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ABSTRACT This paper proposes dual functional microwave sensor for displacement and angular detection
of liquid material based on electric coupled (ELC) resonator. The proposed resonator uses a two-port
band stop filter operating at a resonant frequency of 2.72 GHz. Polystyrene-mm pipe channels are used to
accommodate water samples placed in the sensing area of the sensor in the center of the ELC resonator.
Displacement and angular detection were observed based on the shift in the resonant frequency of the
resonator. Based on the measurement results, the proposed sensor has a sensitivity for displacement detection
of 31.5 MHz/cm with a distance range of d = 1 – 4 cm while for angular detection it is 0.33 MHz/o with
a rotation angle of 0 – 90◦ for polystyrene-mm pipe channel filled with water content. This paper makes
a significant contribution by proposed a dual functional microwave sensor for displacement and angular
detection that can be recommended for the automotive, robotics and aerospace industries.

INDEX TERMS Dual functional, displacement, angular, polystyrene-mm pipe, microwave sensor.

I. INTRODUCTION
Displacement sensors play an important role for several
industries that require high precision such as the automotive,
robotics and aerospace industries [1], [2], [3], [4]. Generally,
displacement sensors consist of two types, including linear
and angular displacement. Linear displacement is determined
based on distance while angular displacement is based on
the angle between the sensor and the sample [5], [6]. One of
the strategies for detecting sample displacement is to utilize
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a microwave sensor [7], [8], [9], [10]. Microwave sensors
have advantages including compact design, low cost and high
accuracy. Microwave sensors have been widely developed to
detect the characteristics of solid materials [11], [12], [13],
liquids [14], [15], [16], [17] and displacement [18], [19], [20].
Several previous works proposed sensors for linear and angu-
lar displacement detection in solid materials usingmicrowave
sensors with a certain dynamic range based on frequency
shift [21], [22], notch depth [23], [24] and phase variation
[25], [26]. Generally, rotation and displacement detection
using microwave sensors is proposed for solid materials
using stators and rotators where the sample is rotated in the
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sensing area with a certain dynamic range [27], [28], [29].
However, this creates friction between the sample and the
sensor which has the potential to damage the surface of the
sensor. In addition, the sample is placed on an open surface,
so it is greatly influenced by changes in temperature and
environment. Another constraint, the proposed sensor from
previous work only has one single function so it cannot
be used for displacement and rotation detection separately.
In addition, sensors for displacement and rotation detection
are only proposed for solid materials and are not supported
for detection in liquid samples. Therefore, microwave sensors
that have the capability to detect displacement and rotation
of liquid samples are needed. Moreover, liquid displacement
sensors are very useful for several applications, including
biomedical and robotics [30], health monitoring and mobile
healthcare [31]. This work provides an excellent solution by
proposing a microwave sensor that has dual functional char-
acteristics for displacement and angular detection for liquid
samples. Furthermore, to maintain and control the influence
of temperature and environment, the sample is contained in
a polystyrene-mm pipe channel [32], [33], [34]. Moreover,
polystyrene-mm pipe is proposed to reduce friction between
the sensor and the sample so that the sensor surface is more
durable and protected. Displacement and angular detection
are determined based on the shift in the resonant frequency
of the resonator. The main contribution of this work is to
produce a dual functional microwave sensor that has the
capability for displacement and angular detection in liquid
samples in polystyrene-mm pipe channels. The proposed sen-
sor has been successfully simulated and validated through the
measurement process. Based on the measurement results, the
proposed sensor has the ability to detect liquid displacement
with a distance range of 1 - 4 cm and for angular detection
with an angle range of 0 - 90◦.

II. WORKING PRINCIPLE OF PROPOSED SENSOR
This section explains in detail the development model, struc-
ture of the ELC resonator and the sample placement scenario
of the proposed sensor.

A. STRUCTURE OF ELC RESONATOR
The proposed microwave sensor based on ELC resonator
uses RO4003C with permittivity of 3.55, tan δ of 0.0027 and
thickness of 0.587 mm. The proposed resonator operates at
a resonant frequency of fr = 2.69 GHz with two ports
representing P1 and P2. The structure of the proposed sensor
is shown in Fig. 1(a) while the concentration of the electric
field and magnetic field is shown in Fig. 1(b) and Fig 1(c).
The structure of the ELC resonator consists of the left and
right inductive arms, while the capacitive area is in the gap
between the strips in the middle of the resonator. The overall
dimension of ELC resonator is shown in Table 1. Based on
the simulation results using HFSS 15.0, the highest electric
field concentration at fr = 2.69 GHz is in the arms and gaps
between the strips of the ELC resonator as shown in Fig.1 (b),

FIGURE 1. (a) Structure of electric field coupled resonator, (b) E-field at
fr = 2.69 GHz, (c) H-field at fr = 2.69 GHz.

FIGURE 2. (a) Equivalent circuit of electric field coupled resonator,
(b) comparison of EQC and FEM of electric field coupled resonator.

TABLE 1. Dimension of proposed ELC resonator.

while the magnetic field concentration vanishes as shown in
Fig.1 (c).

Based on perturbation theory, the area of the resonator with
a high electric field can be used to detect the characteristics
of the sample [35].

Furthermore, the equivalent circuit of the ELC resonator
can be derived based on L andC model as shown in Fig.2 (a).
The arm of the resonator is represented as an inductor while
the gap between strip is represented as a capacitor. The values
of L and C are extracted using AWR 2009 where L1 = L2 =

L3 = L4 = 8.23 nH, C1 = 0.17 pF and C2 = 0.99 pF and
C3 = 1.25 pF which are connected to port 1 and port 2 with
an impedance of 50 �. Therefore, the resonant frequency (fr )
of resonator can be determined using following Eq. (1) [36]:

fr =
1

2π
√
LC

(1)

A comparison of the simulation results from EQC and
FEM is shown in Fig. 2 (b) where the results are both in line
and operating at fr = 2.69 GHz.

B. DEVELOPMENT MODEL OF ELC RESONATOR
The ELC resonator was developed in two steps where the
proposed characteristic is a band stop response. The model
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FIGURE 3. Development model of ELC resonator; (a) response of
S-parameters, (b) E-field concentrations of ELC resonator at 1st and 2nd

step.

FIGURE 4. Iteration process; (a) iteration of Lc, (b) iteration of Wb.

development of the ELC resonator is shown in Fig. 3 (a),
Fig. 3 (b) and Fig. 3 (c).
The characteristics of the S-parameters at the 1st step show

that the resonator has a band pass response where S11 ≤

−10 dB while S21 ≥ −10 dB in the frequency range of
1.5 - 3.2 GHz as shown by the red line in Fig. 3 (a). Further-
more, for the 2nd step, the characteristics of the S-parameters
show the band stop response where S11 ≥ −10 dB while
S21 ≤ −10 dB in the frequency range of 1.7 GHz - 3.82 GHz
as shown by the blue line in Fig.3 (a). In addition, the charac-
teristics of the electric field of the resonator for the 1st and 2nd

steps are also observed as shown in Fig.3 (b) and Fig. 3(c).
The electric field concentration is observed at fr = 2.69 GHz
where for the 1st step the electric field is concentrated in the
center of the ELC resonator while for the 2nd step it is in the
gap between the strips of the ELC resonator.

Next, several iterations are carried out to control the reso-
nant frequency and S21 of the resonator as shown in Fig. 4 (a)
and Fig. 4 (b). Fig. 4 (a) shows that the iteration of Lc causes
the resonance frequency to shift lower in line with increasing
length of Lc. In addition, the gap between the strips of the
ELC resonator represented by Wb also has an impact on
the resonant frequency and S21 of the resonator. Increasing
the gap width Wb causes the resonant frequency of the res-
onator to shift towards high. This finding shows that the gap
in the strip is an area that has high sensitivity so it can be
recommended as a sensing area for placing samples.

C. FABRICATION OF PROPOSED RESONATOR
The fabrication results of the front and back side of the
resonator are shown in Fig. 5 (a) and Fig. 5 (b) where the
ELC resonator is in the front layer and the ground plane is in
the back layer. The ELC resonator is connected to port 1 and

FIGURE 5. (a) Fabrication of ELC resonator at the front side,
(b) fabrication of ELC resonator at the back side, (c) simulation and
measurement of proposed resonator.

FIGURE 6. (a) Scenario placement of sample, (b) simulation of bare and
with water condition.

port 2 and has the characteristics of a Band Stop Filter (BSF).
Moreover, the comparison of simulation and measurement
results from the resonator is shown in Fig. 5 (c).
Based on the measurement results, there is a slight dif-

ference between measurement and simulation result where
the resonance frequency shifts from 2.69 GHz to 2.72 GHz.
This is due to errors from the fabrication process and the
permittivity of RO4003C which is in the range 3.38 - 3.55
[37], [38].

D. SCENARIO OF SAMPLE PLACEMENT
The sample placement scenario is determined based on the
location of the resonator with the highest electric field as
shown in Fig.6 (a). In this paper, the sample is placed in
the center of the ELC resonator using a polystyrene-mm pipe
channel based on polystyrene-mm pipe channel [17] with a
permittivity of 3.1 and a diameter represented by D1 and
D2 of 5 mm and 4.5 mm and length of polystyrene-mm pipe
channel represented by Lt of 40mm, respectively. The sample
placement scenario consists of two conditions, including the
bare condition where the polystyrene-mm pipe channel is
filled with air samples and the other condition is when the
polystyrene-mm pipe channel is filled with water samples.
The polystyrene-mm pipe channel is placed in line with the
sensing area of the ELC resonator which is located in the
middle arm and the gap of the resonator.

The simulation results from bare conditions and with water
samples shown in Fig. 6 (b) show that the resonance fre-
quency of the resonator moves to the lower frequency from
2.75 GHz to 2.62 GHz because the permittivity of water is
higher than barewhere the permittivity of water is εr = 80 and
bare is εr = 1. Furthermore, to demonstrate the performance
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FIGURE 7. (a) Simulation with range εr of 1 – 80, (b) correlation between
frequency and permittivity range εr of 1 – 80.

of the proposed sensor, the permittivity of the sample inside
the polystyrene-mm pipe channel is changed to a permittivity
range of εr = 1 - 80. Based on Fig.7 (a), the resonant
frequency of the resonator shifts from 2.73 GHz to 2.62 GHz
with a permittivity range of 1 – 80 with 1F of 0.11 GHz.
It should be noted, based on the simulation results from

Fig. 7 (a) and Fig.7 (b), it shows that changes in the per-
mittivity of the sample in the polystyrene-mm pipe channel
greatly affect the resonant frequency of the resonator where
the resonant frequency moves to a lower frequency in line
with an increase in the permittivity of the sample.

III. MEASUREMENT RESULT AND VERIFICATION
In this chapter, the measurement process and scenarios for
liquid displacement and angular detection are explained in
detail. The measurement process was carried out in the lab-
oratory using a Vector Network Analyzer (VNA) with a
frequency range of 2 - 3 GHz, a frequency step size of
0.01 GHz and an ambient temperature of 25◦ C.

A. SCENARIO FOR LIQUID DISPLACEMENT DETECTION
The proposed resonator consisting of port 1 and port 2 is
connected to the vector analyzer using a coaxial cable with
an impedance of 50�where the sensor and sample are placed
using a holder as shown in Fig 8(a) . Liquid displacement
detection is proposed by placing a stopper in the center of the
sample in a polystyrene-mm pipe channel filled with water
content as shown in Fig. 8 (b).

It should be noted, the sample in the plastic tube [17] placed
carefully and is in direct contact with the sensing area in
the middle of the ELC resonator. The stopper is placed in
the middle of the polystyrene-mm pipe channel so that the
water sample inside is clogged. Additionally, the area of the
clogged polystyrene-mm pipe channel is filled with air sam-
ples represented by bare. The sample in the polystyrene-mm
pipe channel will be moved vertically using a holder with a
distance d of 1 - 4 cm as shown in Fig.8 (c). Furthermore,
liquid displacement detection is determined by observing the
shift in the resonance frequency when the sample moves
through the sensing area of the resonator.

Based on the measurement results, the resonant frequency
of the resonator shifts from 2.716 GHz to 2.59 GHz with 1F
of 0.126 GHz in line with the sample displacement in the
polystyrene-mm pipe channel which is clogged by a stopper

FIGURE 8. (a) Scenario for liquid displacement detection, (b) detail
structure of liquid displacement detection, (c) measurement setup for
liquid displacement detection using proposed sensor.

FIGURE 9. (a) Measurement result of liquid displacement detection with
d = 1 – 4 cm, (b) correlation between resonant frequency and liquid
displacement with d = 1 – 4 cm.

with a distance range of d = 1 - 4 cm as shown in Fig.8 (a)
and Fig.8 (b). This finding shows that the proposed sensor
has interacted with the sample to detect the displacement of
the sample. The resonant frequency of the resonator shifts
to low frequencies slowly in line with the displacement of
the sample. This occurs because there is a change in the
permittivity of the sample, where the water sample has a
higher permittivity than the bare air sample, so it greatly influ-
ences the resonance frequency of the resonator. Furthermore,
displacement detection with the proposed resonator can be
determined based on Eq. (2) [7]:

f r(c) = 0.01273 d3
− 0.988 d2

− 0.1862 d − 2.6153

(2)

where fr(b) is the resonant frequency of the resonator for
displacement detection and d represents the distance of
the displacement in the water-filled polystyrene-mm pipe
channel.

Moreover, the sensitivity (S) of the sensor is determined
based on the following Eq. (3) [21]:

S =
1F (GHz)
1d (cm)

(3)

94864 VOLUME 12, 2024



S. Alam et al.: Dual Functional Liquid Displacement and Angular Detection

FIGURE 10. Scenario of angular detection from 0◦ - 90◦; (a) without
water, (b) with water.

FIGURE 11. Simulation result of angular detection from 0◦ - 90◦;
(a) without water, (b) with water.

where 1F represents the shift in the resonant frequency of
the resonator and 1d represents the displacement of the sam-
ple in the polystyrene-mm pipe channel. Based on Eq. (3),
the sensitivity of the sensor for displacement detection is
31.5 MHz/cm with a range d of 1 - 4 cm.

B. SCENARIO FOR LIQUID ANGULAR DETECTION
Furthermore, liquid angular detection is proposed by rotating
the sample inside the polystyrene-mm pipe channel with an
angle range of 0◦ - 90◦. In this paper, the rotation of the
sample in the polystyrene-mm pipe channel is divided into
two conditions, including with water and without water as
shown in Fig. 10 (a) and Fig.10 (b). The sample in the
polystyrene-mm pipe channel is rotated clockwise at angles
of 0◦, 30◦, 60◦ and 90◦.
The simulation results in Fig.11 (a) and Fig.11 (b) show

that the resonant frequency of the resonator shifts to a higher
frequency in line with increasing the rotation angle of the
sample for conditions without water and with water content.
The resonant frequency shifts from 2.74 GHz to 2.77 GHz
in conditions without water, while for conditions with water
it shifts from 2.62 GHz to 2.67 GHz with an angle range of
0◦ - 90◦ as shown in Fig. 12 (a) and Fig. 12 (b).
Furthermore, validation of angular detection is carried out

by measuring the process using a VNA connected to port 1
and port 2 of the resonator placed in the holder using a
coaxial cable with an impedance of 50 �. The sample in
the polystyrene-mm pipe channel is carefully placed in the
sensing area which is located in the middle of the ELC
resonator as shown in Fig.13 (a) and Fig.13 (b).
Moreover, to ensure that the sample position is constant

and stable, a gripper is proposed in the measurement setup to
lock the position of the sample and sensor. The measurement
results of angular detection when the polystyrene-mm pipe
channel is filled with water and without water are shown in
Fig.14 (a) and Fig.14 (b).

FIGURE 12. Simulation result of correlation between resonant frequency
and angle from 0◦ - 90◦; (a) without water, (b) with water.

FIGURE 13. (a) Measurement setup with VNA, (b) Measurement scenario
for angular detection from 0◦ - 90◦.

FIGURE 14. Measurement result of angular detection from 0◦ - 90◦;
(a) without water, (b) with water.

Based on the measurement results, the frequency of the
resonator shifts from 2.716 GHz to 2.723 GHz when the
polystyrene-mmpipe channel is without water, whereas when
the polystyrene-mm pipe channel is filled with water, the
frequency shifts from 2.675 GHz to 2.705 GHz with an angle
range of 0◦ - 90◦ as shown in Fig.15 (a) and Fig.15 (b).
These findings indicate that the proposed sensor interacts
with the sample so that the resonant frequency of the res-
onator changes in line with an increase in the rotation angle
of the sample in the polystyrene-mm pipe channel.

It should be noted, the resonance frequency shifts to a
higher frequency due to the interaction of the sample and
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FIGURE 15. Measurement result of correlation between resonant
frequency and angular from 0◦ - 90◦; (a) without water, (b) with water.

FIGURE 16. Average and deviation from repeatability measurement for
angular detection; (a) without water, (b) with water.

sensorwhich changeswhile the sample inside polystyrene-mm
pipe channel shifts away from the surface of the sensing
area with water content to bare condition (without sample).
In other words, the permittivity of the sample changes from
higher to lower. This condition changes the concentration of
the electric field of the resonator and greatly influences the
resonant frequency of the resonator.

Furthermore, angular detection of polystyrene-mm pipe
channel without and with water can be determined based on
the following Eq. (4) and Eq. (5):

f r (ba) = −0.000001 x2 − 0.0002 x+ 2.7159 (4)

f r (bw) = −0.000001 x2 − 0.0004 x+ 2.6578 (5)

where fr (ba) and fr (bw) is the resonant frequency of the
resonator for angular detection with and without water and
x represents the angle of the angular in the water-filled
polystyrene-mm pipe channel.

Moreover, the sensitivity (S) of the sensor is determined
based on the following Eq. (6) [18]:

S =
1F (GHz)

1θ (◦)
(6)

where1F represents the shift in the resonant frequency of the
resonator and 1θ represents the rotation of the sample in the
polystyrene-mm pipe channel.

Based on Eq. (6), the sensitivity of the sensor for angu-
lar detection of polystyrene-mm pipe channel without and
with water content are 0.07 MHz/◦ and 0.33 MHz/◦ with a
dynamic range of 0 - 90◦. Moreover, average and deviation
of repeatability measurements with 3 cycles are proposed to
show the error bars of angular detection for sample filled in
polystyrene-mm pipe channel with and without water using
the proposed sensor as shown in Fig.16.

FIGURE 17. Displacement detection of liquid samples based on different
temperatures; (a) response of the resonant frequency, (b) 1F of proposed
sensor.

Based on Fig.16 (a) and Fig. 16 (b), the deviation from the
repeatability measurement results is in the range 0 - 0.00058
for angular detection with and without water. These findings
indicate that the proposed sensor has a low error bar for angu-
lar detection in samples with and without water. To show the
effect of changing the temperature of the liquid sample on dis-
placement detection, validation with measurements at three
different temperatures is proposed as shown in Fig. 17 (a)
and Fig. 17 (b).

Referring to Fig.17 (a), changes in temperature in the sam-
ple have an impact on shifting the resonant frequency of the
resonator towards high frequencies correlated with previous
work [34] [39]. The maximum 1F of the proposed sensor
for three different temperatures are 0.126 GHz, 0.124 GHz
and 0.122 GHz respectively as shown in Fig. 17 (b). The
sensitivity of the sensor based on temperature changes is
31.5 MHz/cm, 31 MHz/cm and 30.5 MHz/cm respectively.
These findings indicate that changing the temperature of the
sample has an impact on the shift in the resonance frequency
and sensitivity of the sensor but is not significant. There-
fore, the temperature of the sample must be verified before
the measurement process is carried out to obtain optimal
performance.

IV. VALIDATION WITH PREVIOUS WORK
To validate the performance of the proposed sensor, a com-
prehensive evaluation with previous work is proposed as
shown in Table 2. Based on previous work, the detection of
linear and angular displacement of samples using microwave
sensors are divided into three types of mechanisms based on
frequency shift, phase variation and notch depth.

Previous work [1], [32] proposed a microwave sensor
based on transmission line for displacement detection of solid
materials with a maximum dynamic range of 3 - 40 mm
and maximum sensitivity of 312.7 ◦/ mm and 528.7 ◦ / mm
where the displacement detection was determined based on
phase variations. However, the sensor only has one function
for displacement detection and cannot be used for angular
displacement of materials. Other works [7], [23] proposed
a microwave sensor for displacement and rotation detection
of solid materials based on notch depth with a maximum
dynamic range of 10 mm and 90 ◦. Nevertheless, the pro-
posed sensor only supports displacement detection in solid
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TABLE 2. Comparison of proposed sensor based on displacement / rotation technique with existing works.

TABLE 3. Comparison of type, sensing parameters and prospective
applications of displacement / rotation sensors.

materials so it cannot be used for liquid materials. Further-
more, detection of linear displacement of solid materials
based on resonant frequency shifts has been described in [3]
where the maximum dynamic range is 12 mmwith a sensitiv-
ity of 147.8 MHz/mm. Rotation detection of solid materials
based on frequency shift has also been described in [19],
[21], [23], and [28] where the solid material is moved using a
rotator and the sensor is placed on the stator. However, high
friction between the material and the sensor has the potential
to damage the surface of the resonator and will reduce the
performance of the sensor.

Furthermore, a comprehensive comparison of types, sens-
ing parameters and proposed applications of displacement
and rotation sensors is shown in Table 3. Previous work [3],
[19], [21], [23] proposed a band stop filter for displacement
and rotation detection which is recommended for industrial
applications including flow detection in liquids, space vehi-
cle and rotation detection in AC motors. In addition, other

work [7], [23], [27], [32] proposed a band stop filter for
displacement/rotation detection which is recommended for
industrial, biomedical and energy applications while previous
work [1], proposed a single port resonator for motor rotation
detection AC based on phase variations.

Therefore, this work makes a significant contribution
by proposing a dual functional microwave sensor for
translation and angular detection in liquid samples using
polystyrene-mm pipe channels. The proposed sensor has
the capability to detect displacement and angular detection
separately based on the frequency shift of the resonator.
Polystyrene-mm pipe channels are proposed to reduce the
friction between the sensor and the sample and maintain the
temperature of the sample in order to obtain high-precision
measurements. The proposed sensor has excellent perfor-
mance with amaximum sensitivity of 31.5MHz/cm for liquid
displacement with a range of d = 1 - 4 cm and 0.33 MHz/ ◦

for angular detection with an angle range of 0 – 90 ◦.

V. CONCLUSION
A microwave sensor with dual functional characteristics for
liquid displacement and angular detection in polystyrene-mm
pipe channel has been proposed and presented comprehen-
sively in this paper. The proposed sensor is based on an ELC
resonator operating at a resonant frequency of 2.72 GHz. The
sample used is liquid material contained in a polystyrene-mm
pipe channel. Displacement and angular detection are deter-
mined based on the shift in the resonant frequency of the
resonator. Based on the measurement results, the proposed
sensor has a sensitivity of 31.5 MHz/cm with a displacement
range of 1 - 4 cm and 0.33 GHz /◦ with an angle range
of 0 - 90◦. This paper makes a significant contribution by
proposed a dual functional microwave sensor for displace-
ment and angular detection that can be recommended for the
automotive, robotics and aerospace industries.
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