS
For timely data collection in UAV-based Internet of Things
networks with SNs having different timeliness priorities,
the [117] aim at helping UAVs with different initial positions
to independently complete data collection tasks via a
guided search deep reinforcement learning algorithm. Data
collection is modelled as a sequential decision problem for
minimizing the average AoI or maximizing the number of
collected nodes for a specific environment. Using GSDRL

108018 VOLUME 12, 2024



O. A. Amodu et al.: DRL for AoI Minimization in UAV-Aided Data Collection

FIGURE 11. Illustration of the DRL Algorithm for UAV data collection and forwarding [117].

(see 11) the authors optimize the data collection strategy.
After the network has been trained using GSDRL, the UAV
can rapidly perform autonomous navigation and decision-
making to complete complex tasks. The proposed GSDRL
can effectively adapt to diverse environments and obtain a
good data collection and forwarding strategy.

D. LESSONS LEARNED
Most of the studied works have deployed DQN algorithm
applicable for discrete and continuous state space problems
while D3QN has also been studied for complex setups
involving trajectory scheduling and energy recharging. Value-
based algorithms have mostly been deployed in literature
especially when researchers began to deploy DRL for
trajectory optimization. Trajectory optimization is the most
common objective that has appeared in these works; either as
a stand-alone objective or as one of the objectives. This is fol-
lowed by communication scheduling and energy efficiency.
After value-based algorithms, actor-critic algorithms have
also been deployed in recent times for optimizing UAV tra-
jectory and scheduling. The incorporation of reconfigurable
intelligent surfaces and the optimization of their phase shift
as well as data forwarding have also been studied with actor-
critic algorithms. On the other hand, policy-based algorithms
have mainly been deployed to optimize scheduling decisions
and UAV altitude as well as RIS phase shift.

VI. MULTI-AGENT DRL-BASED SOLUTIONS
In this section, a list of summaries of various studies in multi-
UAV scenarios (and alsomulti-agent-based) usingmodel-free

DRL algorithms to minimize AoI is presented (refer Table 8).
The organization of this section is provided in Figure 15.
In addition, works using various model-free DRL algo-

rithms in multi UAV environments of value-based, policy-
based, and actor-critic-based classes have been identified and
discussed. Table 9 provides the list summary of the works
using these DRL algorithms.

A. DQN-BASED DRL ALGORITHMS USING MULTI-AGENTS
Table 10 provides comparison among different value-based
works using multi agents based on the optimization objec-
tives, metrics used as well as benchmarks.

1) DQN-BASED ALGORITHMS FOR OPTIMIZING
TRAJECTORY AND ENERGY
AoI-aware DRL-based UAV trajectory planning in wireless-
powered IoT networks was the focus in [5]. In other words,
the authors utilise multiple UAVs to wirelessly charge low-
power IoTDs and collect fresh information from them
while considering the realistic energy constraints of low-
power IoTDs and the dynamic channel conditions. UAVs
are deployed to wirelessly charge IoT devices. IoT devices
upload fresh information to UAVs based on harvested energy
(using non-linear EH model) thus facilitating a sustainable
IoT network. To avoid interference, devices are not allowed
to harvest and transmit at the same time. UAVs make
the decision as to where or which direction to fly and
the device that should be visited next. This is achieved
by considering the trade-off between data collection and
energy transmission and the distance to the destination node.
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FIGURE 12. Combination of the TD3 structure and AoI-energy-aware UAV-assisted data collection (TD3 algorithm based on DDPG
framework) [119].

FIGURE 13. The schematic view of the deep Q-learning architecture [5].

The authors consider the blockage rate and density of the
surrounding area captured by constraints. The UAV employs
fixed transmit power to communicate with and interact with
the devices. The authors establish a practical LOS/NLOS
channel model for exploring the influence of the dynamic
time-varying channel on AoI. The authors formulated the
problem as an offline sequential decision-making problem
in the presence of dynamic channel conditions. A novel
DRL-based proactive UAV trajectory planning algorithm
based on Fig. 13 was proposed to automatically adjust
the UAV flight policy based on the channel conditions
variations and the energy transmission vs data collection
trade-off. The results show that the proposed UAV trajectory
planning algorithm can reduce AoI significantly (by up
to 20% to 65%) as compared to other trajectory planning
algorithms.

The use of DRL for energy-efficient UAV trajectory design
was considered in [131]. The authors consider multiple
UAV-assisted IoT in which the UAVs function as relay nodes
between SN and BS. Each UAV relays the information
from IoTD to BS (located at the centre of the map).
There exists charging spots at fixed positions, such as
corners of the terrain. An optimization problem is formulated
to jointly plan the trajectory of UAV while minimizing
AoI of received messages and considering UAV energy
consumption. To address this problem, the authors proposed
the DRL algorithm to find the optimal policy for UAV
trajectory with nine movement directions of the UAV at
each instant. The deployed DRL-based algorithm is based on
the architecture in Fig. 16. Deep-Q network functions as a
function approximator for estimating the state-action value
function. The proposed scheme converges first and yields a
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FIGURE 14. Schematic representation of the VDN architecture for multi-UAV-aided Data collection [129].

TABLE 8. Summary of DRL-based algorithms in multi-UAV scenarios and the functions.

TABLE 9. DRL-based algorithms for multi UAV scenarios.

lower AoI and energy reduction than the random walk policy.
Particularly, the average AoI is reduced by approximately

25% and requires half less energy when compared to the
baseline scheme.
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FIGURE 15. Organization of section V.

TABLE 10. Comparison on optimization objectives (T=trajectory,
E=energy, S = scheduling), metrics and benchmark using value-based
DRL algorithms in multiple UAVs scenarios.

A Multi-agent DRL approach was considered for cooper-
ative UAVs with the aim of achieving AoI optimal trajectory
planning in [133]. The authors consider multi-UAV-assisted
IoT architecture in which UAVs perform their actions
cooperatively to collect data packets generated by IoTDs to be
transmitted to the BS while ensuring information freshness.
The distributed cooperative multi-UAV dynamic trajectory
planning problem was formulated as a decentralized partially
observable MDP (Dec POMDP) where packet updates arrive

in a stochastic manner and are thus unknown to the UAVs.
A multi-agent DRL was devised to address this challenge due
to the unknown environmental dynamics and high conflict
collision constraints. The developed algorithm leverages
QMIX and GRU techniques. The authors show by simulation
that the proposed algorithm is effective for solving the
formulated problem.

The authors [134] consider a UAV-enabled data collection
system with single-antenna UAVs and IoTDs. The SNs, i.e.,
ground devices, transfer their data independently to UAV
stations, in which users share sub-carriers to access the
wireless network in an efficient manner. A UAV functions
as a beacon for gathering information by flying in a specific
area. In order to satisfy communication quality requirements
and flight safety, each UAV has the same flight height and
a maximum service radius. The paper adopts a probabilistic
LoS channel model. IoTD using the same sub-carrier will
cause interference to suppress the rate performance, and
thus the authors explore power control for each sub-carrier
to improve the rate performance of the UAV system.
Considering the dire importance of information freshness,
the authors optimise the trajectory of the UAV for the time-
sensitive IoTDs. The joint power control and UAV trajectory
design for achieving information freshness problems was
formulated. The problem is non-convex and thus decomposed
into two sub-components: power control and trajectory
optimization with constraints on UAV maximum transmit
power and minimum rest energy to achieve flight safety.
Then, an MA DRL scheme is proposed to solve these sub-
problems with independent state and action spaces as well
as independent reward function. Via simulations, the authors
show the proposed schemes yield better performance gains
compared to the benchmark schemes.

Multi-UAV path learning was deployed for AoI and
power optimization in IoT networks with battery-charged
UAVs [135]. A set of deployed IoTDs with multiple
UAVs relay data sensed by SNs to BS. An optimization
problem is formulated which jointly optimizes the UAV
trajectory while reducing the energy consumption and AoI
of received messages. To ensure UAV operates in an energy-
efficient manner, the UAV can get recharged in charging
stations/depots. The complex optimization problem is solved
via DRL. The authors use a Deep Q network to estimate the
state-action value function. The proposed scheme converges
quickly and achieves lower ergodic energy consumption and
ergodic rate comparedwith benchmark algorithms such as the
greedy algorithm, nearest neighbor algorithm, and random
walk.

The authors in [138] focus on using DRL approach for
timely data collection for UAV-assisted IoT. The authors
study a UAV-assisted wireless powered IoT data collection
scenario when UAV function as mobile charging stations
for wireless recharging of SNs. To design the trajectory
and mobile path of mobile charging stations as well as
jointly optimize AoI, the authors formulate the problem as
a partially observed MDP with large state and action spaces.
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FIGURE 16. Illustration of the DQN architecture [131].

They deploy a multi-agent DRL based on VDN for making
real-time decisions based on the partial observation of the
environment. The authors show, through simulations, that the
proposed algorithm is effective.

2) DQN-BASED ALGORITHM FOR OPTIMIZING TRAJECTORY
AND SCHEDULING PLANNING
A learning-based multi-UAV cooperative data collection for
information freshness in IoT was studied in [14]. UAVs
with limited onboard energy leave their initial location to
collect data from sensors in cooperation with other UAVs.
UAV must stop at the destination while ensuring non-
negative residual energy to ensure it completes its mission
successfully. To design the UAV trajectory and the SN
transmission scheduling policies for information freshness,
various constraints such as collision avoidance, trajectory,
kinematic, etc are considered as constraints. The multi-
UAV data collection problem is modelled as a decentralized
partially observable MDP Dec-POMDP as each UAV is not
aware of the environmental dynamics and can observe only
a part of the SNs. To address this challenge, the authors
proposed the use of a multi-agent DRL-based algorithm with
centralized learning and decentralized execution. The agent
and mixing network’s centralized training is done offline
and the training process is stabilized via two sets of neural
networks as shown in Fig. 17. Action masks were used to
filter invalid actions and ensure the constraints were not
violated. Via simulations, the authors show that the proposed
algorithm can reduce total average AoI, and the action mask
method improves convergence speed.

3) DQN-BASED ALGORITHMS FOR OPTIMIZING ENERGY
Ref [130] consider ML solutions for multi-UAV-assisted
data collection in wireless-powered IoT in which the UAVs
acts as mobile data collector for charging sensor nodes.

SNs are charged using the RF transfer from UAVs and
the harvested energy from the UAV is used to upload data
to the UAV. SNs sample environments at fixed or random
intervals based on the sampling mode and update packets of
sampled information are delivered by multiple UAVs. UAVs
cooperate to collect data based on their partial observations,
e.g., locations and energy levels, and the AoI status and
ttl of the most recent update packet of each SN within its
coverage. The authors assume random sampling, with its
update packet arrival is based on a Poisson distribution. The
objective is to improve the SN service time and freshness
of collected information. The authors modelled the problem
as a partially observed MDP with a large observation action
space in which the UAV intelligently learns the environment
(as an agent) and makes intelligent decisions. They employ
a multi-agent VDN-based MARL algorithm in which each
UAV acts as an agent that takes independent decisions on
flight and data collection based on partial and time-varying
observations to obtain the optimal strategy via the multi-
agent DRL framework. Results indicate the SN average AoI
increases with an increase in sampling interval, and it is
higher with random sampling compared to fixed sampling.
Then VDN performs better than the non-learning policies,
i.e., greedy and nearest neighbour policies, to achieve a
smaller average AoI.

The authors of [129] study the multi-UAV-aided data
collection problem when the sampling mode of SN is
unknown to the UAV. They deploy state-of-the-art RL
methods for designing UAV flight trajectories. SNs randomly
or periodically samples data packets and multiple energy-
constrained UAVs are dispatched to collect update packets
from SNs while the UAV is flying over them. The trajectory
planning problem is formulated as MDP with the objective
of minimizing the weighted sum average AoI of SN under
collision avoidance and energy capacity constraints. The
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FIGURE 17. Illustration of the QMIX algorithm for the training phase of the neural network parameters [14].

TABLE 11. Comparison on optimization objectives (T=trajectory,
E=energy, S = scheduling), metrics and benchmark algorithms using actor
critic-based DRL algorithms in multiple UAVs scenarios.

authors propose two learning-based algorithms based on
SARSA (for optimal policy) and VDN (based on the
architecture in Fig. 14) to effectively carry out data collection
tasks of SN. SARSA-based algorithms can facilitate optimal
policy asymptotically when some conditions are satisfied.
The VDN, one of the most popular MADRL, makes
UAVs take decisions independently on their flight and data
collection using the partially observed network information.
Via simulations, the effectiveness of the two learning-based
algorithms over traditional policies was shown.

B. ACTOR CRITIC-BASED DRL USING MULTI-AGENTS
Table 11 provides a comparison among different actor critic-
based works using multi agents based on the optimization
objectives, metrics used as well as benchmarks.
Actor Critic-Based DRL for Optimizing Trajectory And

Energy: The authors of [137] focus on synchronizing a team

of UAVs for the timely collection of data and energy transfer
via DRL. For data collection, UAVs should first engage in
wireless energy transfer to supply IoTDs with the required
energy in the downlink. IoTD performs wireless information
transfer to UAVs in the uplink using the energy harvested.
However, whenever the same UAV performs WIT and WET,
its energy usage and data collection time are largely sacrificed
and it is even difficult to coordinate between UAVs for
improving WE and WIT performance. With UAVs divided
into two teams to act as data collectors and energy transfer
respectively, a MADRL is used to optimize both teams
trajectory, maximum throughput, and minimum expected
AoI as well as energy utilization of UAV and improve
energy transfer. Simulation results show that the proposed
scheme effectively synchronizes UAV teams and adapts their
trajectory for large-scale dynamic IoT environments.

The authors [132] explore UAVs with heterogeneous
energy capabilities. A set of SNs is distributed in an area to
sense environmental data while the UAV swarm collects data
from each SN and uploads it to the BS or DCwhere the UAVs
are initially located. In order to prevent collisions, the authors
assume that UAVs can fly at different altitudes. UAVs send
signals for data acquisition to the sensors when they hover
above them. Such UAVs can collect data from multiple SNs
(via linear path) while ensuring they have sufficient energy
to return to the data center or they just return to the data
center also via a linear flying path (from origin to destination).
In this case, the linear distance corresponds to the energy
consumed during UAV flight. In this context, the authors
focus on path planning for the UAV swarm for optimizing the
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FIGURE 18. Attention-based model for computing encoder output from UAV-swarm status [132].

AoI with UAV cooperation. They also designed an attention-
based DRL algorithm using an encode-decoder model (refer
Fig. 18) for heterogeneous UAV path planning for optimizing
the AoI considering UAV’s energy constraints. They conduct
simulations to prove the fast convergence of the proposed
algorithm, high optimisation capability, and reliability for
use in heterogeneous UAV cooperative swarm with AoI
constraints.

DRL and device matching were deployed to achieve fresh
and energy-efficient data collection in satellite-controlled
rechargeable UAV-assisted IoT networks in [136]. UAV flies
to collect data from IoT devices that sense information and
the collected data is transferred to the satellite. To improve the
information freshness, AoI is minimized via UAV trajectory
design. A satellite is used as the central controller for
collecting the minimum AoI values between UAV and IoT
device which is obtained by training the UAV via DRL.
The training helps to minimize AoI with optimal UAV
positioning. The satellite builds a preferred list of UAVs and
IoTDs based on the AoI values and finishes the matching via
Gale-Shapley algorithm. Simulation results emphasize the
merit of the proposed approaches over others.

C. LESSONS LEARNED
Multiple UAVs could collaborate to avoid collisions along
their trajectories while aiming to achieve other objectives
such as minimizing energy efficiency, AoI, or optimizing
scheduling decisions. Such multi-agent systems are coopera-
tive.

In cooperative systems, the agents collaborate to maximize
the long-term return. Multi-agent setups could also be fully
competitive, where the return of all agents adds up to

zero, while mixed settings combine both the cooperative
and competitive, for instance, some agents cooperate with
teammates while competing with other teams. Some of the
challenges of multi-agent schemes include non-stationarity,
varying learning speeds, and issues in scalability [139].

Most of the studies in this categorymainly deploy the DQN
algorithm. Similarly, multi-agent DRL-based solutions have
mainly been deployed to optimize the UAV trajectory, and
energy consumption minimization while scheduling planning
was less studied. In addition, average AoI is one of the most
common metrics studied using multi-agent DRL schemes.

VII. DISCUSSION
A. TARGET OBJECTIVES OF DRL-BASED SCHEMES
Figures 19 and 20 shows a list of some of the DRL-based
algorithms and modifications that have been deployed in
the reviewed papers. D3QN was used to solve the MDP
to determine UAV trajectory, SN scheduling and energy
recharging in [115]. DDQNwas used to overcome the disaster
of dimension in [116], while in [14] because each UAV is
unaware of the environmental dynamics a multi-agent DRL
with centralized learning and decentralized execution was
proposed. The complex optimization problem formulated for
optimizing UAV trajectory and minimizing device energy
consumption and AoI was solved using a deep Q network.
DQN and PPO were proposed to minimize the average sum
AoI by jointly optimizing phase shift, location, and IoTD
transmission scheduling.

In [5], DRL was used to achieve optimal system level AoI
under dynamic channel conditions which adjust the UAV
flight policy based on the channel variations and trade-off
between energy transmission and data collection. TD3 lends
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FIGURE 19. A list of some of the variants on DRL studied for single UAV scenarios.

itself well for learning and finding the optimal UAV trajectory
and SN scheduling in [126]. Agile DRL with experience
replay was used to solve the energy efficiency maximization
problem with contextual constraints (e.g. AoI at ground BS)
in [123] while DRL-based satellite control for collecting
minimum AoIs between UAVs and IoTDs were captured
in [136]. DRL was used for trajectory design with the state
space considers residual energy, energy efficiency, and AoI
in [13]. VDN was used in [138] to make real-time decisions
according to the partial observations of the environment.

MADRL was used to address issues due to unknown
environmental dynamics and conflict collision constraints
in [133]. VDN in MADRL framework was used to find the
optimal strategy for UAV to learn its environment and make
independent decisions in [130]. The problem in [119] was
formulated as MDP due to the system dynamics and TD3
policy gradient-based trajectory planning algorithm was used
to deal with the multi-dimensional action space. MADRL
scheme was used to handle power control and trajectory

design sub-problem in [134]. PPO is used to solve mixed
integer non-convex optimization problems regarding altitude
optimization, communication scheduling and phase shift
optimization in [118]. A-TP using DRL is used to handle
traffic generation pattern with unknown topology in [3] in
which MDP was used to model the complex interaction
between UAV and IoT.

DRL is used to design the UAV flight trajectory without
knowing the sampling mode of each SN in [129]. Therein
SARSA and VDN were deployed to meet the data collection
requirements. In [131], DRL was used to solve the complex
optimization problem associated with multi-UAVs function-
ing as relays using a DQN for estimating state-action value
functions. In [117], GSDRL helps to tackle the problems of
UAVs with different initial positions which are to complete
data collection and forwarding independently. Online free
DRL to solve the problem where of dynamic altitude control
and optimal scheduling policy for UAVs under unreliable
channels [124]. In [132], DRL based on attention mechanism
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FIGURE 20. A list of some of the DRL variants used in multi-UAV scenarios.

were used to optimize the AoI under energy constraints.
UAV-assisted data collection leverages on DRL algorithm
for flight trajectory optimization and transmission schedule
to overcome the curse of dimensionality in [121]. Also,
MADRL was used to jointly optimize a team of UAVs to
minimize the expected AoI, and maximize throughput and
energy utilization of UAVs in [137].

B. MDP REPRESENTATIONS
Markov decision process plays a vital role in modeling
problems to be solved by reinforcement learning. A summary
of theMDP representations for some of the reviewed papers is
provided in Tables 12 and 13 with observations summarized
in Table 14. State representations play an important role
in the optimization of UAV-assisted IoT research. State
representations within the studied frameworks in this paper
involved (horizontal or 3D) UAV current location, AoI of

IoTDs, coverage indicator, updated packet lifetime, UAV
residual energy, ratio between AoI and planning range of
IoTD, UAV rest energy, difference between remaining time
and minimum time needed for UAV to reach the destination,
energy stored in the battery of SN, difference in UAV
battery status, SN location information, indicators to indicate
whether data is collected or not, and node energy after update.

As for actions, UAV movement is the most common
abstraction of the action of the agent under a maximum of
nine cardinals: North, East, West, North, Southeast, South-
west, Northeast, Northwest, Hovering. Similarly, energy
harvesting related parameters, scheduling, and flight speed
can all be considered as actions for the UAV.As for the reward
it could be defined as negative sum of AoI, or summation
of penalty for AoI violation from IoT nodes, or new AoI for
optimal scheduling, or sum of AoI and energy consumption
amongst others. Refer to Tables
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TABLE 12. DRL-based algorithms and their MDP structure.

C. SIMULATION LIBRARIES
Pytorch and Tensorflow are the most common libraries
used in the research on DRL-assisted AoI minimization for
UAV-IoT. For instance, [1], [3], [115], [121], and [122]
consider Tensorflow-Agents library, while [132] deployed
Python 3.9 and Pytorch. Similarly, [14], [124], and [131]

used Pytorch library while [13] deployed Tensorflow 1.14,
on Python3.7 (Intel i7 CPU). The authors in [135] also used
Pytorch on theNVIDIATeslaV100GPU.Oubbati et. al [137]
also used Tensorflow 1.14.0 on Python 3.6.9 while [15]
deployed Tensorflow 1.5.0 on Python 3.6. As we can observe
not all the reviewed works have provided details on the
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TABLE 13. DRL-based algorithms and their MDP structure (contd).

simulation libraries and software versions. Similarly some
of the information available on the computing capacity of
the CPU or GPU indicates the need for huge computational
power for such simulations.

D. ALGORITHM COMPLEXITIES
The algorithm complexities of several of the algorithms
proposed in literature are provided here. It is worthy of note
that some papers do not provide the complexity analysis
with respect to their Big-O notation. The complexity of the

PPO-based algorithm in [124] isO
(
(P− 1) · n2p

)
∼ O

(
n2p
)

where np is the number of neural units in the pth hidden layer,
P is the transmission power. The complexity of the QMIX-
based algorithm in [14] isMOa ((N + 1)(N1 + 1)(N2 + 1))+
Om where M is the set of UAV, N the set of SN,
N1 and N2 are positive integers. The complexity of
the algorithm for cooperative UAV teams in [137] is
O
(
(N +M ) × T

(∑
ℜ−1
i=1 ıAc,iıAc,i+1 +

∑
ℑ−1
j=1 ıCr,iıCr,i+1

))
,

where N is the number of UAV-ETs, M is the number
of UAV-DCs, T is the number of time slots, ıCr,i is the
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TABLE 14. Observations in MDP frameworks for DRL-based solutions.

TABLE 15. DRL-based algorithms and their complexities.

critic network, ıAc,i is the number of the neurons in the ith

layer of the actor network, ℜ, ℑ is the number of fully-
connected layers in the actor and critic networks. TheGSDRL
algorithm in [117] has a complexity ofO

(
2l0 (L/d)2l0

)
, where

l0 = m0 + N0 is the number of actions the UAV takes,
m0 is the number of SN, N0 is the number of groups, L
is the length of rectangle, d is the length of each grid.
The complexity of the SAC-AO-RIS algorithm in [12]
is O (B× E × T (2(K + 2)h1 + 2h1h2 + (K + 3)h2) + 8M)

where k is the number of IoTDs, M is the number of
RIS elements, h1, h2 are the numbers of two hidden fully-
connected layers. The SARSA-based algorithm in [129] has a
complexity ofO

((
3M + 2K +

∣∣ν̂∣∣M) · N · Ne
)
where k,M

are the number of SNs and number of UAV, N is the number
of steps, Ne is the number of episodes, ν̂ is the number of
flight actions of each UAV. The PPO algorithm in [118] has
a complexity of O

(∑Q−1
q=1 nq · nq−1

)
∼ O

(
n2q
)
where nq is

the number of neural units in the qth hidden layer. Also, the
DP-based algorithm in [142] has a complexity of O

(
2MM2

)
whereM is the number of ground SNs. Similarly, the DDPG-
based algorithm in [141] has a complexity ofO

(
q2
)
where q

is the number of neurons. The DRL-based algorithm in [143]
is characterized by a complexity of O

(∑P
p=1 np · np−1

)
,

where np is the number of neural units in fully-connected
layer p. The CA2C algorithm in [144] is characterized by
a complexity of O

(
Nb · N 2

·M
)
where N is the number

of tasks, M is the number of UAVs, and Nb: sampling
Batch size. The complexities of all the aforementioned
algorithms are summarized in Table 15. In many of the works
reviewed some of the algorithms can not be expressed as
a formal Big-O notation due to the complex nature of the
system.

E. PARAMETER SETTINGS OF DRL-BASED ALGORITHMS
This section discusses the parameter settings of DRL-based
algorithms. The setting of the main DRL parameters are
summarized in Table 16. The key parameter in DRL-based
algorithm is the learning rate which has been set to different
values in the reviewed algorithms. As shown in Table 16,
the learning rate values range from 0.00008 [120] to 0.4
[13], [114]. By exploring the results of AoI in the reviewed
algorithms, it can be concluded that the learning rate setting
has an impact on the achieved AoI. For example, the authors
in [136] examined the overall AoI of SAC-based algorithm
in 6000 episodes for two different values of learning rates
equal to 0.1 and 0.01 respectively. The results show that
the higher value of learning rate (0.1) has achieved less AoI
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which indicates that as the learning rate increases, the AoI is
decreases. However, this relation can not be generalized since
other algorithms such as T3D, PPO, Sarsa and DQN have
achieved an AoI less than SAC with learning rates less than
0.01 [118], [119], [121], [129]. Thus, studying the impact of
learning rate settings on AoI can be considered an open issue
to be investigated deeply. Table 16 shows other parameters
setting such as discount factor, number of hidden layers,
number of neurons, activation function, exploring probability
and optimizer techniques that have been used in the reviewed
algorithms. These parameters are summarized here to provide
the reader with a full vision of the possible settings for
each parameter. This allows the researchers to open up new
research questions on studying the impact of these settings on
the results of the AoI parameter.

F. LIMITATIONS
The algorithms identified in Figures 19 and 20 generally
fall under the different categories of DRL algorithms. In this
section, we provide a general discussion of DRL algorithms
worthy of consideration in different applications, including
UAV-assisted IoT applications.

DRL algorithms have limitations such as poor training
stability and overestimation especially during the cold start
phase as agents need to interact continuously with the
environment to learn the best strategies. Such agents could
learn incorrect experiences at the early stages of training
which could lead to failure in training [145]. Similarly,
traditional DRL algorithms usually achieve a good result for
the target optimization objective and cannot be generalized to
objectives beyond the reward function [145]. The following
are the limitations of the DRL algorithms commonly
deployed in literature [146]:

• Although Q-learning is easy to use and straightforward,
it is characterized by slow convergence and unsuitable
for continuous action space.

• SARSA manages stochastic environments and policies,
however, it is slow and difficult for continuous action
space.

• AlthoughDQN can handle high dimensional state space,
it can potentially overestimate Q-values.

• Policy gradient algorithms can handle continuous action
space and learn stochastic policies while optimizing
non-differentiable objective functions. However, they
are characterized by high variance in gradients and are
hyper-parameter-sensitive.

• Actor-critic algorithms combine the advantage of both
policy gradient and value-based schemes, thus, they can
handle both discrete and continuous action space prob-
lems. However, it is difficult to balance exploration and
exploitation and they have high variance to gradients.

• DDPG can handle continuous action space and high
dimensional state space problems. Similarly, it can
learn deterministic policies, however it is unstable and
characterized by overestimation bias.

TABLE 16. Parameters setting of DRL-based algorithms.

• TD3 solves the overestimation bias problem in DDPG.
However, it is unstable and requires careful hyperparam-
eter tuning

VIII. CHALLENGES AND FUTURE CONSIDERATIONS
DRL has made significant contributions to UAV control
from various points of view motivating researchers to
go the extra mile to use these algorithms which require
more time than classical control algorithms [21]. In this
section, we discuss challenges and future considerations of
research. Before providing further details, some of these
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issues are summarized below.7 Particularly setting up all the
parameters and components of the MDP and choosing a DRL
algorithm to optimize an important design objective is not as
straightforward as it might seem even everything is well set
up, defined and the algorithm converges well. A number of
important considerations regarding how learned policy can
be adjusted if the result is not satisfactory and the level of
confidence of the designer that the deployed policy will work
on real hardware is quite challenging.

The DRL is a process that is difficult to understand fine-
grained details of how it works for solving a particular
problem with respect to neurons, weights and biases, which
makes it difficult to predict its performance in a new
environment or when a particular parameter is changed.
Similarly, a redesign of the entire MDP framework and
perhaps retraining might be required to see the expected
results in a different environment which is time consuming.
Recent efforts have been working towards explainable DRL
(see [147], [148], [149]) but this is yet to be fully explored
within UAV-IoT. Another issue is how very realistic models
can be designed especially in view of the huge dynamics in
real settings such as noise and disturbances. Thus physical
tests are important for UAVs especially for verification of
models and tuning of reward functions. It is also important
to ensure effective error handling to prevent unplanned
occurence during practical deployments by creating a safe
mode.

A. CHOICE OF ALGORITHMS
The choice of algorithms for solving specific problems
largely determines the quality of obtained solutions with
respect to several important factors such as stability, conver-
gence and the amount of time required for learning. Different
classes of algorithms have unique trade-offs and choosing the
most suitable algorithm is not a trivial task. Some algorithms
require huge computational time to run which may limit their
applications for energy and computationally limited drones
as well as reliability of the solution for the target application.
For instance, DQN has a longer convergence time while PPO
is characterized by faster convergence. Some algorithms are
sensitive to changes such as PPO while others are more
unstable such as DQN. Some other algorithms do very well
with continuous action spaces e.g. TD3. It is thus important
to design and deploy the most suitable algorithms in view of
the several performance measures and considerations such as
training time, convergence time, energy savings, amount of
computation required, reliability, ability to handle continuous
space and generalizability of solutions. For instance, applying
SARSA is challenging for large networks where a much
greater number of SNs and UAVs are participating [129].
Particularly, for the following reasons: 1) The value of
the Q-table becomes intractable computationally as the

7https://www.mathworks.com/videos/reinforcement-learning-part-
5-overcoming-the-practical-challenges-of-reinforcement-learning-
1558604830037.html

state-action pairs increase significantly due to the large
state-action space. 2) Communication overhead increases
significantly since BS would have to collect information
about the network from more UAVs and SN via over-control
channels. 3) Due to the coverage limitation, UAVs might not
be able to cover all SNs due to the limited coverage range as
the network gets larger, which makes efficient data gathering
from SNs very difficult. It would also be difficult for BS to
perfectly know the sampling state of the lifetime of update
packets, especially when SN operates in random sampling
mode, which leads to poor performance loss.

The study of which algorithms aremost suitable for various
forms of UAV navigation such as propulsion, hovering,
cruising and landing for more accurate prediction of the
UAV behaviour and quality of communication links is
imperative particularly because that would facilitate the
practical deployment of these algorithms in several real-life
applications

B. TRAINING
Training data is important for training DNN. However,
it has its inherent challenges [13]. For instance, how to
obtain a sufficient number of training data in a time-
changing environment is challenging, despite being crucial
for optimising the neural network. According to empirical
evidence, independent training data can enhance stability
and improve neural network convergence. As such, obtaining
independent training data is another challenge in optimising
the neural network. Thus, the experience replay and random
sampling methods are adopted [13].
Most authors do not mention how long it took to train

their models and the computational power of the simulation
engines. Without a doubt, training DRL models could take
a considerable amount of time particularly, since millions
of iterations might be required to obtain meaningful results.
This is especially due to the deep learning components of
the algorithm [112] and the back propagation procedure.
Techniques to improve the training procedure are thus
required to make DRL solutions more attractive for both
research and practice. Imitation learning is one potential
approach that can be leveraged to shorten the training
time by leveraging on the structural knowledge of efficient
heuristic algorithms [150]. Both inadequate training and
overtraining are not desirable for best results [151]. However,
training is not as straightforward because of the need for
hyperparameter tuning. It is also important to ensure training
is tractable which can be achieved by reducing the action
space (without compromising on model accuracy). How to
effectively achieve this is thus important. Although training
a single agent is time consuming, it is much more so
for multi-agent systems [152]. Thus, handling multi-agent
systems with reasonable training time and complexity is quite
important. Besides the aforementioned it is also important to
be able to make generalizations from training experiences to
adapt to environmental changes [153] especially since a lot
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of uncertainties are bound to occur within the operational
environment of the UAV. Finally, training can sometimes
be frustrating if the reward function or action space is not
properly designed, leading to failure in learning or overly long
learning time.

C. CONVERGENCE
DRL suffers from slow convergence and higher search cost,
especially in path planning problems in complex environ-
ments [154]. In addition to its slow convergence, it is also
faced with the problem of overfitting and poor exploration in
such environments. Particularly, off policy algorithms expe-
riences longer convergence time due to the use of the epsilon
greedy method and the variance between Q-values [155].
Also, in some cases, convergence to local optima occurs
especially if the exploration is not sufficiently diverse in high
dimensional space [153]. Similarly, uncertatinty estimation
relies on function approximation and in situations with high
dimensional state action, the estimation errors might not
converge easily [156]. Convergence problem can also be as
a result of unstable training and hence, a proper choice of
algorithm is required for this, e.g. DQN converges slowly
although its use of NN to approximately replace the Q
function in order to reduce the dimension of input data [157].

D. CHOICE OF PARAMETERS AND HYPERPARAMETERS
It is essential to optimise the parameters of the neural
network using a suitable loss function to obtain the optimal
Q-function [13]. Some optimizers, such as the gradient
descent algorithm and the Adam algorithm, can be used to
obtain optimal neural network parameters based on the loss
function and training data set [13].

DRL involves a huge amount of parameters which requires
a large amount of data to train with huge computing
resources. This makes it challenging to deploy in real-
time, AoI sensitive applications especially for the resource
limited resources particularly when they are expected to
learn themselves. It is possible to use heuristic algorithms
for some of the problems which DRL are deployed for,
however, DRL performs much better overall than many
heuristic algorithms, in fact, in all the results so far, DRL
has yielded the best performance. For this reason, DRL can
be deployed as a benchmark or an avenue to understand
the weakness of existing heuristic algorithms [150] so that
they can be improved for use in UAV based data gathering
missions. In addition, DRL can be targeted at large scale and
multi-dimensional optimization problems.

DRL needs several of its hyperparameters to be set
accurately before and during training to obtain the best results
during training. Several of the reviewed papers have not
emphasized how their hyperparameters have been tuned or
the impact of the hyperparameters. Generalization framework
for understanding the impact of change in hyperparameters
are required to enhance the understanding of the performance
gains that can be achieved. Particularly, DRL parameter

optimization and hyperparameter choices go a long way
in predicting the accuracy of DRL algorithm. Also, the
most suitable architecture, learning rate, discount factor,
etc are all required to obtain optimal performance. This
issue with hyperparameters makes optimization challenging,
particularly because DRL is sensitive to these parameters.

For instance, learning rate is a key parameter in DRL
algorithms. It controls the speed and quality of learning [115].
When the learning rate is too low, the convergence rate of
learning is also slow, and the learning falls into a local optimal
solution. On the other hand, when the learning rate is high, the
learning effect is quite sensitive, and thus convergence is not
achieved [115].

E. STABILITY
High stability is required for DRL algorithms. However,
unfortunately, not all algorithms are very stable. For instance,
while DQN has yielded promising results in the minimization
of AoI, trajectory and energy efficiency optimization, DQN
suffer from issues such as poor convergence and instability.
To address these challenges, it is important to prioritize algo-
rithms that are robust to underestimation and overestimation
as well as ensure stability. This calls for the need for proper
engineering of different deployed algorithms to perfectly
ensure stability [158]. For instance, the target network for
DQN has to be updated at regular intervals whereas unstable
jumps can be experienced during the updated intervals due
to changes in parameter values during learning [151]. This
makes it quite difficult to see a clear trend in the learning
process. New updates should thus ensure policy learning
maintains stability with low latency.

F. REAL DEPLOYMENTS
Implementation should be more application specific e.g.
wildfire monitoring, rescue mission, exploration [21] with
more realistic assumptions and very close-to-practice system
models. For instance, UAVs would require precise navigation
through obstacles to prevent collisions in many cases.
Modeling real-world scenarios is quite complex and a lot of
practical systems do not have separate training and evaluation
environments [112]. As of writing, no real-implementation of
DRL in a field setting for AoI-sensitive application has been
reported in literature and as such all the reviewed works have
run on simulation mode. It is thus difficult to predict some of
the practical impairments towards successful implementation
in real environments due to the huge gap between simulation
and real deployments [159]. For instance, hardware resources
and their uncertainties, robustness to faults, mismatched
training and testing conditions, sample inefficiency when the
learned policies are transferred to physical UAVs or learning
policies directly on the hardware. A successful transfer of
DRL agent from simulation to real environment in a safe,
secure and efficient fail-safe and rigorous manner is quite
challenging and needs to be validated thoroughly especially
for critical AoI-sensitive applications. Although simulation
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may provide experience thatmay be generalized in real world,
it might not capture some of the details in real settings
such as wind, etc. Environmental conditions include rain,
wind speed, dust should be considered as part of the system
disturbance [21]. It is thus important to ensure training
experience can adapt to the uncertainties in the operation
environment. This can be achieved via a huge number of
trials. It is also possible to have drone monitoring in indoor
environments too (with altitude control). The height control
can be considered as one of the inputs of such models.
Also, object avoidance is another important component. In a
nutshell, researchers could explore real-life implementation
ofmore advanced algorithms to facilitate smooth autonomous
UAV navigation along with improved exploration for UAV
control and navigation [21].

G. EXPLORATION
Another major challenge faced by DRL-based methods in
wireless networks and UAV communications is the inherent
exploration of RL algorithms. Exploration is necessary for
learning, however, it can be quite time-consuming. Similarly,
it is quite hard due to environmental challenges such as large
state-action space, as its difficulty grows with increase in
state-action space. For instance, real drones could require
sensors for navigation and might also receive images in form
of sensory input for navigation. At times the state space
might have complex underlying structures which makes
some states more difficult to access compared to other
states with causal dependencies among states. Actions could
also be combinatorial in nature or a hybrid of discrete
and continuous thus making exploration more challenging.
In multi-agent systems, exploration can also pose difficulty
because local information is not sufficient to achieve
coordinated exploration among agents. Global information is
necessary but there exist inconsistencies between global and
local perspectives which if not balanced can lead to redundant
or inadequate exploration [156].

The common approach used in the literature is the epsilon-
greedy approach [160], however, this method requires param-
eter tuning. Interestingly, there are several other unexplored
approaches which have been reported in literature [156]:
for instance using Bolzman exploration in which an agent
draws action from Bolzman equation over its Q-values. The
problem with this method however, is that it cannot be
applied to continuous action state spaces. Another approach
towards exploration is the use of Upper Confidence Bound
(UCB) which measures the potential of each action by
UCB of the reward expectation rather than using naive
random exploration. Entropy regularization can also be used
to promote exploration, especially for RL algorithms with
a stochastic policy. The objective here is to encourage
the agent to take diverse actions. However, regularization
might deviate from the original optimization objective, which
can be addressed by decreasing the influence of entropy
regularization in the learning process. Bayesian optimization

is another approach that can be employed for exploration to
find the position of the global optimum. However, acquisition
functions are required for efficient exploration to suit better
selection.

Safe exploration is another important consideration, espe-
cially during the training process. Safety requirements are
important in the evaluation, deployment, and sampling
interaction. Finally, coordinated exploration in multi-agent
systems for balancing local and global information is
another promising area to explore. Research is required on
multi-agent exploration, particularly with regards to partial
observation, non-stationary high dimensional state-action
space, and coordination.

H. COMPLEXITY
DRL can memorize specific sequence of actions or experi-
ences which can lead to poor performance in certain unex-
pected circumstances. Techniques to improve this trades-off
the solution such as regularization for higher complexity.
DRL can be difficult to interpret and debug due to its black
box nature. Models are complex and it is challenging to
interpret due to the unknown internal workings of the learning
process. This is more sensitive in safety-critical applications
where agents cannot afford to make mistakes. Modeling real-
world scenarios is complex and while some environments
may be well understood, the complex and stochastic nature
of the environmental dynamics makes it difficult to deploy
the hand crafted solutions. For the case of DRL, a carefully
designed reward function is required which might be very
challenging inmulti-objective non-linear problems especially
those that requires assigning weights and considering trade-
offs for complex problems. Other complex problems are
problems where the state space has a complex structure.
Exploration also adds to the complexity because of the
combinatorial or hybrid discrete-continuous actions. The
potential of using techniques such as entanglement quantum
computing for achieving lower complexity can be explored,
particularly, in view of the fact that classical computing is
usually deployed despite DRL scales poorly with increase in
problem size and complexity.

I. COMPUTATION
The common use of DRL is propelled by the existence of
more affordable computational power e.g. Google Colab.
UAVs are quite small compared to other vehicles and thus
they have low memory and energy capacities thus they also
have relatively low computational power. For this reason
DRL may not be practical in certain use cases because imple-
mentation of optimization and learning-based AI require
high computational power which is challenging to overcome.
Thus it is important to reduce computational demands
of the training in various neural network architectures,
since significant computation power is required for training.
Although GPU can be used, they are quite expensive despite
Tensorflow and Pytorch can optimize between CPU and
GPU, still there is an obvious trade-off between computation
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and financial cost. This also applies to the case with multi-
agent DRL-based schemes.

J. STATE-ACTION SPACE DIMENSION
Several problems are experienced due to high dimensional
space and actions. For instance, most methods are or
may not able to learn effectively in a large and complex
action spaces as they only consider small discrete action
space or low dimensional continuous action space. However,
real world scenarios involve a large number of discrete
or hybrid discrete and continuous action space which is
quite complex [156]. Designing state, action and reward
especially in high dimension state and high dimension
action and sparse rewards are important [161]. Also, DRL
suffers from convergence to local optima when operating
in high dimensional space. Drones are faced with problems
of high dimensions and continuous action nature especially
for navigation, thus policy based DRL solutions are most
suitable [162]. Nonetheless, both policy and value based
schemes are commonly used.

DQN algorithm often output discrete actions because
action selection is based on action-value function and are
only suitable for discrete action space. Problems in this
regard affects choice of network structure, space exploration,
sample efficiency, and leads to overestimation of action-value
function [161].

Whenever the transition probabilities in a model are not
known, and the problem has a very large state-action space,
traditional solutions for solving MDP, such as value and
policy iteration becomes quite challenging [120]. In many
large-scale scenarios with much larger node density (see [1]
for example), DQN cannot learn optimal scheduling, thus
other methods such as the use of a long short-term memory
(LSTM)-based autoencoder are required to map the state
space to a fixed-size vector representation to facilitate the AoI
minimization.

Furthermore, it is hard for RL to learn with limited
sample data. For instance, when using DRL, several millions
of interactions are usually required for relatively simple
problems, thus limiting its wide use in real-industry sce-
narios. Partially the question of how efficiently it explores
the environment and collects information about information
experiences could assist learning towards optimal policies,
especially in complex environments with sparse rewards and
noisy distractions.

Finding a control policy that effectively controls several
closely related design components, such as the UAV altitude,
the scheduling policy, and the RIS phase shift matrix can
be quite challenging as shown in [118]. Such problems can
be formulated as a hybrid discrete-continuous action space
problem but it is quite difficult to combine these diverse
actions into a single or one action space because of the
large number of possible actions that should be considered.
Efficient DRL algorithms would still be the best to solve
large discrete action spaces as they increase the difficulty of
learning, i.e., make learning hard [118].

IX. CONCLUSION
Reinforcement learning algorithms have become a revolu-
tionary tool in several applications, permeating cutting edge
applications in the last few years. Particularly, in modern
research, they have become so popular and have provided
solutions to extremely difficult and multi-dimensional prob-
lems in general sciences, medicine, engineering, agriculture
to name a few. The use of reinforcement learning has also
become a huge trend within the last few years. Particularly,
it has proven to be successful for optimizing UAV navigation
and control. In this paper, we consider the application of
DRL for solving problems related to data and time-sensitive
(albeit AoI-sensitive) applications which could span across
several monitoring applications in IoT. Using DRL, the UAV
can learn to perform actions that can optimize the designer’s
target objectives such as trajectory, scheduling of sensor
nodes, learning traffic patterns, best hovering spots etc.

To provide an in-depth review of the use of DRL as
a problem-solving tool in AoI-sensitive UAV-assisted IoT
network architectures, the paper provides a background
on several real applications of UAV-assisted IoT such as
monitoring, smart city, data gathering, security, health,
agriculture, and disaster management, some of which are very
time sensitive. Then, a background on reinforcement learning
and DRL is provided. Subsequently, the proposals relating to
the studied works were classified, and briefly introduced.

Subsequently, we provide a discussion on target objectives,
discuss the simulation libraries, algorithm complexity for
several of the algorithms and most influential simulation
parameters. Finally, we conclude with the challenges and
future research directions that can be explored on this subject
with emphasis on choice of algorithms, training, conver-
gence, choice of parameters, stability, need for real test-
beds, algorithm stability, exploration-exploitation dichotomy,
complexity, computation, and dimension with respect to
state-action space. In summary, RL is a robust framework
that can be applied to achieve several vital objectives for the
diverse applications of UAV-assisted IoT. As such aspects
such as security and mobile edge computing, the use of
non orthoganal multiple access, etc. As DRL is useful for
UAVs, unmanned underwater vehicles can also benefit from
DRL algorithms for planning their movement underwater and
collecting data from underwater sensor networks.
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