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ABSTRACT We consider finite-horizon episodic reinforcement learning (RL) under heavy-tailed noises,
where the p-th moment is bounded for any p ∈ (1, 2]. In this setting, existing RL algorithms are limited
by their requirement for prior knowledge about the bounded moment order of the noise distribution. This
requirement hinders their practical application, as such prior information is rarely available in real-world
scenarios. Our proposed method eliminates the need for this prior knowledge, enabling implementation in
a wider range of scenarios. We introduce two RL algorithms, p-Heavy-UCRL and p-Heavy-Q-learning,
designed for model-based and model-free RL settings, respectively. Without the need for prior knowledge,
these algorithms demonstrate robustness to heavy-tailed noise and achieve nearly optimal regret bounds,
up to logarithmic terms, with the same dependencies on dominating terms as existing algorithms. Finally,
we show that our proposed algorithms have empirically comparable performance to existing algorithms in
synthetic tabular scenario.

INDEX TERMS Reinforcement learning, heavy-tailed noise, regret analysis.

I. INTRODUCTION
Reinforcement Learning (RL) [16] has emerged as a critical
paradigm in the training of intelligent agents, enabling
them to make optimal decisions through interactions with
their environment. This approach has been successfully
applied across various domains, including soft robotics [21],
portfolio management [27], and autonomous driving [17].
To accurately reflect the inherent randomness present in real-
world applications, RL approaches typically employ noise
assumptions. Traditionally, the RL framework assumes noise
with bounded characteristics or sub-Gaussian distributions,
which has been extensively examined in the RL literature [6],
[8], [11], [13], [14], [20]. However, real-world scenarios
often present complexities that challenge these conventional
noise assumptions, extending beyond the scope of sub-
Gaussian noise. Examples include the fields of finance [4],
meteorology [9], and network communication [3], where
noise characteristics can be more complex. In response to
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these challenges, the research landscape of RL has progres-
sively expanded to encompass a broader spectrum of noise
assumptions [25]. A notable advancement in this direction is
the incorporation of heavy-tailed noise distributions into the
RL framework. These heavy-tailed distributions are adept at
modeling the presence of rare but problematic events, which
can substantially impede the learning process of an agent.

Specifically, researchers in the field of multi-armed bandits
(MABs), which represent the simplest RL problem, have
investigated various settings characterized by heavy-tailed
noise distributions [7], [10], [15], [18], [19], [22], [23], [24],
[26]. The objective of these bandit algorithms is to identify
an optimal sampling strategy in the presence of heavy-
tailed noise, primarily leveraging the optimism in the face
of uncertainty (OFU) framework [2]. Algorithms based on
OFU utilize the confidence interval of a mean estimator of
the rewards to determine the sampling strategy. Consequently,
a fundamental approach to managing heavy-tailed noise
entails establishing concentration inequalities of estimator
with exponentially decaying error bounds, similar to the
Azuma-Hoeffding or Bernstein inequalities [1] commonly

107800


 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0003-0147-2715
https://orcid.org/0000-0003-1802-0264


H.-J. Park, K. Lee: Heavy-Tailed Reinforcement Learning With Penalized Robust Estimator

applied in sub-Gaussian or bounded noise distribution
settings. This approach necessitates the development of a
robust estimator capable of accurately estimating the true
reward, even in the presence of heavy-tailed noise.

Interestingly, [7] proposed such estimators having expo-
nential decaying error bound on reward mean estimation,
and the estimators have been widely used to deal with
heavy-tailed rewards in bandits studies [10], [15], [18], [19],
[23]. However, these estimators necessitate prior knowledge
of the bounded moment order of the heavy-tailed noise
distribution to be defined. In real-world scenarios, it is often
unrealistic to expect such prior knowledge about the noise
distribution to be available. This limitation poses constraints
on the practical application of algorithms developed with the
robust estimators for handling heavy-tailed noise. In RL, [25]
developed robust algorithms to handle heavy-tailed noise in
finite-horizon episodic Markov Decision Processes (MDPs),
utilizing the robust estimators provided in [7]. As a result, the
proposed RL algorithms are constrained in situations where
the prior information about the noise distribution is not known
in advance.

In this paper, we introduce two algorithms that enhance
the practicality of existing algorithms by eliminating the
need for prior knowledge of the noise distribution. The
proposed algorithms maintain the same theoretical guarantee
as previous algorithms up to logarithmic terms, without
requiring prior knowledge of the moment order of the
heavy-tailed noise distribution. This improvement is crucial
for real-world applications where such prior information
is often unavailable. Specifically, we utilize the p-robust
estimator provided by [22], which can be defined without
prior knowledge, instead of the estimators proposed by [7]
that require such knowledge. By using this estimator,
we introduce two RL algorithms, p-Heavy-UCRL2 and p-
Heavy-Q-learning, which are designed for model-based and
model-free RL settings, respectively. Since the confidence
interval of the p-robust estimator shares the same exponential
convergence rate as the robust estimators used in [25],
up to logarithmic terms, the regret bound of the proposed
algorithms is also comparable to that of the existing algo-
rithms. Finally, we show that the experimental performance
of our algorithms is almost equivalent to that of the existing
algorithms in synthetic tabular setting.

II. RELATED WORK
In reinforcement learning (RL), bounded noise or sub-
Gaussian noise assumptions have long been investigated [6],
[8], [11], [13], [14], [20], and more recently, this assumption
has been extended to include heavy-tailed noise settings.

In the context of multi-armed bandits (MABs), which
can be viewed as the stateless RL, several works have
aimed to develop learning algorithms under heavy-tailed
noises. Reference [7] first considered the stochastic MAB
problem in the heavy-tailed noise setting. Specifically, they
introduced robust mean estimators such as truncation and
median-of-means and employed them to analyze a robust

bandit algorithm, referred to as RobustUCB, which is an
adaptation of the classical UCB algorithm [2]. Subsequently,
the truncation and median-of-means estimators have found
broad application across various scenarios to address heavy-
tailed noises, such as linear bandits [10], [15], [23],
Lipschitz bandits [18], and Bayesian optimization [19].
Yet, using the truncation and median-of-means estimators
is hindered by a fundamental limitation: the prerequisite
knowledge of moment bounds pertaining to heavy-tailed
noise distributions. This constraint arises from the definitions
associated with these estimators, which impose constraints
on the practical utilization of the truncation and median-of-
means estimators. Interestingly, [22] tackled this limitation
by introducing the p-robust estimator. Unlike its counterparts,
this estimator operates independently of prior knowledge
while having a slightly looser confidence bound compared to
the truncation and median-of-means estimators. In addition,
[22] showed that there is a finite-armed stochastic bandit
problem for which the Robust-UCB has an unavoidable
sub-optimal factor ln(T )1−1/p where p is a bounded moment
order of the heavy-tailed noise distribution and proposed a
perturbation-based algorithm APE2 that achieves minimax
optimal regret bound Õ(T 1/p) in terms of T .
As aforementioned, MABs under heavy-tailed noises have

been studied and improved over the last decade. However,
existing studies in the RL field have mainly focused on
light-tailed noise settings (e.g., sub-Gaussian). Here, we will
briefly review only the works closely related to our results.
[6] introduced the well-known model-based RL algorithm,
UCRL2, with a total regret bound Õ(DS

√
AT ) where D is

a diameter of the given MDP, S is states, and A represents
actions. In addition, [6] showed that for any RL algorithms,
we can choose an MDP in which the lower bound of the
algorithm matches �(

√
DSAT ). Following this work, [12]

proposed the Bayesian RL algorithm, PSRL, which combines
UCRL2 with Thompson sampling and proved that PSRL
can achieve the Bayesian regret bound Õ(D

√
SAT ), which

is an improvement over UCRL2 by a factor of O(
√
H ).

In model-free RL algorithms, [14] adopted Q-learning with
Hoeffding and Bernstein-style bonus terms in a finite-horizon
episodic MDP setting, which attains nearly optimal regret
bound in terms of T under some optimistic initialization
of value functions. While there have been advancements,
these algorithms are still limited by the sub-Gaussian noise
assumption.

Notably, [25] first studied RL under heavy-tailed noises.
Specifically, they proposed two RL algorithms, Heavy-
UCRL2 and Heavy-Q-learning, which are designed in
model-based and model-free setups, respectively. However,
like most of the works on MABs under heavy-tailed noises,
[25] utilized the truncation estimator which requires prior
knowledge about the bounded moment order of heavy-
tailed noises. Thus, Heavy-UCRL2 and Heavy-Q-learning
assume the prior knowledge is known in advance, which
hampers the practical application of the algorithms. In this
work, we will relax this constraint on Heavy-UCRL2 and
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Heavy-Q-learning. More specifically, we propose robust
RL algorithms, p-Heavy-UCRL2 and p-Heavy-Q-learning,
by leveraging the p-robust estimator. Especially, the proposed
algorithms do not need any prior knowledge and enjoy the
same regret bound of Heavy-UCRL2 and Heavy-Q-learning
in terms of H , S,A, and T up to logarithmic terms.

III. PROBLEM FORMULATION
Consider the problem of reinforcement learning (RL) whose
goal is to find optimal sequential decisions to maximize
cumulative reward over given rounds. RL can be formalized
using the concept of an Markov decision process (MDP)
M = M(S,A, p, r), where S is a finite state space, A is
a finite action space, p : S×A×S → [0, 1] is the transition
model, and the stochastic reward function r : S × A →
[rmin, rmax]. We denote the S and A denotes the cardinality
of S and A, respectively. In RL, the reward and transition
functionsmay not be fully known to the agent. Then, the agent
interacts with the environment over a sequence of discrete
time steps to learn about reward and transition models and to
optimize its behavior. In each time step t ∈ [T ], an agent in
state st ∈ S selects an action at ∈ A and receives a reward rt ,
which is an independent and identically distributed random
variable sampled from the reward distribution R(st , at ). After
receiving the reward, the agent transitions to the next state
s′ ∈ S according to the transition model p(s′|s, a), where∑

s′∈S ps,a(s
′) = 1. Following [25], we assume that the

reward distribution can be a heavy-tailed distribution with
finite moment order of p where p ∈ (1, 2]. Furthermore,
we make assumption on MDPs as follows:
Definition 1 (Diameter of MDP [6]): Consider the stochas-

tic process defined by a stationary policy π : S →

A operating on an MDP M with initial state s. Let
T (s′|M, π, s) be the random variable for the first time step
in which state s′ is reached in this process. Then the diameter
ofM is defined as

D(M) := max
s̸=s′∈S

min
π :S→A

E[T (s′|M, π, s)]. (1)

An MDPM is called a communicating MDP if and only if
it has a finite diameter. In addition, we assume finite-horizon
episodic MDPs where the agent interacts with the MDP over
T = HK total rounds, whereH is the horizon length and K is
the number of episodes. For a policy π , the Q value function
is defined as Qπh (s, a) := E[

∑H
h′=h rh′ |sh = s, ah = a, π].

Then, the value function is V πh (s) = E[
∑H

h′=h rh′ |sh = s, π].
For any s ∈ S and a ∈ A, the optimal Q-value and value
functions are denoted as Q∗h(s, a) := maxπ Qπh (s, a) and
V ∗h (s) := maxπ V πh (s, a). For simplicity, we set VH+1(s) =
0 and QH+1(s, a) = 0, respectively. Then, the goal of the
agent is to minimize the cumulative regret,

RT :=

T∑
t=1

V ∗1 (s1)− V
π
1 (s1), (2)

where π is the chosen policy by the learner.

IV. METHOD
In this section, we introduce two algorithms tailored for
heavy-tailed noise setting. The first algorithm, p-Heavy-
UCRL2, is an adaptation of UCRL2 [6], specifically designed
to handle heavy-tailed noises. The second algorithm, p-
Heavy-Q-learning, is a robust modification of Q-learning
algorithm [14] intended for heavy-tailed noises as well.
Both algorithms leverage the p-robust estimator proposed
by [22]. The formal definition of the p-robust estimator is
as follows:
Definition 2 (p-Robust Estimator [22]): Let {Yk}∞k=1 be

independent and identically distributed (i.i.d.) random vari-
ables sampled from a heavy-tailed distribution with a finite
p-th moment, νp := E|Yk |p, for any p ∈ (1, 2]. Let y := E[Yk ]
and define an estimator as follows

Ŷn :=
c

n1−
1
p

n∑
k=1

ψp(Yk/(cn1/p)) (3)

where c > 0 is a constant. Then, for all ϵ > 0, we have

P(Ŷn > y+ c ln(exp(bpνp)/cp)/δ)/n
1− 1

p ) ≤ δ (4)

and

P(y > Ŷn + c ln(exp(bpνp)/cp)/δ)/n
1− 1

p ) ≤ δ. (5)

Algorithm 1 p-Heavy-UCRL2
input δ ∈ (0, 1), S, A, p-robust estimator r̂ , parameter c
1: t ← 1, initial state s1
2: for episode k = 1, 2, . . . ,K do
3: tk ← t , Nk (s, a)← 0
4: For all (s, a) ∈ S × A initialize vk (s, a) to 0, where

vk (s, a) is a visitation of state-action pair (s, a) in the
current episode

5: Set Mk be the set of all MDPs with states S and
actionsA with transitions p̂k (|̇s, a) and rewards r̂(s, a)
satisfying the following inequalities:∣∣r̃(s, a)− r̂k (s, a)∣∣ ≤ 7c log(2SAtk/δ)

max{1,Nk (s, a)}
1− 1

p

(6)

∣∣|p̃(·|s, a)− p̂k (·|s, a)∣∣ |1 ≤
√

14S log(2Atk/δ)
max{1,Nk (s, a)}

(7)

6: Obtain policy π̃k by using extended value iteration
and select action according to π̃k until vk (st , π̃ (st )) <
max{1,Nk (st , π̃k (st ))}

7: end for

Note that the p-robust estimator consists of an influence
function defined as

ψp := ln(bp|x|p+ x+ 1)I[x ≥ 0]− ln(bp|x|p− x+ 1)I[x<0]

(8)

where bp :=
[
2( 2−pp−1 )

1− 2
p + ( 2−pp−1 )

2− 2
p

]− 2
p
. Intuitively, the

influence function behaves linearly around a neighborhood

107802 VOLUME 12, 2024



H.-J. Park, K. Lee: Heavy-Tailed Reinforcement Learning With Penalized Robust Estimator

Algorithm 2 p-Heavy-Q Learning
Require: δ ∈ (0, 1),S, A, parameter c
1: Initialize Qh ← Hrmax and Nh(s, a) ← 0 for all (s, a, h) ∈
S ×A× [H ]

2: for episode k = 1, 2, . . . ,K do
3: for step h = 1, 2, . . . ,H do
4: Select action ak,h ← argmaxa′ Qh,k (xh, ah)
5: t ← Nh(sh, ah)+ 1

6: b′t ← bt + 2H (c ln(2SAT )/δ)/t1−
1
p )

7: αt ←
H+1
H+t

8: Qh ← (1 − αt )Qh(xh, ah) + αt (ct
1
pψp(rh(sh, ah)/ct

1
p ) +

Vh+1 + b′t )
9: end for

10: end for

of 0, however, when x becomes large enough, the influence
function has a form similar to the logarithmic function.
With this property, rewards contaminated by heavy-tailed
noises can be regularized while preserving meaningful
information. Furthermore, it is important to note that the
definition of p-robust estimator eliminates the need for
any prior knowledge about the bounded moment of heavy-
tailed noises. This feature facilitates the development of
robust reinforcement learning algorithms without requir-
ing prior information on noise moment order which is
often not given in practice. By leveraging the p-robust
estimator, we propose p-Heavy-UCRL2 as detailed in
Algorithm 1.

A. COMPARISON WITH UCRL2 [6]
The first algorithm, p-Heavy-UCRL2 (Algorithm 1) is a
variant of the UCRL2 algorithm [6] with the p-robust
estimator. In the vanilla UCRL2 algorithm, a learner
constructs a plausible set of MDPs at the beginning of
each episode. Then, the learner chooses an optimistic MDP
in the set of plausible MDPs and estimates an optimistic
policy corresponding to the chosen MDP. In particular,
the rewards r̂k (s, a) and transition probabilities p̂k (s, a)
are estimated considering given k episodes, and a set of
plausible MDPs is defined from the estimates. Thus, the
estimation step of mean rewards and transition probabilities
directly affects the quality of plausible MDPs set and the
selection of an optimistic MDP. In particular, the vanilla
UCRL2 guarantees the estimations of reward and transition
probability by using Azuma-Hoeffding inequality which has
an exponential convergence rate but only applicable under the
sub-Gaussian noise assumption. However, under the assump-
tion of heavy-tailed noises, Azuma-Hoeffding inequality
cannot be utilized. Thus, p-Heavy-UCRL2 estimates mean
rewards by using the p-robust estimator which provides
a similar convergence rate to that of Azuma-Hoefdding
inequality under heavy-tailed noises. In other words,
the high probability confidence bound of mean rewards
is guaranteed by the confidence interval of p-robust
estimator.

B. COMPARISON WITH HEAVY-UCRL2 [25]
Similar to ours, [25] proposed a model-based RL algorithm,
referred to as Heavy-UCRL2, designed to handle heavy-
tailed noises. Specifically, they revised the vanilla UCRL2
algorithm with a truncation estimator [7] capable of adapting
to heavy-tailed noises. Consequently, mean rewards are
estimated using the confidence interval of the truncation
estimator. However, unlike the p-robust estimator, the trun-
cation estimator assumes that the bounded moment order of
heavy-tailed noises is known in advance, necessitating prior
knowledge on bounded moment order for Heavy-UCRL2.
This constraints the practical application of Heavy-UCRL2.
In Section V, wewill prove that Heavy-UCRL2 and p-Heavy-
UCRL2 have the same regret bounds up to logarithmic terms
of H , S, and T , even though p-Heavy-UCRL2 does not
require prior knowledge.

C. COMPARISON WITH Q-LEARNING [14]
Algorithm 2 is an adaptation of the Q-learning algorithm [14]
with the p-robust estimator. In finite-horizon episodic MDP,
[14] showed that if the Q value function is initialized with H
and the exploration bonus term is given as bt := c

√
H3ι/t

where ι := log(SAT/δ) and the Q-learning algorithm can
achieve a nearly optimal regret bound. The update rule of the
Q value functions of vanilla Q-learning is as follows:

Qh(s, a)← (1− αt )Qh(s, a)+ αt [rh(s, a)+ Vh+1(s′)+ bt ],
(9)

where αt := H+1
H+t is a learning rate, (s, a) ∈ S × A

represents a state and action pair, and s′ is the next state.
The performance of this algorithm hinges crucially on the
bonus term bt , which enables the Q-learning algorithm to
attain an optimal regret bound O(

√
H4SAT ι) with respect

to T . However, this bonus term was derived from the
usage of Azuma-Hoeffding inequality, and thus when using
this bonus term in the heavy-tailed setting, one cannot
guarantee the performance of the algorithm. Instead of direct
application of reward mean to update the Q value function,
we first regularize contaminated rewards by using the p-
robust estimator. The update rule of our algorithm is as
follows:

Qh←(1− αt )Qh(xh, ah)

+ αt

(
ct

1
pψp

(
rh(sh, ah)

ct
1
p

)
+ Vh+1 + b′t

)
. (10)

Here, the contamination on rewards is alleviated by the
p-robust estimator. In addition, the bonus term is different
from the original bonus term bt , which is defined as b′t =

bt + 2H (c ln(2SAT )/δ)/t1−
1
p ) where c is some constant, and

δ ∈ (0, 1) is a confidence parameter. This bonus term is
derived from the confidence interval of the p-robust estimator
and enables us to explore suitably even in the heavy-tailed
noise setting.
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D. COMPARISON WITH HEAVY-Q-LEARNING [25]
In model-free RL under heavy-tailed noises, [25] proposed
a robust variant of Q-learning algorithm [14] by using the
truncation estimator. Especially, Heavy-Q-learning truncates
rewards contaminated by heavy-tailed noises, i.e., r̂t =
rtI{|rt | ≤ Bt }, where I is indicator function, Bt :=(
νpt/ log(2SAT/δ)

)
is a truncation threshold at time step

t ∈ [T ] and νp is the bounded moment order of heavy-
tailed noise. Accordingly, the Bellman update rule of Heavy-
Q-learning is defined as

Qh(s, a)← (1− αt )Qh(s, a)+ αt (r̂h(s, a)+ Vh+1(s′)+ b′′t ),

(11)

where b′′t := bt + 8Hν
1
p
p

(
log(2SAT/δ)

t

)1− 1
p
. These simple

modifications induce the robustness of Q-learning. However,
as in the case of Heavy-UCRL2, Heavy-Q-learning still
requires prior knowledge.

V. REGRET ANALYSIS
In this section, we present theoretical results of p-Heavy-
UCRL2 and p-Heavy-Q-learning. In the analysis of p-Heavy-
UCRL2, we establish various regret bounds, including a
total regret bound over T rounds (Theorem 1), a per-step
regret bound (Corollary 1), an instance-dependent regret
bound (Theorem 2), and a regret bound for changing
MDPs (Theorem 3). For p-Heavy-Q-learning, we establish
regret bounds using Hoeffding and Bernstein-style bonus
terms. Significantly, both p-Heavy-UCRL2 and p-Heavy-
Q-learning exhibit identical polynomial dependencies on
H , S, and T terms as the existing regret bounds in [25],
which match the lower bound in RL under heavy-tailed
noise [25]. It is worth noting that unlike Heavy-UCRL2
and Heavy-Q-learning, these achievements are made without
necessitating prior knowledge of the bounded moment order
of heavy-tailed noise distributions. Now, we start with the
first result, the total regret bound of p-Heavy-UCRL2.
Theorem 1 (Total Regret Bound of p-Heavy-UCRL2): Let

R1 := rmax − rmin. Then, we have the following total regret
upper bound of p-Heavy-UCRL2 with probability at least
1− δ,

20R1DS

√
AT log

(
T
δ

)
+(2Cp+1)(7c) log

(
2SAT
δ

)
(SAT )

1
p ,

(12)

where Cp is some constant.
The proof is deferred to Appendix A. Within the proof,

the regret is bounded by three primary error terms which are
induced by the extended value iteration, estimation of tran-
sition probabilities, and rewards, respectively. Specifically,
heavy-tailed noises only impact the errors in reward mean
estimation, while the other terms remain unaffected. Thus, the
first term of (12) which is unaffected by heavy-tailed noise,
20R1DS

√
AT log(T/δ), retains the same dependencies onD,

S, A, and T as the vanilla UCRL2 [6]. In contrast, the second

term of (12) represents an extra regret component associated
with heavy-tailed noise, which is derived from the confidence
interval of the p-robust estimator. More precisely, to bound
the reward mean estimation error in constructing a plausible
MDP set, p-Heavy-UCRL2 leverages the confidence interval
of the p-robust estimator, which results in an additional regret
bound (i.e., the second term of (12)). Note that this penalty
on regret matches the lower bound �̃((SAT )1/p) [25], which
implies the extra term of regret bound is inevitable.

Similar to ours, Heavy-UCRL2 utilizes the truncation
estimator to bound reward mean estimation error in the
heavy-tailed setting. The regret term of Heavy-UCRL
corresponding to the second term of (12) shows a better
dependency on log(2SAT/δ) by an order of 1/p where p ∈
(1, 2] is a bounded moment order of heavy-tailed noise
distribution. The difference in these regret bounds arises
from the difference in the confidence intervals of the p-
robust estimator and the truncation estimator. However, the
increase in the order of the regret bound for p-Heavy-UCRL2
is limited to the logarithmic factor log(2SAT/δ), meaning
that the polynomial dependencies on the dominating terms,
including H , S, A, and T , remain consistent with the regret
bound of Heavy-UCRL2. We will show that the experimental
performance of both algorithms is almost identical as detailed
in Section VI.
Corollary 1 (Average Per-Step Regret): The average per-

step regret of p-Heavy-UCRL2 is at most λ, with probability
at least 1− δ, for any

T ≥ max
{(

42202
R21D

2S2A

λ2 log
(40R1DSA

δλ

))
,

α log
(2SA
δ

)
+ 2α log

(α
δ

)}
. (13)

where α = (1/λ)
p

p−1 (4Cp + 2)
p

p−1 (7c)
p

p−1 (SA)
1

p−1 .
The proof is deferred to Appendix B. From Theorem 1,

we can directly derive Corollary 1 which provides probably
approximately correct (PAC) bound of p-Heavy-UCRL2.
Compared to Heavy-UCRL2, the order of 7c has increased
from 1 to p

p−1 , where 1 <
p

p−1 for any p ∈ (1, 2]. This implies
that we need slightlymore samples to guarantee the regret that
is smaller than λ.
Theorem 2 (Instance-Dependent Regret): For any initial

state s ∈ S, any T ≤ 1, any λ > 0, and some constant Cp
with probability at least 1− 3δ, the regret bound of p-Heavy-
UCRL2 is

(4Cp + 2)
p

p−1 (7c)
p

p−1

(
log

(
2SAT
δ

)) p
p−1

(
SA
λ

) 1
p−1

+ λT

(14)

Let g := ρ∗(M ) − maxs∈S maxπ :S→A{ρ(M , π, s) :
ρ(M , π, s) > ρ∗(M )} be the average reward gap between of
the best and second-best policies. Then, the expected regret
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of p-Heavy-UCRL2 (with parameter δ := 1
3T ) is bounded as

E[1(M , s,T )]

≤ (4Cp + 2)
p

p−1 (7c)
p

p−1

(
log

(
2SAT
δ

)) p
p−1

(
2SA
g

) 1
p−1

+

∑
s,a

⌈
1+ log2

(
max

π :π (s)=a
Tπ

)⌉
max

π :π (s)=a
Tπ . (15)

The proof is deferred to Appendix C. This theorem shows
that p-Heavy-UCRL2 can achieve the logarithmic expected
regret in terms of instance-dependent term, that is, the gap
between the average reward of the best and second-best
policies. Compared to Heavy-UCRL2, the dependency on
log(2SAT/δ) is increased from 1 to p

p−1 , while the polynomial
dependencies on the other terms remain unchanged. Thus we
can attain the same instance-dependent regret bound to that
of Heavy-UCRL2 up to logarithmic terms without requiring
prior knowledge.
Theorem 3 (Regret for Changing MDP): Let p ∈ (1, 2].

Restarting p-Heavy-UCRL2 with parameter δ

ℓ2
at each steps⌈

i(2p−1)/(p−1))

ℓ(p)/(p−1))

⌉
for i = 1, 2, 3, . . . , with probability at least

1− δ, the regret of p-Heavy-UCRL2 is upper bounded by

R1ℓ
p−1
2p−1 T

p
2p−1 (SA)

1
p . (16)

The proof is deferred to Appendix D. This theorem shows
that the regret bound of p-Heavy-UCRL for changing MDP,
which is the same as that of Heavy-UCRL2 up to logarithmic
terms. Furthermore, if the noise distribution has a finite
variance (i.e., p = 2), the regret bound for changing
MDP becomes R1ℓ1/3T 2/3(SA)1/2 that recovers the same
dependencies on ℓ, T , S, andA comparedwith vanilla UCRL2
under sub-Gaussian noise setting.
Theorem 4 (Regret Bound of p-Heavy-Q-Learning with

Hoeffding-Style Bonus): The total regret of p-Heavy-Q-
learning with Hoeffding-style bonus over T rounds is as
follows,

O
(
rmaxH2

√
SAT ι+ ιH2− 1

p T
1
p (SA)1−

1
p

)
. (17)

The proof is deferred to Appendix E. This theorem presents
the total regret bound of p-Heavy-Q-learning over T rounds
with Hoeffding-style bonus term. The first term of (17) is
not affected by heavy-tailed noise, while the second term
represents an additional component induced by heavy-tailed
noise. In comparison with Heavy-Q-learning, the order of
ι = log(SAT/δ) has increased from 1 − 1/p to 1. However,
this increase is confined to logarithmic terms, similar to the
previous p-Heavy-UCRL2 case, while the orders regarding
H , S, A, and T remain unchanged.
Theorem 5 (Regret Bound of p-Heavy-Q-Learning With

Bernstein-Style Bonus:) The total regret of p-Heavy-
Q-learning with Bernstein-style bonus term over T

rounds is as follows,

O
(√
H3r3maxSAT ι+H

2− 1
p ι(SA)1−

1
p T

1
p+

√
H9r2maxν

1
p (SAι)3

+

√
H

4p−3
p−1 rmax(SAι)2 + H

3p−2
p−1

√
(SA)3ι4(p− 1)

)
. (18)

The proof of Theorem 5 is deferred to Appendix F.
This theorem presents the regret bound for p-Heavy-Q-
learning with a Bernstein-style bonus term. Unlike the
Hoeffding bonus term case, which uses the Azuma-Hoeffding
inequality, Bernstein’s inequality is utilized to bound the
MDP’s transition probability estimation error, leading to an
additional regret due to the gap between true variance and
estimation variance. Furthermore, the second term of (18)
represents the regret induced by heavy-tailed noise, where,
akin to previous cases, the order of ι has increased from
1− 1/p to 1. Note that in a sub-Gaussian noise setting, using
the Bernstein’s inequality to bound transition probabilities
estimatino error tightens the regret bound by a factor of
O(
√
H ) [14]. However, in a heavy-tailed noise setting, the

reward estimatino error dominates the regret bound, and
thus, the overall regret bound remains the same as that of
Hoeffding-style bonus term.
Theorem 6 (Lower bound in heavy-tailed setting [25]):

For any fixed T and algorithm, there exists a communicating
MDP M with diameter D such that the expected regret of the
algorithm is �((SA)1−

1
p T

1
p ). In the finite-horizon episodic

setting, there exists a MDP such that the expected regret is
�(H (SA)1−

1
p T

1
p ).

[25] proved that the lower bound of finite-horizon episodic
MDP setting under heavy-tailed noise. Specifically, when
the noise has only a finite variance (p = 2), this lower
bound recovers the lower bound under sub-Gaussian noises
�(
√
SAT ). We note that the regret bound of p-Heavy-Q-

learning aligns with this regret bound in both cases of
Hoeffding and Bernstein-style bonus terms, up to logarithmic
terms.

VI. EXPERIMENTS
In this section, we present the experimental performance of p-
Heavy-UCRL2 and p-Heavy-Q-learning on synthetic tabular
MDP such as SixArms [5] and DoubleChain. The main
comparison group of algorithms includes Heavy-UCRL2
and Heavy-Q-learning, both designed for the heavy-tailed
noise setting. In experimental results, the proposed algo-
rithms show similar or even better performance while
both of them do not require prior information on the
bounded moment order of heavy-tailed noise distribution.
Furthermore, we compared our algorithms with UCRL, Q-
learning, and PSRL to demonstrate the challenges faced
by reinforcement learning algorithms developed under the
sub-Gaussian noise assumption when applied in heavy-
tailed scenarios. To generate heavy-tailed noise distribution,
we make aWeibull distribution which has a scale α and shape
k parameters. Specifically, we set α = 1 and k = 1.6, the
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FIGURE 1. Experimental results on synthetic tabular MDPs. Fig. (a) for DoubleChain and Fig. (b) for SixArms.

FIGURE 2. Experimental results on synthetic tabular MDPs only associated with RL algorithms under heavy-tailed noises. Fig. (a) for
DoubleChain and Fig. (b) for SixArms.

mean is zero, and the noise moment order p = 1.2. We begin
with the formal construction of synthetic tabular MDPs.

The following synthetic MDPs are adopted to evaluate the
performance of RL algorithms in [25]. DoubleChain MDP is
a combination of two ℓ-length Riverswim-style MDPs where
an agent has two actions, either going right or left. In this
MDP, the leftmost state has a negative or zero reward and
the rightmost states of each Riverswim-style sub-MDP have
the highest rewards. Thus the agent tries to go right-side
states to maximize cumulative rewards. In our simulation,
we set the length ℓ = 3, and thus the number of states
S = |S| is 7 including an initial state s1. We assume
that the rewards of the rightmost states sℓ and s2ℓ follow a
normal distributionN (0.5, (0.1)2). Furthermore, the rewards
on states s2, . . . , sℓ−1 and sℓ+1, . . . , s2ℓ followN (0.1, (0.1)2)
and N (−0.5, (0.1)2), respectively. The SixArms MDP con-
sists of seven states. In an initial state s0, an agent can choose
one of six actions, a1, . . . , a6 each of which transitions the
agent to the corresponding state s1, . . . , s6 with probability
pi for i ∈ {1, . . . , 6}. After the transition to the next state si,
∀i ∈ {1, . . . , 6}, if the agent selects action ai−1 then the agent

returns to the current state with probability 1; otherwise, if the
agent takes any other actions, the agent goes to the initial state
s0. The reward on the initial state and the other states are set to
normal distributionN (1.2, (0.1)2) andN (1+ (0.2)si−1, 0.1),
respectively. Note that the algorithm receives a noisy reward
contaminated by heavy-tailed noises.

A. RESULTS ON TABULAR MDP
Fig. 1 presents the experimental results of RL algorithms
on DoubleChain and SixArms MDPs. As shown in both
Fig. 1a and 1b, the algorithms designed for sub-Gaussian
noise settings, namely UCRL2, Q-learning, and PSRL,
exhibit poor performance under heavy-tailed noise condi-
tions. These findings align with theoretical results, as the
guarantees for sub-Gaussian RL algorithms are heavily
dependent on concentration inequalities that hold only in
sub-Gaussian noise settings. Conversely, RL algorithms
tailored for heavy-tailed noise demonstrate superior per-
formance. Specifically, the model-based RL algorithms
p-Heavy-UCRL2 and Heavy-UCRL outperform the sub-
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Gaussian RL algorithms by significant margins and produce
nearly identical results to each other. Additionally, the
model-free RL algorithms p-Heavy-Q-learning and Heavy-
Q-learning show almost zero regret, with minimal differences
between them. These outcomes support our theoretical
results, indicating that the increase in the regret bounds is
restricted to logarithmic terms. Fig. 2 shows the experi-
mental results exclusively for RL algorithms designed for
heavy-tailed noise. Consistently, there are no significant
performance differences between these algorithms, despite
our methods not requiring additional information about the
moment order of the heavy-tailed noise. The performances of
all algorithms for heavy-tailed noises are similar, howerver,
p-Heavy-UCRL2 and p-Heavy-Q-learning have a strength in
that they do not require prior knowledge of bounded moment
order of heavy-tailed noise while Heavy-UCRL and Heavy-
Q-learning do.

VII. CONCLUSION
In this paper, we proposed reinforcement learning (RL)
algorithms, p-Heavy-UCRL2 and p-Heavy-Q-learning, for
finite-horizon episodic Markov decision processes (MDPs)
under heavy-tailed noise. Unlike existing algorithms, our
methods do not require any prior knowledge about the
bounded moment order of the heavy-tailed noise distribution,
making them applicable to a broader range of scenarios. This
advantage arises from the nature of the p-robust estimator,
which is defined without the need for prior knowledge.
We demonstrated that our algorithms achieve the same
regret bounds as existing algorithms, nearly optimal up to
logarithmic terms. Finally, our experimental results validate
the theoretical guarantees, showing favorable performance
with existing algorithms.

APPENDIX A
PROOF OF THEOREM 1
We briefly outline the proof of Theorem 1. The total regret
over T rounds is bounded as (20) with a probability of at
least 1 − δ

12T 5/4 . This regret bound can be decomposed into
two major terms: the regret when the true MDP is within the
plausible MDP set and the regret when it is not. By utilizing
Lemma 1, we can determine the regret bound for the case
when the true MDP is not included in the plausible MDP
set. The regret when the true MDP is within the plausible
MDP set can be further decomposed into transition and
reward estimation errors. To bound the transition estimation
error, we use technical Lemma 2. The reward estimation
error is bounded using the confidence interval of the p-
robust estimator (Definition 2). Finally, by summing the
upper bounds of the regret for both cases when the true MDP
is within the plausible set and when it is not–the proof is
completed.

Proof: The proof is an adaptation of the proof of
Theorem 2 in [6] and the entire proof consists of four
subsections. Note that conditioned on N (s, a), the rewards at
each time step t ∈ [T ], rt , are independent. Thus by using the

confidence interval of the p-Robust estimator the estimation
error for rewards under heavy-tailed noise is bounded as
follows,

P
{ T∑
t=1

rt ≤
∑
s,a

N (s, a)r̄(s, a)− CT
∣∣∣(N (s, a))s,a

}

≤

(
δ

8T

)5/4

≤
δ

12T 5/4 , (19)

where CT := 5
4 ln

(
exp(bpνp/cp)4/5 (8T/δ)

)
, δ ∈ (0, 1] is

a confidence parameter, and N (s, a) is a state-action counts.
Letting1k be the regret incurred by an arbitrary episode k ∈
[K ], the total regret 1 can bounded by

1(s1,T ) ≤
K∑
k=1

1k + CT (20)

with probability at least 1 − δ

12T 5/4 . In particular, the total
regret 1(s1,T ) can be decomposed into regret that occurs
when the true MDP is not in the plausible set and regret that
occurs when it is included in the plausible set.

A. REGRET FOR THE TRUE MDP NOT BEING IN THE
PLAUSIBLE SET
In this section, we provide the regret when the estimated
plausible set does not encompass the true MDP. The proof
directly follows from the following lemma.
Lemma 1 (Lemma 17 in [6]): For any t ≥ 1, the probabil-

ity that the trueMDPM is not contained in the set of plausible
MDPsM(t) at time t is at most δ

15t6
, that is

P{M /∈M(t)} <
δ

15t6
. (21)

Then, by this lemma and the same argument in Sec-
tion IV-B in [6], we have, with probability at least 1− δ

12T 5/4 ,

m∑
k=1

1kIM /∈Mk ≤ R1
√
T (22)

where I is an indicator function and R1 := rmax − rmin.

B. REGRET FOR THE TRUE MDP BEING IN THE
PLAUSIBLE SET
Now we turn to bound the regret in each episode k ∈ [K ],
assuming that the plausible MDP set contains the true MDP.
We first start by showing that the condition for stopping value
iteration of p-Heavy-UCRL2 is identical to that of UCRL2.
Specifically, the stopping criterion of extended value iteration
is as follows:
Theorem 7 (Modification of Theorem 7 in [6]): Let M

be the set of MDPs with state space S, action space A,
transition probabilities p̃(·|s, a) and mean rewards r̃(s, a)
that satisfy inequalities (6) and (7). ui(s) denote the state
value of s at iteration i. Then, if M contains at least one

VOLUME 12, 2024 107807



H.-J. Park, K. Lee: Heavy-Tailed Reinforcement Learning With Penalized Robust Estimator

communicating MDP, extended value iteration converges.
Furthermore, stopping extended value iteration when

max
s∈S
{ui+1(s)− ui(s)} −min

s∈S
{ui+1(s)− ui(s)} < ε (23)

the greedy policy with respect to ui is ε-optimal.
From Theorem 7, the regret in episode k can be bounded

as

1k ≤
∑
s,a

vk (s, a)(ρ∗ − r̄(s, a)) (24)

≤

∑
s,a

vk (s, a)(ρ̃k − r̄(s, a))+
∑
s,a

vk (s, a)
√
tk

(25)

=

∑
s,a

vk (s, a)(p̃k − r̃k (s, a))

+

∑
s,a

vk (s, a)(r̃k (s, a)− r̄(s, a))+
∑
s,a

vk (s, a)
√
tk

(26)

= vk (P̃k − I)ui +
∑
s,a

vk (s, a)(r̃k (s, a)− r̄(s, a))

+ 2
∑
s,a

vk (s, a)
√
tk

(27)

where P̃k := (p̃k (s′|s, π̃k (s)))s,s′ the transition probabilities of
π̃k on M̃k . For the second term, we have the following:∑

s,a

vk (s, a)(r̃k (s, a)− r̄(s, a))

≤

∑
s,a

vk (s, a)(|r̃k (s, a)− r̂k (s, a)| + |r̄k (s, a)− r̂k (s, a)|)

(28)

≤

∑
s,a

vk (s, a)
2 · 7 log(2SAtk/δ)

max{1,Nk (s, a)}
1− 1

p

(29)

where the inequality (29) follows from the confidence
interval of p-robust estimator and the assumption that
the true MDP is in the plausible set of MDPs. Since
max{1,Nk (s, a)} ≤ tk ≤ T holds, we obtain that

1k≤ vk (P̃k− I)ui+ 14c log
(
2SAT
δ

)
×

∑
s,a

vk (s, a)

max{1,Nk (s, a)}
1− 1

p

+2
∑
s,a

vk (s, a)
√
max{1,Nk (s, a)}

.

(30)

For the first term of the above inequality, we have
vk (P̃k − I)wk = vk (P̃k − Pk )wk + vk (Pk − I)wk . (31)

Since the true MDP is in the plausible set Mk , we can
leverage the following bound

∥p̃(·|s, a)− p̂k (·|s, a)∥1 ≤

√
14S log(2Ak/δ)
max{1,Nk (s, a)}

. (32)

By using the inequality (32), we can bound vk (P̃k−Pk )wk .
Note that this bound is identical to that of the vanilla UCRL2.
In other words, we can bound transition error in the same
manner in [6] since heavy-tailed noise does not affect this

error term. From the argument in subsection 4.3.2 in [6],
we have the following inequality:

vk (P̃k−Pk )wk≤D

√
14S log

(
2AT
δ

)∑
s,a

vk (s, a)
√
max{1,Nk (s, a)}

(33)

In addition, the second term of the inequality (31) can be
bounded as

m∑
k=1

vk (Pk − I)wk

≤ R1

(
D

√
5
2
T log

(
8T
δ

)
+ DSA log2

(
8T
SA

))
(34)

with probability at least 1− δ

12T 5/4 .
Combining the derived results and summing up the

per-episode regret 1k overall episodes [K ] with M ∈ Mk ,
the total regret when the true MDP is in the plausible set of
MDPs is as follows:

m∑
k=1

1kIM∈Mk

≤

m∑
k=1

vk (P̃k − Pk )wkIM∈Mk +

m∑
k=1

vk (Pk − I)wkIM∈Mk

+ 14c log
(
2SAT
δ

) m∑
k=1

∑
s,a

vk (s, a)

max{1,Nk (s, a)}
1− 1

p

+ 2
m∑
k=1

∑
s,a

vk (s, a)
√
max{1,Nk (s, a)}

(35)

≤ R1D

(√
14S log

(
2AT
δ

)
+ 2

)
(
√
2+ 1)

√
SAT

+ R1

(
D

√
5
2
T log

(
8T
δ

)
+ DSA log2

(
8T
SA

))

+ 14c log
(
2SAT
δ

) m∑
k=1

∑
s,a

vk (s, a)

max{1,Nk (s, a)}
1− 1

p

(36)

To bound
∑m

k=1
∑

s,a
vk (s,a)

max{1,Nk (s,a)}1−1/p
, we introduce the

following lemma.
Lemma 2 [25]: For any sequence of numbers

z1, z2, . . . , zn with 0 ≤ zk ≤ Zk−1 := max{1,
∑k−1

i=1 zi}, there
exists some constant Cp such that

n∑
k=1

zk

Z
1− 1

p
k−1

≤ CpZ1/p
n (37)

Proof: The proof can be found in [25]. □
By using lemma 2 and Jensen’s inequality, we have∑

s,a

∑
k

vk (s, a)

max{1,Nk (s, a)}
1− 1

p

≤ Cp
∑
s,a

N 1/p
s,a ≤ Cp(SAT )

1/p

(38)
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where Cp is some constant. Finally, we have

m∑
k=1

1kIM∈Mk

≤

m∑
k=1

vk (P̃k − Pk )wkIM∈Mk +

m∑
k=1

vk (Pk − I)wkIM∈Mk

+ 14c log
(
2SAT
δ

) m∑
k=1

∑
s,a

vk (s, a)

max{1,Nk (s, a)}
1− 1

p

+ 2
m∑
k=1

∑
s,a

vk (s, a)
√
max{1,Nk (s, a)}

(39)

≤ R1D

(√
14S log

(
2AT
δ

)
+ 2

)
(
√
2+ 1)

√
SAT

+ R1

(
D

√
5
2
T log

(
8T
δ

)
+ DSA log2

(
8T
SA

))

+ 14c log
(
2SAT
δ

)
Cp(SAT )1/p. (40)

C. COMBINING ALL RESULTS
Now, we have the following total regret of p-Heavy-UCRL2

1(s1,T ) ≤
m∑
k=1

1kIM /∈Mk +

m∑
k=1

1kIM∈Mk + CT (41)

≤ CT + R1
√
T

+ R1

(
D

√
5
2
T log

(
8T
δ

)
+ DSA log2

(
8T
SA

))

+R1D

(√
14S log

(
2AT
δ

)
+2

)
(
√
2+ 1)

√
SAT

+ 2Cp

(
7c log

(
2SAT
δ

))
(SAT )1/p (42)

where CT := 5
4 log

(
exp(bpνp/cp)

4
5 ·

(
8T
δ′

))
the confidence

interval of p-robust estimator. The heavy-tailed terms are
bounded by

5
4
log

(
e(

bpνp
cp )

4
5
(
8T
δ

))
+ 2Cp

(
7c log

(
2SAT
δ

))
(SAT )

1
p

≤ (2Cp + 1)
(
7c log

(
2SAT
δ

))
(SAT )

1
p (43)

= Bp log
(
2SAT
δ

)
(SAT )

1
p (44)

whereBp := (2Cp+1)(7c). Combining all these, we canwrite
the total regret as follows:

1(s1,T )

≤ R1
√
T + R1

(
D

√
5
2
T log

(
8T
δ

)
+ DSA log2

(
8T
SA

))

+ R1D

(√
14S log

(
2AT
δ
+ 2

))
(
√
2+ 1)

√
SAT

+ Bp log
(
2SAT
δ

)
(SAT )

1
p . (45)

Expanding the RHS of the above inequality gives

1(s1,T )

≤ R1
√
T + R1D

√
5
2
T log

(
8T
δ

)
+ R1DSA log2

(
8T
SA

)
+R1D

√
14S log (2AT δ)

√
2
√
SAT

+ R1D

√
14S log

(
2AT
δ

)
√
SAT

+R1D2
√
2
√
SAT+R12

√
SAT+Bp log

(
2SAT
δ

)
(SAT )

1
p.

(46)

We can rewrite this inequality as

1(s1,T ) ≤ R1DS
√
AT
(

1
√
A
+

√
1
A
·
5
2
log

(
8T
δ

)

+ (
√
2+ 1)

√
14 log

(
2AT
δ

)
+
√
8+ 2

)
+R1DSA log2

(
8T
SA

)
+Bp log

(
2SAT
δ

)
(SAT )

1
p .

(47)

As similar to [6], assume that A ≥ 2. For 1 ≤ T ≤
202A log

(T
δ

)
, we have 1(s1,T ) ≤ 20

√
AT log

(T
δ

)
trivially.

Since T > 34A log
(T
δ

)
, we have A < 1

34 log(T/δ) ·√
AT log(T/δ) and also log2(8T ) < 2 · log(T ). Then we can

obtain

R1DSA log2

(
8T
SA

)
<2R1DSA log

(
T
SA

)
(48)

<
2R1DS

34 log(T/δ)
log(T/SA)

√
AT log(T/δ)

(49)

=
2
34
R1DS

√
AT log(T/δ). (50)

Further, T > 34 · A log
(T
δ

)
also implies log

(
2AT
δ

)
≤ 2 ·

log
(T
δ

)
and log

(
8T
δ

)
≤ 2 · log

(T
δ

)
. Thus, we have that for

any T > 1, with probability at least,

1(s1,T ) ≤ R1DS
√
AT log(T/δ)

×

(
1
√
2
+

√
5
2
+ (
√
2+ 1)

√
28+
√
8+ 2+

2
34

)
+ B′ε log

(
2SAT
δ

)
(SAT )

1
p . (51)
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Therefore we have

1(s1,T )

≤ 20 · R1DS

√
AT log

(
T
δ

)
+ Bp

(
log

(
2SAT
δ

))
(SAT )

1
p

(52)

as desired. □

APPENDIX B
PROOF OF COROLLARY 1
Proof: To complete the proof, we need to show that there

exists some T0 such that the per-step regret can be bounded
by λ when T0 ≤ T . From Theorem 1, we have that

20R1DS
√
AT log(T/δ)
T

+
Bp(log(2SAT/δ))(SAT )

1
p

T
< λ

(53)

Here, Bp is constant defined as Theorem 1. Following [6],
we find T0 satisfying the first and second terms of the above
inequality are bounded by λ

2 , respectively. The first term is
derived from result in [6]. For the second term, we have

Bp(log(2SAT/δ))(SAT )
1
p

T
<

λ

2
(54)

⇒ 2(2Cp + 1)(7c)(log(2SAT/δ))(SAT )
1
p < λT (55)

⇒ (4Cp + 2)(7c)(log(2SAT/δ))(SA)
1
p
1
λ
< T 1− 1

p (56)

⇒

(
1
λ

) p
p−1

(4Cp + 2)
p

p−1 (7c)
p

p−1 (log(
2SAT
δ

))
p

p−1 (SA)
1

p−1

< T (57)

⇒

(
1
λ

) p
p−1

(4Cp + 2)
p

p−1 (7c)
p

p−1 (log(
2SAT
δ

))(SA)
1

p−1 < T

(58)

Let α = (1/λ)
p

p−1 (4Cp + 2)
p

p−1 (7c)
p

p−1 (SA)
1

p−1 . Then,
we have

α log
(
2SAT
δ

)
< T ⇒ α log

(
2SA
δ

)
+ α log

(
T
δ

)
< T

(59)

Setting X = 2α log
(
α
δ

)
gives

X = 2α log
(α
δ

)
(60)

= α log
(α
δ
·
α

δ

)
(61)

> α log
(α
δ
· 2 log

(α
δ

))
(62)

= α log
(
X
δ

)
(63)

Note that inequality (62) uses the fact x > 2 log(x) for
all x > 0. Therefore we can conclude that 2α log

(
α
δ

)
>

α log
(T
δ

)
, from which the proof is completed. □

APPENDIX C
PROOF OF THEOREM 2
This section presents the proof of Theorem 2 which
represents the logarithmic upper bound on the expected
regret of p-Heavy-UCRL2. Lemma 3 plays a role similar to
Lemma 2 in the proof of Theorem 1.
Lemma 3 [25]:∑

k∈Kλ

∑
s,a

vk (s, a)

max{1,Nk (s, a)}
1− 1

p

≤ Cε(LεSA)
1
p (64)

Proof: The proof can be found in [25]. □
Following [6], we make the definition of ϵ-bad episode.
Definition 3: An episode k is ϵ-bad if its average regret is

lager than ϵ, where the average regret of length ℓk is
1k
ℓk
with

1k =
∑tk+1−1

t=tk (ρ∗ − rt ).
Now, we introduce Lemma 4 which provides an upper

bound on the total number of rounds in λ-bad episodes where
the average regret exceeds λ. Using this lemma, we can upper
bound the incurred regret in the λ-bad episodes.
Lemma 4: Let Lλ be the number of steps taken by p-

Heavy-UCRL2 in λ-bad episodes up to time step T . Then for
any initial state s ∈ S, for any T and λ > 0, we have

Lλ ≤

(
4Cp + 2

λ

) p
p−1

(7c)
p

p−1

(
log

(
2SAT
δ

)) p
p−1

(SA)
1

p−1

(65)
Proof: First, let us define Kλ and Jλ be the sets of

the indices of the λ-bad episodes and time steps in those
espisodes, respectively. Then, by confidence interval of the
p-robust estimator, we have the following with probability at
least 1− δ,

∑
k∈Kε

tk+1−1∑
t=tk

rt ≥
∑
k∈Kε

∑
s,a

vk (s, a)r̄(s, a)

−
5
4
ln
(
exp(bpνp/cp)5/4

(
8Lε
δ

))
. (66)

By combining the fact that P
{∑

k∈Kε 1kIM /∈Mk > 0
}
≤ δ

and above inequality, we have

1p(s,T ) ≤ Cp +
∑
k∈Kp

1kIM∈Mk (67)

where 1λ is regret of λ-bad episodes and Cp :=

5
4 ln

(
exp(bpνp/cp)5/4

(
8Lλ
δ

))
. By combining these inequal-

ities, we have

1k ≤ vk (P̃k − I )wk

+ 2 · 7c log
(
2SAT
δ

)∑
s,a

vk (s, a)

max{1,Nk (s, a)}
1− 1

p

+ 2
∑
s,a

vk (s, a)
√
max{1,Nk (s, a}

(68)

vk (P̃k − I )wk = vk (P̃k − Pk )wk + vk (Pk − I )wk (69)

vk (P̃k − Pk )wk
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≤ R1D

√
14S log

(
2AT
δ

)∑
s,a

vk (s, a)
√
max{1,Nk (s, a)}

(70)

By using (69) and (70), we can obtain the following
inequality:

1k ≤ vk (P̃k − I )wk

+ 2 · 7c log
(
2SAT
δ

)∑
s,a

vk (s, a)

max{1,Nk (s, a)}
1− 1

p

+ 2
∑
s,a

vk (s, a)
√
max{1,Nk (s, a)}

(71)

= vk (P̃k − Pk )wk + vk (Pk − I )wk

+ 2 · 7c log
(
2SAT
δ

)∑
s,a

vk (s, a)

max{1,Nk (s, a)}
1− 1

p

+ 2
∑
s,a

vk (s, a)
√
max{1,Nk (s, a)}

(72)

≤vk (Pk−I )wk+2 · 7c log
(
2SAT
δ

)∑
s,a

vk (s, a)

max{1,Nk (s, a)}
1− 1

p

+

(
R1D

√
14S log (2AT/δ)+ 2

)∑
s,a

vk (s, a)
√
max{1,Nk (s, a)}

(73)

In the same manner as Appendix D in [6], we have∑
k∈Kλ

∑
s,a

vk (s, a)
√
max{1,Nk (s, a)}

≤ (
√
2+ 1)

√
LεSA (74)

And also, by lemma 3, we have∑
k∈Kλ

∑
s,a

vk (s, a)

max{1,Nk (s, a)}
1− 1

p

≤ Cp(LεSA)
1
p (75)

Then, from inequalities (67), (73), (74), and (75) it follows
that with probability at least 1− 2δ,

1ε(s,T )

≤ CT + (R1D
√
14S log(2AT/δ)+ 2)(

√
2+ 1)(

√
LεSA)

+ 2 · 7c log
(
2SAT
δ

)
Cp(LεSA)

1
p

+

∑
k∈Kp

vk (Pk − I )wkIM∈Mk (76)

where CT := 5
4 ln

(
exp(bpνp/cp)4/5

) ( 8Lp
δ

)
. Now, we need

to bound
∑

k∈Kε vk (Pk − I )wkIM∈Mk . For this, we use an
argument similar to the one applied to obtain inequality (34).∑

k∈Kε

vk (Pk − I )wkIM∈Mk

≤ R1

(
2D ·

√
Lε log

(
T
δ

)
+ DSA log2

(
8T
SA

))
(77)

with probability at least 1−δ. Combining inequalities (76)
and (77) yields:

1′ε(s,T )

≤
5
4
ln
(
exp(bpνp/cp)4/5

)(8Lε
δ

)
+ (R1D

√
14S log(2AT/δ)+ 2)(

√
2+ 1)(

√
LεSA)

+ 2 · 7c log
(
2SAT
δ

)
Cp(LεSA)

1
p

+ R1

(
2D ·

√
Lε log

(
T
δ

)
+ DSA log2

(
8T
SA

))
(78)

with probability at least 1− 3δ. We can simplify the above
inequality (78) in a similar way to the proof of Theorem 1.
1λ(s,T )

≤ 20DS

√
LλA log

(
T
δ

)
+ Bp

(
log

(
2SAT
δ

))
(LλSA)

1
p

(79)

Here, (2Cp+1)(7c) is denoted byBp. Also, by the condition
of T ,

1′λ(s,T ) ≤ 2Bp

(
log

(
2SAT
δ

))
(LλSA)

1
p (80)

Especially, by using condition on T and the fact that λLλ ≤

1′λ(s,T ), we have

Lλ(T ) ≤
1
λ
·1λ(s,T ) (81)

≤
1
λ
· 2 · Bp

(
log

(
2SAT
δ

))
(LλSA)

1
p (82)

=
1
λ
· 2 · (2Cp + 1) · (7c) ·

(
log

(
2SAT
δ

))
(LλSA)

1
p

(83)

Thus we have

L
1− 1

p
λ ≤

(
4Cp + 2

λ

)
· (7c) ·

(
log

(
2SAT
δ

))
(SA)

1
p (84)

⇒ Lλ ≤

(
4Cp + 2

λ

) p
p−1

(7c)
p

p−1

·

(
log

(
2SAT
δ

)) p
p−1

(SA)
1

p−1 (85)

as desired. □
Proof: Substituting Lλ in inequality (79) with upper

bound on Lλ in inequality (85), we have

1′λ

≤ 2Bp

(
log

(
2SAT
δ

))
(LλSA)

1
p (86)

≤ 2Bp

(
log

(
2SAT
δ

))
(SA)

1
p

(
4Cp + 2

λ

) 1
p−1

(7c)
1

p−1

×

(
log

(
2SAT
δ

)) 1
p−1

(SA)
1

p(p−1) (87)

= 2Bp

(
log

(
2SAT
δ

)) p
p−1

(SA)
1

p−1

(
4Cp + 2

λ

) 1
p−1

(7c)
1

p−1

(88)
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= (4Cp + 2)
p

p−1 (7c)
p

p−1

(
log

(
2SAT
δ

)) p
p−1

(
SA
λ

) 1
p−1

(89)

with probability at least 1 − 3δ. Since the regret incurred
in non λ-bad episodes is smaller than λT , the first statement
of theorem is completed. For the second part, note that the
expected regret in g

2 -bad episodes is upper bounded by (4Cp+

2)
p

p−1 (7c)
p

p−1 ·

(
log

(
2SAT
δ

)) p
p−1

(
2SA
g

) 1
p−1
+1. The remaining

part of the proof follows from the proof of Theorem 4 in [6].
□

APPENDIX D
PROOF OF THEOREM 3
Proof: Since we assume that horizon T is unknown, we use

an alternative approach for restarting: p-Heavy-UCRL2′

restarts p-Heavy-UCRL2 with confidence parameter δ

ℓ2
at

steps τi =
⌈
i(1+2ε)/ε

ℓ(1+ε)/ε

⌉
for i = 1, 2, 3, · · · , dividing the

algorithm into n stages. Let n be the largest natural number
such that

⌈
n(1+2ε)/ε

ℓ(1+ε)/ε

⌉
≤ T , that is, n is the number of restarts

up to step T . Then, by the definition of τi, we can verify
n(1+2ε)/ε

ℓ(1+ε)/ε
≤ τn ≤ T ≤ τn+1 − 1 <

(n+1)(1+2ε)/ε

ℓ(1+ε)/ε
holds and

consequently we have the following inequality

ℓ
(1+ε)
(1+2ε) T

ε
(1+2ε) − 1 ≤ n ≤ ℓ

(1+ε)
(1+2ε) T

ε
(1+2ε) (90)

The regret1c incurred in the ℓ stages in which the MDP is
restarted is bounded bymultiplication of R1 and total number
of steps in these stages. The number of steps is maximized in
the last ℓ stages, which is Tℓ time steps. Note that time steps
Tℓ contain at most τn+1 − 1− τn−ℓ+1 steps. Then

Tℓ ≤ τn+1 − 1− τn+1−ℓ (91)

≤
(n+ 1)(1+2ε)/ε

ℓ(1+ε)/ε
−

(n+ 1− ℓ)(1+2ε)/ε

ℓ(1+ε)/ε
−

1
ℓ(1+ε)/ε

(92)

≤
1

ℓ(1+ε)/ε
·

(
(n+ 1)(1+2ε)/ε − (n+ 1− ℓ)(1+2ε)/ε

)
(93)

=
1

ℓ(1+ε)/ε

∞∑
k=0

( 1+2ε
ε

k

)
n

1+2ε
ε
−k
· (1− (1− ℓ)k ) (94)

≤
1+ 2ε
ε
· n

1+2ε
ε · ℓ−

1
ε (95)

≤
1+ 2ε
ε
· ℓ

ε
1+2ε · T

1+ε
1+2ε (96)

where we used the generalized binomial theorem. Thus1c is
bounded as follow,

1c ≤ R1 · ℓ · Tℓ = R1 ·
(1+ 2ε)

ε
· ℓ

(1+ε)
(1+2ε) · T

(1+ε)
(1+2ε) (97)

For the case that the MDP does not change between the
steps τi and min{T , τi+1}, the regret1(sτi ,Ti) for these Ti :=
min{T , τi+1} − τi steps is bounded by applying Theorem 1.

With the confidence parameter δ

ℓ2
, we have

1(sτi ,Ti) ≤ 2Bp

(
log

(
ℓ22SATi

δ

))
(SATi)

1
p (98)

≤ 2Bp

(
3 log

(
2SAT
δ

))
(SATi)

1
p (99)

with probability at least 1− δ

4ℓ2T 5/4
i

, where Bp := 7c(2Cp+

1). Summing over all stages i = 1, . . . , n, the total regret 1f
is bounded by

1f =

n∑
i=1

1(sτi ,Ti) (100)

≤

n∑
i=1

2Bp

(
3 log

(
2SAT
δ

))
(SATi)

1
p (101)

≤ 2Bp

(
3n

1
p log

(
2SAT
δ

))
(SAT )

1
p (102)

≤ 2Bp

(
3n log

(
2SAT
δ

))
(SAT )

1
p (103)

≤ 2Bp · ℓ
(1+ε)
(1+2ε) · T

1+ε
(1+2ε)

(
3 log

(
2SAT
δ

))
· (SA)

1
p

(104)

with probability at least 1 −
∑n

i=1
δ

4ℓ2T 5/4
i

. Here, the

inequality (102) is due to Jensen’s inequality
∑n

i T
1
p
i ≤

(nT )
1
p . The remaining part is similar to the proof of

Theorem 6 in [6]. □

APPENDIX E
PROOF OF THEOREM 4
We begin with Lemma 5, which is used to prove Theorem 4.
Lemma 5 demonstrates that for any episode k ∈ [K ], Qkh
serves as an upper bound for the optimal Q-value function
Q∗h. In the proof of Theorem 4, Lemma 5 is utilized to bound
the total regret of p-Heavy-Q-learning with Hoeffding-style
bonus. This approach is similar to the scheme used in the
proof of Theorem 1 in [14].

Lemma 5: Let us define bt = rmaxc
√

H3ι
t , and let γt :=

2H (c ln(2SAT )/δ)/t1−
1
p ). Then, for any δ > 0 and for any

(s, a, h, k) ∈ S × A × [H ] × [K ], (Qkh − Q∗h) satisfies the
following bound with probability at least 1− δ,

0≤ (Qkh − Q
∗
h)

≤α0t Hrmax+
t∑
i=1

αit (V
ki
h+1−V

∗

h+1)(s
ki
h+1)+3bt+γt . (105)

Proof:We have the following identity for Q∗h

Q∗h(s, a)

= α0t Q
∗
h(s, a)

+

t∑
i=1

αit

[
r̄h(s, a)+ (Ph − P̂kih )V

∗

h+1(s, a)+ V
∗

h+1(s, a)
]
.

(106)
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Then we can obtain following upper bound

(Qkh − Q
∗
h)(x, a)

≤α0t (Hrmax−Q
∗
h(s, a))

+

t∑
i=1

αit

[
(V ki

h+1−V
∗

h+1)(s
ki
h+1)+[(P̂

ki
h −Ph)V ∗h+1](s, a)+bi

]
+

t∑
i=1

αit (r̂(s, a)− r̄(s, a)) (107)

≤ α0t (Hrmax−Q
∗
h(s, a))

+

t∑
i=1

αit

[
(V ki

h+1−V
∗

h+1)(s
ki
h+1)+[(P̂

ki
h −Ph)V ∗h+1](s, a)+bi

]
+ 2H

(
(c ln(2SAT )/δ)

/
t1−

1
p

)
(108)

= α0t (Hrmax−Q
∗
h(s, a))

+

t∑
i=1

αit

[
(V ki

h+1−V
∗

h+1)(s
ki
h+1)

]
+

t∑
i=1

αit [(P̂
ki
h −Ph)V ∗h+1](s, a)

+

t∑
i=1

αitbi + 2H
(
(c ln(2SAT )/δ)

/
t1−

1
p

)
(109)

≤ α0t (Hrmax − Q
∗
h(s, a))+

t∑
i=1

αit

[
(V ki

h+1 − V
∗

h+1)(s
ki
h+1)

]

+ crmax

√
H3ι

t
+

t∑
i=1

αitbi + 2H
(
(c ln(2SAT )/δ)

/
t1−

1
p

)
(110)

with probability at least 1 − δ. We now denote γt

as 2H
(
c ln(2SAT )/δ)

/
t1−

1
p

)
. Then by extending above

inequality we have

α0t (Hrmax − Q
∗
h(s, a))+

t∑
i=1

[(V ki
h+1 − V

∗

h+1)(s
ki
h+1)]

+

t∑
i=1

αitbi + crmax

√
H3ι

t
+ γt

≤ α0t (Hrmax − Q
∗
h(s, a))+

t∑
i=1

[(V ki
h+1 − V

∗

h+1)(s
ki
h+1)]

+ 2crmax

√
H3ι

t
+ crmax

√
H3ι

t
+ γt (111)

= α0t (Hrmax−Q
∗
h(s, a))+

t∑
i=1

[(V ki
h+1−V

∗

h+1)(s
ki
h+1)]+3bt+γt

(112)

This completes the proof. □
Now we present the proof of Theorem 4.
Proof: The proof is a modification of the proof of

Theorem 1 in [14]. By applying lemma 5 and following the
same argument in proof of Theorem 1 in [14], the additional
part is a regret due to the heavy-tailed noise. Since the other

parts are same, we only introduce the extra regret incurred by
heavy-tailed noise

∑H
h=1

∑K
k=1 γnkh

.

K∑
k=1

γk =
∑
s,a

NK
h (s,a)∑
n=1

2H
(
c ln(2SAT )/δ)

/
n1−

1
p

)
(113)

= 2H (c ln(2SAT )/δ))
∑
s,a

NK
h∑

n=1

n
1
p−1 (114)

≤ 2H (c ln(2SAT )/δ))K
(
K
SA

) 1
p−1

(115)

≤ O(ιHK
1
p (SA)1−

1
p ) (116)

where the first inequality holds since
∑

s,a
∑NK

h (s,a)
n=1 is

maximized when NK
h (s, a) = K

SA for all (s, a) ∈ S ×
A. Considering the above result and following the same
argument in the proof of Lemma 4.2 in [14], the total
regret can be bounded as

∑K
k=1 δ

k
1 ≤ O(rmax

√
H4SAT ι +

ιH2K
1
p (SA)1−

1
p ) with probability at least 1− 2δ. Rescaling δ

to δ/2 completes the proof. □

APPENDIX F
PROOF OF THEOREM 5
The proof is an adaptation of the proof of Theorem 5 in [14].
We claim that with the following bonus term, we can derive
Theorem 5 by using a similar argument in [14]. Unlike the
Azuma-Hoeffding inequality, Bernstein’s inequality includes
the true variance of the optimal value function in the bound.
However, since we do not know the true variance, we need
to estimate it, which introduces an additional variance
estimation error (Lemma 9). We first introduce the definition
of the empirical variance term which is employed in the
proofs as follows:

Wt (x, a, h) :=
1
t

t∑
i=1

V ki
h+1(x

ki
h+1)−

1
t

t∑
j=1

V
kj
h+1(x

kj
h+1)

2

(117)

where the state-action pair (x, a) was taken at step h for t
times with k1 . . . , kt episodes, respectively. Additionally, the
Bernstein-style bonus term for some constants c1 and c2 is
defined as:

β ′t :=min
{√Hrmax ι

t
(Wt (s, a, h)+ H )+

H
3p−1
p−1 ι
√
SA(p− 1))
t

+
H2ι

√
r3max
t

+
ι
√
H7SArmax

t
, c2rmax

√
H3ι

t

}
+ 2H ι/t1−

1
p (118)

where ι = log(2SAT )/δ and accordingly, we have

b1(x, a, h) :=
β1(x, a, h)

2
,

bt (x, a, h) :=
βt (x, a, h)− (1− αtβt−1(x, a, h))

2αt
. (119)
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As in the Hoeffding-style Q-learning case, the following
lemma still holds by using the update rule of Algorithm 2
and the Bellman optimality equation.
Lemma 6 (Recursion on Q [14]): For any (x, a, h) ∈ S ×

A × [H ] and episode k ∈ [K ], let t = N k
h (x, a) and

suppose that (x, a) was previously taken at step h of episodes
k1, . . . , kt < k, then

(Qkh − Q
∗
h)(x, a) = α

0
t (Hrmax − Q

∗
h(s, a))

+

t∑
i=1

αit

[
(V ki

h+1 − V
∗

h+1)(x
ki
h+1)

+ [(P̂kih − Ph)V ∗h+1](x, a)+ bi(x, a, h)
]

+

t∑
i=1

αit (r̂h(s, a)− r̄(s, a)) (120)

From Lemma 6, we can directly derive Lemma 7.
Lemma 7: There exists absolute constants c2 such that if

β ′t (x, a, h) ≤ c1rmax
√

H3ι
t +γt , then, with probability at least

1− δ, the following holds

∀(x, a, h, k) ∈ S ×A× [H ]× [K ],

(V k
h − V

∗
h )(x

k
h ) ≤ α

0
t Hrmax +

t∑
i=1

(V ki
h+1 − V

∗

h+1)(s
ki
h+1)+ β

′
t

(121)

where t = N k
h (s, a), γt := 2H (c ln(2SAT )/δ)/t1−

1
p ) and

k1, . . . , kk < k are the episodes in which (x, a) was taken
at step h.

The main challenge of the proof is to bound the term∑t
i=1 α

i
t [(P̂

ki
h − Ph)V ∗h+1(x, a)] in Lemma 6. Specifically,

since we do not know the V ∗h+1, we need to substitute V ∗h+1
with its estimate Wt . Therefore, it is important to show how
close V ∗h+1 and Wt are, and the Lemma 8 is a key ingredient
in proving this. Lemma 8 is a variant of Lemma C.7 in [14]
with additional terms due to heavy-tailed noise, and is used as
a component in the proof of Lemma 9. Additionally, Lemma 9
is used to address the estimation error between true variance
and sample variance.
Lemma 8 (Technical Lemma for Lemma 9): Suppose

Lemma 7 holds. For any h ∈ [H ], let φkh := (V k
h − V

∗
h )(x

k
h ),

and let w = (w1, . . . ,wk ) be a nonnegative weight vector.
Then, we have
K∑
k=1

wkφkh ≤ O(rmax
√
H5ι · (SA||w||∞ +

√
SA||w||1||w||∞)

+ H2SA||w||∞ + H2ι(SA||w||∞)
1− 1

p (||w||1)
1
p ).

(122)
Proof: From the optimistic choose of bonus term,

we have V k
h (x

k
h ) ≤ maxa′∈AQkh(x

k
h , a
′) = Qkh(x

k
h , a

k
h). Then,

by using the Bellman optimality equation and Lemma 6, the
following holds.

φkh = (V k
h − V

∗
h )(x

k
h ) ≤ (Qkh − Q

∗
h)(x

k
h , a

k
h) (123)

≤ α0t Hrmax +
t∑
i=1

αitφ
ki
h+1 + 3bt + γt (124)

where γt := 2H (c ln(2SAT )/δ)/t1−
1
p ). In [14], the weighted

sum of φkh is upper bounded by O(SA∥w∥∞
√
H5ι +

√
SA∥w∥1∥w∥∞H5ι), where ι := log(SAT/δ). In our proof,

since we are dealing with heavy-tailed noise, an additional
regret term occurs:

K∑
k=1

wkγk =
K∑
k=1

wk2H
(
c ln(SAT )/δ) · (nkh)

1
p−1

)
(125)

≤ O(H ι) ·
∑
s,a

N k
h (s,a)∑
i=1

wk(i)

(
1

nkh

)1− 1
p

(126)

wherew = (w1, . . . ,wk ) is a weight vector. Let us define d =⌊
||w||1

SA||w||∞

⌋
. Since ||w||1 =

∑
x,a
∑N k

h (x,a)
i=1 wki (x, a), we can

continue to write above inequality as following:

O(H ι)

(
||w||1 +

∑
s,a

d∑
i=1

||w||∞

(
1
i

)1− 1
p
)

= O(H ι)

∑
s,a

N k
h (s,a)∑
i=1

wki(x,a) +
∑
s,a

d∑
i=1

||w||∞

(
1
i

)1− 1
p


(127)

≤ O(H ι)
∑
s,a

||w||∞

(
1+

d∑
i=1

(
1
i

)1− 1
p
)

(128)

≤ O
(
H ι
(
SA||w||∞ + (SA||w||∞)

1− 1
p (||w||1)

1
p

))
(129)

Then, the weighted summation can be rewritten as

K∑
k=1

wkφkh

≤ HrmaxSA||w||∞ +
K∑
k=1

w′k ′φ
k ′
h+1 + O(SA||w||∞

+
√
SA||w||1||w||∞) ·

√
H3ι

+ O
(
H ι ·

(
SA||w||∞ + (SA||w||∞)

1− 1
p (||w||1)

1
p

))
(130)

By recursion this for h, h+ 1, · · · ,H , we have

O
(
SA||w||∞rmax

√
H5ι+ rmax

√
SA||w||1||w||∞H5ι

+ H2ιSA||w||∞ + H2ι(SA||w||∞)
1− 1

p (||w||1)
1
p

)
.

(131)

□
Now, we introduce the estimation error between the

empirical variance and true variance of the optimal value
function.
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Lemma 9 (Variance Estimation Error): There exists an
absolute constant c > 0 such that for any δ ∈ (0, 1) and
k ∈ [K ], with probability at least 1− δ/K, if

φkh = (V k
h − V

∗
h )(x

k
h ) ≤ (Qkh − Q

∗
h)(x

k
h , a

k
h) ≤ α

0
t φ

ki
h+1 + β

′
t

(132)

holds and (Qk
′

h − Q
∗
h)(x, a) ≥ 0 for all k ′ < k, then for all

(x, a, h) ∈ S ×A× [H ], we have∣∣∣VhV ∗h+1(x, a)−Wt (x, a, h)
∣∣∣

≤ O
(
H2r2max

√
ι

t
+ rmax

√
H7ι

(SA
t
+

√
SA
t

)
+
H3SA
t
+ H3

(SA
t

)1− 1
p
)

(133)

where t = N k
h (x, a).

Proof: Let us define ki = min({k ∈ [K ]|k >

ki−1 and (xkh , a
k
h = (x, a))} ∪ {K + 1}) for any (x, a, h) ∈

S × A × [H ] with k0 = 0. Then the difference between
true variance of value function VhV ∗h+1(x, a) and its estimate
Wt (x, a, h) can be decomposed as following:

P1 : [VhV ∗h+1](x, a) = Ex ′∼P(·|x,a)[V
∗

h+1(x
′)

−
[
PhV ∗h+1](x, a)

]2 (134)

P2 :
1
t

t∑
i=1

[
V ∗h+1(x

ki
h+1 − [PhV ∗h+1](x, a))

]2 (135)

P3 :
1
t

t∑
i=1

[
V ∗h+1 −

1
t

t∑
j=1

V ∗h+1(x
kj
h+1)

]2 (136)

P4 : Wt (x, a, h) =
1
t

t∑
i=1

[
V ki
h+1(x

ki
h+1)−

1
t

t∑
j=1

V
kj
h+1(x

kj
h+1)

]2
(137)

Thus the upper bound of |VV ∗h+1 − Wt | becomes the
summation of |P1−P2|, |P2−P3|, and |P3−P4| by triangle
inequality. In addition, [14] proved that by using Azuma-
Hoeffding inequality, |P1 − P2| and |P2 − P3| are bounded
by cH2r2max

√
ι/t . To bound |P3 − P4|, we apply Lemma 8

with a weight vector w such that wki =
1
t for all i ∈ [t], but

wk ′ = 0 for all k ′ /∈ {k1, · · · , kt }, whichmeans ||w||1 = 1 and
||w||∞ = 1

t . Then we have

|P3 − P4|

≤
4H
t

t∑
i=1

(
V ki
h+1(x

ki
h+1)− V

∗

h+1(x
ki
h+1)

)
(138)

≤ O
(
H ·

(
rmax

√
H5ι(SA||w||∞ +

√
SA||w||1||w||∞)

+ H2ιSA||w||∞ + H2ι(SA||w||∞)
1− 1

p (||w||1)
1
p
))

(139)

= O
(
H
(
rmax

√
H5ι

(
SA
t
+

√
SA
t

)

+
H2ιSA
t

H2
(
SAι
t

)1− 1
p ))

(140)

= O

(
rmax

√
H7ι

(
SA
t
+

√
SA
t

)
+
H3ιSA
t

+H3
(
SAι
t

)1− 1
p
)

(141)

Hence, the gap between the empirical variance and the
actual variance for UCB-Bernstein is bounded by

O
(
H2r2max

√
ι

t
+ rmax

√
H7ι

(SA
t
+

√
SA
t

)
+
H3ιSA
t
+ H3

(SAι
t

)1− 1
p
)
. (142)

□
Lemma 10 shows the bound on total variance over K

episodes. This lemma is applied to prove Lemma 11.
Lemma 10 (Bound on Total Variance, Lemma C.5 in [14]):

There exists an absolute constant c, such that with probability
at least 1− δ,

K∑
k=1

H∑
h=1

VhV
πk
h+1(x

k
h , a

k
h) ≤ cr

2
max(HT + H

3ι). (143)

Lemma 11 (Bound on Qkh − Q
∗
h): For any δ ∈ (0, 1), there

exists an absolute c1, c2 > 0 such that under the choice of
βt (x, a, h) in the equality (118) with probability at least 1 −
2δ, the following holds simultaneously for all (x, a, h, k) ∈
S ×A× [H ]× [K ] :
(Qkh − Q

∗
h)(x, a)

≤ α0t Hrmax +
t∑
i=1

αit (V
ki
h+1 − V

∗

h+1)(x
ki
h+1)+ βt

′ (144)

where t = N k
h (s, a) and k1, . . . , kt < k are the episodes in

which (x, a) was taken at step h.
Proof: The proof is an adaptation of the proof of Lemma

C.4 in [14]. Reference [14] proved that the following holds∣∣∣ τ∑
i=1

αiτ I[ki ≤ k] ·
[
(P̂kih − Ph)V ∗h+1

]
(x, a)

∣∣∣
≤ O(1) ·

[√H
τ
[VhV ∗h+1](x, a)ι+

H2

τ
rmax ι

]
(145)

with probability at least 1− δ
(SAT ) . By using Lemma 10, the

inequality (145) can be written as follows,∣∣∣∣ t∑
i=1

[(P̂kih − Ph)V ∗h+1](x, a)
∣∣∣∣

≤ O
([√

H
t
[VhV ∗h+1](x, a)ι+

H2

t
rmax ι

])
(146)

≤ O
({

H
t
·

(
Wt (s, a, h)rmax + Hrmax + H2r2max

√
ι

t

+ H3ι

(
SA
t
+

(
SA
t

)1− 1
p
))}1/2

+
ι
√
H7SArmax

t

)
(147)
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≤ O
({

H
t

(
Wt (x, a, h)rmax + Hrmax

+

(
1
p

)(
H + (p− 1)

H
3p−1
p−1 SAι
t

)}1/2
+
H2ι

√
r3max
t

+
ι
√
H7SArmax

t

)
(148)

≤ O
(√

Hrmax ι
t

(Wt (s, a, h)+ H )+
H

3p−1
p−1 ι
√
SA(p− 1))
t

+
H2ι

√
r3max
t

+
ι
√
H7SArmax

t

)
(149)

≤ β ′t (150)

where the weighted AM-GM inequality is used. Finally,
applying the above inequality to Lemma 6, we have for all
(x, a, h) ∈ S ×A× [H ],

0 ≤ (Qkh − Q
∗
h)(x, a)− α

0
t (Hrmax − Q

∗
h(s, a))

−

t∑
i=1

αit [(V
ki
h+1 − V

∗

h+1)(x
ki
h+1)]

−

t∑
i=1

αit (r̂h(x, a)− r̄(x, a))−
t∑
i=1

αitbi (151)

≤

∣∣∣∣∣
t∑
i=1

αit [(P
ki
h − Ph)V ∗h+1](x, a)

∣∣∣∣∣ (152)

≤ O(1) ·
[√

Hrmax ι
t

(Wt (s, a, h)+ H )

+
H

3p−1
p−1 ι
√
SA(p− 1))
t

+
H2ι

√
r3max
t

+
ι
√
H7SArmax

t

]
(153)

which completes the proof. □
Now we turn to present the proof of Theorem 5.
Proof: As in the proof of Hoeffding-style bonus term,

by using Lemma 11, the total regret can be bounded by

K∑
k=1

δkh ≤ O(rmax
√
ιSAH4)+

H∑
h′=h

K∑
k=1

(βnk
h′
(skh′ , a

k
h′ , h
′)+ξ kh+1)

(154)

where ξ kh+1 := [(P̂kih − Ph)(V ∗h+1 − V k
h+1)](s, a). Here,∑H

h′=h
∑K

k=1 ξ
k
h=h′ ≤ O(Hrmax

√
T ι) holds with probability

1 − δ by Azuma-Hoeffding inequality. Then the remaining
part is

∑K
k=1

∑H
h=1 βnkh

. From the definition of the bonus term
β ′, we have

K∑
k=1

H∑
h=1

βnkh

≤

K∑
k=1

H∑
h=1

O
(√

Hrmax ι
t

(Wt (s, a, h)+ H )

+
H

2p−1
p−1 ι
√
SA(p− 1))
t

+
H2ι

√
r3max
t

+
ι
√
H7SArmax

t

)
+

K∑
k=1

H∑
h=1

(H ι)/t1−
1
p . (155)

Then using the same argument as in the regret analysis of
Theorem 4, we have

K∑
k=1

γ =
∑
s,a

NK
h (s,a)∑
n=1

2H
(
c ln(2SAT )/δ)

/
n1−

1
p

)
(156)

≤ O(HK
1
p (SA)1−

1
p ) = O(T

1
pH1− 1

p (SA)1−
1
p ) (157)

The upper bound of remaining terms in (155) can be
obtained from steps in the proof of Theorem 5 in [25], which
completes the proof. □

APPENDIX G
TECHNICAL LEMMA
Lemma 12 [14]:

αt =
H + 1
H + t

, α0t =

t∏
j=1

(1− αj) αit = αi
t∏

j=i+1

(1− αj)

(158)

Then, the following properties hold for αit :

1) 1
√
t

∑t
i=1

αit√
i
≤

2
√
t
for every t ≥ 1.

2) maxi∈[t] αit ≤
2H
t and

∑t
i=1(α

i
t )
2
≤

2H
t for every t ≥ 1.

3)
∑
∞

t=i α
i
t = 1+ 1

H for every i ≥ 1.
Lemma 13 (Lemma 5 in [14]): For all αit , we have the

following:

t−
p−1
p ≤

t∑
i=1

αit i
−
p−1
p ≤ 2t−

p−1
p (159)
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