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ABSTRACT Generally, polyphonic piano music transcription systems are designed to estimate and
determine pitch activities along with various note states for each audio frame. While the music transcription
system has multiple uses in the Music Information Retrieval (MIR) field, due to the complicated structures
of the note events, precisely predicting various note states is still regarded as a challenging task. Accordingly,
approaches to designing neural network architectures have evolved to facilitate the joint prediction of each
note state. However, recent models have not been able to efficiently exploit mutual correlations among
different note states. The key contribution of our work is that we verified mutual correlations between
the different note states and reflected them in the model architecture. It enables the transcription system
to recognize clearer note events and produce high-quality real-world results. We propose a kernel-sharing
feature extractor module for exploiting those mutual correlations in the feature extraction step. Moreover,
to make a system recognize the shape of the pitch envelope, we added some connections between the
note state-specific detector modules in the note state detection step. The efficacy of our architecture was
thoroughly validated in a series of experiments using the publicly available MAESTRO datasets proposed
by Google Magenta. Furthermore, ablation studies are performed to demonstrate notions of those mutual
correlations and show the impact and significance of the suggested approach.

INDEX TERMS Polyphonic pianomusic transcription, joint estimation system, mutual correlations, musical
note states.

I. INTRODUCTION
Bridging the gap between audio-based and symbolic music
representations is essential for advancing computational
music information processing. Symbolic music representa-
tions, such as MIDI format and piano-roll representation,
have great practical utility in various symbolic Music
Information Retrieval (MIR) tasks. For instance, symbolic
music composition [1], [2], [3], [4] using language models
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has been the subject of much attention. Further, in order to
perform Artist/Genre Classification [5], [6], [7], symbolic
music features related to the artist’s style and genre are used
to train classification models. These capabilities highlight
the importance of an Automatic Music Transcription (AMT)
system [8] to detect musical note events in music audio
samples. Polyphonic Piano Music Transcription is partic-
ularly challenging and critical in AMT challenges due to
the capability of the piano to produce a broad spectrum
of notes, multi-layered melodies, and intricate harmonies
simultaneously. Therefore, through the deep analysis of piano
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music cases, it is possible to advance the development ofmore
sophisticated music transcription algorithms.

To accurately capture the overlapping and time-varying
musical notes in polyphonic piano music, Deep Neural
Network (DNN) architectures have evolved to identify
various note states individually and capture the timing of
note states more precisely. The notable breakthrough and
performance improvement in this field occurred with the
Onsets and Frames transcription [9], designed to predict
onsets and frame-wise pitches jointly. Based on the Onsets
and Frames model architecture, there have been subsequent
approaches [10], [11], [12], [13] to developing parallel
Convolutional Recurrent Neural Network (CRNN) structures
aimed at the joint estimation of the note states up to recently.

Though the earlier architectures showed impressive perfor-
mance, further enhancements in practical results necessitate
an in-depth exploration of the roles and effects of each distinct
note state within the transcription process. This study focuses
on the design method of neural architecture to improve the
joint estimation of note states. By analyzing the shape of the
ADSR envelope, we estimate themutual correlations between
different note states and analyze their impact on performance.
Then, we propose a polyphonic piano music transcription
system that can generate improved results with more clear
note events. The main contributions of this work can be
highlighted as follows:
• To the best of our knowledge, this is the first known
work that attempts to verify the mutual correlations
between different note states in music transcription tasks
via modification of the DNN architecture. We verified
the effective mutual correlation within the combina-
tion of the onset, offset, velocity, and frame-wise
pitches. We implemented comparative experiments with
a kernel-sharing feature extractor module to achieve
that.

• Technically, we augmented an additional frame-wise
pitch detector module on four parallel note state-specific
detector modules. Namely, we leverage a total of five
note state-specific detector modules. Then, we added
the connection from the onset and offset detector to the
second frame-wise pitch detector so that the entiremodel
can infer the pitch envelope’s approximate shape using
the onset and offset timing.

• We multilaterally analyzed our approaches with several
comprehensive ablation experiments and several metric
values of results. Further, by comparing the visual
piano-roll results, the practical effects in real-world
applications were directly shown, compared, and ana-
lyzed. These results demonstrate that exploiting mutual
correlations and timing information is effective in
enhancing the output quality of the previous.

The remainder of this paper is arranged as follows: In
Section II, we provide the background information for the
previous research. In Section III, we introduce ourmusic tran-
scription system that exploits mutual correlations of onsets,
offsets, and velocities. Section IV explains the experimental

method. Section V provides comparative experimental results
and a practical analysis of inference results for test samples.
Lastly, Chapter 6 provides our comments on the overall
results of our method.

II. RELATED WORKS
A. MULTI-LABELED NOTE STATES CLASSIFICATION
SYSTEM
The music transcription system aims to estimate concurrent
pitches in each frame so that it transcribes the input spec-
trogram into an output piano-roll representation. To achieve
this goal, in the Multi-Labeled Note States Classification
(MLNSC) system, the outputs are the presence probabilities
of pitches for the given log-mel spectrogram, denoted as
X ∈ Rdtime×dfreq , where dtime is the number of dfreq of each
audio clip and dfreq is the number of frequency bins. Then,
these calculated probabilities are compared with the ground-
truth frame-wise piano roll Iframe ∈ {0, 1}dtime×dpitch , where
dpitch is the number of pitch classes and Iframe(t, p) is equal to
1 if pitch p is active in frame t and is 0 otherwise.
As DNNs have become actively used for handling piano

transcription tasks, they are commonly employed to model
functionsmapping the log-mel spectrogram to the frame-wise
roll. Namely, DNNs are trained to predict the frame-wise
presence probability of notes. Along with this, binary cross
entropy loss is calculated on Iframe(t, p) ∈ {0, 1} and
Pframe(t, p) ∈ [0, 1], where Pframe(t, p) is the probability
output by the DNNs at frame t and pitch class p. For the
joint estimation of different note states, the same method is
applied for calculating the loss values for the prediction of
note onsets and offsets. However, for velocity prediction, the
loss calculation incorporates an extra criterion based on the
presence of an onset.

B. HIGH-RESOLUTION TIME REGRESSION SYSTEM
The goal ofmodeling theMLNSC system is to accurately rep-
resent the presence or absence of a note event for each frame.
Therefore, traditional approaches used a discrete binary
representation to denote Iframe(t, p), indicating whether the
note was activated. However, because of the hop size in the
sampling process, discrete representation can be imprecise
to express the exact timing of onset or offset on the discrete
frame time axis.

To address this issue, the High-Resolution Time Regres-
sion (HRTR) System [12] was proposed with an algorithm
for determining the precise continuous onset and offset times
of each note. Instead of classifying the presence probabilities
in discrete time for each frame, they regressed the time
distance from its nearest onset or offset timing for each
frame. Accordingly, they encoded the time distance 1i by a
function d :

d(1i) =

 1−
|1i|

J
, |1i| ≤ J

0, |1i| > J
(1)
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where J is the sharpness of the target and also means the
target range of the interval on the frames. Then, using this
distance encoding, one recomputes the target encoding I (t, p)
as D(t, p) for the onset and offset target.

C. PREVIOUS APPROACHES
Initial research in piano transcription focused on the
application of discriminative models like support vector
machines [14], which determined whether notes were present
or absent within frame times. Additionally, to tackle the
estimation of multiple pitches, a probabilistic approach based
on spectral smoothness [15] was introduced. After that,
an integrated approach utilizing both frequency and time
domain analyses was suggested [16]. They assumed that
musical signals could be represented as a linear combination
of waveforms from individual piano notes. Thereafter,
non-negative matrix factorizations (NMFs) were actively
adopted to decompose the given spectrogram into note
events [17], [18].

Next, deep learning (DL) [19], [20], [21], [22] approaches
were consistently exploited. Lately, with the introduction of
the MAESTRO dataset [23], deep neural networks (DNNs)
have been able to learn from a large-scale dataset. Hence,
the transcription performance of DNNs has been significantly
improved. Accordingly, DNNs such as convolutional neural
networks (CNNs) [24] and recurrent neural networks (RNNs)
[25] have been actively used to handle theAMTproblem [26],
[27], [28], [29], [30], [31], [32] in the MLNSC system.

The aforementioned Onsets and Frames [9] architecture
significantly reduced false positive values in note event
detection by ensuring that note pitches don’t generate
without the presence of an onset. Then, in the follow-up
study [23], the Onset and Frames model was expanded
so that it could predict four different note states: onsets,
offsets, velocities, and frame-wise pitches. In addition,
there have been attempts to apply the adversarial training
scheme to train the model [10], as well as to apply an
additive attention mechanism to the model [11]. However,
MLNSC systems had limited resolution due to the hop
size of the frames. In the aforementioned way, the HRTR
system [12] overcame the limitation of the transcription
resolution problem. Additionally, HPT-T [13] is the model
that simply changed RNNs to Transformer for velocity
prediction in the existing architecture. As described above,
parallel CRNN architectures inspired by Onsets and Frames
models have been actively studied up until recently. In this
work, we exploited the Onsets and Frames model and its
follow-up CRNN-based models to validate our model.

III. PROPOSED METHOD
A. MOTIVATION
The parallel CRNN architectures have proven to be a power-
ful approach for frame-wise polyphonic piano transcription.
Despite their remarkable performance, these approaches only
connect RNNs and do not take into account the integration

FIGURE 1. An ADSR (A: Attack, D: Decay, S: Sustain, R: Release) envelope,
which describes how amplitude changes approximately over time for a
piano note event [33].

Algorithm 1 Presence Probabilities Prediction Process of
Note States in Proposed Architecture

Input: Log Mel Spectrogram X ∈ Rdtime×dfreq

Output: Presence Probabilities Pframe, Pvelocity, Ponset , Poffset

1: ▷ Feature Extraction Step
2: Fframe← Basic Feature Extractor(X )
3: Fcombined ← Kernel-Sharing Feature Extractor(X )
4: Fonset , Foffset , Fvelocity← Split Feature Map Fcombined
5: F ← {Fonset , Foffset , Fvelocity, Fframe}

6: ▷ Note State Detection Step
7: for each F ∈ F do
8: if F = Fframe then
9: Hframe← 1st Frame-wise Pitch Detector(F)

10: else if F = Fonset then
11: Ponset ← Onset Detector(F)
12: else if F = Foffset then
13: Poffset ← Offset Detector(F)
14: else
15: Pvelocity← Velocity Detector(F)
16: end if
17: end for

18: Cframe← Concat([Hframe, Ponset , Poffset ])
19: Pframe← 2nd Frame-wise Pitch Detector(Cframe)

20: return Pframe, Pvelocity, Ponset , Poffset

of CNNs. Due to their structural problems, those approaches
have limitations in extracting local features related to the
mutual correlations of different note states. However, within
a single piano note event, there might be crucial mutual
correlations between different note states.

For a piano note event, the specific timings of onset and
offset are shown in Figure 1. The note onset timing refers
to the point where a note begins, and the note offset timing
refers to the point where the note ends and the amplitude
starts to decrease. Namely, in the ADSR envelope, the starting
points of the Attack phase and Release phase are the exact
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FIGURE 2. Polyphonic piano music transcription system considering the mutual correlation of three different note states. (onset, offset, velocity).

note onset and note offset timing, respectively. Therefore,
within the ADSR envelope, knowing any two factors among
the onset, offset, and duration of a note enables us to infer the
other one approximately. Furthermore, from the perspective
of expressing musical context, the note duration and the note
velocity have a significant correlation. For instance, the soft
and emotional parts of music are generally characterized
by long note duration and low velocity. On the contrary,
the staccato part, which arouses light-hearted emotions,
is represented with high velocity and short note durations
to emit a strong accent. Thus, based on these insights,
we anticipate that there is a certain relationship between
the onset, offset, and velocity of the notes in the primary
transcription system. Accordingly, we propose a CRNN

architecture optimized for exploiting mutual correlations
among the onset, offset, and velocity of the notes.

B. ENTIRE ARCHITECTURE
Based on the above-mentioned motivation, we reflected our
assumption in our music transcription system. The entire
prediction process of different note states in our proposed
architecture is described in Algorithm 1. Firstly, in the feature
extraction step, we utilize the basic feature extractor module
to extract feature maps only related to frame-wise pitch
prediction. Whereas, for the other note states, we apply
kernel-sharing feature extractor module and split along the
channel dimension. Afterward, before the output feature
maps progress to the note state detection step, to adjust the
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FIGURE 3. Kernel-sharing feature extractor module for sharing 3 different
note states. (B: dbatch, C: dchannel , T: dtime, F: dfreq).

dimension of the feature maps, they are flattened across
the frequency and channel axes and then passed to a fully
connected layer. After passing the fully connected layer, it is
fed into the note state-specific detector modules consisting of
RNNs, a fully connected layer, and a sigmoid layer, which
yield dpitch = 88 dimension outputs accordant with the
number of distinct pitches in MIDI format for acoustic piano.
Especially, predictions of onset and offset are leveraged to
predict frame-wise pitches with the second frame-wise pitch
detector module.

C. BASIC FEATURE EXTRACTOR MODULE
For extracting individual feature maps corresponding to
each note state, we use the base feature extraction module.
As outlined in Algorithm 1, this module is employed specif-
ically for frame-wise pitch detection. In each convolutional
block, sequential implementation of a 2-D convolution, 2-D
batch normalization [34], and ReLU activation [35] occurs.
Accordingly, given a series of inputs X ∈ Rdtime×dfreq , the first
convolutional block is computed as:

Xframe = ReLU (BatchNorm2d(Conv2d(X ))) (2)

= ConvBlock(X ) (3)

and the last two convolutional blocks are followed by a max-
pooling layer [36] as follows:

Fframe = MaxPool2d(ConvBlock(X )) (4)

To detect features more frame-wise and frequency-wise
precisely, we introduced (3, 3) dimension kernels in convolu-
tional layers. Here, the pooling layer shrinks the featuremap’s
spatial size while preserving crucial information. Therefore,
the max pooling layer is introduced instead of the average
pooling layer to emphasize the prominent note states-related
features by taking the maximum in the local area.

D. KERNEL-SHARING FEATURE EXTRACTOR MODULE
Meanwhile, we introduce a kernel-sharing feature extractor
module to extract featuremaps jointly related to different note
states. These feature maps can provide predictive information
useful across multiple contexts such as intrinsic correlations

among different note states. Namely, shared kernels integrate
information across different note states, allowing the model
to learn more complex musical patterns effectively. The
two structural differences from the basic feature extractor
module are as follows: (i) channel dimension transition
and (ii) location of two max pooling layers. The input
representation for the feature extractor has the dimension of
(dbatch, 1, dtime, dfreq), where dbatch is the batch size, 1 is
the channel size, dtime is the number of frames, and dfreq
is the number of frequency bins. Channel dimensions are
progressively increased through the convolutional blocks,
as detailed in Figure 3. Consequently, while the original
architecture outputs a feature map shaped (dbatch, dchannel ,
dtime, dfreq/4), the proposed CNN architecture yields a
feature map shaped (dbatch, dchannel×N, dtime, dfreq/4),
where dchannel is the channel dimension of the final output
feature map and N (= 3) represents the number of note
states under consideration (onset, offset, and velocity).
During the process, shared kernels are used to generate a
feature map that is jointly related to different note states.
Following this layer, the output feature maps denoted as
Fcombined ∈ Rdbatch×(dchannel×N )×dtime×dfreq/4 are then equally
divided along the channel dimension into N separate feature
maps, Fonset ,Foffset ,Fvelocity ∈ Rdbatch×dchannel×dtime×dfreq/4.
Namely, we distribute the kernel set in the last convolutional
layer into N subsets (0[i], where |0[i]

| = dchannel × dchannel
and i ∈ {0, . . . ,N −1}) so that the kernels of each subset 0[i]

can be allocated into each featuremap,Fonset ,Foffset ,Fvelocity.
Accordingly, it was expected that 0[i] would serve as the note
state-specific kernels. Meanwhile, according to the increase
in channel dimension, the parameter size and the computa-
tional complexity also increase. Therefore, we adjusted the
position of the max pooling layer to reduce the whole model’s
complexity.

E. NOTE STATE-SPECIFIC DETECTOR MODULE
After the feature extraction step, we use bidirectional RNN
layers to detect each specific note state. As shown in
Figure 2, four note state-specific detector modules (first
frame-wise pitch detector, onset detector, offset detector,
and velocity detector) are designed in parallel, and one
additional frame-wise pitch detector is augmented. For given
four feature maps F ∈ Rdbatch×dchannel×dtime×dfreq/4 for each
note state, each detector module is computed as follows:

P = FCLayer(BiRNNLayers(FCLayer(F)) (5)

= Detector(FCLayer(F)), (6)

where P ∈ Rdbatch×dtime×dpitch which is predicted outputs
for each note state. Predicted outputs from the onset
detector, offset detector, and velocity are passed to the
sigmoid layer so that the range of its value can be
within (0, 1) and directly compared with ground truth.
Whereas, the predicted output from the first frame-wise pitch
detector should be passed to the second frame-wise pitch
detector.
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F. EXPLOITATION OF TIMING FEATURES FOR PITCH
ENVELOPE APPROXIMATION
When we implement time-series analysis with the second
frame-wise pitch detector, we exploit the timing features from
the onset detector and offset detector. In order to achieve
that, we concatenate outputs from three detectors: the first
frame-wise pitch detector, the onset detector, and the offset
detector, in the feature dimension. Therefore, for the concate-
nated feature map input Iframe ∈ Rdbatch×dtime×(dpitch×3), the
second frame-wise pitch detector is implemented as follows:

Cframe = Concat([Hframe,Ponset ,Poffset ]) (7)

Pframe = Detector(Cframe) (8)

The reason we exploit the timing features for pitch detection
is to give the model approximate information about the shape
of the pitch envelope. The pitch isn’t generated without the
presence of an onset and starts to decrease after note offset
presence. Therefore, exploiting two timing features can be
useful to predict frame-wise pitches more precisely.

G. PROBLEM FORMULATION WITH HIGH-RESOLUTION
TIME REGRESSION LOSS
For jointly learning different note states, we adopted the
summing of the losses of each note for its total loss function
as follows:

lnote = lframe + lvelocity + lonset + loffset (9)

For the loss value of the frame-wise pitches, we calculate as:

lframe =
dtime∑
t=1

dpitch∑
p=1

lbce(yframe(t, p), ŷframe(t, p)) (10)

where the predicted probability output ŷframe(t, p) =

Pframe(t, p) ∈ [0, 1] and ground truth yframe(t, p) =
Iframe(t, p) ∈ {0, 1}.

Then, for the velocity, we calculate the loss value as
follows:

lvelocity =
dtime∑
t=1

dpitch∑
p=1

Ionset (t, p)lbce(yvelocity(t, p), ŷvelocity(t, p))

(11)

where the predicted probability output ŷvelocity(t, p) =
Pvelocity(t, p) ∈ [0, 1] and ground truth yvelocity(t, p) =
Ivelocity(t, p) ∈ [0, 1].

Especially, using d(1i) for onset and offset prediction,D ∈
[0, 1]T×F is defined as onset and offset regression targets at
frame t and pitch class p. Accordingly, the regression loss for
onset and offset is defined as follows:

lonset =
dtime∑
t=1

dpitch∑
p=1

lbce(yonset (t, p), ŷonset (t, p)) (12)

loffset =
dtime∑
t=1

dpitch∑
p=1

lbce(yoffset (t, p), ŷoffset (t, p)) (13)

where the predicted probability outputs ŷonset (t, p) =

Ponset (t, p) ∈ [0, 1], ŷoffset (t, p) = Poffset (t, p) ∈ [0, 1]
and ground truths yonset (t, p) = Donset (t, p) ∈ {0, 1},
yoffset (t, p) = Doffset (t, p) ∈ {0, 1}.

Each loss value (lframe, lonset , loffset and lvelocity) is calcu-
lated in different ways with the binary cross-entropy loss
functions lbce. In terms of velocity prediction, the term
Ionset implies that velocities are predicted specifically at
the moments when each onset occurs. In real performance,
the velocity of a note is closely related to the intensity
when the player strikes the keys. Therefore, the onset of
a note (when the key is first struck) contains significantly
more information about the velocity compared to other
timings of the note. Therefore, to concentrate on this crucial
information, ground truth onsets Ionset are employed to
modulate the velocity prediction. Next, by using regression
targets on onset and offset prediction, it becomes feasible
to obtain continuous-time target data y(t, p). Therefore, this
approach enables the precise prediction of onset and offset
timings, which is directly linked tomore accurate capturing of
the dynamic changes in musical pieces, thereby significantly
refining the quality of the transcription process.

H. INFERENCE METHOD
As shown in Figure 2, we convert the music signals
into log-mel spectrograms and input them into our pro-
posed architecture. Then, via the Feature Extraction Note
State Detection steps, the whole architecture calculates each
note state-specific regression output. Those outputs are
processed into a high-resolution note event sequence in the
Note Decoding Step. Firstly, adopting the decoding algorithm
from previous work [12], local maximum prediction values
with adjacent two values of onsets and offsets are used to
predict the precise timing through geometric approaches.
Then, using the timing information of onsets and offsets,
the activations of frame-wise pitches are identified. Based
on the thresholds θon and θoff , for the frame detected to be
onset or offset, we decide it is activated if the pitch value
is over the threshold. For the offset prediction, there is an
additional condition for frame-wise pitch threshold θframe.
Thus, we regard the frame as an offset if the pitch value is
lower than θframe. After that, to ensure all onsets and offsets
are paired, we insert offsets within a sequence of consecutive
onsets to segment them. Furthermore, the velocity value is
rescaled to Ponset (t, p) ∈ [0, 127] from Ponset (t, p) ∈ [0, 1] in
accordance with the range of velocity in MIDI format.

IV. EXPERIMENTS
A. DATASET
To train and validate our architecture, we used the
MAESTRO [23] v3 dataset. It contains 198.7 hours of
MIDI-synchronized solo piano recordings captured with a
time resolution of less than 3 ms. The recordings were
recorded by performing the Yamaha Disklaviers pianos
equipped with an integrated high-precision MIDI capture
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TABLE 1. Transcription results for comparison of the proposed architecture with baselines in this work. (* are the results represented in the original
papers).

TABLE 2. Changes of channel dimension of the feature maps in the
convolutional architecture. (MLNSC: Multi-Labeled Note States
Classification, HRTR: High-Resolution Time Regression).

and playback system. This setup ensures that the MIDI data
is precise and reflective of the true performance dynamics.
Thus, using the MAESTRO dataset can provide high-quality
inputs that are vital for learning robust and generalizable
features.

We divided the dataset into train/validation/test splits
according to the provided configuration. Each split has the
number of samples as 962/137/177 and the total duration
as 159.2/19.4/20.0 hours. Most recordings are sampled at
44.1 kHz, but there are some exceptions where they are
sampled at 48 kHz.

B. PREPROCESSING
As input to the proposed model, using the MAESTRO
dataset, we computed the log-mel spectrograms. Since the
stereo audio recordings have two channels, we downmixed
them into one channel. Then, we downsampled them to
16 kHz for consistency of input data. We did a Short-Time
Fourier Transform (STFT) using the Hann window with a
2048 window size and constant padding mode. Finally, to get
the log-mel spectrogram, we applied 229 mel banks and a log
scale.

C. EXPERIMENT CONFIGURATION
For training our model, we set a batch size of 8, a learning
rate of 6e-4 with the Adam optimizer [37], and a clip
gradient norm of 3. The learning rate decreases by 0.2 in
every 10k iterations. Then, the training was implemented on
four RTX 2080 GPU cards. Additionally, for the supplement
experiments with various changes to our model, we trained
and validated each model in the MLNSC system. The main
and supplement experiments are implemented with the same
hyperparameters and obtain average scores of 3 repeated

trials for reliable results. The models converged after 300k
and 500k iterations, and each training took around 2.5 days
and 7.5 days for the MLNSC system and HRTR system,
respectively.

As shown in Table 2, due to the different conventional
output channel dimensions across baseline models of each
different transcription system, we used different channel
dimension settings in each transcription system. Following
previous studies, we used channel dimensions 96 and 128 for
the MLNSC system and HRTR system, respectively.

For the decoding step, we also use different threshold
values in each transcription system. For the MLNSC system,
we set all the thresholds to 0.5. On the other hand, for the
HRTR system, we set θon, θoff , and θframe to 0.3, 0.3, and
0.5, respectively. Moreover, we set the default value of J to 5.
These values were verified to be optimal values through the
comparative experiment in the previous study [12].

D. EVALUATION
In this experiment, by using the mir_eval [38] library,
we evaluate the performance of each model with both
frame-level metrics and note-level metrics. First of all, the
frame-level metrics, referred to as Frame in this work,
concentrate on comparing the existence of notes in each
specific frame time. Therefore, the frame-level metrics
are determined by a binary assessment of the congruence
between a piano-roll representation of predictions and targets.
Secondly, the note onset metrics termed Note in this work
are the most basic metrics. It evaluates only the accuracy of
pitches and onset timings within 50ms for each particular
note, disregarding note offsets. Next, the Note with Offset
metrics require not only matching onsets and pitches but also
matching note offsets. The tolerance of offsets should be
within either 0.2 times the duration of the reference note or
50 ms of each other. Lastly, the Note with Offset & Velocity
incorporates velocity, thereby capturing the dynamics of
individual note pieces more effectively. The precision, recall,
and F1 scores are calculated per recording, and the average
of scores was used for the final metrics.

V. RESULTS
A. MAIN EXPERIMENT
Table 1 shows the effectiveness of our proposed architecture
compared with similar previous approaches. Firstly, for the
Note F1 score, our model obtained the best score of 97.23%
among all models. This represents ameaningful improvement
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TABLE 3. Mutual Correlations between Onset, Offset, and Velocity in MLNSC system.

TABLE 4. Impact of Frame-wise Pitches on Mutual Correlations in MLNSC system.

FIGURE 4. F1 score of Note, Note with Offset, Note with Offset & Velocity according to the number of sharing layers.

FIGURE 5. F1 score of evaluation metrics (A: Frame, B: Note, C: Note with
Offset, D: Note with Offset & Velocity) according to the connection states.

over the baseline models within the HRTR system. Further,
for the Note with Offset and Note with Offset & Velocity F1
scores, ourmodel showed the second-highest score of 82.87%
and 81.42%, respectively. Although our model couldn’t
show the best performance among all models, it shows a
performance improvement in the Note with Offset F1 score
from 82.47% to 82.87% and Note with Offset & Velocity
F1 score from 80.92% to 81.42% compared to the High-
Resolution model. Accordingly, we argue that our approach
is effective in similar model architecture conditions.

One key observation is that the models focusing on
musical context showed improved performance in Note with
Offset F1 score. In the original paper of HPT-T [13], they
applied a Transformer instead of RNNs for each frame-
wise pitch, onset, offset, or velocity prediction. Despite
the Transformer’s ability to capture global musical context
through its attentionmechanism, it did not help predict frame-
wise pitches, onset timing, or offset timing. They suggested
this limitation arises because multi-pitch estimation and
offset timing prediction are highly associated with short-term
time dependencies. On the other hand, we can see that
global musical context and note velocity prediction have
a meaningful correlation. Interestingly, even though the
Transformer was only integrated into the velocity detection
module, there was an observed improvement in the Note with
Offset F1 score, as indicated in Table 2. These results can also
support our assumption that knowing two factors (onset and
velocity) enables the model to infer the other factor (offset).

B. VERIFICATION OF MUTUAL CORRELATIONS BETWEEN
ONSET, OFFSET, AND VELOCITY
To further analyze the distinct roles and effects of various
note states, we conducted supplement experiments within
the MLNSC system. By varying the combinations of the
different note states, we compared them and derived the best
combination. These were aimed at exploring the interaction
in each combination of different note states to identify
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FIGURE 6. Comparison of (a) mel spectrogram, (b) ground truth, (c) none-sharing model, and (d) ours, to validate the impact of the kernel-sharing
method.

the most effective configuration. The combinations tested
included: (a) the model with no shared note states; (b) sharing
Onset, Offset, and Velocity; (c) sharing Onset and Velocity;
(d) sharing Onset and Offset; (e) sharing Offset and Velocity;
and (f) sharing across all note states.

Comparing the results of (c), (d), and (e) relative to (a),
depending on the note state we combine, we can confirm that
the prediction performance for that corresponding note state
particularly improves. First of all, (c) shows an improvement
in theNote F1 score of 0.67% andNote with Offset & Velocity
F1 score of 1.06%. Secondly, (d) shows an improvement in
the Note F1 score of 0.76% and Note with Offset F1 score
of 1.61%. Lastly, (e) shows an improvement in the Note with
Offset F1 score of 0.87% and Note with Offset & Velocity F1
score of 1.12%. Consequently, among all the combinations,
(b) emerges as the superior performer.

However, (f) surprisingly shows a decline in performance
compared to (b). The decreases are observed across the Note
F1 score by 0.2%, the Note with Offset F1 score by 0.16%,
and the Note with Offset & Velocity F1 score by 0.23%,
as indicated in the last row of Table 3. The difference between
(f) and (b) is whether the frame-wise pitch is included or not.
This led to further experiments aimed at identifying which
specific combinations of frame-wise pitches and other note
states might be causing this unexpected degradation in model
performance.

Table 4 illustrates the effects of merging frame-wise
pitches with other note states on the transcription system’s

performance. A notable point is that, unlike other combi-
nations, (c) shows performance degradation compared to
(a). Specifically, the scores of Note with Offset and Note
with Offset and Velocity, which are the evaluation metrics
related to offset prediction, decreased by 0.14% and 0.12%,
respectively. This result can be explained by considering
the inherent characteristics of the pitch envelope of the
musical notes, where the note onset is typically marked
by a peak, as shown in Figure 1. On the contrary, there
is no noticeable point around the note offset in the pitch
envelope. This characteristic makes the detection of offsets
challenging, particularly in the context of overlapping notes.
Consequently, the feature maps associated with frame-wise
pitches proved less effective in aiding the accurate timing
estimation of offsets.

C. ABLATION STUDY OF THE PROPOSED ARCHITECTURE
To discuss the impact of specific elements in our architecture,
we conducted ablation studies. Firstly, we focused on
the influence of the number of sharing layers within the
kernel-sharing feature extractor module. The results, as illus-
trated in Figure 4, indicate a clear correlation between the
count of sharing layers and the model’s efficacy. Constrained
by computing resources, we could only extend the number
of shared layers to five. Despite computational constraints
that capped our ability to extend beyond five shared layers,
we observed a consistent uptick in performance correlating
with each additional shared layer implemented. This trend
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FIGURE 7. Comparison of (a) mel spectrogram, (b) ground truth, (c) both connections exist, (d) offset information only exists, (e) onset information only
exists, and (f) no connection exists, to validate the impact of the connections between note state-specific detector modules.

underscores the potential benefits of deepening integration
within the feature extraction module.

In the continuation of our ablation studies, we focused
on the impact of connections between note state-specific
detector modules. Figure 5 illustrates the comparison results
of performance for the following 4 cases: (1) presence of
both connections; (2) presence of only the onset connection;
(3) presence of only the offset connection; and (4) absence of
any connections. The performance outcomes were assessed
using four evaluation metrics: Frame (A),Note (B),Note with
Offset (C), Note with Offset & Velocity (D).
Interestingly, for metric B, there is no meaningful per-

formance difference between (2), (3), and (4). For the
reason that the note onset is typically marked by a peak,
as shown in Figure 1, the presence or absence of additional
information doesn’t significantly impact the onset prediction.

However, due to the absence of noticeable characteristics
around the note offset, additional information is needed to
predict offset timings. Accordingly, a significant contrast
was observed in metrics C and D, related to predicting
note offset. In conclusion, it was evident that restricting the
timing information of either note onsets or note offsets led
to a degradation in performance, with the impact standing
out in the prediction of offset. Moreover, comparing the
model without note onset information and the model without
note offset information, the latter model performed worse
compared to the former model.

D. QUALITATIVE ANALYSIS OF THE PROPOSED METHOD
In order to assess the practical effectiveness of our proposed
architecture, we performed a comparative analysis using
piano-roll visualizations. As illustrated in Figure 6, where
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the x and y axes represent time and pitch, respectively,
we compared the output from the non-sharing model (c) and
our model (d) against the ground truth (b). First of all, the
left column shows that (d) bears a closer resemblance to (b)
than to (c). It is particularly noticeable in the time interval
with highly overlapping notes where (c) frequently misses or
prematurely ends the notes. On the right column, (d) appears
to be superior in identifying the exact moments for pitch
offsets. Furthermore, in the center column, a key observation
is that (d) tends to generate relatively consistent notes, unlike
(c), which produces fragmented notes. Although there are a
few inaccuracies in the timing of offsets in (d)’s output, the
notes appear to be in complete form. We thus argue that the
utilization of our model leads to appropriate degrees of note
duration that result in generating more consistent and natural-
sounding instances.

In addition to our qualitative analysis of the proposed
model, Figure 7 presents a side-by-side comparison of its
various configurations: (c) both connections exist; (d) only
the offset information exists; (e) only the onset information
exists; and (f) no connections exist. In the output of (d) and (f),
especially in the center column, what is particularly important
to note are the effects of the restricted onset information.
Restriction leads to the generation of finely segmented notes,
especially visible at higher pitches. Meanwhile, other issues
come to our attention in cases where the offset information is
restricted, as seen in the output of (e). Themodels restricted to
the offset information produce instances with comparatively
irregular and inconsistent note lengths. Consequently, the
absence of either significantly affects the model’s ability to
estimate the position and shape of the pitch envelope, leading
to the generation of relatively low-quality output results.

VI. CONCLUSION
In this paper, we suggest our assumption of mutual corre-
lations between different note states. This assumption was
verified by comparing various combinations of different note
states via the kernel-sharing feature extractor module. The
kernel-sharing feature extractor module shares a kernel in
each channel to capture common features represented in the
given log-mel spectrogram. We also confirmed the impacts
of connections in the note state detection step. A series
of supplement experiments explained the novel notions in
polyphonic piano music transcription systems. Moreover,
the application of our method appears to be successful in
improving model performance. Our approach therefore has
the possibility of providing further enhancements to previous
approaches. In addition, the method is not bound to the
piano but can also be useful with regard to other instruments.
Overall, we claim that our approach can be considered in
wider domains of AMT and provides keystones for further
related studies.

However, as discussed in the main experiment section, our
model exhibits lower performance in predicting specific note
states (offset and velocity) compared to the previous model.
Our design primarily leverages CNNs and RNNs; however,

we anticipate that integrating RNNs with self-attention
mechanisms could enhance our model’s ability to account for
the global context of music. This integration is expected to
improve our model’s capability in predicting velocity, which
will even affect the prediction of other musical elements
such as onset and offset timing. In addition, as the research
progresses, it can be seen that the number of parameters
and amount of computation of the transcription model are
gradually increasing. Therefore, employing techniques like
quantization or pruning could be highly beneficial. Imple-
menting such methods will not only make the model more
efficient but also enhance its scalability and applicability in
real-world scenarios.
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