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ABSTRACT Green energy vehicles often use technologies that reduce lower inherent noise. However,
adverse weather condition and low visibility at night can cause a glare effect from the headlights of oncoming
cars. This poses a major threat to traffic safety. In order to solve this problem, this study initially adopts
single frame difference for video frame selection, which reduces the computational load of image processing
pipeline. Then, combined with visible and infrared images, this paper uses non-downsampled contourlet
transform to achieve glare elimination. Finally, an improved convolutional network is used to detect
pedestrians in anti-glare images, and volumetric Kalman filter algorithm is used to track pedestrians. Through
these operations, the research establishes a Single-Frame Difference-Based Image Fusion Glare-Resistant
Detection System applicable to green energy vehicles. The experimental analysis shows that the designed
system can eliminate glare more than 80%, and the pedestrian detection accuracy reaches 95.44%. The
constructed system aids green energy vehicles in accurately perceiving their surroundings during nighttime
driving, ensuring safe travel.
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I. INTRODUCTION

With increasing environmental awareness and considera-
tions of energy scarcity, the development of new energy
vehicles has gained significant momentum. However, this
progress brings about a series of issues, one of which is
the safety of nighttime driving for these vehicles [1]. The
electric technology utilized in new energy vehicles often
results in reduced vehicle noise, coupled with a relatively
lower number of vehicles on the road, causing drivers to have
weaker awareness of approaching vehicles during nighttime
driving. Additionally, fog, rain, together with other adverse
climate situations further reduce visibility, posing greater
safety hazards to drivers [2]. During these times, the front
and rear lights of vehicles become crucial references for
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drivers to identify and judge the presence of other vehi-
cles at night. Moreover, excessively bright headlights from
oncoming vehicles can obstruct the driver’s line of sight.
Existing research on anti-glare technology for night vision is
not sufficiently in-depth, and the complexity of fusion algo-
rithms leads to challenges in accurately detecting pedestrians
during nighttime driving [3]. In recent years, with the rapid
development of image processing technology, the application
of image fusion and deep learning in the field of night driving
safety has been widely concerned. As an effective image
fusion method, weighted wavelet visual perception fusion can
improve image clarity and information richness by extract-
ing feature information of different image modes and fusing
them effectively [4], [5]. Similarly, the Retinex inspired color
correction and detail saving fusion method can correct colors
while maintaining image detail, further improving the visual
quality of night images [6]. In the field of deep learning,
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models such as CVANet (cascaded visual attention Network)
are widely used in object detection and recognition tasks [7],
[8]. By training a large amount of data, these networks can
automatically learn and extract key features in images, thus
achieving accurate detection of targets. To address these
issues, this research constructs a Single-Frame Difference-
Based Image Fusion Glare-Resistant Detection System based
on image fusion and pedestrian detection technologies. The
innovation lies in the improvement of the pedestrian detection
network model using spatial pyramid pooling structures and
dilated convolutions, effectively enhancing pedestrian detec-
tion accuracy. The research is divided into four parts: the
literature review, analyzing the current domestic and interna-
tional status of anti-glare and image processing technologies
and proposing research directions; the methodology, provid-
ing a detailed description of the system construction; the
experimental analysis, examining the system’s performance
through a series of experiments; and the conclusion, summa-
rizing the research content based on experimental results and
proposing future research prospects.

Il. RELATED WORKS

To address the issue of glare during nighttime driving, intel-
ligent technologies are being explored both domestically and
internationally to mitigate the impact of glare on the driver’s
vision. Praveen et al. undertook the task of constructing
a mobile system using state-of-the-art algorithms to detect
pedestrian zones in adverse lighting conditions. The approach
involved the utilization of numerous object detectors for the
detection of human bodies. This method was explored to
facilitate safer nighttime driving under challenging lighting
conditions [9]. Liu et al. tackled the inherent limitations of a
single sensor in adverse weather conditions by employing a
sensor fusion approach that combines radar and camera infor-
mation for anti-glare nighttime driving. The method involved
matching the Mahalanobis distance with the observed val-
ues of the target sequence and employed a joint probability
function for data fusion. Experimental results demonstrated
that this method enhances the robustness of the environmental
perception system [10]. Murugan and Sathyabama compared
the performance of three different target detection models
to enhance the safety of nighttime driving. They found that
YOLOV4 exhibited higher detection accuracy. Additionally,
they introduced low-pass and unsharp filters into the model
to reduce noise and improve image clarity [11]. Duan and Xia
addressed the challenges of traditional night vision imaging
technologies, which are constrained by infrared focal plane
arrays and difficulties in nighttime imaging due to strong
light interference. They proposed a color night vision imaging
solution that does not rely on infrared focal plane arrays.
Through the means of accessing the correlation function of
two light fields, they reconstructed two infrared night vision
images. Experiment outcomes indicated that this method
possess the capability to produce high-quality color night
vision images [12]. Ashiba and Ashiba introduced three
new infrared night vision image enhancement methods to
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achieve anti-glare detection at night. Through comparative
experiments, they found that an image enhancement method
combining gamma correction and histogram matching exhib-
ited superior performance. Before enhancing the images, they
applied the optimal global threshold segmentation method to
segment infrared images, and finally, the images underwent
sharpening through a high-pass filter [13].

Currently, image processing technology has gradually
matured, and scholars have conducted in-depth research on
the improvement of image processing algorithms. Rasti et al.
have explored image processing techniques for extracting key
grain crop growth indicators from proximal images, outlining
the relevant basic image processing technologies. Through
performance reviews and comparisons, they revealed limi-
tations in the image processing technology for grain mon-
itoring [14]. Khairandish et al. considering the superiority
of convolutional neural networks in benign and malignant
tumor classification, combined support vector machines with
convolutional neural networks to create a hybrid model for
tumor image classification. Experiment outcomes provided
the evidence that the hybrid model achieved a recognition
accuracy of 98.45% [15]. Z. Tang et al. proposed a new
image segmentation method to solve the problem that the
image segmentation model based on deep learning requires
a large amount of data and the model generalization ability is
poor. This method combines deformable model with medical
deformer neural network to segment medical image. The
results show that the segmentation accuracy of this method
reaches about 90% [16]. Wang et al. found that spatial resolu-
tion transcriptomics (SRT), while capable of providing gene
expression close to or better than single-cell resolution, was
affected by high noise levels in expression data. To address
this, they used image processing techniques to correlate
matched positions and imaging data, accurately expressing
SRT gene expression. Experimental results showed that this
method could eliminate missing data in single-cell RNA
sequencing [17]. Monga et al. reviewed algorithms about pro-
cessing image and signal. This team extensively introduced
algorithm deployment techniques in multi-fields, including
imaging recognition and speech processing. By giving previ-
ous work review and analysis, they revealed the connection
between iterative algorithms and neural networks and intro-
duced the latest theoretical achievements [18].

Combining the literature mentioned above, it is evident that
current research on night vision anti-glare technology is not
sufficiently deep. The complexity of fusion algorithms has
led to difficulties in accurately detecting pedestrians during
nighttime driving. Furthermore, there is still a significant
gap in the quality of fused images compared to the original
images. Therefore, a new anti-glare detection system based
on image processing technology and pedestrian detection
technology has been developed to address these issues and
improve the safety of nighttime driving for vehicles.

In order to comprehensively analyze the research sta-
tus and compare the existing research with this research
work, the research summarized the application technology,
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TABLE 1. Summary and comparative analysis of the study status.

Research work Technology Performance Superiority Inferior strength In contrast to this study
. . High This study focuses more on
Improved pedestrian detection . . f .
A. Praveen et . pe R Powerful pedestrian complexity, the fusion of anti-halo
Object detector capability under harsh lighting . . . .
al.[9] . detection function there may be processing and pedestrian
conditions . . .
misdetection detection
Radar and
camera Improve the robustness of Multi-sensor The system cost .
Z. Liu et al.[10] . - - . . . . may be This study is even less costly
information environmental sensing systems information fusion . .
fusi relatively high
usion
The image
YOLOv4 Higher detection accuracy, reduce Efficient pedestrian processing This study combines
R. A. Murugan et . . . . . o . . . .
al[11] Target detection noise and improve image detection with image algorithm may pedes‘trlan detectlpn with
’ model sharpness enhancement be more anti-halo techniques
complicated
Colour night No infrared focal plane arrays are . . . May be sensitive Research focuses on real-
S . . o . Innovative night-vision . . .
D. Duan et al.[12] vision imaging required to obtain high-quality . . to a particular time and antihalo
. LS imaging methods .
protocol color night vision images light source performance
The SVM is Hybrid model

M. O. Khairandish
et al.[15]

combined with
a convolutional
neural network

Tumor image classification with a
high accuracy rate

Algorithm Revealing the connection
V. Monga et . . . .
expansion between iterative algorithms and
al.[18]
technology neural networks

Training may

. The model structure of this
require a lot of

study is much simpler

improves the
classification

data
performance
Strong .

In-depth theoretical theoretical, This §tudy focuses fmore

- . . attention on the practical

analysis and algorithm practical application and simplifies the
research application ma; PP . P
pp Y processing process
be limited

performance, advantages and disadvantages of each research
work, as shown in Table 1.

As can be seen from the above table, the research on
anti-halo light during night driving and image processing
technology has made some progress, but there are still some
problems. Most of the research work only focuses on the
improvement or application of a single technology, but this
study integrates image processing technology and pedestrian
detection technology, and introduces video single frame dif-
ference to build a more comprehensive and practical anti-halo
detection system. In addition, this study also improves the
pedestrian detection network model by introducing space
pyramid pool structure and cavity convolution to improve
the performance and accuracy of the system. Therefore, this
study has higher practical value and innovation in solving the
problem of halo in night driving.

lIl. IMAGE FUSION-BASED GLARE-RESISTANT
DETECTION SYSTEM

With the continuous development of society, automobiles
have brought a lot of convenience to people’s daily travel.
However, safety issues persist during car travel [19], [20],
[21]. To achieve pedestrian detection during night-time driv-
ing, a new glare-resistant detection system was constructed
based on technologies such as single-frame differences,
image fusion, and deep learning.

A. VIDEO FRAME SELECTION AND IMAGE
PRE-PROCESSING

With the purpose to reinforce the real-time performance of
the glare-resistant detection system, a novel frame selec-
tion method was devised based on single-frame differences,
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enabling the system to promptly detect pedestrians from
video frames. Due to the high algorithmic complexity of night
vision glare-resistant pedestrian detection systems, intermit-
tent cyclic frame selection using inter-frame differencing was
adopted for image fusion within the video. The process of
selecting video frames is illustrated in Figure 1.

As shown in Figure 1, in the video frame sequence, the first
frame is taken as the reference frame and the second frame
as the optional fusion video frame. The frame number of the
selected fusion video is then offset from the frame number
of the identified reference frame, and the resulting difference
is determined to be the number of frames between the two.
After determining the number of frames separated by two
frames, the study determines the threshold of the maximum
interval frame according to the video frame rate and visual
residual time. When the number of frames separated by two
frames exceeds the threshold, the selected fusion video frame
is retained and used as a new reference frame. Then start
the difference operation again. When the number of frames
separated by two frames is less than the threshold, the cosine
Angle of the feature vector between the selected fused video
frame and the reference frame is calculated. The threshold of
cosine Angle is determined according to the frame removal
rate and the correlation between video frames. Finally, the
cosine Angle is compared with the threshold value. If it is
smaller than the threshold value, the video frame closest to but
not exceeding the threshold is retained, and the current fusion
frame is positioned as a new reference frame. Otherwise, the
reference frame is left unchanged, and the next frame of the
fusion frame is determined as the new fusion frame to be
selected. The RGB histogram retains which color channel
characteristics, while the RGB three-dimensional vector can
also be transformed into a one-dimensional representation.
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FIGURE 1. Video frame selection process.

For this purpose, the research selected the RGB histogram
to express image features, obtaining the RGB histogram of
visible light glare images. Image pixel values were combined
based on the magnitude of pixel values in each channel,
followed by normalization and mapping to integers within
64. The values of the mapped pixel points are shown as in
Equation (1).
index;
= [B;/64] x 4> + [G;/64] x 4" + [R;/64] x 4%, 1 <i<N
ey
index; represents the mapped value of the i-th pixel, R;,
G; and B; refer to the pixel values of the i-th pixel in the
image, and N is the symbol of the total number of pixels.
([B;/64], [Gi/64], [R;/64]) is a three-digit base-four number
representing four color zones. The calculation of inter-frame

content differences is performed using cosine angle, specifi-
cally as depicted in Equation (2).

(-7
6 = arccos | ———
IRI - IC|

63
D TiCi
i=0

= arccos ()

63 63
S ) x IS (ei)?
=0 =0

In Equation (2), 6 denotes the cosine angle, R stands for the
reference frame feature vector set, with r; as vectors within
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the set, and C represents the frame feature vector set to be
selected, containing vectors c;. The threshold for inter-frame
content differences ensures the reduction of processed video
frames as much as possible while observing consecutive
frames, thereby further enhancing the real-time capability of
the glare-resistant detection system [22], [23], [24]. To select
an appropriate difference threshold, the study represented the
correlation between selected video frames using nonlinear
correlation information entropy. The nonlinear correlation
information entropy, measuring the quantitative correlation
between every two adjacent frames among these k video
frames, is illustrated in Equation (3).

K-1

2. NCC (xi, xi41)

IE = i=1

K—1 ®

Here, NCC (Xj, Xi+1) denotes the nonlinear correlation
coefficient between the Xj th frame image and the Xj; th
frame image. The computation method for this nonlinear
correlation coefficient is demonstrated in Equation (4).

b2
NCC (i xi41) =24 % log

i=1

njj
by “)

In Equation (4), b represents the grid number of the net-
work, with a value of 8. n;; is the symbol of the samples
number, which are distributed in the ij-order grid, and N is
the symbol of the total sample number. Through experimental
verification, the study sets the inter-frame content difference
threshold to 1.8. To prevent small changes in inter-frame
content or algorithm errors and address issues with delayed
frame updates, the study introduces the maximum inter-frame
threshold, calculated as shown in Equation (5).

N =fxT 5)

In Equation (5), f is the frame rate and T is the maximum
detection time threshold. As the optical signal travels from
the human eye to the brain, the time for visual persistence
to disappear is 0.2 seconds. To secure the video observation
continuity, the study selects the maximum detection time
threshold as 0.2 seconds. In glare scenes, visible light images
may suffer from glare, making it challenging to observe
details in dark areas, while infrared images may lack clear
edge contours and exhibit monotonous colors. To address
this, the study combines these two types of images to cre-
ate a new anti-glare method. Before performing anti-glare
processing, image preprocessing is necessary. When visible
light and infrared cameras capture the same scene, differences
in sensor types, positions, and external environmental factors
result in spatial differences in the captured image information
[25], [26], [27]. Therefore, the study employs feature point
registration to eliminate spatial differences between the two
types of images. Visible light images and infrared images
are enhanced using Multi-Scale Retinex with Color Restora-
tion and Multi-Scale Retinex, respectively. To accomplish
the reduction of the noise impact on image information, the
study utilizes median filtering to eliminate image noise. The
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principles of the median filtering algorithm and the two types
of images selected in the study are illustrated in Figure 2.

[4Tel7I8To a7

(a) Principle of median filtering algorithm

Visible light image Infrared image
(b) Two types of images

FIGURE 2. The principle and research of median filtering algorithm and
the selection of image types.

B. IMAGE FLARE REMOVAL BASED ON IMAGE FUSION
After obtaining video frame images and preprocessing them,
the study aims to obtain images that are free from flares and
have clear background contours by utilizing the fusion of
infrared light images and visible light images. To enhance
the computational speed of the fused image and prevent color
information from participating, the study transforms RGB
images into the Hue, Saturation, Value (HSV) color space.
The transformation process is illustrated in Figure 3.

0°, max = min v
60°(G—_®,max:R&GZB if
(max—min)
360°+60°((;—_m,max =R&G<B
H= (max—min)
120°+60°M,max=G 4
(max—min)
240° + 60°M,max =B -
(max—min)
- max—min 0fan
‘J g=d e T?‘!’ V' =max
0,max =0 OO

FIGURE 3. Conversion process from RGB.

In the HSV color space, the high-brightness flare informa-
tion is mainly concentrated in the V component [28], [29],
[30]. Therefore, the study focuses on manipulating the V
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component. Firstly, the normalized value of the H compo-
nent is calculated using the product method, as specified in
Equation (6).

H
Hi=|— 6
‘60 ©)

In Equation (6), H; represents the normalized value of
the H component. Then, based on the normalized quantity
obtained from the above Equation, its corresponding fre-
quency is calculated, as shown in Equation (7).

H

60

In Equation (7), f' represents the frequency corresponding
to H;. To output an RGB image, the study introduces three

intermediate components representing colors, as specified in
Equation (8).

f! )

p=Vx({-=25)
g=Vx(1-f' x9) 8)
r=Vx[l-(1-f"x89)]

In Equation (8), V is the V component in the HSV color
space, and p, ¢, t are three intermediate variables representing
colors. Finally, using the intermediate variables as parame-
ters, the study combines them with the value of H; to obtain
the corresponding color vectors for each color. To avoid
spectral confusion in the flare image, and to describe the
high-frequency subbands and texture details in the image
more flexibly, the study adopts the Non-subsampled Shearlet
Transform (NSST) algorithm to decompose the night vision
flare image. The process of decomposing the NSST algorithm
for the image is illustrated in Figure 4.

As shown in Figure 4, the NSST method decomposed the
V component of visible light and infrared source images for
k times by Nonsubsampled Pyramid to obtain high and low
frequencies, and then used SF(Shearlet Filter) to filter the
obtained high frequencies to obtain high-frequency subbands
with different directions and scales. The decomposition pro-
cess of the visible light V component and the high-frequency
subbands and low-frequency subbands in the infrared image
is specifically shown in Equation (9).

r oq
LG )= > Cior (o d) (20" = i) h (24 =)
i=0 j=0
Hy (@, ))
roq
=> "> G (P, 4 )h(20'—i) h (24'—)) g (20'—i) g (24—))
i=0 j=0

&)

In Equation (9), L (i, j) and Hy (i, j) represent the decom-
posed low-frequency subband and high-frequency subband,
respectively. 4 (-) is the non-subsampled pyramid filter, g (-)
is the non-subsampled shearlet wavelet filter, (p/,q’) is
the position of the source image, (i,j) is the position of
the decomposed image, k is the decomposition scale, and
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FIGURE 4. Process of NSST algorithm for decomposing halo images.

Ci—1 (P, ¢') is the image to be decomposed. To obtain the
V component after eliminating flares, the study uses NSST
to reconstruct the anti-flare image of the fused high and low
frequencies. The reconstruction method for the fused high
and low frequencies is shown in Equation (10).

Cioy (P d) ZszfU(lj)h( —i)h(2q' —))

_OL] =0
P
+ > D H Gph(2p i) k(24 -))
p'=04'=0
xg(2p' =) (24 ~)) (10)

In Equation (10), C;_, (p/. ¢) represents the obtained new
luminance component, L,f U denotes the low-frequency fusion
coefficient, and H ,f ? (i,j) stands for the high-frequency
fusion coefficient. It is evident that the high luminance infor-
mation of visible light primarily resides in its low frequencies.
Therefore, when performing low-frequency fusion, it is nec-
essary to eliminate high luminance information. Hence, the
research explores a fusion rule where the weighting of
the infrared low-frequency component adjusts automatically
with the high luminance information using the V component.

n G, j) = —tan (L,f’(i,j)—m)+n (11)

In Equation (11), L,Y T'(i, j) represents the low-frequency
subband of the V component, m is the symbol of the critical
value at the boundary between halo and cloud boundary
of the V component, and n represents the symbol of the
infrared low-frequency coefficient weight at the critical value.
After multiple calculations and comparisons, the research
sets m and n values to 3 and 0.75, respectively. Details,
contours, edges, and other information in the image are
mainly contained in the high-frequency subbands. Moreover,
there are significant differences between the high-frequency
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components obtained from the V component and the infrared
image. To obtain more edge information and clearer contours,
the research adopts a strategy based on regional contrast
to fuse high-frequency coefficients. Before fusing the high-
frequency coefficients, it is necessary to calculate the image
contrast, as shown in Equation (12).

L o [Hea G
Zy,1 (i, ) = SML (Hy 1 (i, ))) le)

Y 41
= 1 ) )
Lk(l,J)=MxN E E Ly(i+r,j+o

r:—(%—l) c:—(j—l)

(12)

In Equation (12), M x N is the region size, Z; ; (i, ]) is
the contrast corresponding to the coefficient of the image
in the Ith direction subband at the kth scale, and Lg o))
is the regional mean of the low-frequency subband. The
high-frequency fusion coefficients are obtained based on the
image contrast, as shown in Equation (13).

HPY (i iy = HY Gy, 25 G > Z{R G )
l = IR . . VI ;- IR (: -
G @D, Zi ) =256 ))

In Equation (13), Hkvl and H,f ; are the high-frequency
subbands of the V' component and the infrared image,
respectively. Hk 7 (i, ) is the coefficient of the subband in the
[th direction at the kth scale for the fused image, and Zkv 1))
and ZITI (i, j) are the image contrasts of the V component and
the infrared image, respectively. The implementation process
of the anti-halo fusion method for fusing visible light and
infrared images is illustrated in Figure 5.

As shown in Figure 5, three components of the image can
be obtained by converting the RGB image into the HSV color
space, namely, brightness component V, hue component H
and saturation component S. Next, the brightness compo-
nent and infrared image in the original image are processed,

(13)
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FIGURE 5. The realization process of the anti-halo method of visible light image and infrared image fusion.

in which H and S are not involved, so as to reduce the
running time of the fusion algorithm and improve the speed
of image fusion. At the same time, the brightness component
is separated from other components to avoid color confusion.
After the fusion brightness component is obtained, the desired
anti-halo image can be obtained after the inverse transforma-
tion of HSV and NSST.

As mentioned above, the image fusion model mainly
includes the following key components: image preprocess-
ing, image decomposition, coefficient fusion, image recon-
struction and result optimization. These components work
together to achieve high-quality image fusion results. Image
preprocessing is the first step in the fusion process, which
involves converting the input visible and infrared images
into a format or space suitable for fusion processing. It is
converted to HSV color space to separate out the brightness
component V, hue component H and saturation component S.
Image decomposition is an important step in the fusion pro-
cess. The preprocessed image is decomposed into multi-scale
and multi-direction subband coefficients. The study uses
NSST to realize image decomposition. Coefficient fusion is
the core of the fusion process. The low frequency fusion
coefficient and high frequency fusion coefficient are calcu-
lated to ensure that the fusion image retains the details of the
infrared image. After the coefficients are fused, the next step
is image reconstruction. In this step, by combining the fused
brightness component with the original hue component and
saturation component, the final anti-halo image is obtained
through the inverse transformation of HSV and RGB. Results
The image enhancement and denoising operation were used
to further adjust and optimize the fused image, so as to
improve the visual effect and practicality of the image.

C. ROAD PEDESTRIAN DETECTION BASED ON
GLARE-RESISTANT FUSED IMAGES

Due to the fact that pedestrians detected during nighttime
driving are situated within a glare-resistant background,
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despite undergoing glare elimination operations based on
image fusion, there still exists a certain gap in image clarity
compared to daytime images. Therefore, the study employs
the YOLOv4 object detection algorithm to detect pedestri-
ans. To achieve pedestrian detection, the research introduces
dilated convolutions into the YOLOv4 backbone network to
enhance semantic features of pedestrians in the glare-resistant
night vision background. Subsequently, a spatial pyramid
pooling structure is employed to learn features of pedestri-
ans of different sizes, reducing false negatives. To simplify
pedestrian detection, the study reduces the number of feature
fusion layers in the network and utilizes clustering algorithms
to enhance model performance. The pedestrian detection net-
work structure designed in the study is illustrated in Figure 6.

To enable the backbone network to extract deeper-level
feature information, the study incorporates dilated convolu-
tions into the pedestrian detection network to increase the
network’s receptive field. In the process of continuous dila-
tion rate variation, varying numbers of zeros need to be
added to the convolution kernel. The relationship between
the receptive field and the convolution kernel is expressed in
Equation (14).

Xp=xx+ @G —1)x (D, —1) (14)

In Equation (14), x, is the symbol of the dilated convo-
lution kernel size, x;, is the original convolution kernel size,
and D, is the dilation rate. The calculation method for the
receptive field is shown in Equation (15).

m—1

Ym = Ym—1+ |:(xm —1) x |:l_1'I] Sii|:| (15)

In Equation (15), y,, is the receptive field of each point in
the m th layer, y,,,— is the receptive field of each point in the
m — 1 th layer, x,, is the size of the dilated convolution kernel
in the m th layer, and s; is the stride of the ith layer convo-
lution. To enhance the performance of the feature extraction
network in obtaining more features during the extraction
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FIGURE 6. Structure of the pedestrian detection network in the study design.

of the pedestrian target, the study directly fuses features
from different layers, revealing a more comprehensive set of
broader features. The spatial pyramid pooling structure uses
parallel convolution layers with different dilation rates to cap-
ture target objects and backgrounds, and then concatenates
the obtained results. In this structure, dilated convolutions
are employed to expand the receptive field without affecting
resolution. The size calculation of the feature map is provided
in Equation (16).

n+2p" —dx(f"—1)—1
s

output_size = (16)
In Equation (16), n’ represents the size of the input fea-
ture map, p” is the zero-padding amount, d is the dilation
rate, s is the stride, and f” is the convolutional kernel
size. As the number of convolutional layers increases, the
extracted feature information in the network becomes richer,
leading to an increase in computational complexity. To bal-
ance computational efficiency and detection performance,
the study investigates reducing the number of feature lay-
ers in YOLOvV4 to 2 and clustering the anchor boxes. The
study employs the K-means clustering algorithm to generate
anchor boxes. However, traditional K-means clustering algo-
rithms have random initial cluster centers, leading to local
optima and an inability to obtain optimal candidate box sizes.
To address this, the study improves the K-means algorithm by
initially selecting a sample from an anti-glare image dataset
to work as the initial cluster center. The distance between
each sample point in the anti-glare dataset is calculated. The
probability of each sample point being selected as the next

cluster center is then computed as shown in Equation (17).
P(x) = & (17)

> Dw)?

In Equation (17), D (x) is the distance between the sam-
ple point and the existing cluster center, and P (x) is the
probability of being selected as the next cluster center. The
improved K-means algorithm results in modified anchor box
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sizes of (31,129), (37,138), (40,153), (42,215), (44,169), and
(48,193). The study adopts the Mish function as the activation
function and utilizes the CIOU_loss loss function to calculate
the error between predicted and actual bounding boxes in a
pedestrian detection network. Model optimization is achieved
through training. Due to the dynamic nature of green energy
vehicles driving at night and pedestrians walking, ensuring
safe driving requires further tracking of detected pedestrians
after implementing night vision anti-glare pedestrian detec-
tion. Therefore, the study combines Kernelized Correlation
Filters (KCF) with Closed Loop (CL) algorithms for pedes-
trian tracking. This method predicts pedestrian positions by
jointly using color and spatial features. The proposed pedes-
trian tracking method’s workflow is illustrated in Figure 7.

In summary, the research initially collects pedestrian detec-
tion datasets from in-car cameras and selects video frames
based on single-frame differences. After preprocessing the
obtained image frames, the study employs the HSV and
NSST algorithms to fuse and eliminate glare in visible light
and infrared images. Finally, night vision pedestrian detec-
tion and tracking are performed using the CL algorithm,
YOLOvV4, and KCF.

IV. PERFORMANCE AND APPLICATION EFFECT
ANALYSIS OF GLARE-RESISTANT

DETECTION SYSTEM

A series of experiments are designed to test the performance
of the anti-halo detection system. The data set selected in the
experiment is the video frame data set collected by the vehicle
camera. The dataset contains videos of both suburban roads
and urban arterial roads. Slow video and Fast video in the two
scenarios were used as experimental data sets. A Slow video
on a road in an urban area is a slow video sequence with a
frame count of 300, a playback duration of 12s, a playback
frame rate of 25 frames /s, and a frame interval threshold of 5.
Fast vedio is a motion sequence of fast video. The frame num-
ber of the video sequence is 86, the playback time is 3.44s,
the playback frame rate is 25 frames /s, and the maximum
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FIGURE 7. The flow of pedestrian tracking methods for the study design.

frame interval threshold N is set to 5. In suburban scenarios,
the number of Slow video sequences is 371, the playback
duration is 14.84s, the playback frame rate is 25 frames /s,
and the maximum frame interval threshold N is set to 5. Fast
video indicates a fast video sequence. The frame rate of the
video is 25 frames /s, the maximum frame interval threshold
N is 5, the playback duration is 8s, and the number of video
frames is 200.

These data features mainly include the appearance char-
acteristics, posture characteristics, movement characteristics
and scene characteristics of pedestrians. Through the effec-
tive extraction and utilization of these features, the accuracy
and reliability of pedestrian detection can be improved.
Because of the video captured by the car camera, many
frames may be redundant. Therefore, the study adopts a
video frame selection method based on single frame dif-
ference. By calculating the difference between successive
frames, representative frames are selected for subsequent
processing, thus improving the quality and efficiency of data.
Then, we study the image preprocessing of the selected video
frames. Denoising, enhancement and normalization. Due to
the diversity of pedestrian walking posture, dress and other
factors in the actual scene, the samples in the data set may
not cover all cases completely, which may lead to poor perfor-
mance of the model in some special cases. Secondly, because
the collection and annotation of data sets require a lot of
manpower and material resources, the scale of data sets may
be limited to some extent, which may affect the generalization
ability and performance of the model. To overcome these
limitations, the study may consider using data enhancement
techniques to augment the data set.

In order to ensure the validity of the data and achieve the
best results in the process of experimental verification and
model training, a series of data preprocessing is carried out.
In the process of processing, the feature point registration
method is used to eliminate the spatial difference between
the two types of image information. For visible image and
infrared image, Multi-Scale Retinex with Color Restoration
and Multi-Scale Retinex were used to enhance the image,
respectively. In order to reduce the influence of noise on
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image information, the median filter is used to eliminate
image noise.

To gauge the effectiveness of metrics in balancing frame
interval detection and visual outcomes, the study investigated
the relationship between the optimal frame difference thresh-
old, frame drop rate, and nonlinear correlation information
entropy through experiments. Two fast-playback videos and
two slow-playback videos were selected for the experiments,
and the variations in frame drop rates and information entropy
for both types of videos with changing thresholds were illus-
trated in Figure 8.

As depicted in Figure 8(a), the frame drop rates for all four
sets of video sequences continuously increased with the rising
threshold. The increase in slow video sequences 1 and 2 was
notably higher compared to the increment in the fast video
group. Figure 8(b) indicates that as the threshold increased,
the size of information entropy gradually decreased, with
a significant drop occurring between the threshold values
of 1.5 and 2.5. Figure 8(c) reveals that at a threshold of
2.2, there was a substantial variation in information entropy
values. Hence, in threshold selection, it’s crucial to consider
values below 2.2. Combining the findings of frame drop rate
variations, a threshold value of 1.8 yielded a higher number of
interval video frames and a stronger correlation among video
sequences.

To validate the efficacy of the proposed single-frame
difference-based frame selection method, the study con-
ducted experiments using infrared videos. Experiments were
performed in the urban area of A city on a ring road scene,
obtaining motion sequences from slow-playback videos. The
video sequence comprised 365 frames with a playback dura-
tion of 14.72 seconds and a frame rate of 25 frames/s. The
maximum inter-frame threshold was set to 5 based on the
playback frame rate. Employing the frame selection method
established in the study, the results for the initial 50 frames
are presented in Figure 9.

From Figure 9, it is evident that while the original video
sequence consisted of 365 frames, the frame selection method
based on inter-frame differences required only 159 frames,
reducing the processing load. Among these, 133 frames met
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FIGURE 8. Deframe rate and information entropy changes of two types of
videos.

the conditions of a time interval not exceeding 0.2 seconds,
with minimal inter-frame content difference and closest to
the threshold condition. This indicates that in slow-playback
videos, the majority of video frames exhibit minimal content
change between consecutive frames. The collective informa-
tion in Figure 9 demonstrates that the devised frame selection
method in this study can minimize workload while ensuring
real-time processing.

For accomplishing the evaluation of the effectiveness of
the glare-resistant method employed by the research institute,
the study compared existing glare-resistant methods with the
glare-resistant method designed in the study (Method 1).
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FIGURE 9. Screening effect of the frame screening method designed in
the study.

The comparison methods include anti-halo method in [31]
(method 2), anti-halo method in [32] (method 3), and
anti-halo method in [33] (method 4). The comparison of
methods involved evaluating the glare elimination effects
using parameters such as Glare Elimination Degree (D),
Average Gradient (AG), Spatial Frequency (SF), and Root
Mean Square Error (RMS). RMSVI and RMSIR fused the
differences between the image and the original infrared and
visible light images, respectively. The stability of the method
was also studied by increasing the number of contrast images.
The specific comparison results are shown in Figure 10.

As shown in Figure 10 (a), Method 1 exhibited a 25.44%,
11.54%, and 10.44% increase in the D index compared
to the other three methods. This indicates that Method
1 achieved more thorough glare elimination in the images.
In Figure 10 (b), Method 1’s AG value was 9.966, signifi-
cantly higher than the other three methods. This suggests that
the glare-resistant fused images obtained by Method 1 had
more distinct object contours, making it more conducive
to observing the surrounding conditions for green energy
vehicles at night. Figure 10 (c) shows that Method 1’s SF
value was 27.14, more than 30% higher than the other three
methods. This indicates that Method 1 could reflect the spatial
variations in pixel grayscale in the obtained fused images.
In Figure 10 (d), both RMS values of Method 1 were signifi-
cantly lower than the other three methods, indicating that the
fused images reduced the differences with the original images
while maintaining image clarity.

To further evaluate the performance of the designed glare-
resistant method, the study introduced Peak Signal-to-Noise
Ratio (PS), Image Sharpness (FD), and the mean value p of
non-glare region selection. The indicator data for the four
glare-resistant methods in two different video image sets are
shown in Table 2.

From Table 2, Method 1’s PS value for infrared images
was 28.455, a 17.8%, 5.1%, and 15.4% increase compared to
Methods 2, 3, and 4, respectively. The visible light image’s
PS value for Method 1 was 40.858, significantly higher
than the other three methods. This indicates fewer inter-
ference signals between the fused images and the original
images. Method 1’s FD value was significantly higher by
65.45%, 60.81%, and 63.88% compared to the other three
methods, indicating an enhancement in visual features, color
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FIGURE 10. Comparison of anti halo performance indicators using
different methods.

texture, and richness of detail information. Moreover, Method
I’s u was the highest among the four methods. In summary,
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the glare-resistant method designed by the research insti-
tute effectively addresses the glare issues in nighttime video
images.

To assess the rationality of the study’s impact on the
YOLOV4 pedestrian detection network, the research con-
ducted experiments by comparing the performance indicators
of different network layers before and after the improvement.
The compared indicators included Mean Average Precision
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TABLE 2. Indicators of four anti halo methods in two different video image sets.

. Image Set 1
Project PSVI

PSIR FD

Image Set 2

PSVI PSIR FD

1
95.842
65.083
70.841
68.155

Method 1
Method 2
Method 3
Method 4

40.588
33.520
38.612
35.171

28.454
24.855
26.141
25.084

8.421
8.055
8.155

12.844

u
94.987
68.453
71.854
68.344

41.128
34.921
38.751
35.641

28.456
24.753
26.531
25.184

12.183
8.811
8.015
8.151
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FIGURE 12. Comparison of training situations of different models.

(MAP) and Frames Per Second (FPS). The comparison
results are shown in Figure 11.

According to Figure 11(a), it is evident that adding dilated
convolutions to the backbone network effectively enhances
the feature extraction capability. After incorporating dilated
convolutions, the MAP value of the network increased to
93.84%, indicating a significant improvement. As shown
in Figure 11(b), adding dilated convolutions to the feature
enhancement network effectively enhances pedestrian fea-
tures in glare-resistant night vision, enlarging the receptive
field and further increasing the MAP value of the detection
results. Figure 11(c) reveals that removing a feature fusion
layer effectively improves the detection frame rate, leading to
a further enhancement in the pedestrian detection algorithm’s
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speed, with the FPS value increasing from 50 to 60, a 20%
improvement.

To assess the training effectiveness of the pedestrian detec-
tion model (Model 1) used in the study, it was simultaneously
trained with convolutional neural networks (CNN) and long
short-term memory networks (LSTM). The training results
are depicted in Figure 12.

Figure 12(a) shows that, after 200 iterations, the loss val-
ues of pedestrian detection boxes for Model 1 gradually
stabilized, and compared to CNN and LSTM, Model 1 con-
verged earlier. As depicted in Figure 12(b), at 134 iterations,
the recall rate of pedestrian detection for Model 1 stabilized,
and Model 1 required significantly fewer iterations compared
to CNN and LSTM, achieving a higher converged recall rate.
Overall, the content in Figure 12 indicates that Model 1
exhibits good convergence.

In this study, YOLOv4 algorithm was used for pedestrian
detection. In order to verify the correctness of this method,
it was compared with a higher version of the algorithm,
highlighting the advantages of the YOLOv4 algorithm. The
comparison indexes include: detection accuracy, detection
speed, model complexity, and resource consumption. The
specific comparison results are shown in Table 3.

As can be seen from Table 3, the detection accuracy of
YOLOV4 reached 93.84%, which was slightly lower than
94.21% of YOLOVS, but higher than other methods such
as YOLOX, Faster R-CNN and SSD. In terms of detec-
tion speed, the FPS value of YOLOv4 is 60, which is
slightly lower than 65 of YOLOX, but significantly higher
than 20 of Faster R-CNN, showing its advantages in real-
time. In terms of model complexity, YOLOv4, like most
object detection algorithms, has O(n) complexity. In terms
of resource consumption, YOLOv4 has a medium level of
resource consumption. Based on the above analysis, although
YOLOVS is slightly better than YOLOvV4 in detection accu-
racy, it is relatively poor in detection speed and resource
consumption. Although YOLOX has a slight advantage in
detection speed, its detection accuracy is slightly lower than
YOLOv4. Considering the comprehensive requirements of
detection accuracy, speed and resource consumption in prac-
tical applications, it is reasonable to use YOLOv4 algorithm
for pedestrian detection.

To evaluate the effectiveness of pedestrian detection, the
study compared Model 1 with CNN, LSTM, and other
advanced pedestrian detection models. The results are shown
in Figure 13, with the compared models including the pedes-
trian detection model in [34] (model 2), the pedestrian
detection model in [35] (model 3), and the pedestrian detec-
tion model in [36] (model 4).
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TABLE 3. Comparison of YOLOv4 and Other advanced versions for pedestrian detection.

Method Detection Accuracy(%) Detection Speed (FPS) Model Complexity Resource Consumption
YOLOv4 93.84 60 O(n) Moderate
YOLOV5 94.21 55 O(n) High
YOLOX 93.58 65 O(n) Low

Faster R-CNN 92.45 20 O(n"2) High
SSD 91.89 45 O(n) Moderate
TABLE 4. A questionnaire survey on the user experience of 35 coaches.

Can . glearly .dlstmgu ish - road Can effectively detect pedestrians The system responds quickly Satlsﬁ_ed Wlth the  system

Option conditions at night ) ) ] operation experience )
Select the number  Proportion ~ Select the number  Proportion Select the number  Proportion  Select the  Proportion
of people (%) of people (%) of people (%) number of people (%)

A 31 88.58 30 85.71 29 85.71 30 82.86

B 2 5.71 3 8.57 4 11.43 3 8.57

C 2 5.71 2 5.71 2 5.71 1 2.86

D 0 0.00 0 0.00 1 2.86 1 2.86

Note: A indicates strong approval; B represents recognition; C represents general; D means not approving.
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FIGURE 13. Comparison of trust detection performance of four models.

Figure 13(a) reveals that, with an increase in recall rate,
Model 1 maintains a consistently high AP value, outperform-
ing Model 2 and Model 3. Model 4 exhibits more significant
fluctuations. This indicates that Model 1 has a higher learn-
ing level. Figure 13(b) shows that Model 1 achieves an
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average accuracy of 95.44%, significantly superior to the
other three models. Thus, the pedestrian detection model
designed in the study can achieve high-precision pedestrian
detection.

To assess the practical application of the glare-resistant
detection system based on single-frame difference image
fusion, the study deployed it in a driving school. Daytime,
instructors often need to drive home at night. The study
involved 35 instructors from driving school A, who used the
system for a month. Afterward, a survey was conducted, and
the results are provided in Table 4.

Table 4 indicates that 94.29% of instructors believe the
system provides a clear view of the road during nighttime
driving, effectively alleviating visibility issues caused by
glare. Furthermore, 94.28% of instructors think the sys-
tem can detect pedestrian positions in real-time, aiding in
decision-making. About 97.14% of instructors appreciate the
system’s fast response time, and 91.43% of drivers express
satisfaction with the system. In conclusion, the glare-resistant
detection system constructed in the study effectively facili-
tates safe driving on nighttime roads.

To further test the accuracy of the technology used in the
constructed model, an ablation experiment was designed to
analyze the effects of different components on pedestrian
detection performance. The specific results are shown in
Table 5.

From the ablation experiment results in Table 5, it can be
observed that the full model (Model 1) incorporating all com-
ponents achieves the highest precision, recall, and average
precision (AP) compared to the models with individual com-
ponents removed. Specifically, removing the single-frame
difference image fusion component leads to a decrease
in precision, recall, and AP, indicating its effectiveness
in improving the detection accuracy. Similarly, excluding
the YOLOv4 component results in a significant drop in
all evaluation metrics, highlighting the importance of the
chosen detection algorithm. Additionally, disabling the night-
time enhancement component also results in a reduction in
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TABLE 5. Ablation experiment results.

Component Precision(%) Recall(%) Average Precision(%)
Full Model 95.44 92.31 94.13
Without Single-frame
Difference Image Fusion 92.16 89.43 9028
Without YOLOv4 88.74 85.67 86.45
Without Smgle-fram_e Difference 91.32 88.29 89.56
Image Fusion
Without Nighttime 90.58 3741 3874

Enhancement

performance, demonstrating its contribution to enhancing the
visibility of pedestrians in nighttime conditions.

V. CONCLUSION

The development of glare-resistant technology in automo-
biles was a rather intricate task. However, successfully
achieving glare resistance could significantly bolster night-
time traffic safety. To this end, research focused on employing
image fusion techniques that combined visible light images
with infrared images. This fusion utilized HSV color space
conversion and the NSST algorithm to eliminate image glare.
Simultaneously, an enhanced YOLOv4 was employed for
pedestrian detection. This endeavor led to the creation of
a new system for detecting glare resistance in nighttime
driving images through image fusion. Experimental anal-
ysis revealed that the original video sequence comprised
365 frames. By employing a frame difference-based frame
selection method, only 159 frames needed fusion, signif-
icantly reducing the number of processed video frames.
This demonstrated the efficacy of the proposed single-frame
difference-based video frame selection method in reducing
computational complexity. Method 1 exhibited a 25.44%,
11.54%, and 10.44% improvement in the D index compared
to the other three methods. This indicated that Method 1 was
more effective in eliminating glare from the images. Further-
more, the addition of dilated convolutions in the backbone
network substantially enhanced feature extraction capability.
With the inclusion of dilated convolutions, the network’s
MAP increased to 93.84%. This showcased that the improve-
ments made to the pedestrian detection network significantly
enhanced its performance. Practical application revealed that
over 90% of the participants were satisfied with the func-
tionality of the developed system, including its glare-resistant
effect and pedestrian detection capability. This indicated that
the designed model was proficient in achieving effective glare
resistance and pedestrian detection. The current tracking
algorithm utilized in the research is rather complex. Future
studies could enhance algorithm performance by optimizing
parameter quantities in the optimizer.
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