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ABSTRACT The field of Brain-Computer Interface (BCI) has been rapidly expanding in the last few years
and it is applicable in several fields. This study introduces a BCI-controlled wheelchair that utilizes Motor
Imagery (MI) mental commands for turning left and right and Electrooculogram (EOG) signals, raising the
eyebrows, for starting and stopping. The wheelchair offers 4 Degrees of Freedom (DoF), allowing users to
move forward, stop, turn left, and turn right. The Emotiv Epoc headset is used to record the raw EEG data, the
Common Spatial Patterns (CSP) algorithm is utilized to extract features from the data, and the Support Vector
Machine (SVM) is employed to classify the mental commands. A total of 28 subjects, with half of them being
individuals with motor and brain disabilities such as brain paralysis, severe brain disability, epilepsy, and
spastic tetraplegia, participated in 5 experiments to assess the proposed BCI system. The results show that
all participants, including those with disabilities, successfully adapted to and operated the BCI-controlled
wheelchair with high accuracy and precision.

INDEX TERMS Brain-computer interface, BCI-controlled wheelchair, SVM, motor imagery, CSP, motor
and mental disabilities, real-time BCI wheelchair.

I. INTRODUCTION
Brain-computer interface (BCI) technology has remarkable
progress and development over the past decade, transform-
ing the interaction of humans with computers [1], [2].
BCI systems establish a direct communication pathway
between the human brain and external devices, enabling
individuals to control and interact with technology using
their brain signals [3]. It has the potential to impact
various domains, including healthcare, assistive technologies,
and gaming. It can influence various fields, including
healthcare, assistive technologies, and gaming. The accu-
racy, speed, and reliability of BCI systems have been
increased thanks to the advancements of machine learn-
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ing algorithms, signal processing techniques, and better
equipment [4], [5].

A widely employed method in BCI technology is Elec-
troencephalography (EEG) [6] which includes recording the
electrical activity of the brain to acquire neural signals [7].
It can be classified into two main types: invasive and non-
invasive. The invasive category [8] involves placing sensors
directly into the brain. This results in high spatial resolution,
high accuracy, and amplitude, reduced artifacts, and noise.
However, this technique is dangerous since is entails surgery
and raises ethical concerns. On the other hand, non-invasive
technique [9], offers safety, affordability, and ease of use.
In this category, electrodes are placed on the surface
of the scalp. This allows repeated measurements, long-
term monitoring, and real-time feedback. This technique is
sensitive to noise and artifacts, limiting signal quality.
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EEG headsets are categorized as wireless and non-
wireless. Wireless headsets offer mobility but may have
challenges with signal quality and latency [10]. On the other
hand, non-wireless headsets provide stable, high-quality
signals and are commonly used in clinical research. In recent
years, real-time applications of BCI have increasingly
employed commercial wireless EEG headsets since they offer
the advantage of portability, flexibility, and ease of use,
allowing users to engage in real-time applications without the
constraints of wired connections [11].
BCI-controlled wheelchairs have emerged as a promising

application, offering several benefits and advantages for indi-
viduals with severe motor disabilities [12]. They are capable
of restoring mobility and independence by allowing users
to navigate using only their brain signals, improving their
quality of life. Real-time responsiveness enables immediate
and direct control, enhancing the user experience. Also, these
systems can enhance autonomy for users by reducing their
reliance on physical assistance from caregivers. As a result,
this increased independence offers individuals greater privacy
and freedom in their daily lives [13], [14].
One of the primary applications of BCI technology is in

assisting individuals with severe motor disabilities, such as
brain paralysis, severe brain disability, epilepsy, and spastic
tetraplegia [15], [16], [17]. These conditions significantly
impair a person’s ability to interact with their environment,
making daily activities challenging. BCIs offer a non-invasive
means to restore some degree of autonomy by translating
neural signals into control commands for external devices,
such as wheelchairs [12]. These systems are capable of
restoring mobility and independence by allowing users to
navigate using only their brain signals, improving their
quality of life. Real-time responsiveness enables immediate
and direct control, enhancing the user experience. Also, these
systems can enhance autonomy for users by reducing their
reliance on physical assistance from caregivers. As a result,
this increased independence offers individuals greater privacy
and freedom in their daily lives [13], [14].
However, not all disease classes benefit from BCI systems.

Individuals with severe cognitive impairments or those
unable to generate consistent neural patterns may find it
challenging to use BCI technology effectively. BCI tech-
nology is particularly advantageous for wheelchair control
due to its ability to provide precise and selective control
signals, essential for maneuvering in various environments
and ensuring safety and reliability. Alternative methods, such
as joystick-controlled wheelchairs, require fine motor skills
that many individuals with severe motor disabilities do not
possess. Voice-controlled wheelchairs [18], [19] may not
be suitable in noisy environments or for users with speech
impairments.

Despite all these advantages, several challenges must be
addressed for the development of accurate BCI-controlled
wheelchairs [12]. These challenges include the variability of
EEG signals among individuals, resulting in personalized cal-

ibration and training to achieve reliable control. Additionally,
ensuring high-quality signals in non-invasive EEG recordings
is an ongoing challenge. Users must undergo training to
generate specific brain patterns, requiring the implementation
of effective training protocols and user-friendly interfaces.
Lastly, the developers must prioritize safety and reliability in
order to prevent accidents or injuries, requiring robust system
design, and fail-safe mechanisms.

The Motor Imagery (MI) paradigm is a technique in
which users mentally simulate specific movements without
physically performing them [20], [21]. MI generates specific
neural patterns that can be detected and translated into
control commands for external devices [22].MI offers precise
control signals if users train and calibrate to establish reliable
mappings. Ongoing research aims to enhance MI-based
BCIs through improved signal processing and personalized
training approaches. The most employed MI movements are
the imagination of hands and feet movement. MI paradigm
can be applied for a wide range of applications, including
motor rehabilitation, prosthetics control, sports training, and
wheelchair navigation [23].

BCI-controlled wheelchairs can be commanded using the
MI paradigm, where users imagine specific movements, like
raising or moving their left or right hand, thereby indicating
the desired turning direction to navigate the wheelchair [24],
[25]. Machine learning algorithms can decode the MI brain
patterns and translate them into commands [26]. These
systems offer precise and selective control signals, allowing
users to control the wheelchair.

This paper presents the development of a wheelchair
controlled by a BCI system, which utilizes MI commands for
left and right movements and incorporates Electrooculogram
(EOG) signals. To record the brain potential, Emotiv Epoc
headset is employed with 14 EEG channels. To process and
classify the EEG signals Common Spatial Pattern (CSP)
algorithm is employed and Support Vector Machines (SVM)
classifier is utilized. The Degree of Freedom (DoF) is 4 since
the wheelchair can move forward, turn left, and right, and
stop. To validate the proposed system 28 subjects participated
in 5 experiments, 2 simulated experiments on the com-
puter, and 3 experiments commanding the BCI-controlled
wheelchair. To our knowledge, this is the first study that half
of the participants (14) have motor and brain disabilities,
such as brain paralysis, severe brain disability, epilepsy,
and spastic tetraplegia. A comprehensive analysis of the
results, including a comparative examination between healthy
subjects and patients will be presented. Lastly, the challenges
encountered throughout the course of this research will be
discussed in detail.

II. RELATED WORK
Xiong et al. [27] designed a BCI-controlled wheelchair uti-
lizing MI mental commands and Electromyography (EMG)
signals. To record the brain’s potential 4 channels were used,
C1, C2, C3, and C4. The employed mental commands were
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left and rightMI to turn thewheelchair in the desired direction
and jaw clench to stop the movement. Also, a location
tracker and a heart-ratemonitor were implemented to increase
usability and safety. The proposed system had 2 modes; the
autopilot navigation which is responsible for the forward
movement of the wheelchair and the BCI control which turns
the wheelchair right and left. In the first mode, an obstacle
detection systemwas developed for avoidingwalls, stairs, and
other obstacles. To change the mode the user must perform an
intentional jaw clench and the wheelchair stops moving. If a
MI command is performed the wheelchair turns in the desired
direction and in order to access the navigation mode 2 jaw
clenches must be performed. To process the EEG signals a
bandpass filter between 5 to 50 Hz was applied and then
the power spectral density (PSD) was calculated. To classify
the mental commands logistic regression algorithm was
employed. 7 healthy subjects participated in the study. The
mean accuracy of the classification was 60±5% and the
peak subject accuracy was 82±3%. Different time windows
and channels were examined to maximize the classification
accuracy. Real-time experiments were not performed in this
study.

Tsui et al. [28] developed a self-paced BCI-controlled
wheelchair. To acquire the raw EEG signals 5 channels
were used, C1, C2, C3, C4, and Cz. The study employed
2 mental commands, right and left MI which were utilized
to command the BCI system (turn right and turn left). The
logarithmic band powerwas calculated and 2 LDA algorithms
were employed to classify the mental commands. To validate
the proposed system 2 subjects participated in 2 real-time
experiments. The first experiment was a simulated one, which
was utilized to train the participants with safety. In the second
experiment, the subjects commanded the BCI wheelchair
in an indoor environment and had to perform a series of
movements to reach the end of a path. To evaluate this work,
a time-based metric was employed to measure the time to
complete the path for a single run.

Yu et al. [29] developed a BCI-controlled wheelchair based
on Sequential Motor Imagery (sMI). To acquire the raw
EEG signals a 31-electrode cap was used and 3 mental
commands were recorded, right and left MI and resting
state. To process the raw signals a bandpass filter between
4 and 30 Hz was applied and for feature extraction, CSP
algorithm was utilized. To classify the mental commands
LDA algorithm was employed. Then a template-matching
algorithm that calculates the Pearson correlation coefficients
between a series of classification results is used. The available
movements of the wheelchair were going forward, stopping,
turning left, turning right, accelerating, and decelerating.
To validate the proposed system, 7 healthy subjects partic-
ipated in 2 experiments, a simulated and an online. In the
simulated experiment, participants had to perform a series
of mental commands for training. The evaluation metrics of
the first experiment were the response time, the true positive
rate (RT), and the false positive rate (FPR). In the second
experiment, the subjects had to command the BCI wheelchair

from the starting position to the end of the path position in
an indoor environment. The employed evaluation metrics of
this experiment were the tasks accomplished, the time taken,
the missed waypoints, the commands taken, the distance
traveled, the angle explored, and the collisions.

Carlson and Millan [30] designed a BCI-controlled
wheelchair. The brain signals were recorded from a
16-channel EEG device with a sampling frequency of 512Hz.
To process the raw signals a Laplacian filter was applied to
reduce the signal-to-noise ratio. Then PSD was calculated
between 4 to 48 Hz with a 2-Hz resolution and a canonical
variate analysis was employed to maximize the separability
between the classes. A Gaussian classifier was utilized in
this study. The mental commands that were used to command
the wheelchair were right and left hand MI and the available
movements of the system were turning left, turning right,
and going forward. For the forward movement, autopilot
navigation was implemented with an obstacle detection
system using cameras and 10 close-range sonar sensors.
4 healthy subjects participated in 2 experiments. In the first
experiment, participants sat in the wheelchair and performed
a series of mental commands to move a cursor on a monitor.
For the second experiment, the subjects had to command
the wheelchair on a predefined path. A time-based metric,
accuracy, path efficiency, average distance traveled, and
successful completion of a navigation task were employed as
the evaluation metrics of this work.

Ron-Angevin et al. [31] developed a BCI-controlled
wheelchair implementing 2mental commands; right-handMI
and idle state. To acquire the raw EEG data, a 9-channel
device was used. To process the raw EEG signals the average
signal power was calculated and for the 2-class problem,
LDA algorithm was employed. The available movements
of the BCI system were moving forward, and backward,
turning left, and right. An obstacle detection system was
also utilized for safety. Initially, 17 subjects participated in
the recording-calibrating phase but due to poor performance
10 subjects were excluded from the virtual and the online
experiments. In the virtual experiment, users had to navigate
a simulated wheelchair in a predefined path in order to train.
The evaluation metrics for this experiment were time-lapse,
failed commands, recall, specificity, precision, NPV, and
accuracy. In the online experiment, subjects had to command
the wheelchair on the same predefined path as in the virtual
scenario. The same evaluation metrics were employed in this
experiment as well.

III. MATERIALS AND METHODS
The objective of the proposed study is to develop an
affordable wheelchair that can be controlled using BCI
technology for individuals with disabilities. The system
consists of an Emotiv Epoc headset, a laptop, and a
wheelchair. The details regarding the dataset, hardware, and
software employed in this work will be presented in the
subsequent sections. In figure 1 the flowchart of the proposed
approach and the processing pipeline is presented.
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FIGURE 1. This flowchart illustrates the sequence of steps involved in the
study, from adjusting the Emotiv Epoc headset, through dataset
collection, EEG signal acquisition, signal processing, feature extraction,
and classification, to real-time analysis and validation.

A. BRIEFING PARTICIPANTS
In this study, all participants are initially gathered in a
briefing room. This meeting presents a comprehensive
overview of the study protocol and objectives, emphasizing
the experiments’ importance and clearly presenting the
goals. This ensures that everyone begins the experiment
with a thorough understanding of the procedures and
expectations.

During the initial briefing, the experimental equipment
such as the Emotiv headset and the wheelchair is introduced.
Participants are encouraged to interact with these devices
physically, helping them become comfortable and familiar
with the technology they use. Before the recording phase
starts, the study’s objectives and demonstrating the correct
hand and body movements required for the study are shown
again to the participants. Visually and verbally guiding
participants, is crucial in maintaining the integrity and
reliability of the results, ensuring that potential biases do not
affect the outcomes.

B. DATASET
To validate the BCI-controlled wheelchair 28 subjects
participated in the study. The participants included are
both right-handed and left-handed individuals. The subjects
are divided into 2 groups, patients (P1-P14) and healthy

TABLE 1. The table presents the subjects that participated in this study
(B.D. = Brain Disability, M.D. = Motor Disability). The type of medication
for each subject is not presented.

(S1-S14). The average age of all participants is 33.64 while
the average age for patients is 35.92 ranging from 26 to
54 and for healthy is 31.35 varying from 23 to 62. P1, P3,
and P10 are diagnosed with mild intellectual disability, P4,
P5, P6, P8, and P9 have moderate intellectual disability and
epilepsy. Also, P6 has a severe visual impairment and P8
has a behavioral disorder with psychotic symptoms. P2, P7,
P11, and P13, have severe intellectual disability, and P12, and
P14 have spastic tetraplegia, brain paralysis, and intellectual
disabilities. Lastly, P9, P11, and P12 are in a wheelchair due
to severe motor disability. Expect P1, P9, P10, and P13 all
the other patients are on medication. The caretakers and/or
parents signed a consent form to authorize their participation
in the experiments. On the other hand, S1-S14 have good
vision and they are mentally and physically healthy. They
have also signed a consent form to be able to participate in
the study. The information about the dataset utilized in this
study is provided in Table 1.

C. WHEELCHAIR
In this study, a commercially available electric wheelchair
equipped with six wheels is utilized (Figure 2). The
conventional input mechanism, the joystick, is substituted
with a microcomputer that enables communication via either
wifi or serial port connection (USB). For this research, the
USB connection method is employed, in which a laptop
connected to the EEG headset establishes a connection with
the wheelchair to issue commands.

D. EEG HEADSET
Emotiv Epoc headset [32] is employed to acquire brain
signals. It is a 14-channel commercial EEG device that is
utilized in various applications, including BCI research [33],
[34], mental health research [35], [36], and gaming [37], [38].
Epoc is connecting with the computer via Bluetooth which
enhances mobility and flexibility. The sampling frequency of
the device is 128 Hz. Also, it offers a built-in Accelerometer
and Magnetometer and has the potential to detect mental
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FIGURE 2. The electric wheelchair employed in this study.

FIGURE 3. Emotiv Epoc headset with 14 channels.

commands, facial expressions, and several performance
metrics. Emotiv provides software development tools and an
SDK. It provides numerous benefits [39]. More specifically,
it is lightweight and portable, making it ideal for real-time
applications. It is user-friendly, and thanks to the software
provided it has a quick setup time. Also, it is an affordable
option compared to clinical EEG devices and it offers better
coverage of brain activity compared to other commercial
EEG headsets. The device is presented in Figure 3.

E. LAB STREAMING LAYER
Emotiv’s software provides Lab Streaming Layer (LSL)
protocol which is an open-source system for streaming,
receiving, synchronizing, and recording time series data
from different network acquisition devices [40]. LSL ensures
secure transmission of data using the TCP protocol and
simplifies cross-platform connectivity. In this study, the LSL
stream is employed to record EEG signals and transmit
the data to Python scripts responsible for processing and
classifying the signals.

1) EEG RECORDINGS
The EEG signals are initially acquired and saved in CSVfiles.
These files are then processed to extract features and train the
classifier. Four EEG classes are recorded for each participant:
right-hand MI, left-hand MI, idle state, and raising the
eyebrows. The MI brain signals are recorded for 5 minutes
each (5 minutes for right MI and 5 minutes for left MI),
while the idle state and the raise of the eyebrows are recorded
for 2 minutes each. The recording duration for each EEG
class is carefully chosen to match the complexity of the tasks
involved. Longer recordings are used for more complex tasks,

such as hand MI movements, to ensure sufficient data for
precise classification. In contrast, simpler tasks like blinking
and idle state are recorded for shorter duration, as they are
easier to detect in EEG signals. Participants are instructed not
to execute the movements they are imagining and to remain
physically still during recordings.

To ensure reliable and accurate EEG signal acquisition
across all participants, several measures are taken. All
recordings are carried out in a quiet room to reduce
noise. The participants are required to sit on a comfortable
chair, facing a white wall, to reduce potential distraction.
Subjects are recorded only once, regardless of classification
accuracy results, to maintain consistency. Before starting the
recordings, a researcher explains the tasks and demonstrates
the movements that participants need to imagine. Participants
are given time to physically execute these movements
before the recording phase starts. They also, have time
to get familiar with the equipment which led to reduced
anxiety and movement artifacts during the actual recordings.
By implementing these measures, consistent EEG signal
acquisition across all participants is ensured.

F. SIGNAL PROCESSING AND FEATURE EXTRACTION
After the completion of the signal capture phase, a bandpass
filter between 8 to 40 Hz is applied to the signals. This
filter is applied to reduce the noise and artifacts of the raw
EEG data and to exclude Delta and Theta frequency bands
that are associated with sleep and relaxation. Then 3 more
Butterworth bandpass filters are applied to the signals to split
them into 3 frequency bands:

1) Mu rhythm 8 to 13 Hz
2) Low Beta frequency 13 to 20 Hz
3) High Beta frequency 20 to 30 Hz

The mu rhythm [41], [42] is a specific pattern of brainwave
activity that occurs in the sensorimotor cortex. It typically
appears in the frequency range of 8-13 Hz and is associated
with motor-related processes. It is observed to decrease in
amplitude when a user engages in imagined movements. Beta
waves [42], [43] is a type of brainwave pattern occurring in
the frequency range of 13 to 30 Hz, associated with active
mental states. They have fast and low-amplitude oscillations,
predominantly observed in the frontal and central regions of
the brain. They are involved in critical thinking, decision-
making, information processing, motor coordination, and
muscle movement.

Then the signals are divided into 3-second segments
with a 25% overlap. The window size is selected to
achieve a balance between a fast system response to the
user’s mental commands and accurate classification. This
trade-off has been investigated through multiple trial-and-
error experiments.

To extract features from the data, the CSP algorithm is
employed. CSP [44], [45] uses spatial filters to maximize
the discriminability of 2 or more classes. The goal of the
CSP algorithm in a 3-class problem is to identify spatial
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patterns that differentiate 1 class from the other 2. It achieves
this by maximizing the variance of EEG signals for 1 class
while simultaneously minimizing the variance for the other
2 classes which enhances the separability of the 3 classes in
the transformed feature space. In this study, 8 spatial filters
are utilized. The features that are extracted from the signals
are used to train the classifier offline.

G. CLASSIFICATION
For the classification process, the SVM algorithm is
employed. SVMs [46], [47] are a powerful supervised
machine learning algorithm utilized for classification tasks.
The goal is to find an optimal hyperplane that separates
different classes with the maximum margin, achieved by
transforming the data into a higher-dimensional feature
space using a kernel function. They minimize classification
error while maximizing the margin, utilizing support vectors
that lie closest to the hyperplane. They are also effective
in high-dimensional spaces, handle non-linearly separable
data, and have good generalization performance. However,
they can be computationally expensive and struggle with
overlapping classes or high-dimensional data. Despite these
limitations, SVMs have been widely applied in various
domains with success [48]. SVM [49] is one of the most
effective classification algorithms for EEG analysis since it
can handle complex data patterns and optimize the separation
between different EEG classes.

In the specific implementation, the SVM utilizes a Radial
Basis Function (RBF) kernel. The decision function for SVM
with an RBF kernel is given by:

f (X) =

N∑
i=1

αiyi exp
(

−
∥X − Xi∥

2

2σ 2

)
+ b (1)

Here, αi represents the Lagrange multipliers, yi are the
corresponding class labels, Xi are the support vectors, and
b is the bias term. The prediction is determined by the sign
of f (X), where f (X) > 0 implies one class, and f (X) ≤

0 implies the other class.
SVMs are chosen instead of deep learning models because

they offer robust performance while requiring significantly
less computational resources. SVMS has also proven effec-
tive in EEG signal classification, as they can efficiently
manage high-dimensional data and excel with non-linear
kernels. This makes SVMs the best choice for the current
application, allowing to establish a baseline performance for
the BCI system without the complexity and computational
overhead associated with deep learning models.

H. REAL-TIME ANALYSIS
Once the classifier has been trained, the BCI system is
prepared for real-time utilization. During real-time analysis,
identical processing techniques are applied to the signals.
This involves segmenting the raw EEG data into 3-second
epochs with 25% overlap and applying the 4 bandpass filters
to them. Additionally, the CSP method is utilized on the

FIGURE 4. Flowchart presenting the movements of the wheelchair. There
are 2 modes. In the first mode, the wheelchair moves forward by default.
To change the mode the user must stop the wheelchair by raising his
eyebrows. Then the stop mode is activated in which the user can turn left
or right or start the movement of the system.

filtered signals, extracting features that are then fed into
the trained SVM classifier. Based on the user’s generated
EEE-Signals, the classifier makes predictions about the
corresponding class, which are then employed to control
the wheelchair and/or the in-game avatar. The predictions
are integer values; 0 for right MI, 1 for left MI, and
2 for raising the eyebrows. Depending on the outcome
of the classifier one of these values is translated in the
corresponding command and is sent through serial port com-
munication to the wheelchair or through an LSL stream to the
game.

1) COMMANDING THE BCI-CONTROLLED WHEELCHAIR
The available movements of the proposed system are 4; going
forward, stopping, turning right, and turning left. The MI
mental commands are responsible for turning the wheelchair
in the desired direction and the raise of the eyebrows
is responsible for starting and stopping the movement of
the system (Figure 4). When the system is turned on the
wheelchair moves forward continuously. If the user wishes
to stop the movement or turn in a different direction he has to
raise his eyebrows to stop the movement of the BCI system.
In the stop mode, the user can turn left or right or start moving
forward. For safety reasons, turning is disabled while the
wheelchair is in forward motion. A new command is sent to
the wheelchair at 3-second intervals with a 25% overlap of the
signals, allowing for responsive yet stable control. The speed
of the system is constant at 5 km/h. Lastly, the wheelchair
turns 45 degrees in a single-turn command. This specific
degree of rotation allows the wheelchair to complete a
90-degree turnwith just two consecutive commands, enabling
precise and efficient navigation. Additionally, a safety button
is integrated within the system to immediately stop the
wheelchair if needed, ensuring that there are no safety
risks.

I. GAME DESIGN
To assess the proposed system, the initial two experiments
involve simulating the wheelchair’s movements within a
gaming environment. The first game employed was presented
in our previous work [50]. The goal of the game is to simulate
the start and stop of the movement of the wheelchair by
raising the eyebrows to jump over obstacles. For this game
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FIGURE 5. The second game is employed in the second experiment and
simulates the left and right movements of the wheelchair. The time to
complete the task and the number of right and left commands are
recorded.

a 2-class classifier is employed; idle state vs raising the
eyebrows. A score is assigned to the user based on the number
of obstacles they successfully overcome, with a maximum
score of 125 in this gaming scenario.

For the second experiment, a simple 2D game is developed
in the Unity Engine platform [51] (Figure 5). Depending
on the user’s generated EEG signals, the in-game avatar
can move right and left. When the classifier is predicting
a class, the integer value that represents the prediction is
converted to a string and sent via LSL stream to the Unity
script responsible for the avatar’s movement. The right MI is
responsible for directing the avatar towards the right, while
the left MI is responsible for guiding the avatar towards
the left. By raising the eyebrows, the movement of the
avatar stops. The goal of this game is to simulate the MI
commands.

IV. RESULTS
A. OFFLINE RESULTS
1) CLASSIFICATION RESULTS
Table 2 presents the classification results of all subjects.
EEG signals are split into 3 classes, Right MI, Left MI, and
raising the eyebrows. The 10-cross-validation F1 score is
calculated for each participant and the Accuracy of the Test
Set is also presented. The overall average cross-validation
F1 score is 84.32% ranging from 68% achieved by P10 and
P11 to 98% achieved by S1. Additionally, the classification
results are higher for healthy individuals, as their average
result is 86.5%, in contrast to patients whose average is
82.14%. For the second metric presented in the table, the
Accuracy of the Test Set, the average result of all participants
is 86.90% varying from 68.69% by P10 to 98.86% by P6.
The average result for patients is 85.32% while for healthy
is 88.46%.

To enhance the robustness of our classification predictions,
additional machine learning algorithms are evaluated. These
comprise Linear Discriminant Analysis (LDA), k-Nearest
Neighbors (k-NN) with 5 neighbors, Decision Tree, and Ran-
dom Forest. Comparative performance analysis is conducted
to identify the most effective classifier for our BCI system.
The performance of these machine learning classifiers is

TABLE 2. Classification results. The mean Cross-Validation (C-V) F1 score
is presented for all subjects in the second column and the Accuracy of the
Test Set is presented in the third column.

assessed based on the Mean Cross-Validation F1 Score and
the average results are 82.71% for LDA, 82.58% FOR
k-NN, 79.29% for Decision Tree, and 83.98% Random
Forest. As mentioned before the average Mean C-V F1 Score
for the SVM classifier is 84.32% which indicates that the
SVM classifier achieved the highest classification accuracy
for the dataset of the study.

B. ONLINE RESULTS
The majority of participants had no prior involvement in a
BCI experiment, except 4 individuals who had previously
participated in an MI BCI study. An experienced researcher
on our team briefed the participants on the experiments,
the goal of the work, and the study protocol. To evaluate
the proposed BCI system, 5 experiments are utilized, 2 on the
computer (simulations of the movements) and 3 commanding
the wheelchair all conducted under strict guidelines to ensure
that participants only engage in brain commands without
physical movement.

1) SIMULATING BCI WHEELCHAIR START-STOP DYNAMICS
THROUGH A 2D GAME
The first experiment is a 2D game developed to simulate the
stopping and starting of the wheelchair. More specifically,
participants sit comfortably in a chair in front of the computer
to play the game in which they must jump over obstacles.
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FIGURE 6. Average game score results for all subjects presented in a
graph. The blue line represents the scores of the patients while the
orange represent the healthy participants.

To avoid the obstacle users need to raise their eyebrows.
Participants go through a series of 10 trials, split into 2 sets
of 5. The initial 5 trials are designed to help them get familiar
with the game and the BCI. After this practice phase, users
move on to the next 5 trials, where their scores for each trial
are recorded see Figure 6.

The average score of all participants is 49.55 varying
from 18 by P11 to 96 by S14. 5 healthy subjects, S6, S7,
S8, S10, and S14 managed to successfully finish the game
(score = 125) at least 1 time. 3 patients, P8, P11, and P14
have at least 1 try in which they could not overcome a
single obstacle. More specifically, P11 could not jump any
obstacle in 4 of his 5 trials while P14 in 3 of his 5 trials.
These are the worst-performing users in the first experiment.
On the other hand, the best-performing participants are
S14, S7, S4, and S1 who could easily adapt and play the
BCI-controlled game simulating the starting and stopping
of the wheelchair. Figure 6 illustrates the average results,
revealing that the patients with the highest performance
are P7 and P9, achieving average scores of 44.4 and 41.2,
respectively. Interestingly, the healthy subjects outperformed
the patients, as 12 out of the 14 healthy participants obtained
higher scores than all the patients. Among the healthy
subjects, S2 and S11 had the lowest performance, with
average scores of 32 and 34.4, respectively. Notably, S2 is
outperformed by 8 patients, while S11 is outperformed by
6 patients.

One important aspect of this study is the participation of
both patient and healthy subjects, enabling a comprehensive
analysis of the experiment. By comparing these two groups,
we gain valuable insights. The average score of patient
subjects is 32.4, whereas the average score of healthy
individuals is 66.7, as shown in Figure 7. This highlights the
better adaptation of healthy individuals in the first BCI game,
which simulates the wheelchair’s starting and stopping.
Moreover, patients encountered difficulties in performing the
eyebrow raise command and in understanding the time delay
of the BCI system, where users must synchronize their mental
commands.

FIGURE 7. The graph compares the average results of the two groups in
the first experiment. The Y-axis represents the Game Score.

2) SIMULATING BCI WHEELCHAIR TURNING THROUGH A
2D GAME
The second experiment in this study involves a 2D game
that simulates the movement of the wheelchair in the left
and right directions. In this experiment, subjects have a total
of 20 tries, with 10 dedicated to adapting and learning the
game, and the remaining 10 employed to assess the users’
ability to execute the MI commands. Each try is considered
complete when the user successfully performs two same
turns, either left or right, depending on the command of the
researcher. To evaluate the experiment, four metrics assess
the participant’s performance: the time taken to complete a
single try, the number of missed commands, the total number
of completed tries, and Information Transfer Rate (ITR)
index [52], [53]. The targets (N) of the experiment are two,
and the classification accuracy (P) for each participant is
calculated by dividing the number of correct commands by
the total number of commands executed. To calculate the ITR
index the following formula is employed:
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where:

B = information transferred in bits per trial,

N = number of targets,

P = classification accuracy,

S = total number of trials,

T = total time in minutes.

To obtain the ITR in bits/min,B is multiplied by the average
classification time in minutes:

ITR
(

Bit
Min

)
= B× Q (4)
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Five tries are dedicated to left MI commands, while the
other five are for right MI commands. The average results for
each subject are presented in Table 3.

The minimum time to complete a single try is 6 seconds,
the maximum number of completed trails is 5, and the
minimum missed commands possible is 0. The average
duration for completing a single run among all subjects is
8.88 seconds. When considering the left MI command, the
average number of missed commands (executing the right
MI) is 0.96, whereas, for the right MI command, the average
number of missed commands (executing the left MI) is 0.97.
On average, subjects completed 4.64 trials for the left MI
command and 4.93 trials for the right MI command.

For the left MI commands, only 2 individuals, P1 and
S12, managed to have an average time of 6 seconds which
translates into 5 perfect tries. 5 participants, S1, S2, S5,
S13, and S14, managed to play the game with very high
precision for the Left MI commands since they achieved
an average time of 6.6 which translates into missing only
1 command in their 5 tries. The worst-performing participants
that managed to complete 5 tries are P4 with an average time
of 17.4 seconds and 3.8 missed commands, followed by P6
with a 14.4 average time and 2.8 miss-classified commands,
and P7 with 12.6 and 2.2 respectively. P11 and P14 could not
complete any of the 5 available tries since they could not issue
a left MI command.

For the right MI trials 3 subjects, P3, P11, and S12,
achieved an average time of 6 seconds. Also, 4 participants,
P9, S6, S7, and S8, demonstrated exceptional precision in
executing the right MI commands, as they achieved an
average time of 6.6 seconds. Only one user, P8, was unable
to complete all five tries. The lowest-performing participants
in terms of average missed commands and time were P8,
with 4.25 and 18.74 seconds, respectively, followed by P13
with 2.8 and 14.4 seconds, and P2 with 2.4 and 12.4 seconds,
respectively.

In general, subjects have adapted well to theMI commands
and achieved high precision. The best-performing participant
is S12 who finished the 10 trials without any errors, The
worst-performing subjects are P11 and P14 who are unable
to perform the left MI command. To gain better insights
from the analysis, it is important to compare the performance
of healthy subjects and patients, despite the overall high
accuracy of this experiment. Figure 8 displays the average
results for each group. The graph clearly illustrates that
healthy participants outperformed patients in the game.
Specifically, patients required more time, with an average
time of 10.5, to complete a single trial for the left MI, whereas
healthy individuals had an average time of 7.5. Additionally,
patients had an average of 1.5 missed commands for the left
MI, while healthy participants had 0.5. Regarding the right
MI, patients had an average time of 10.29, compared to 7.5 for
the healthy group. Patients also had an average of 1.43missed
commands for the right MI, while healthy participants had
0.51.

FIGURE 8. In Game 2, which simulates wheelchair movement using MI
commands for left and right directions, the average results for each
category (healthy vs. patients) are presented. The graph sequentially
displays outcomes for left MI followed by those for right MI.

FIGURE 9. The graph compares the average results of the two groups in
the third experiment.

3) REAL-WORLD ASSESSMENT OF BCI-CONTROLLED
WHEELCHAIR START-STOP COMMANDS
The third experiment in this study focuses on commanding
the BCI-controlled wheelchair and assesses the system’s
capability to start and stop the wheelchair on command.
During this experiment, subjects sit in the wheelchair and
start going forward. At any given time, the researcher can
command the participant to stop the movement by raising
their eyebrows. The experiment is completed after issuing
15 stop commands to each subject. Turning right or left was
disabled in this experiment. The average results are presented
in Figure 9.

The majority of subjects managed to stop the wheelchair
with ease. Specifically, 21 participants successfully halted the
movement in all 15 attempts. However, two subjects, P11
and P14, are unable to stop the wheelchair in any of their
tries, resulting in 0 out of 15 successful stops. P10 and P7
missed 5 commands, P6 missed 3 commands, P5 missed
2 commands, and P9 missed 1 command. It is worth noting
that healthy subjects exhibited better performance compared
to patient subjects in this experiment. The average number of
total stops for the patient subjects is 11.71 while the average
number of total stops for the healthy participants is 15. The
overall average number of successful stops for all users is
13.36. The success of this experiment can be attributed to
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TABLE 3. Experiment 2 average results for each subject. Four metrics are employed to evaluate the performance of the users. Columns 2-4 represent the
Left MI commands while columns 5-7 represent the Right MI commands.

the subjects’ prior experience and learning from the first
experiment. As a result of the initial simulated training,
participants are already familiar with the process of stopping
the wheelchair, which greatly contributed to their overall
success. After a few initial tries, all participants appeared
confident in commanding the wheelchair.

4) REAL-WORLD EVALUATION OF BCI-CONTROLLED
WHEELCHAIR START-STOP AND TURNING MANEUVERS
The fourth experiment focuses on turning the wheelchair left
or right. In this experiment, subjects can move forward, stop
the system’s movement, and turn in their desired direction.
Each participant performed 10 trials, 5 for the left turns and
5 for the right turns. To complete 1 trial, users have to start
the wheelchair, stop it on the researcher’s command, and turn
the wheelchair 2 times in the same direction. A single turn is
45 degrees so after the completion of 1 try the wheelchair
will have turned 90 degrees. After every try, participants
returned to the initial position and started again. The same
evaluation metrics with the second experiment are employed:
the time taken to complete a single try, the number of missed
commands, the total number of completed tries, and ITR
index. The average results of the subjects are presented in
Table 4. Columns 2 to 5 represent the results for the left
turns and columns 5 to 8 represent the results for the right
turns. To have the same metrics as the simulated experiment,

the time to complete the task in a single try starts when the
movement of the wheelchair is halted so the minimum time is
6 seconds since each command is issued every 3 seconds. The
calculation of missed commands is only applicable once the
wheelchair has stopped. The minimum value of this metric
is 0, indicating that no commands were missed. Additionally,
the highest possible value for the number of completed trials
is 5.

The results clearly demonstrate the high accuracy of the
proposed BCI system. For the left turns, the average results
for all subjects are 11.13 seconds, 1.71 missed commands,
and 4.88 completed tries. The worst-performing subjects are
P11 and P14 since they are not able to execute any left
turn. 6 healthy participants, S1, S5, S12, and S13, managed
to perform the 5 first trials perfectly resulting in 0 missed
commands and an average time of 6 seconds. For the right
turns, the average results are 8.98 seconds, 0.99 missed
commands, and 5 completed trials. P14 encountered the
most challenges during the experiment, as he is unable to
complete any of his 5 trials. Furthermore, P12 and P13,
despite completing all of their tries, exhibited the poorest
average results with 16.2 seconds and 3.4 missed commands
for P12, and 18.6 seconds and 4.2 missed commands for
P13, respectively. The best-performing subjects are P11 and
S8 with 5 perfect tries followed by P1, P3, S3, and S6 with
average results of 6.6 seconds and 0.2 missed commands.
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TABLE 4. Experiment 4 average results for each subject. Four metrics are employed to evaluate the performance of the users. Columns 2-5 represent the
Left MI commands while columns 5-8 represent the Right MI commands.

Based on the average results of the fourth experiment a
comparison can be drawn between the patient and healthy
subjects. Figure 10 presents the average performance for both
groups in terms of precision and control. Although there are
slight differences in the average performance between the two
groups, both were able to effectively navigate and maneuver
the wheelchair using their brain signals.

For the left MI turns, patients exhibited an average time
of 14.92 seconds, compared to 7.88 seconds for healthy
subjects. Patients also had an average of 2.97 missed
commands, while healthy subjects had only 0.62 missed
commands. In terms of completed turns, patients achieved
an average of 4.75, whereas healthy subjects completed all
5 turns.

Similarly, for the right MI turns, patients had an average
time of 9.83 seconds, while healthy subjects achieved an
average time of 8.18 seconds. Patients had an average
of 1.27 missed commands, while healthy subjects had
0.72 missed commands. In terms of completed turns, patients
achieved an average of 4.64, whereas healthy subjects
completed all 5 turns.

5) BCI-CONTROLLED WHEELCHAIR NAVIGATION:
REAL-WORLD ROUTE
The final experiment of this study focuses on commanding
the wheelchair in a predefined path. The process involves

FIGURE 10. The average results for each category (healthy vs patients)
are presented. The graph sequentially displays outcomes for left MI
followed by those for right MI.

reaching the starting point and initiating the wheelchair’s
movement. Upon reaching the first stop point, the subjects
must stop the system to perform 2 right turns. To resume
forwardmovement, they raise their eyebrows, aiming to reach
the second stop point where they halt again to perform 2 left
turns. Finally, they continue moving forward until they reach
the final destination. Figure 11 displays subjects engaged in
the execution of Experiment 5.

Each participant has 5 attempts in this study. The
evaluation metrics used are the time taken to complete a trial,
the number of successfully completed trials, and the time
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TABLE 5. Experiment 5 average results. N/A represents the null value;
subjects could not finish any of their 5 trials.

FIGURE 11. Subjects commanding the BCI wheelchair for Experiment 5.

taken to finish the path using the traditional joystick control.
By comparing the time-based metrics between standard
joystick control and BCI-control scheme, the effectiveness of
the BCI system can be assessed. This is the most difficult
experiment of this study since it employs every mental
command and because subjects have to follow a specific
path. If they get out of the path the trial is considered
unsuccessful. To prepare the participants for the experiment,

FIGURE 12. The average results for each category (healthy vs patients)
are presented.

the researcher presented the desired path using the joystick
control. Participants then practiced following the path using
the joystick to fully understand the movement required before
transitioning to controlling the wheelchair with their brain
signals. The average results for experiment 5 are presented in
Table 5. The second column represents the average time taken
to complete the path with the BCI input (time is calculated in
seconds), the second column shows the number of completed
trails, and the last column shows the time taken to complete
the path with the joystick (seconds).

The average time to complete the path for every subject
with the BCI control scheme is 80.23 seconds (1.33 minutes)
while the time to complete the path with the joystick
is 35.80 seconds (0.59 minutes). The average number of
completed trails is 3.54. The best-performing subject is S4
with an average time with the BCI of 42.4 seconds, a time
to complete the path with the joystick of 27 seconds, and
5 completed trials. 4 participants, P4, P7, P11, and P14
could not complete any of their 5 trials. Among the subjects
that completed at least 1 try, P3 has the worst performance
with an average time of 156 seconds when commanding the
wheelchair with the proposed BCI. In general, the results
presented from the fifth experiment show the great precision
of the BCI-controlled wheelchair. A crucial finding of this
study is that 5 participants, P5, P6, P9, P10, and P12,
successfully completed the experiment using their brain
signals but could not finish the path using the joystick
control.

In this experiment, healthy subjects have better adaptabil-
ity and outperformed the patients (Figure 12). The average
results for healthy subjects are as follows: 58.61 seconds
when using BCI to control the wheelchair, 29.43 seconds
when using the joystick, and completion of 4.86 trials. On the
other hand, the patients’ average results are 110.50 seconds
with BCI control, 50 seconds with the joystick, and
completion of 2.21 trials. In addition, healthy subjects have
better overall control since most of them, 12 out of the 14,
managed to finish all their trials. S2 and S3 lost control of
the wheelchair in 1 of their tries. P10 is the best-performing
patient subject and managed to complete all the trials with an
average time of 62 seconds.
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TABLE 6. Comparison study of this work with relevant articles from the literature.

V. DISCUSSION AND CONCLUSION
In this study a BCI-controlled wheelchair is developed
that employs MI mental commands and EOG signals. The
available movements of the system are 4; going forward,
stopping, turning left, and turning right. Emotiv Epoc is used
to record the brain signals and CSP algorithm is employed
for feature extraction. A 3-class SMV is utilized to classify
the mental commands. To evaluate the proposed system
28 subjects participated in 5 real-time experiments. The
objective of this study is to investigate the performance
of BCI systems when utilized by both healthy individuals
and patients. The study’s findings demonstrate significant
accuracy both in the simulated experiments and in controlling
the wheelchair. Lastly, several evaluation metrics are utilized
to gain a more comprehensive understanding of the study’s
findings.

BCI technology can improve the quality of life of all
individuals especially people with disabilities. For many
years, researchers have been trying to develop robust BCI
systems to advance this technology and benefit society.
The biggest drawback that has been identified in the
literature is the lack of research articles involving actual
participation from real patients with severe motor and brain
disabilities.

This study wants to address this gap in the literature and
become a reference for future articles. By involving patients
with severe motor and mental disabilities in this demanding
experiment, we aim to explore new insights, and trends, and
identify the real challenges of these systems. Additionally,
this research provides guidance on conducting such studies
in the future. Even though various evaluation metrics are
employed to assess the proposed system, the most significant
discovery in this article is that some patients are able to
control the BCI-controlled wheelchair successfully, but they
cannot do so using the joystick. This remarkable outcome
shows the potential of BCI technology in empowering
individuals and providing them with greater freedom and
independence. Also, during the recording phase and the
online phase (experiments), the performance metrics that
Emotiv software provides for each subject are collected.
These metrics showed that all participants increased their
focus, excitement, engagement, and interest when they
started the experiment phase. This demonstrates how BCI

systems can enhance the mental focus of individuals, and
it opens up opportunities to develop various new tools that
can result in greater engagement in everyday activities for
people.

Literature indicates that participants can learn and adapt
over time in EEG-based experiments. The experiment
structure is designed, taking into consideration the order and
difficulty of tasks. It is recognized that the sequencing of
experiments can significantly impact participant performance
due to learning effects. For that reason, simpler tasks are
implemented at the beginning, with complexity increasing
progressively in later experiments. The initial two tasks
are virtual experiments, utilizing gamification strategies to
enhance engagement and learning. Gamification in EEG
experiments is particularly effective as it allows participants
to play while learning the necessary skills and responses. This
method ensures that participants gain experience during the
early stages of the experiment. The progression and structure
of these tasks are specifically designed to prepare partic-
ipants for the more challenging, real-time path following
experiment, which is the primary goal of this research. This
careful structuring is intended to ensure that learning and
adaptation throughout the experiments enhance the reliability
and validity of the outcomes.

Determining the number of repetitions for each experiment
involves a balance between gathering sufficient data and
ensuring participant comfort. The goal is to ensure that
the results are reliable and not random. The experiment’s
duration is approximately two hours. This includes the
briefing, setup, experiments, recording phases, and breaks.
According to reports from participants and their caretakers,
there are no significant issues with fatigue, which suggests
that the duration and intensity of the trials are well-designed.
Additionally, the use of Emotiv metrics helps in assessing
and maintaining high levels of engagement throughout the
experiment. Also, all sessions are scheduled in the morning
to ensure that participants are well-rested and not already
fatigued. This scheduling, along with regular breaks and an
interactive, engaging experiment design, supports optimal
participant performance and data integrity.

While the proposed BCI-controlled wheelchair demon-
strated great results in terms of accuracy and adaptation, it is
very important to acknowledge the limitations of the system.
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The system is built with a 3-second timewindow,which limits
the users with a brief delay as they can only issue a command
every 3 seconds. This can be frustrating for users when they
want to turn the direction of the wheelchair 90 degrees or
more because they have to wait for 12 seconds to start going
in their desired direction (3 seconds to stop the movement
6 seconds for 2 turns and 3 seconds to start the movement
again). Furthermore, the employed wheelchair operated
through the joystick allows backwardmovement, which is not
achievable with the proposed BCI system. Employing a third
MImental command to represent backward movement would
significantly increase the system’s complexity. Lastly, the
system comprises an EEG headset, a wheelchair, and a laptop.
In the current implementation of the system, the laptop is
positioned in the user’s legs leading to some discomfort and
impracticality during operation.

The metrics employed in this study are focused on
efficiency and accuracy. These include time-based metrics
that measure the time participants take to complete a
path, indicating the system’s usability. The completion of
a task shows the BCI system’s accuracy and reliability.
Additionally, the number of missed commands is used to
identify areas needing improvement. In the real-time path-
following experiment, performance using the BCI system is
compared against using a conventional joystick, with metrics
such as completion time and number of successful trials being
recorded. These metrics, which are straightforward and easy
to analyze, help make the findings understandable and appli-
cable to real-world scenarios, demonstrating the practical
effectiveness of the proposed BCI-controlled wheelchair.

Throughout the study, we faced several challenges. Some
of the patient subjects were unable to differentiate between
the left and right directions. This posed a significant challenge
in the research, as the movement of the wheelchair is based
on the imagination of moving the right and left hand. Also,
some patients could not stand still while they were being
recorded. This led to poorer signal quality and unfavorable
results. In addition, patients with severe brain disabilities
found it challenging to understand the study’s concept and
the objectives of the experiments. This led to increased
stress that was observed in the obtained performance met-
rics. Moreover, some patient participants, despite achieving
impressive results in the simulated experiments, struggled to
command the wheelchair effectively in real-time due to the
fear they experienced. Another major challenge in this study
was the high-powered engine of the selected wheelchair.
When the wheelchair came to a stop, and the user issued a
command to start, an abrupt and forceful movement occurred,
causing the user’s body to shift and resulting in significant
noise and artifacts in the EEG data. While employing the
eyebrow-raising command to stop the wheelchair proved
highly effective for the healthy subjects, it posed a significant
challenge for the patient participants. These individuals faced
difficulties in executing simple commands like blinking or
raising their eyebrows. Lastly, mental fatigue can influence
the accuracy of the experiments when the duration of the

study is extensive. In our case, the duration of the offline and
the experimental phase was approximately 2 hours.

Potential challenges related to user discomfort or inconve-
nience during the operation of the BCI systemwere addressed
through several strategies. Participants were initially trained
in a game environment, which made the process more
enjoyable and less tiring. They had also time to familiarize
themselves with the equipment and could test drive the
wheelchair to understand its movement, the power of
the engine, and to get comfortable with its operation.
Additionally, if any participant felt uncomfortable or scared
at any point, they had the option to immediately stop the
experiment and leave. This approach ensured that participants
were at ease and could engagewith the BCI system in a stress-
free manner.

Regarding the challenges faced related to the safety and
well-being of the participants, several steps were taken
throughout the experiments, especially when interacting with
physical devices like the wheelchair. Firstly, a safety button
was installed to immediately stop the wheelchair if needed.
Additionally, the experiments were conducted in ELEPAP
buildings, the home environment for the patient subjects,
which helped them feel more secure and comfortable.
Elepap’s caregivers, doctors, and physical therapists were
also present during the experiments to provide assistance if
necessary and to help the participants feel more relaxed and
supported.

A comparative analysis of this study with other works
from the literature is presented in Table 6. However, a direct
comparison is not feasible, since each study has employed
different subjects, devices, techniques and evaluation meth-
ods, several remarks related can be drawn.

Xiong et al. [27] developed a BCI-controlled wheelchair
and employed 4 EEG channels to record the brain signals
from 7 subjects. The available movements of the system
were 4, forward, stopping, turning left, and turning right. PSD
was utilized for feature extraction and Logistic Regression
was used to classify the mental commands. The proposed
system was not evaluated in real-time experiments. Classifi-
cation accuracy was the only evaluation metric of the system.
Tsui et al. [28] designed a wheelchair that was commanded
using brain signals. To acquire the raw EEG data 5 channels
were employed. The Dof of the system was 4 and 2 subjects
participated in the study. The Logarithmic Band Power was
utilized as the feature extraction technique and the LDA
algorithm was employed for the classification process. 2 real-
time experiments were conducted to assess the robustness
of the system and each subject performed 8 repetitions in
total. Yu et al. [29] developed a BCI-controlled wheelchair
and used a 31-channel EEG cap to record the brain signals.
They employed CSP to extract features from the signals
and LDA to classify the mental commands. The DoF of the
system was 6 since the wheelchair could move forward, stop,
turn left, turn right, accelerate, and decelerate. 7 subjects
participated in 2 real-time experiments. Each participant had
35 repetitions manipulating the BCI system. Carlson and
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Millan [30] designed a wheelchair that moves with mental
commands. A 16-channel EEG device was used to record
the brain signals from 4 subjects. For the feature extraction
method, PSD was utilized and for the classification process,
a Gaussian classifier was employed. The DoF of the system
was 4. Subjects participated in 2 experiments and each of
them had 34 repetitions in total. Ron-Angevin et al. [31]
developed a BCI-controlled wheelchair using a 9-channel
EEG device to record the raw signals. The Average Signal
Power was calculated as the feature extraction technique and
LDA was employed to classify the mental commands. The
available movements of the system were forward, stopping,
turning left, and turning right. 7 subjects participated in 2 real-
time experiments. Each participant had 82 repetitions in total.

In this work, a BCI-controlled wheelchair is developed.
28 subjects, 14 healthy and 14 individuals with motor and
brain disabilities participated in 5 real-time experiments. The
DoF of the system is 4; moving forward, stopping, turning
left, and turning right. CSP algorithm is employed to extract
features from the EEG signals and SVM is utilized to classify
the mental commands. Each participant has 60 repetitions
in total in the 5 experiments that are conducted to assess
the BCI system. To evaluate the experiments, 14 metrics are
employed: Mean Cross-Validation F1 score, Accuracy of the
Test Set, Average game 1 score, Time taken to complete a
game 2 trial, Number of missed commands in game 2, Total
number of completed tries in game 2, ITR index, Number
of stops, Time to complete a trial when commanding the
wheelchair, number of missed commands when commanding
the wheelchair, Total number of completed trials in exper-
iment 4, Average time taken to complete the path using
BCI, Number of completed trials in experiment 5, and Time
taken to complete the path using the joystick. This study is
more comprehensive and extensive compared to the existing
literature. While the average number of subjects in the other
studies is 5.4 varying from 2 to 7, this research involved a
significantly larger group of 28 participants. Furthermore,
it’s the only study that employs individuals with both motor
and mental disabilities. The average number of repetitions
per subject is 31.8 ranging from 0 to 82, while in this
study subjects have 60 repetitions each. Other works involve
an average of 1.6 experiments, while this study conducted
5 experiments in real-time, allowing for a more thorough
and insightful analysis of the system. This research employed
a greater number of metrics compared to previous works,
enabling a more comprehensive analysis.

In the future, we aim to expand the capabilities of the
BCI-controlled wheelchair by utilizing more movements
such as accelerating, decelerating, and moving backward.
Also, a speech control scheme will be employed and an
obstacle detection system will be implemented in the system
for more freedom and safety. More healthy and patient
individuals will be involved in testing the system, aiming to
achieve better and more comprehensive results. Moreover,
new experimental scenarios will be employed considering
the issue of mental fatigue. Finally, more extensive offline

training will be implemented to familiarize the users with
mental commands.
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