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ABSTRACT Face Recognition (FR) is the technology used to identify and verify individuals based on their
facial features. In recent decades, FR plays a crucial role in various sectors, including security, healthcare,
banking, and criminal identification. Numerous techniques for effective FR are currently under development,
ranging from appearance to hybrid approaches. Most of the existing methods offer diverse solutions to
describe a face image either by focusing on specific facial features or by considering the entire face. This
study explores a various range of such techniques and challenges related to FR. The existing solutions were
analysed with respect to various perspectives of inputs, viz., illumination, pose variation, facial expressions,
occlusions, and aging, which led to the prominent implementation of FR systems. The primary contribution
of this survey lies in the comprehensive review of state-of-the-art FR techniques and deriving the taxonomy
of categorizing these methods into various classes which range from appearance to hybrid approaches.
Moreover, the proposed detailed study highlights the significant features used by the most recent research
developed in FR, also, provide a detailed classification of image and video-based FR methods, highlighting
major advancements and core processing steps for handling huge volume of datasets. Moreover, the proposed
study outlines the current trends in available datasets and emphasizing their enhancements. This survey also
aims to provide a valuable resource for researchers and practitioners by offering insights into the latest
developments and identifying open problems that require further investigation.

INDEX TERMS Biometrics, face recognition, image processing, soft biometrics.

I. INTRODUCTION
In the modern era of digital world, proving the identity
of every individual is highly essential. The traditional
methods of identification which were of the form of ID
card, driver’s licenses, etc., are susceptible to theft, loss,
or forgery. Moreover, individuals may misplace or have
these physical documents stolen leads to identity theft or
unauthorized access. In contrast, biometric authentication is
inherent to an individual and cannot be easily replicated
and can also provide secure means of identification. Among
earlier biometric authentication which were in the form of
fingerprint and iris scan, FR has become a crucial application
in the field of biometric authentication systems [1]. Since,
FR uses distinct facial features for detection, it provides a
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high level of accuracy and security in identifying individuals.
With these prominent advantages, FR has become a crucial
application in the field of biometric authentication systems
over the past decades [2].

In recent years, many advancements came into picture
to portray the successful integration of FR technique in
numerous fields, viz., security systems, public safety systems,
payment systems, information security, law enforcement and
surveillance, smart cards, and access control [3], [4]. The
applications of FR technology in different fields are given
in Table 1. Though FR has several advantages, FR is a
complex field that combines different areas of study viz.,
image processing, computer technology, machine learning,
biology, and neural networks [5].

Generally, FR system undergoes two main phases such
as i) Face verification and ii) Face identification. The first
phase confirms a face matches a known identity, whereas
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TABLE 1. Exploring the diverse applications of FR technology.

FIGURE 1. The workflow of a standard automated FR system biometric.

second phase used to figure out thematching face in the stored
database. Face identification is a process where a system
recognizes or identifies a person’s identity by comparing their
facial features with a database of known faces. This involves
analysing various facial characteristics, viz., the shape of the
eyes, nose, mouth, and the overall face structure to match
with the stored data. Face verification is a process in which a
system determines whether two facial images belong to the
same person. It involves comparing the features extracted
from the facial images, viz., facial shape and texture to
confirm if they are similar enough to be considered the same
person.

Figure 1 depicts the fundamental steps involved in
developing a FR system such as i) face detection, ii) feature
extraction, and iii) face recognition [6], [7]. In the face
detection step, the system identifies and locates human faces
in the images once they have been captured. The feature
extraction step involves creating unique feature vectors for
the detected faces. These vectors capture distinctive elements
of captured face. Finally, in the face recognition step, the
system compares the extracted features with a database of
known faces and identifies the exact match in the stored

templates. This is done by extracting distinctive facial
features such as, position of the mouth, nose, eyes and
other facial parameters. The other aspects of soft biometric
systems rely on the usage of behavioral traits viz., signatures,
walking patterns, speech, and facial dynamics in addition
to static physiological traits like fingerprints, iris, and palm
prints [3], [4].
The FR techniques can be classified into two-dimensional

(2D) and three-dimensional (3D) based FR according to the
kind of data used for recognition [8]. In literature, only
limited researches have carried out on both 2D and 3D facial
images. The rest of the research examined either 2D or 3D
facial images, but not both [9].Though, 3D based FR offers
several advantages [8], Most of the study prefer 2D based FR
techniques due to its accessibility, affordability, and easier to
implement compared to 3D based FR techniques. Moreover,
the capturing devices used for 2D recognition are widely
available andmore cost effective than specialized 3D imaging
devices.

From the literature reviewed it is evidenced that, the
problem of FR is extensively studied in different research
communities. The detailed study done in [10], provided a
summary of recent advancements in 3D based FR which
focus on three crucial aspects viz., pose, occlusion and
expression recognition. To provide the clear picture of
recent advancements in FR field, the Multi-Task Learning
(MTL) for was introduced by [11]. In [12], [13], and [14],
a concise review on human face detection techniques and
future directions were presented. The review of numerous
and extensive studies of FR techniques were widely discussed
in [2] and [15] with different perspective. Reference [16]
conducted comprehensive reviews of contemporary 3D
based FR methods, delving into both traditional techniques
and deep learning-based approaches. In [15], a thorough
summary of the significant developments in deep FR, as well
the advancements in learning facial representations for the
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TABLE 2. Comparison of survey paper.

purposes of verification and identification was proposed. The
authors in [17] provided a comprehensive overview of facial
expression analysis which encompassing RGB, 3D, thermal,
and multimodal techniques. The Table 2 gives comparative
analysis of various published papers based on several key
points.

Hence, the main contribution of this study is to:

1. Provide an in-depth examination of various FR meth-
ods by analysing its each phase with respect to
feature extraction, pre-processing, face detection, and
classification.

2. Transcend the boundaries of still-image recognition to
extend its focus to encompass video-based FR.

3. Provide the detailed analysis of various datasets used
in 2D and 3D based FR techniques.

4. Address the applications and challenges in recent FR
research.

The rest of the paper is organized as follows: Section II
provides a background of steps involved in designing face
recognition. In section III, a thorough analysis of various
research frameworks initiated for both image-based and
video-based FR techniques, including the contributions
of deep learning (DL) methods and existing algorithms,
is compared by considering the diverse variations such
as pose, occlusion, and expression recognition. Moreover,
the summary of publicly available benchmark datasets,
tools, and evaluation metrics used for FR techniques are
discussed in Section IV. The challenges and future research
directions anticipated for FR techniques are given in
Section V. Whereas the conclusion of the study is given
in Section VI.

II. BACKGROUND
In this section, the core steps involved in designing the FR
system are discussed in detail. Figure 1 illustrates the three
fundamental steps in recognising face images, viz., (1) face
detection, (2) feature extraction, and (3) face recognition. The
details of each step are given below.

A. FACE DETECTION
The FR process starts by pinpointing the human face in an
image. This initial step aims to determine the presence of
human faces in the given picture. Nevertheless, challenges
such as fluctuating lighting conditions and expressions can
impede accurate face detection. To bolster the reliability
of the FR system, specific pre-processing steps need to
be implemented. Various techniques such as, Viola-Jones
detector (VJ) [7], Histogram of Oriented Gradient (HOG)
method [18], and Principal Component Analysis (PCA) [18],
[19] were employed for detecting and locating human faces.
The Viola-Jones face detector [7] is a widely used tech-
nique, especially effective for front-facing images which are
operated in real-time and based on Haar-like features. These
features are applied to images to capture essential elements
such as, edges, corners, or lines which are fundamental
to recognizing faces. Moreover, some other methods [20]
incorporates data based on color to improve accuracy. These
techniques collectively aid in identifying human faces and
contribute to the robustness of the FR system.

B. FEATURE EXTRACTION
In this step, the goal is to extract features from the detected
face images. The features can be extracted using either the
global method or the local method. In the global method,
the entire face will be focused. Whereas, in the local method
the inner facial features or specific regions of interest will
be focused [21]. Local methods are utilized to capture subtle
information within specific facial regions. They are preferred
because they are less influenced by factors like face geometry,
aging, variations in pose, and face rotation [22], [23]. Further,
the feature extraction methods can be classified into three
main categories:

Generic Methods: These methods rely on identifying
edges, lines, and curves in facial images. By considering
measurements like size and distance, these techniques accu-
rately identify and distinguish faces from one another [24].
To extract facial features, a variety of techniques are widely
employed, including HOG [25], Eigenface [18], Indepen-
dent Component analysis [ICA], Scale-Invariant Feature
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Transform (SIFT) [26], Gabor filter [27], Local Phase
Quantization (LPQ), Linear Discriminant Analysis (LDA)
[24], ICA [28]. These methods play a crucial role in
characterising and recognising facial attributes.

Feature-Template-Based Methods: These methods are
designed to detect specific facial features, like eyes, using
predefined templates. Generally, a face is represented using a
set of features known as a signature. This signature describes
the key facial features like the mouth, nose, and eyes, along
with their geometric distribution within the face image [29].
The identification of each face is based on its distinctive
structure, size, and shape [30].
Structural Matching Methods: These techniques con-

sider geometrical constraints on facial features, ensuring
they match specific structural patterns. The techniques such
as Elastic bunch graph matching, Dynamic link architec-
ture [31], and Local Binary Pattern (LBP) have shown
prominent results in the literatures [31], [32], and [33].

C. FACE RECOGNITION(FR)
This is the final stage which recognises the identities of
the face and enables automated FR. To accomplish this
recognition, a face database is required, where the relevant
facial data is stored for comparison and identification. For
this purpose, multiple images of each individual are captured,
and their distinctive features are extracted and stored in
the database. When an input face image is submitted for
recognition, it compares the extracted features with each face
class stored in the database. In this step, the features extracted
earlier and the facial elements are considered. These features
are subsequently compared with the known faces stored in
a specific database for recognition. Several techniques such
as, Correlation Filters (CFs), Gaussian filter, median filter,
Wiener filter, and histogram based on Peak Signal-to-Noise
Ratio (PSNR) [33], Convolutional Neural Network (CNN)
[34], KNearest Neighbour (KNN), Artificial Neural Network
(ANN), Random Forest, and Support Vector Machine (SVM)
were used for detection. It is evidenced from the literature
that the Gaussian filtering technique is highly efficient and
ensures high-quality images without distortion [35].

III. TAXONOMY OF FACE RECOGNITION
In the realm of FR systems, existing literature categorizes
these systems into two primary groups: i) Image based
and ii) Video based methods. Image-based systems focus
on recognizing individuals based solely on their physical
appearance. In contrast, video-based systems not only
consider physical features but also incorporate changes in
appearance over time and dynamic facial movements. The
general taxonomy of FR literature is illustrated in Figure 2,
highlighting the distinction between these two fundamentals
approaches

A. IMAGE-BASED FACE RECOGNITION
According to [6], Image based FR methods can be divided
into three categories: i) Appearance methods, ii) Landmark
methods and iii) Hybrid methods.

FIGURE 2. Taxonomy of face recognition.

1) APPEARANCE METHODS
The appearance approach, often called global feature-based
methods works on the entire face to extract features. This
approach aims to recognise faces by considering the entire
facial representation, rather than focusing on individual
components such as the mouth, eyes, or nose. These
approaches primarily function by representing the face image
as a matrix of pixels. This matrix is frequently converted
into feature vectors, making it easier to process and analyse.
Following this, the feature vectors are projected into a
low-dimensional space. Nevertheless, both appearance and
subspace techniques are sensitive to variations such as facial
expressions, lighting, and poses. Despite this sensitivity, their
advantages have led to widespread of use in FR applications.
Furthermore, these approaches can be categorised into linear
and non-linear techniques, depending on the method used to
represent the subspace.

In the context of face recognition, a linear method is an
approach that employs linear transformations or classifiers
to analyse and recognise faces. These techniques usually
include representing information in a dimensional space
and using linear algebra methods for tasks, like reducing
dimensions and classification. In literature, techniques such
as PCA [36], Eigenface [37], LDA [37], and ICA [38] were
used as prominent techniques in linear methods.

PCA: PCA is commonly employed to preprocess the data
before further analysis. Reducing the dimensions in high-
dimensional face data helps eliminate redundant information
and noise. It preserves essential data characteristics, signifi-
cantly lowers dimensionality, speeds up data processing, and
ultimately saves time and costs. Hence, PCA is commonly
employed for dimensionality reduction [39] and visualizing
multi-dimensional data. It is especially efficient when dealing
with large datasets [9]. PCA was used to represent global
facial features in [40]. Likewise, [36] introduced the Modular
Eigenspace description technique, incorporating prominent
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FIGURE 3. Dimensional reduction with PCA.

facial features like eyes, nose, and mouth in an Eigen feature
layer. Mousavi et al. [41] used the nose tip as a reference
point in the study and transformed the 3D face shape into
a standard-sized image. It then used two-dimensional PCA
(2D PCA) on this normalized image. The feature vectors
representing the 3D facial shape were the eigenvectors
corresponding to the largest eigenvalues. In the final step,
an SVM classifier was used to recognise face images.

Eigenface: Eigenfaces is a popular method among appear-
ance approaches for extracting facial feature points from
face images [37]. This method utilises PCA, a widely
acknowledged technique in face representation and recog-
nition. PCA transforms a set of correlated variables into
uncorrelated principal components or Eigenfaces, reducing
the high dimensionality of data to a more manageable intrin-
sic dimensionality. This transformation aids in efficiently
describing the data as illustrated in Figure 3. The Figure 4
showcases how facial features can be represented using
a compact set of variables. PCA identifies the covariance
matrix eigenvectors and projects the original data onto a
lower-dimensional space defined by significant eigenvalues
of eigenvectors. It is important to note that PCA is a well-
established approach in the field and is commonly employed
for FR purposes.

LDA: This is also known as ‘‘Fisher’s Discriminant
Analysis’’, is a popular technique in FR. Unlike PCA,
which constructs a subspace to represent faces, LDA builds
a subspace specifically to differentiate between the faces
of different individuals [37]. LDA is frequently utilised
for both dimensionality reduction and FR purposes [32].
PCA operates as an unsupervised technique, whereas LDA
functions as a supervised learning method, utilizing available
data information. LDA allows the assessment of crucial facial
information to recognise human faces. The primary objective
of LDA is to categorise face images into groups using features
that most accurately describe them. Many LDA based FR
systems face a challenge in terms of their optimality criteria
which are often not directly linked to the ability of the system
to classify the obtained feature representation [42]. The
within-class scatter matrix (Sw) is the mathematical construct

used in LDA for feature extraction and classification. The
within-class scatter matrix (Sw) and the between-class scatter
matrix (SB) for all samples across all classes are defined as
follows:

SB =

∑c

i=1
(xi − µ)(xi − µ)T (1)

Sw =

C∑
xk

M i(xk − µ)(xk − µ)T (2)

where,µ denotes the mean vector of samples specific to class
(i), X i represents the set of samples associated to class (i),
(xk) signifies the kth sample of that class, c is the number of
distinct classes,M i is the number of training samples in class
I, SB describes the scatter of features around the overall mean
for all face classes, and Sw describes the scatter of features
around the mean of each face class.

The objective is to maximize the ratio det|SB|det|Sw|,
which translates to minimizing Sw while maximizing SB. This
ratio is a key criterion in LDA to find the optimal feature
representation for classification in FR systems.

ICA: Like PCA, ICA is a well-established subspace
method widely employed in various fields. Like PCA, ICA
also projects data from a high-dimensional space to a lower-
dimensional form, making it a valuable technique for feature
extraction. ICA is often considered a generalization of
PCA and is primarily used to address challenges in signal
processing [38]. ICA is regarded as a method applicable in
FR tasks, where crucial information may reside in high-order
relationships among pixels. PCA treats images as random
variables following a Gaussian distribution and focuses on
minimizing second-order statistics during the data transfor-
mation process. In the case of a non-Gaussian distribution,
PCA will not match significant variances to its basis vectors.
In contrast, ICA goes beyond PCA by addressing second-
order dependencies and higher-order dependencies present
in the input data. It aims to discover a basis where the data
exhibit statistical dependence, making it effective for non-
Gaussian distributions [43].
The ICA technique is utilized to compute the basic vectors

of a given space. Its objective is to execute a linear transfor-
mation to minimize the statistical dependence among these
vectors, enabling the analysis of independent components.
ICA aims to ensure that the computed basic vectors are
not orthogonal to each other. Additionally, when acquiring
images from diverse sources as uncorrelated variables, ICA
enhances efficiency. This is because ICA processes images
as statistically independent variables, allowing for a more
effective analysis. ICA outperforms PCA in several aspects.
Unlike PCA, ICA is sensitive to higher-order data and
doesn’t focus solely on higher variance. It also produces a
superior probabilistic model compared to PCA. Furthermore,
the ICA algorithm is iterative in nature [43]. Despite of
its advantages, ICA encounters challenges in handling large
datasets. Additionally, it is reported to face difficulties in
accurately ordering the source vectors.
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2) NON-LINEAR TECHNIQUES
Non-linear techniques in face recognition involve sophis-
ticated mathematical models capable of capturing intricate
patterns and relationships within facial data, surpassing the
limitations of linear methods. The Kernel PCA (KPCA)
and Fisher’s Linear Discriminant (FLD) were used in the
literature as a non-linear technique in FR.

KPCA: In [44], the authors have proposed an enhanced
version of PCA that utilizes kernel methods. Unlike PCA,
which computes the covariance matrix, KPCA calculates the
Eigenfaces or Eigenvectors from the kernel matrix, making it
a powerful technique for nonlinear dimensionality reduction.
Moreover, KPCA represents a transformation of the PCA
technique into a high-dimensional feature space achieved
through the associated kernel function mapping. Kernel
Linear Discriminant Analysis (KDA) [45] is an extension of
the linear LDA technique using kernel methods, similar to the
kernel extension of PCA.

KDA applies kernel tricks to enhance the discriminative
power of traditional LDA, making it effective for nonlinear
classification tasks. The authors in [44] introduced the
utilization of Discrete Cosine Transform (DCT) [46] in both
global and local FR systems such as Gabor-KLDA [47],
Wavelet transform (WT), radon transform (RT), and convo-
lutional neural networks (CNN), Joint transform correlator-
based two-layer neural network, Kernel Fisher discriminant
analysis (KFD) and KPCA [44], Locally linear embedding
(LLE) and LDA, Nonlinear locality preserving with deep
networks, Nonlinear DCT and kernel discriminative common
vector (KDCV) [48].
FLD: FLD was utilized to establish distinct and sepa-

rable classes within a lower-dimensional space [49]. This
approach, referred to as FisherFaces, has been proven to
outperform the Eigenfaces method on datasets such as
the Harvard and Yale Face Databases [50]. A significant
hurdle faced in traditional LDA pertains to small sample
size datasets [51]. To counter this issue, Wang and Tang
introduced a solution called the dual-space Linear Discrim-
inant Analysis approach [52]. W. Liu and colleagues [53]
introduced the Singular Value decomposition(SVD) Updat-
ing based on Incremental PCA method for FR. A novel
technique named the Diagonal PCA (DiaPCA) method has
been introduced, aiming to derive optimal projective vectors
directly from diagonal face imagery without the need for
image-to-vector transformation.

The study explored the effectiveness of the ICA algorithm
in FR, proposing a method that utilizes ICA as a feature
extractor and SVM as a classifier for FR [53]. The research
compared ICA, SVM and PCA methods on two distinct
face databases, finding their accuracies to be comparable.
However, the system employing Kernel PCA and an SVM
classifier demonstrated a lower error rate when applied to the
ORL database [54].

However, novel approaches have been proposed for facial
recognition using PCA, Fisherfaces, the traditional LBP
was proposed to overcome the limitations of the Kohonen

FIGURE 4. Landmark detection.

approach. Particularly, LBP stands out due to its sim-
ple theory, computational simplicity, invariance concerning
grayscale transformations, powerful rotation-invariant anal-
ysis, and excellent discrimination between various texture
patterns [55]. However, LBP’s robustness in face detection is
challenged by factors such as ‘‘noise, illumination variation,
background, pose, scale, and occlusion’’, making it less reli-
able than algorithms like VJ for face detection, as highlighted
in references [56] and [57].

Table 3 provides a comprehensive overview, highlighting
the distinctions among the latest methodologies used in both
linear and non-linear approaches. This comparative analysis
delves into the nuanced features and database, shedding
light on their advantages, and limitations. The table serves
as a valuable resource for gaining insights into the diverse
landscape of contemporary techniques within the realms of
linear and non-linear methodologies.

3) LANDMARK METHODS
Indeed, in FR, landmarks are crucial reference points used
to identify and analyze facial characteristics. These specific
points, such as corners of the eyes, tip of the nose, and corners
of themouth are anatomically significant and can be precisely
located on a person’s face. Landmarks serve as essential
cues for facial recognition algorithms, aiding in accurately
identifying and analyzing facial features.

In FR, landmark detection involves using algorithms to
identify and mark specific points on a person’s face in images
or video frames. Once these landmarks are detected, they
serve as reference points for extracting various facial features,
such as the distance between the eyes or the angle of the
mouth. The sample of retrieving landmark from the given
image is shown in Figure 4. The extracted features are
utilized to generate a distinct representation of an individual’s
face, commonly referred to as a facial template or facial
signature. It is possible to create a 3D face feature descriptor
by combining several measurements, including head width,
nose height, nose width, nose depth, eye separation, and cur-
vatures [58]. In the realm of 3D FR experiments, the distances
between these feature descriptors of 24 faces are computed
for detailed analysis [59], [60]. The Distinctive Landmark-
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TABLE 3. Cutting-edge approaches in linear and non-linear methodologies.

based Face Recognition (DLFR) is a specialized approach
developed to handle the considerable challenge posed by
the striking resemblance in facial appearances, especially in
the case of twins, within FR tasks. The system incorporates
distinctive features derived from a modified scale-invariant
feature transform algorithm, focusing on the number of key
points. Emphasizing the most unique landmark region of
the face, this approach ensures a specialized and accurate
representation for FR tasks. To optimize these features,
a slightly modified genetic algorithm is utilized to determine
their respective weights. Subsequently, the weighted features
undergo processing through a SVM classifier, enhancing the
precision and effectiveness of the recognition system [59].
In the literature the Point Distribution Model (PDM), plays
a vital role in landmark based detection.

PDM: It is a shape description technique that heavily
depends on landmark points. These landmark points are
annotations made on specific locations of an image, aligning
with corresponding locations on the shapes within the
training set images. In the PDM, the shape of a face
is constructed by placing landmark points on the facial
features of the training images, forming a representation
of the shape and structure of the face [60]. The model
typically encompasses a global face shape, incorporating the
formations of eyes, ears, nose, and other facial elements,
as depicted in Figure 5.
PDM offers the flexibility to be fitted with various face

shapes and results in a compact representation of the face.
Nevertheless, constructing the training set by accurately
marking the landmarks on facial features can be tedious and
error-prone in many cases [61], [62].

FIGURE 5. Global face shapes.

In order to highlight important facial regions, includ-
ing landmarks, the study presents a novel self-attention
distillation framework that aligns low-quality photos with
their high-quality counterparts inside the feature space. This
method efficiently regularizes the network in unconstrained
contexts to learn a unified, quality-invariant feature represen-
tation [63].

4) HYBRID APPROACH
Hybrid approaches, which combine local and subspace
features, harness the strengths of both techniques. Integrating
local and subspace methods in these hybrid approaches can
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significantly enhance FR systems’ performance, providing
more robust and accurate results.

Fathima et al. [64] introduced a hybrid approach which
combines Gabor wavelet and LDA for FR. In this method,
grayscale face images are approximated and reduced in
dimension, offering an innovative approach to enhance FR
accuracy. The authors utilized a bank of Gabor filters with
diverse orientations and scales to convolve the grayscale face
image. Subsequently, a subspace technique known as 2D-
LDA is applied to maximize inter-class space and minimize
intra-class space, thereby enhancing the discriminative power
of the extracted features for FR. For classifying and recogniz-
ing test face images, the authors employed theKNNclassifier.
In this method, the recognition task involves comparing the
features of the test face image with those in the training
set. Experimental results highlighted the robustness of this
approach, particularly under varying lighting conditions.

Hu et al. [65] introduced a unique approach for FR centered
around a fog computing-based scheme, specifically tailored
to address FR challenges within the Internet of Things (IoT)
context. In their method, a FR system generates a matrix of
identities for an individual, paving the way for innovative
solutions in the IoT domain. After the initial generation
of the identity matrix, the proposed fog computing-based
model determines individual identity. Experimental results
showcase the model’s bandwidth utilization efficiency and
its remarkable accuracy, reaching up to 96.77%. This
achievement represents a significant advancement compared
to previous methods in the field of FR.

Yan et al. [66] introduced a robust FR technique named
‘‘Multi-Sub-Region-Based Correlation Filter Bank (MS-
CFB)’’. This method emphasizes efficient feature extraction
by independently extracting local features from different
face sub-regions. Once local features are extracted from
these sub-regions, they are concatenated to generate optimal
overall correlation outputs. This innovative approach reduces
complexity, higher recognition rates, and superior feature
representation for recognition purposes. Comparative eval-
uations with several state-of-the-art techniques on various
public face databases underscore the effectiveness of this
method.

A collection of features known as biorthogonal wavelet
entropy was presented by Zhang et al. [67] to produce a
multiscale representation of facial structure. These charac-
teristics improvise the analysis of facial features. Using a
stratified cross-validation strategy, the authors trained a fuzzy
multiclass support vector machine. This technique probably
contributed to the robustness and classification accuracy of
facial recognition system. MagFace, a class of loss functions
designed to learn a universal feature embedding where the
magnitude indicates the quality of the given face [68].

5) THE MODERN ERA OF FR USING DEEP LEARNING
In recent decades, DL has gained substantial attention in the
realm of FR. Recent advances have led to the proposal of

FIGURE 6. Growth of deep learning [109].

numerous methods based on DL techniques [69]. As depicted
in the Figure 6, there has been a notable increase in
the adoption of deep learning methods. Leveraging the
significant utility of these methods, numerous prospective
studies could be conducted in this field.

A CNN–LSTM–ELM hybrid deep architecture was pre-
sented by Sun et al. [70] and is intended for sequential Human
Activity Recognition (HAR). Extreme Learning Machines
(ELM), CNN, and LSTM networks are combined in this
novel framework. Using the OPPORTUNITY dataset which
comprises 46,495 training samples and 9,894 testing samples
the researchers evaluated the CNN–LSTM–ELM structure.
Each sample is represented as a sequence. The GPU used for
the training and testing of the model had 1536 cores, a clock
speed of 1050 MHz, and 8 GB of RAM [70].

The Multimodal Deep Face Representation (MM-DFR)
framework, which uses of CNNs, was introduced by
Ding et al. [71]. The original appearance face image,
a rendered frontal face produced by a 3D face model (rep-
resenting appearance and local facial features, respectively),
and uniformly sampled image patches are among the several
inputs that this method processes. The primary steps of MM-
DFR framework is illustrated in Figure 7. In this study,
a three-layer Stacked Auto-Encoder (SAE) technique was
used. This SAE technique serves the purpose of compressing
the high-dimensional deep features into a condensed face
signature.

Facial landmarks and distance-based features are com-
puted using deep learning techniques, which makes facial
expression classification easier [72]. This solution allows
developers to create flexible, multimodal, cross-platform
machine learning pipelines by efficiently estimating 468 3D
facial landmark points in real-time [73], [74].

3D face landmarks can be extracted from pictures and
videos using a transfer learning technique. This procedure
entails training a neural network created especially for this
purpose [73]. Features are extracted using the distances
between each facial landmark point and a selected reference
landmark to categorize the emotions expressed on human
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FIGURE 7. Schematic representation of MM-DFR approach [71].

faces. The reference landmark used in this computation for
measuring distances is the landmark that corresponds to
the tip of the nose as shown in Figure 5. The Euclidean
distance of each landmark from the nose tip is computed
as follows:

The reference landmark is set as the nose tip, and the
Euclidean distance of the ith landmark from this reference
point is computed using the following formula:

Distance

=

√(
xi−xnose tip

)2
+

(
yi−, ynose tip

)2
+

(
zi−znose tip

)2.
Here, (xi, yi, zi) represents the coordinates of the ith
facial landmark, and (xnose tip, ynose tip, znose tip) represents
the coordinates of the nose tip landmark.

The approach [75] combines statistical facial dynam-
ics features obtained from the locations of facial land-
marks during smile expressions with appearance-based
features extracted using Deep Convolutional Neural Net-
works (DCNNs). This hybrid approach integrates both visual
appearance cues and facial movement patterns, resulting in a
more robust and accurate smile recognition system. To assess
performance and robustness, three different DCNNs were
evaluated under severe image distortions. The experimental
results demonstrate that in challenging conditions, the accu-
racy of FR using solely DCNNs based features significantly
decreases. However, integrating of facial dynamics features
with DCNNs based features compensates for this decline in
performance and substantially enhances accuracy [75].
The researchers introduced an innovative method known as

the Deep Unified Model (DUM) to improve FR [76]. DUM
combines CNN with edge computing techniques, enhancing
the efficiency and accuracy of FR systems. The researchers
trained their model using the widely-used LFW dataset and
evaluated its performance in a student attendance system that
employs FR technology. Their proposed technique demon-
strated impressive performance, particularly for frontal face
images.

Li et al. [77] introduced an innovative hybrid approach for
person recognition in photo albums. Their method combines
deep convolutional neural networks with carefully crafted
features extracted from each individual’s image. Li et al. [77]
utilized multi-modality features obtained through a weighted
average fusion of DCNNs and hand-crafted features. In their
recognition process, these fused features were classified
using a pre-trained SVM. While their experimental results
demonstrated the method’s effectiveness, it’s worth noting
that the approach, while successful, suffers from compu-
tational inefficiency due to the requirement of computing
both hand-crafted and deep convolutional hybrid features for
optimal performance.

In the Community project, a sophisticated deep learning
model is employed, utilizing a hierarchical CNN architecture.
This unique design allows the model to grasp intricate
and detailed features intricately connected to each cohesive
network within the community. Additionally, the research
paper introduces two ground breaking techniques: the Face
Co-occurrence Frequency algorithm, which quantifies the
presence of individuals in images, and a distinctive photo
ranking method. This method evaluates the strength of
relationships between individuals in a predicted social
network [78].
The study presented in [79] proposed a novel method

known as Cluster-based Large Margin Local Embedding
(CLMLE). This approach is designed to learn highly
discriminative deep representations. CLMLE enforces a
deep neural network to preserve inter-cluster margins both
within individual classes and across different classes. This
achievement is realized by introducing angular margins
between cluster distributions on a hypersphere manifold. The
experimental results illustrate that CLMLE, when coupled
with a straightforward k-nearest cluster algorithm, leads to a
substantial improvement in accuracy for FR and face attribute
prediction tasks, especially those involving imbalanced class
distributions [79].

The Deep Landmark Identification Network (DLIN) was
presented by Gilani et al. [80]. It uses a binary classification
loss to identify 11 facial landmarks. The training dataset is
created artificially with the commercial program FaceGen
and contains known landmark locations. This innovative
approach aims to accurately identify facial landmarks through
a specialized deep learning network and synthetic data
generation. This dataset consists of 3D faces that have
been augmented with diverse shapes to enrich the training
process. More precisely, the dataset includes variations in
age, masculinity/femininity, weight, height, as well as four
distinct facial expressions (surprise, happiness, fear, and
disgust) and five different poses (frontal, ±15◦ in pitch, and
±15◦ in roll). This comprehensive dataset allows for a robust
training experience, incorporating a wide range of facial
variations and expressions, enhancing the model’s ability to
handle diverse real-world scenarios. A wide array of factors
is considered when crafting a diverse and all-encompassing
training dataset for the DLIN [80]. Specifically, each 3D
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face generated undergoes a transformation into a spherical
representation. This transformation derives three distinct
image channels such as depth, azimuth, and elevation. These
channels are subsequently utilized as input data for the
DLIN [80]. This meticulous process ensures that the network
is trained comprehensively, encompassing various facial
features and expressions within its dataset, enhancing its
accuracy and adaptability. The process involves segmenting
each 3D face into five regions using geodesic level set
curves, guided by detecting five key fiducial landmarks. This
segmentation method ensures a structured division of the
facial surface, enabling detailed analysis within the DLIN.
Within each segmented region, distinctive key points are
extracted, establishing dense correspondences across faces.
These correspondences are then utilized to create a Region-
based 3D Deformable Model (R3DM). The method’s main
goal in the context of 3DFR is tominimize the cosine distance
between the parameters of the probe and gallery faces in the
R3DMmodel. This meticulous process ensures a precise and
discriminative comparison, leading to accurate FR results.

In order to improve face recognition in unconstrained
situations, a novel technique termed bypass enhanced repre-
sentation learning (BERL) is presented in this study [81]. This
approach integrates two auxiliary bypasses, a blind inpainting
bypass and a 3D reconstruction bypass, to enable both
supervised and self-supervised learning. These workarounds
aid robust feature learning for face recognition. Authors
have developed a novel face detection and recognition
model for drones to enhance face identification accuracy
when query photographs are obtained from great heights or
distances that do not reveal much facial information about
persons [82].
In order to categorize individual interactions and body

language from forceful postures, left and right sides, head
orientation, and angular orientation of forms via webcam, the
authors have suggested a real-time face matching technique
based on the YOLO-V5 framework for image process-
ing [83]. It takes different facial orientations and makes use
of multi-pose human patterns. The paper addresses the chal-
lenge of unidentifiable face images within training datasets
by leveraging the variation in recognizability based on image
quality. Their approach involves two key strategies: first,
they utilize feature norms as indicators of image quality, and
second, they dynamically adjust the margin function based
on these feature norms to control the gradient scale assigned
to different attributes of images. Through comprehensive
evaluations on datasets with varying image qualities, their
adaptive loss mechanism demonstrates superior performance,
achieving state-of-the-art results particularly on datasets
containing mixed and low-quality face images [84].
The IDL-ERCFI technique used in the study [85] relied

on intelligent DL methods. Its primary objective is to dis-
tinguishing and classifying ethnicity based on facial photos,
showcasing the application of advanced DL techniques in
the field of ethnic classification [85]. The IDL-ERCFI
technique utilized the face landmarks for photo alignment

before processing the images through the network. In this
model, aneException network serves as the feature extractor.
Given that the features extracted are high-dimensional, the
paper employs PCA to reduce the feature dimensions. This
approach effectively tackles the challenge posed by the
high dimensionality of the dataset also ensuring a more
manageable and streamlined set of features for further
analysis and processing. The parameters of the model are
fine-tuned using the GlowWorm SwarmOptimization (GSO)
technique.

PCA and LDA utilize global information to generate a
scatter matrix that transforms data from a high-dimensional
space to a lower-dimensional subspace, maximizing the
variance of the reconstructed data. However, the effectiveness
of PCA and LDA declines significantly when the data is
affected by noise and outliers. To address this problem,
several improved versions [86], [87], [88], [89], and [90]
have been developed to enhance the algorithmic robustness
in face recognition. To fully utilize local information,
various manifold learning-based algorithms were developed
to achieve face recognition using the concept of topological
manifolds. Locally Linear Embedding (LLE) [91] is a
common non-linear manifold learning method known for
effectively maintaining the original data’s local geometric
structure. Building on this idea, several extension methods
have been proposed to enhance efficiency, such as Laplacian
Eigenmaps (LE) [92] and Isomap [93].Despite achieving
notable face recognition performance, these dimensionality
reduction techniques still have certain limitations. To address
these, He and Niyogi [94] introduced Locality Preserving
Projections (LPP) for dimensionality reduction and feature
extraction using a linear projection. Although LPP can
preserve the locality information of the original data, the
resulting linear projections are not orthogonal. To obtain
robust and discriminative features for the face recognition
challenge, a novel reweighted robust and discriminative latent
subspace projection (ReRDLSP) framework is proposed [95].
This new structure seamlessly integrates the advantages of
relaxed ridge regression, sparse representation, reweighted
low-rank regularization, and latent subspace learning into a
single framework. Additionally, Yang et al. [96] proposed an
approach to orthogonal autoencoder regression. The success
of nuclear norm-based matrix regression techniques has
shown significant performance in image recognition.

Table 4 outlines the mix of techniques discussed in this
section. These methods aim to make recognition systems
better and more accurate. A comprehensive overview high-
lighting the distinctions among the latest methodologies used
in deep learning approaches is given in Table 5.
In summary, Table 6 and Table 7 presents a comprehensive

comparison of the reviewed algorithms and their respective
attributes and trade-offs. From Table 6 and Table 7, it is
inferred that, various algorithms address challenges in diverse
ways to enhance accuracy and detection rates in FR.
As per the current scenario, the available algorithms exhibit
performance variations and strengths and weaknesses in face
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TABLE 4. Comparison of state-of-the-art methods for hybrid approach.

TABLE 5. Comparison of state-of-the-art methods for deep learning approach.

detection. Moreover, it is evidenced in the literature that,
some studies grappled with overfitting issues while others
excel in computational efficiency.

B. VIDEO-BASED FACE RECOGNITION
In contrast to traditional FR methods, video-based FR
involves analyzing video data instead of static images. Like
its conventional counterpart, video-based FR techniques aim
to either identify individuals within a video (identification) or
determine whether two subjects in different videos share the
same identity (verification). The popularity of video-based
FR has surged due to its diverse applications. Indeed, this
field has attracted considerable attention in both computer
vision and biometrics. Its applications extend to various
domains including visual surveillance, access control, and
video content analysis. Researchers and practitioners lever-
age these advancements to enhance security, automate pro-
cesses, and gain valuable insights from visual data. With the
proliferation of cameras in various locations worldwide and
the widespread use of handheld devices capable of capturing
videos, there is a continuous influx of vast video datasets.
This accelerated the further research and advancements in
this area.

Figure 8 provides one of the studies proposed for video-
based FR [97]. In this study, the test video is taken from a

FIGURE 8. Pipeline of video based face recognition.

security camera, and the gallery is made up of static images
which were submitted ahead of time. Especially in open-
set scenarios, the objective is to identify and match each
face in the video with a subject in the gallery or classify it
as an unseen class. It is noteworthy to emphasize that this
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TABLE 6. Comparative evaluation of face detection algorithms.

TABLE 7. Comparative evaluation of various approaches.

task is made more complex and difficult by the presence of
low-quality faces in the video frames. In literature, there are
two methods, viz., set-based methods and sequence-based
methods employed for video-based FR. The details of these
techniques are presented below.

1) SET-BASED METHODS
In the set-based approach of FR, the frames extracted from the
video are treated as a collection of individual image samples,
with no consideration for their temporal order. The set-
based FR methods have been developed specifically to tackle
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the FR challenges posed by low-resolution images often
acquired from surveillance cameras. Moreover, the set-based
approaches are categorized into methods that employ fusion
before matching and those that use fusion after matching.
Fusion before matching entails combining features extracted
from each face image prior to the recognition process [98].
Whereas the fusion after matching technique combines the
recognition results obtained from each individual image.
In this approach, FR is performed independently on each
frame, and the outcomes are integrated or fused afterward to
make a final decision. The authors in [99] utilized the Gabor
Wavelet Network [100] to detect and segment specific facial
regions like the mouth, eyes, and nose. Subsequently, feature
extraction was conducted using the Karhunen-Loeve trans-
form, and the features extracted from these regions in each
frame were classified using the KNN algorithm. To tackle
the issues arising by low-resolution, low-contrast, and non-
frontal face surveillance images/videos, researchers have
proposed methods involving 3D face modelling. In [101], a
3D face model was created from multiple non-frontal frames
in a video. Subsequently, person recognition was conducted
utilizing a commercial 2D FR system. The experimental
outcomes revealed a notable enhancement, indicating a
40% increase in the match ratio with the incorporation
of 3D models. This highlights the effectiveness of 3D
modelling in improving person recognition accuracy. This
approach proved its effectiveness in enhancing recognition
accuracy despite the difficulties posed by non-ideal imaging
conditions.

In [102], a novel approach called Manifold-to-Manifold
Distance (MMD) was introduced. This method represents
sets of faces as manifolds or subspaces and models image
sets using their second-order statistics for the purpose
of image set classification. By employing this innovative
technique, the research aimed to enhance the understanding
and classification of sets of facial images, thereby con-
tributing to advancements in the field of FR. Zheng et al.
[103] introduced a novel technique called quality-aware
principal angle-based subspace-to-subspace similarity. This
method involves learning subspaces, enabling a more unique
and precise measurement of similarity between different
subspaces. Chen et al. [104] introduced a set-based algorithm
that leverages sparse representation and dictionary learning
techniques. Additionally, adaptive pooling method [105]
also proposed, which aimed at flattening face sets. The
techniques [103], [106] harness the contextual information
within videos by propagating identity-related data based on
graphical modeling.

2) SEQUENCE BASED METHOD
Sequence based face recognition method utilizes sequence
of videos containing facial characteristics is used for face
recognition in videos. In [106], the experiments which utilize
the ENTERFACE dataset, which consists of 1300 videos
featuring 44 individuals was presented. These videos capture

short sentences expressing the six basic emotions. The
researchers measured distances between characteristic points
on the face, deriving 14 distinct attributes from these
measurements. This detailed analysis of facial expressions
provides valuable data for understanding and categorizing
human emotions. These attributes were then averaged over
the entire video and normalized. These normalized averages
were employed for classification using Gaussian Mixture
Models (GMM). In the context of the ENTERFACE database,
the 1-best recognition accuracy was found to be 16 times
better than random, indicating a substantial improvement.
Even in the worst-case scenario, the system demonstrated
performance 7 times superior to random.

Gong et al. [107] introduced a recurrent network for
aggregating sequence features in face matching. Meanwhile,
Zheng et al. [103] proposed a hybrid dictionary learning
method that captures temporal correlations in video face
sequences using dynamical dictionaries. Haque et al. [108]
introduced a biometric person recognition system based
on features derived from a pain expression model. Their
study utilized a pain database comprising face videos of
individuals experiencing shoulder pain during active and
passive motion tests. Feature extraction was performed using
the Facial Action Coding System (FACS), and classification
was carried out using ANN [109]. The authors developed
the Additive Angular Margin Loss (ArcFace) to produce
highly discriminative features for facial recognition [110].
ArcFace provides a geometric explanation that makes sense
because it lines up exactly with a hypersphere’s geodesic
distance. The ArcFace is evaluated using ten benchmarks,
including a new large-scale image database with trillions
of pairs and an extensive video dataset, and compared it to
the most recent state-of-the-art facial recognition techniques.
It was concluded that ArcFace continuously outperformed the
state of the art with little computing overhead and simple to
implement. Table 8 provides a concise overview of the set-
based methods and sequence-based methods with respect to
the type of facial features employed, classification methods,
databases utilized, recognition rates, and key findings.

IV. EVALUATION METRICS, DATAETS AND TOOLS
This section details, the evaluationmetrics, datasets, and tools
used to assess the FR systems. In literature, various evaluation
metrics have been proposed to measure the effectiveness and
accuracy of FR systems. The prominent measures are listed
below [2], [21]:
False Match Rate (FMR): This is also referred as False

Accept Rate (FAR) which indicates the proportion of
impostor (intruder) samples that are inaccurately identified as
the legitimate identity in a FR system. FMR is a crucial metric
for evaluating the security and accuracy of such systems,
especially in scenarios where unauthorized access needs to be
minimized. Lower FMR indicates a higher level of security
as it means fewer impostor samples are being accepted as
genuine
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TABLE 8. Comparison of state-of-the-art methods for video based face recognition.

False Non-Match Rate (FNMR): Which is also referred
as False Reject Rate (FRR) that represents the percent-
age of genuine samples that are incorrectly rejected by
a FR system. FNMR is a crucial metric as it mea-
sures the system’s failure to recognize valid users which
indicates the likelihood of genuine users being denied
access. Lower FNMR values signify better performance
ensuring that authentic individuals are correctly identified
and granted access thereby minimizing the risk of false
rejections.

Accuracy: It is a fundamental metric in evaluating the
performance of any classification systems. It represents the
percentage of samples that are correctly classified out of the
total samples tested. A higher accuracy rate indicates a more
reliable and precise system as it correctly identifies a larger
portion of the samples. In the context of FR system, accuracy
is a crucial measure as it directly reflects the ability of the
system to correctly identify and authenticate individuals.

Genuine Accept Rate (GAR): Also known as True
Acceptance Rate (TAR) which represents the percentage
of genuine samples that are correctly accepted by a FR
system. In other words, GAR or TAR is the complement of
FNMR, calculated as (1 - FNMR). GAR/TAR is a critical
measure in biometric systems, indicating the system’s ability
to accurately recognize and authenticate legitimate users,
thus reflecting the system’s reliability in accepting genuine
samples.

Equal Error Rate (EER): It is a significant metric used in
biometric systems. It refers to the point where the FMR and
the FNMR are equal, meaning that the system’s performance
in falsely accepting and falsely rejecting individuals is
balanced. At the EER, the system achieves an optimal

trade-off between accepting genuine users and rejecting
impostors, making it a crucial point for evaluating the overall
effectiveness of a biometric authentication system.

Receiver Operating Characteristic (ROC): A curve rep-
resenting the trade-off between the FRR and the FAR at
different threshold values in a binary classification system.
It illustrates how the performance of the system varies as
the decision threshold changes. In the context of biometrics,
the ROC curve can also be obtained by plotting the True
Acceptance Rate (TAR) or GAR against the FAR. This
curve provides valuable insights into the system’s ability
to distinguish between genuine users and impostors across
various threshold settings. The ROC curve is a widely used
tool in evaluating the performance of biometric systems,
helping researchers and practitioners choose an appropriate
operating point based on their specific requirements and
priorities regarding false acceptance and false rejection rates.

Area Under the Receiver Operating Characteristic
curve(AUROC): AUROC quantifies the ability of the system
to discriminate between positive and negative classes across
different threshold values. AUROC values range from
0.5 to 1.0. A value of 0.5 indicates random selection (no
discrimination ability), while a value of 1.0 represents perfect
classification, where the system can perfectly distinguish
between positive and negative instances. The closer the
AUROC value is to 1.0, the better the system’s discrimination
ability. AUROC provides a comprehensive summary of a
system’s performance, considering its ability to balance true
positive rate (sensitivity) and false positive rate across various
decision thresholds. It is a valuable metric for comparing
and selecting different models or algorithms in various fields,
including biometric authentication systems.
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A. DATASETS
This section elaborates the publicly available datasets used
in the domain of FR systems. It is seen the literature that,
a variety of datasets have been employed to evaluate the
performance of FR systems. The description of some datasets
are discussed below:

CASIA WebFace is a dataset containing approximately
500,000 images of 10,000 subjects. Initially gathered by the
CASIA group and later refinedmanually. This dataset follows
a common pattern seen in collections based on celebrities
or well known individuals. It exhibits a long tail distribution
which indicates a few popular subjects have the majority of
images while others are represented by only a few pictures.

VGGFace, introduced by the Oxford group which is
designed to train deep learning models. It includes approxi-
mately 2.6 million faces of 2,622 individuals. Unlike CASIA,
VGGFace has a balanced distribution in which each subject is
represented by a thousands of samples that consists of high-
quality frontal faces sourced from web engines. However,
despite cleaning efforts this dataset suffers from some noise-
related issues viz., outliers which leads to intra-class variance.

UMDFaces, introduced by Bansal et al. [19], utilized a
combination of human annotators through Amazon Mechan-
ical Turk (AMT) and pre-trained deep-based face analysis
tools. This unique approach aimed to create medium-sized
sets that were more challenging than existing ones like
CASIA [113] andVGGFace [26]. ThoughUMDFaces dataset
comprises both high-quality still images and video frames,
still it susceptible to motion blur. This dataset annotates
facial key points, face pose angles, and gender information.
Specifically, it includes 367,888 face annotations in still
images representing 8,277 subjects, along with 3.7 million
annotated video frames extracted from approximately 22,000
videos which featured 3,100 subjects.

MS-Celeb-1M, initially introduced in the multimedia
community and later adopted by the computer vision
community [114]. It comprised of approximately 10 million
images featuring 100,000 celebrities. Each celebrity in the
dataset is represented by 100 images obtained from the Bing
search engine using the celebrity’s name as the query. The
images were retrieved without any filtering applied to the
search results. However, despite its vast size, MS-Celeb-1M
faces significant challenges. It is important to note that MS-
Celeb-1Mwas released specifically to learn from noisy labels
and was never manipulated or organized for quality.

VGGFace2, an enhanced version of VGGFace, was devel-
oped to overcome the limitations of its earlier version [115].
This dataset contains 3.31 million images featuring 9,131
subjects including celebrities as well as notable individuals.
In comparison to the original VGGFace, the average number
of images per individual has slightly decreased to an average
of 362.6 images. However, VGGFace2 is intentionally
designed to encompass a wide range of poses, ages, and
ethnicities while striving tominimize label noise [2], [3]. This
reduction in label noise was achieved through a combination
of manual and automatic processes.

IMDb-Face, a recently introduced dataset derived by
meticulously cleaning label noise from MS-Celeb-1M and
MegaFace [19], [114], [115]. This innovative dataset stands
out as the largest noise controlled face collection currently
available.

The FERET Dataset, is a pivotal dataset which was
executed through a collaboration between the DARPA and
the NIST. The FERET was established to foster algorithm
development and evaluation within the field. Initially, FERET
needed a standardized database of facial images for devel-
oping and testing evaluation methods. In 2003, DARPA
released a high-resolution 24-bit colour version of these
images to enhance the utility for facial recognition research
and development. The database comprises 2,413 still face
images which represents 856 individuals [113], [114].

Labeled Faces in the Wild (LFW), serves as a com-
prehensive dataset of face photographs specifically designed
to address the challenges posed by unconstrained FR [19],
[113]. This dataset comprises a vast collection of over
13,000 facial images sourced from the web with each face
meticulously labelled with the corresponding name of the
person. In this dataset, approximately 1,680 individuals
are represented by multiple distinct photos. However, it is
important to note that these facial images were initially
detected using the Viola Jones face detector [7], [56], [57].
The dataset is organized into four sets of LFW images: one
original set and three sets of aligned images. Notably, LFW-
a and the deep funneled images consistently demonstrate
superior performance across a wide range of face verification
algorithms in comparison to the original and funneled images.
This characteristic makes them invaluable for research and
testing purposes.

The BU-3DFE dataset, comprises 2,500 3D facial scans
belonging to 100 subjects including 44 males and 56 females.
These subjects include diverse ages and ethnic/racial back-
grounds. Each individual in the dataset is represented by one
scan displaying a neutral expression as well as six basic non-
neutral facial expressions, such as, surprise, anger, disgust,
fear, happiness, and sadness. Additionally, each expression
is captured at four different intensity levels providing a
comprehensive dataset for facial expression analysis [15].
The YouTube Face Database (YTF) contains face videos

specifically created for unconstrained FR. This database
includes clips ranging from 48 frames to 6,070 frames in
length with an average clip duration of 181.3 frames [3], [15],
[109]. Each videowas sourced fromYouTube and there are an
average of 2.15 videos available for different subjects. YTF
serves as a valuable resource for studying FR algorithms in
real-world uncontrolled settings.

The Yale Face Dataset offers a diverse collection of
facial images for research purposes. It includes 165 grayscale
images in GIF format featuring 15 individuals. The images
are sorted into 11 categories featuring distinct facial expres-
sions or configurations, such as, center-light with glasses,
center-light without glasses, happy, sad, sleepy, normal,
surprised, wink, left-light, and right-light. The database is

VOLUME 12, 2024 107917



H. L. Gururaj et al.: Comprehensive Review of FR Techniques, Trends, and Challenges

available in two volumes: Yale Face A and Extended Yale
Face Database B [15].

Yale FaceA comprises 15 subjects (14males and 1 female)
exhibiting various facial conditions, including different
expressions, viz., sad, normal, and happy. Additionally,
it encompasses variations in lighting conditions such as left,
right, or center light, and includes images with and without
glasses.

Extended Yale Face Database B is a dataset containing
2,414 images of 38 subjects. These images do not have
variations in Expression or Occlusion but are focused on
extracting features suitable for illumination analysis. They
are available in cropped versions, which facilitates the
detailed research in illumination-related studies. Moreover,
the Yale A database [109], [112] includes 165 images
of 15 individuals, whereas, AR database features 2,600
images of 120 persons. The Yale B database encompasses
nine distinct postures captured under 64 different lighting
conditions. This extensive dataset is further subdivided into
five subsets based on the angle between the light direction
and the camera axis making it a versatile and comprehensive
resource for various research applications.

The Gavab dataset is a comprehensive collection fea-
turing 549 3D facial scans, capturing the faces of 61 adult
European American subjects (45 males and 16 females)
in remarkable detail. These high-resolution scans, obtained
using a Minolta Vivid scanner, offer an impressive level of
granularity at a resolution of 1.5mm per image [116]. The
dataset covers a wide array of conditions including Pose,
Occlusion, and Expression. For each subject, the dataset
includes two frontal facial scans displaying a neutral expres-
sion. Additionally, there are four scans with a neutral facial
expression, but the face is rotated into different postures.
Furthermore, the dataset comprises three frontal non-neutral
facial expressions. This diverse set of scans provides ample
opportunities for in-depth analysis and research within the
realms of facial recognition and expression analysis.

TinyFace is an FR benchmark created to facilitate large-
scale research on Low-Resolution Face Recognition (LRFR),
especially in deep learning frameworks. The 169,403 native
low-resolution face photos, with an average size of 20 by 16,
and 5,139 tagged facial identities are included in the TinyFace
dataset, which is designed for 1:N recognition testing. These
low-resolution photos were taken under a variety of lighting,
occlusion, backdrop, and posing scenarios.

The IARPA Janus Benchmark-C (IJB-C) This dataset
comprises of creative commons licensed face images and
videos for 3,531 subjects, expanded by 1,661 new subjects.
This dataset is also used for video-based face recognition
and builds on the IJB-A dataset. It includes approximately
138,000 face images, 11,000 videos, and 10,000 non-face
images.

The IJB-B dataset is a template-based face recognition
dataset featuring 1,845 subjects with 11,754 images, 55,025
frames, and 7,011 videos. Each template comprises still
images and video frames sourced from various origins.

These images and videos, gathered from the Internet, are
entirely unconstrained, exhibiting significant variations in
pose, lighting, and image quality. Moreover, the dataset
includes protocols for 1:1 template-based face verification,
1:N template-based open-set face identification, and 1:N
open-set video face identification [103].
The IJB-S dataset is an open-source IARPA Janus

Surveillance Video Benchmark accompanied by relevant
protocols. It consists of images and surveillance videos of
202 subjects, collected from Department of Defense (DoD)
training facility. The surveillance videoswere recorded across
multiple scenarios that reflect various real-world surveillance
situations, particularly relevant to law enforcement and
national security. The dataset includes over 10 million
annotations in total [117].
The characteristics of different dataset has been analysed

and tabulated in Table 9. Whereas, the abbreviations are
interpreted as follows: V (various), FE (number of different
facial expressions), IL (illuminations), PO (head poses),
OC (occlusions, e.g. hand, hair, eyeglasses, beard. . . ),
TI (recording times), AC (accessories), BG (backgrounds),
ET (ethnicities). Moreover, Depth indicates the number of
images for each subject is high and breadth shows the number
of subjects is high with as many images as possible for each
subject.

In the pursuit of advancing unconstrained video-based
FR systems, two datasets were recently proposed namely
IJB-B [117] and the IJB-S. These datasets present a
significant leap in difficulty compared to other datasets such
as Multiple Biometric Grand Challenge (MBGC) and the
Face and Ocular Challenge Series. Unlike the relatively
controlled conditions of the latter datasets, IJB-B and IJB-
S are captured in unconstrained settings, offering a more
complex environment. These datasets feature faces exhibiting
extensive intra/inter-class variations in aspects [103]. The
challenges posed by these datasets push the boundaries of
FR research, enabling the development of more robust and
accurate video-based FR systems suitable for real-world
applications, especially in surveillance contexts.

B. TOOLS
This section elaborates the various tools used in FR Tech-
niques. The table 10 give the comprehensive analysis of the
pivotal role of various tools to achieve accurate and reliable
results by representing the forefront of FR technology,
facilitating advancements in biometric authentication. The
detailed analysis of significant tools used in various studies
are given in Table 10.

V. PERFORMANCE ANALYSIS, FINDINGS, AND
CHALLENGES
The analysis of various methods for face recognition
under various unconstrained environments viz expression,
illumination, pose and occlusion are presented in this section.
Within the category of expression invariant-based methods,
both local and global features are taken into account.
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TABLE 9. Face dataset.

Local features focus on rigid regions less affected by
expression variations while global features include methods
using morphable models to synthesize virtual faces with
desired expressions and establishing unified expression
models to transform target faces into neutral expressions.
The pose invariant-based methods in the second category
correct poses using rigid landmarks or synthetic faces.
The third category, occlusion invariant-based, focuses on
detecting and restoring occluded facial regions by extracting

facial curves and non-occluded areas [118]. In this survey,
Table 11 and Table 12 provide summaries of 3D FR under
unconstrained conditions. Table 13 presents a comparison of
the effectiveness of different methods in facial recognition
across multiple datasets.

Table 14 compares Image-Based and Video-Based Facial
Recognition Methods which offers insights into their key
characteristics, advantages, and challenges. Image-Based
Methods focus on feature extraction from static images which

VOLUME 12, 2024 107919



H. L. Gururaj et al.: Comprehensive Review of FR Techniques, Trends, and Challenges

TABLE 10. Role of tools for FR.

TABLE 11. Illumination and expression invariant methods.

provides lower computational complexity and suitability for
still or posed subjects. However, those techniques may face
limitations in handling variations in lighting and pose.

On the other hand, video-based methods leverage informa-
tion from video frames which results in increased robustness
especially in dynamic scenes. These methods utilize temporal
analysis and face tracking across multiple frames that offers
improved accuracy for subjects in motion. However, those
techniques also come with higher computational require-
ments and challenges related to efficient video processing
and handling prolonged periods of occlusion. The Table 14

serves as a comprehensive guide for system designers and
researchers in the field of facial recognition, aiding in
selecting the most appropriate approach based on specific
application requirements.

A. OPEN PROBLEMS
Unconstrained video-based FR remains a complex and
unsolved challenge compared to still image-based FR.
Several factors contribute to this increased difficulty:

1. In video-based FR, the testing data consists of videos
which comprised thousands of frames, and every frame could
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TABLE 12. Pose and Occlusion invariant methods.

TABLE 13. Performance comparison.

potentially contain multiple faces. This situation poses a
scalability challenge for video-based FR [103]. Creating an
effective FR system requires fast performance from every
component which often slows down the FR process and
serves as a bottleneck in the pipeline.

2. Faces captured in unconstrained videos exhibit substan-
tial variations in Pose, Occluson, Expression, and Illumina-
tion compared to still images. Therefore, the representations

used for video faces must be robust enough to accommodate
these diverse and significant variations [106].

3. Unconstrained videos often involve challenges like
frequent occlusions, varying poses, and changing scenes,
making it exceptionally difficult to associate faces accu-
rately. If a set of associated faces contains multiple
identities, the performance of FR systems is adversely
affected [24].
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TABLE 14. Comparison of image-based and video-based facial recognition methods.

4. In videos, each identity may have a different number
of faces, resulting in varying-sized face sets or sequences
after association. The challenge arises during face matching
when it’s difficult to encode these sets or sequences, which
have different lengths into a consistent and fixed-size
representation [108].

B. CHALLENGES
Though FR is extensively applied in real-time automation and
security applications still it suffers from various challenges
in terms of human face, an intricate entity, facial hair,
eyewear, lighting conditions, and muscle deformation which
undergoes constant short and long-term changes. From
the existing literature it is identified that extreme angles
significantly decreased system accuracy. Even slight changes
in head pose, including roll, pitch, and yaw, can drastically
affect FR accuracy.

Illumination variations, often called lighting effects, occur
due to different environments impacting facial recognition
systems, like day or night. Changes in illumination can create
additional light or dark patches in the region of interest,
significantly affecting the accuracy of facial recognition.
variations in lighting conditions led to a notable decrease in
FR accuracy, showcasing the challenge posed by illumination
variations.

Aging conditions impact facial features due to skin, tissue,
and muscle changes. As faces naturally change over time,
identifying individuals in face images under long-term aging
effects poses a significant challenge. Occlusion, often caused
by eyeglasses, sunglasses, hats, scarves, and other objects
covering the face, is a common challenge in real-world FR
scenarios. Handling very large-scale systems is daunting,
especially when databases contain hundreds of millions or
over one billion face images [124]. Ensuring the efficiency
of an FR system with such massive real-time databases poses
a significant challenge.

The privacy issues and the ethical implications of FR
technology becoming more and more important, it is
critical to perform a thorough analysis in order to identify
potential problems and suggest workable solutions [125].
Because FR technology has the potential to be used for
widespread surveillance and invasion of personal privacy,

it has raised serious concerns about privacy breaches and
moral quandaries. The increasing use of FR systems in public
areas, workplaces, and consumer apps has sparked debates
about consent, ethics, and data security. Data security and
privacy protections are also sparked by the possibility of data
breaches and illegal access to private biometric information.
To overcome these worries, strict privacy regulations and
moral standards must be incorporated into the creation and
use of FR technology.

VI. CONCLUSION AND FUTURE WORK
Face recognition presents a complex challenge in the field
of computer vision, attracting significant attention due to its
wide-ranging applications across various domains. This sur-
vey delves into the extensive literature on FR, examining the
essential stages of the FR process and highlighting numerous
challenges that profoundly influence system performance.
The survey offers a comprehensive overview of FR systems,
tracing their development throughout history. Moreover,
a taxonomy of facial recognition methods and summarizes
popular facial datasets used for training and testing these
systems. The survey meticulously examines image-based and
video-based FR methods, providing detailed comparisons of
various approaches.

Future Directions
The following key points are identified as future research

challenges in FR domain:
1. While significant attention has been given to handling

facial expressions in face recognition, the challenges posed
by variations in pose and occlusions remain underexplored
and require further research.

2. Achieving cross-resolution, cross-age, and cross-
sensor 3D face recognition remains a significant challenge.
It is common for probe 3D faces and gallery 3D faces to be
acquired with different sensors at different times, resulting
in varying resolutions and noise levels. Developing methods
to achieve accurate, robust, and efficient 3D face recognition
under these conditions is still an unsolved problem.

3. Diverse modalities and descriptors should be incorpo-
rated to enhance the existing system and bolster its resilience
against attacks.

4. Fusing generative AI with 3D facial detection can lead
to better development of FR system. Numerous applications
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have already been introduced in the field of 3D model
generation, demonstrating the versatility of generative AI.

5. Robust privacy controls and ethical requirements are
anticipated to be used in the development and implementation
of FR technology.
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