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ABSTRACT This article proposes a method for diagnosing arc faults in the brush slip ring system of
a Doubly-Fed Induction Generator (DFIG) using image recognition technology. The aim is to achieve
automatic detection and diagnosis of arc faults. The experimental process of this diagnostic method includes
collecting a large amount of arc faults image sample data through an industrial camera, preprocessing the
collected data, completing data annotation, and creating a dataset. Build the YOLOv5 model using the
PyTorch deep learning framework, train it using the arc faults image dataset, observe the convergence
of the loss function during the model training process, and analyze the model testing results, taking into
account evaluation indicators such as Precision, Recall, mean Average Precision (mAP), and Frames Per
Second (FPS). This article proposes the K-YOLO++ model for diagnosing arc faults. The K-YOLO++

model is an improved model obtained by adding a small object detection layer on the basis of the YOLOv5
model, improving the multi-scale detection mechanism, and executing the K-means++ clustering algorithm
to improve the anchors. The test results on the experimental dataset of arc faults in the brush slip ring system
of Doubly-Fed Induction Generator indicate that the K-YOLO++ network model has improved Precision,
Recall, and mAP. The mAP of the improved model is 88.36%, with a FPS of 50.62. The recognition effect
of small targets is superior, effectively reducing missed and false detections, enabling efficient and accurate
arc faults diagnosis.

INDEX TERMS Arc fault, deep learning, image recognition, K-YOLO++, small object detection.

I. INTRODUCTION
In recent years, the manufacturing technology of variable
speed constant frequency wind turbines has been widely used
in megawatt models, and it is one of the hot spots of wind
power research. DFIG has rapidly become the mainstream
model of wind turbines due to its wide speed range, indepen-
dently adjustable active and reactive power [1] and accounts
for a large proportion of them. In DFIG, the brush slip ring is
an important dynamic and static conversion device that plays
a vital role in the stable operation of the generator. However,
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due to the use of brush slip ring system, the failure rate of
DFIG is high and arc faults during operation is inevitable.

Arc detection can be used to judge arc faults in brush
slip rings in DFIG and protect equipment. The use of image
recognition methods to detect arcs on the brush slip ring can
identify the arc area. By calculating the arc area, the degree of
danger of arc combustion can be divided into several levels,
allowing for evaluation of the degree of arc failure danger.

Research on arc faults started in the 1970s inWestern coun-
tries. In recent years, many scholars and technicians of related
enterprises have participated in the research of this prob-
lem. Reference [2] proposed a new arc faults detection and
phase selection method based on single-phase current. Per-
forming wavelet threshold denoising, piecewise linear fitting

93848

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0000-8013-5236
https://orcid.org/0000-0002-3258-7278


K. Xia et al.: Arc Fault Diagnosis Method for Brush Slip Ring System of DFIG

and first-order differential processing on single-phase current
signals to filter out noise interference and highlight fault
characteristics. Apply Fractional Fourier Transform (FRFT)
to first-order differential signals to construct an amplitude
matrix of the signal from the time domain to the frequency
domain. A low-dimensional arc faults feature vector was
created by combining the two-level block singular value
decomposition (SVD) method. A Support Vector Machine
(SVM) model for arc faults detection and phase selection was
established using Grid Search (GS) and Particle Swarm Opti-
misation (PSO). Reference [3] determined that a Rogowski
coil could be constructed with sufficient bandwidth to cover
the relevant frequency band of 1 kHz-1 MHz, found that the
amplitude of the pulse and the difference in the integrated
fast Fourier transform of the current signal correlated well
with the series fault, described experiments to demonstrate
that, over the range tested, the two parameters were robust
with respect to the pressure of the atmosphere in which the
arc forms, the electrode material, the speed at which the
electrodes separate to initiate the arc, the switch operation, the
load type and the load change, and demonstrated that, within
the known limits of travelling wave localization, such local-
ization could be used based on the electrode material, the rate
at which the electrodes separate to initiate the arc, the switch-
ing operation, the load type and the load change, and showed
that, within the known limits of travelling wave localization,
such localization can be used based on the capacitor current
pulse information after it has been validated by spectrum
analysis as a fault and not a spurious signal. Reference [4]
proposed a DC series arc faults detection method that com-
prehensively uses the information of line current and supply
voltage. An experimental platform forDC fault arc generation
and detection was established using a DC-DC converter and
a photovoltaic power supply as DC power sources, and the
proposed method was confirmed by experiments using this
platform.

As research into arc faults deepens, the indicator method
has poor performance in processing non periodic signals, lim-
ited resolution, and computational complexity. The shortcom-
ings of wavelet analysis method, such as high computational
complexity, difficult parameter selection, and high technical
threshold, became increasingly apparent.

Consequently, many scholars were opting to develop arc
detection models and study arc faults by using parameters
such as voltage and current. Reference [5] described the
characteristics of arc signals using sparse coding and con-
ducts intelligent feature learning and classification through
neural network. The methodology is elaborately structured
by a pretreatment layer, a sparse representation layer, and
a decision layer. Reference [6] presented an adaptive arc
faults diagnosis model that discretizes continuous time series
based on half cycle length and performs adaptive matrix
transformation on the discrete sequence using convolution
operation. During the training phase, an adaptive asym-
metric convolution kernel was designed based on the data

distribution characteristics of the encoding matrix. This
design effectively mines continuous time information and
related information in the time domain. Reference [7]
established amulti-characteristic arc model based on the volt-
ampere characteristics, current sag characteristics, and power
spectrum characteristics of arc faults. The principle for select-
ing arc detection points has been formed based on the fre-
quency domain characteristics of arc faults and the interaction
between different branches. Reference [8] proposed a method
for detecting series arc faults based on a high-frequency (HF)
RLC arc model and a one-dimensional convolutional neural
network (1DCNN). The method uses a current transformer
(D-HFCT) to receive differential HF features and simplify
currents with complex features into different types of oscil-
lation signals. The 1DCNN model is trained using simulated
data and can detect series arc faults under different types of
actual loads. Reference [9] analyzed several typical loads,
including nonlinear and complex loads such as power elec-
tronic loads, and selected five time-domain parameters of the
current for arc faults detection: average value, median value,
variance value, RMS value, and distance of the maximum
and minimum values. The study employed various machine
learning algorithms for arc faults detection and compared
their detection accuracies. Reference [10] proposed a method
for extracting AC series arc faults features based on the
Wigner-Hough transform. The method selects the WHT peak
change ratios of current in adjacent periods as the features
and uses the natural gradient lifting algorithm (NG-Boost)
for state judgment. However, such methods also have certain
limitations, including high false alarm rates, low detection
accuracy, significant environmental impact, and high costs.

Other literatures focus on using the high-frequency elec-
tromagnetic radiation signal during arc occurrence as the
detection standard. Reference [11] proposed a new method
for detecting arc flash faults using spectroscopy. Copper and
aluminum are used as conductors, and when an arc occurs,
the optical spectrometer measures and records the spectra of
both materials. This allows for accurate and rapid detection of
arc flash. But this method has problems such as being greatly
affected by the environment, limited detection sensitivity,
background noise interference, and complex data processing.

Image recognition is a technology that utilizing computer
resources to process and analyze target images, classifying
them into objects within the scope of human cognition. The
development stages of image recognition can be divided
into text recognition, ordinary digital image processing
recognition, and object recognition [12]. Nowadays, image
recognition has been widely applied in many fields and has
achieved significant results. Therefore, this article proposes
to apply image recognition technology to the diagnosis of arc
faults in the brush slip ring system of a DFIG.

Reference [13] proposed a lightweight model, YOLO5_
CA, based on YOLOv5 for the automatic detection of
helmet-wearing by construction workers. The detection accu-
racy in complex scenes can be enhanced by extracting
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key information and suppressing non-key information.
Reference [14] proposed an intelligent detection algorithm
called Swin Transformer Attention Efficient Algorithm
(STAE-YOLO) that enables real-time monitoring of con-
structionmachinery and equipment around transmission lines
and rapid identification of potential risks. Reference [15]
introduced an efficient and lightweight GPR pavement dis-
ease image recognition algorithm based on the YOLOv4
object detection algorithm. This is achieved by combining
MobileNetV2 and CBAM attention mechanisms and using
the Focal loss confidence loss function to iterate the model.
Reference [16] proposed the Improved YOLO algorithm
for real-time recognition of strawberry seedling flowers and
fruits in greenhouses. The article proposes using GS Conv to
construct a network neck GS-ELAN optimization module to
suppress shallow noise interference from high-resolution pre-
diction heads and alleviate the parameter increase caused by
high-resolution prediction heads. Additionally, it referenced
a modified, lightweight deep object detection model based
on the YOLO-v5 architecture in reference [17]. It achieved
this by using a multi-scale mechanism to learn deep dis-
criminative feature representations at different scales and
automatically determine themost suitable scales for detecting
objects in a scene. The model proposed in reference [18],
called ‘‘YOLOwith lightweight feature fusion network (LFF-
YOLO).’’ can detect objects of varying sizes, including large,
small, and tiny objects. The model employs ShuffleNetv2
as a feature extraction network to reduce the number of
parameters. The proposed model introduces the lightweight
feature pyramid network (LFPN) to enhance the efficiency of
multi-scale feature fusion. Additionally, the adaptive recep-
tive field feature extraction (ARFFE) module is employed
to generate multi-receptive field information by weighting
the multi-receptive field channels. Reference [19] presented
the YOLO-class model, which is transferred to optimize the
detection of small, dense, and occluded targets through the
YOLO-Extract model. Representative Batch Normalization
andMish activation functions were used to optimize the Conv
module. VariFocal loss was used to optimize the classification
loss function to improve accuracy caused by imbalanced data
samples. Finally, RepVGG modules were designed in the
Backbone to further improve the model’s detection accuracy.
Reference [20] presented a lightweight attention-guided
YOLO with a level set layer (LA-YOLO-LLL) for landslide
detection from optical satellite images. The MobileNetv3
replaced the original backbone of YOLO to reduce parameter
complexity and improve model transferability. To improve
landslide detection performance, a light pyramid feature
reuse fusion attention mechanism was presented. The YOLO
head integrated a level set layer to produce accurate landslide
boundaries. Reference [21] presented a new lightweight net-
work with feature relay amplification and multiscale feature
jump connection structure designed to extract features of
each scale target in SAR images, improving recognition and
localization. Additionally, the K-Means method is used to
obtain the target scale distribution, allowing for the selection

of more appropriate preset anchor boxes and reducing net-
work learning difficulty. RoI Align is used instead of region
of interest (RoI) Pooling to reduce quantization error dur-
ing positioning. Reference [22] employed an algorithm of
adaptive model-driven clustering to initialize a model of
an elongated object with a data-driven process on local
partial detections. The model is then refined iteratively by
model-driven clustering and data-driven model updating on
the outputs of the Faster-RCNN and DCNN. This method
utilizes Faster-RCNN to produce reliable partial detections
and model-driven clustering to create a comprehensive rep-
resentation, resulting in the generation of a precise oriented
bounding box for elongated object detection.

Currently, research on the diagnosis of arc faults in DFIG
brush slip ring systems is scarce both domestically and
internationally, and existing detectionmethods still have defi-
ciencies in accuracy, timeliness, and practicality. In addition,
no relevant research has been found on the application of
image recognition technology to arc faults detection in DFIG
brush slip ring systems. Therefore, this article will conduct
in-depth research on the diagnosis of arc faults in DFIG brush
slip ring systems based on image recognition technology. The
main contributions of this article are as follows:

1) This article proposes to apply image recognition tech-
nology to the field of arc faults diagnosis in DFIG brush
slip ring systems.

2) This method can effectively and accurately identify arc
faults generated by DFIG brush slip ring systems, and
can classify the level of arc faults.

3) Compared with traditional detection methods, this
method is simple to operate, cost-effective, and has
accurate detection results.

II. BASIC PRINCIPLES OF THE SYSTEM
A. THE OCCURRENCE OF ARC FAULTS
A brush slip ring system for a megawatt-level DFIG primarily
comprises of brushes and slip rings enclosed in a sealed box.
It employs three-phase excitation slip rings and six uniformly
distributed brushes. However, this article focuses on studying
the single-phase arc faults of the DFIG brush slip ring system
due to the convenience of laboratory environment, experi-
mental platform construction, and experimental repeatability.

Arcs can be classified into three types: series arc, parallel
arc, and grounding arc, based on their generation methods.
In the DFIG brush slip ring system, the most common type
of arc faults is the series arc. This type of fault occurs due
to the principle of gas discharge. It is important to note that
dry air, despite being a good insulator, can still lead to the
occurrence of a series arc faults. Applying voltage to both
ends of the gas causes breakdown and ionization of the air
between the electrodes. This generates a current that passes
through the gap between the conductors, resulting in arc
faults. Figure 1 shows the schematic diagram of the arc faults.

If the electric field applied to the brush slip ring system
exceeds the dielectric breakdown strength of the medium,
it will quickly transition from a non-conductive to an

93850 VOLUME 12, 2024



K. Xia et al.: Arc Fault Diagnosis Method for Brush Slip Ring System of DFIG

FIGURE 1. Arc faults schematic diagram.

electrical state. This can result in arc faults on the brush slip
ring system, as shown in Figure 2.

FIGURE 2. Arc faults of the brush slip ring system.

Arc faults in the brush slip ring system can occur due to
unstable contact during installation, resulting in small gaps
in the rotor circuit.

1) This increases the contact resistance of that phase,
forcing the current shared by other phase brushes and
slip rings to increase, leading to excessive current and
resulting in arc faults. This increases the contact resis-
tance of that phase, forcing the current shared by other
phase brushes and slip rings to increase, leading to
excessive current and resulting in arc faults. The over-
heating and deformation of the brushes due to surface
burns can also be a consequence of these faults.

2) When the brush slip ring system operates for an
extended period with the wind turbine generator set,
mechanical wear occurs between the brush and slip
ring due to long-term friction. This wear causes an
increase in the amount of carbon powder produced,
leading to uneven contact between the brush and slip
ring surface. During the wind turbine generator set’s
power generation state, an arc fire may be pulled out on
the brush and slip ring surface, which can burn related
equipment.

3) The brush slip ring system of the DFIG is located in
a confined space, making it difficult to dissipate the
heat generated duringwind turbine operation. This high
temperature can cause the spring tension on the brush
to degrade, resulting in gaps. The gas present in the
gaps can cause a continuous arc effect due to thermal

ionization. This can lead to the formation of electric
burns on the surface of the slip ring and brush, which
can further increase the mechanical wear of the brush
and slip ring, thereby posing greater safety hazards.

If the contact between the brush and the slip ring is poor,
current leakage and electric sparks may occur in the DFIG.
Continuing to operate the DFIG under these conditions will
cause the electric sparks to discharge, resulting in arc faults.
This can eventually burn out the brush and slip ring, as shown
in Figure 3. Such a situation can affect the normal operation
of wind turbines and may even cause shutdown accidents in
severe cases.

FIGURE 3. Ambustion of brush slip rings caused by arc faults.

The intensity of ambustion on the surface of the DFIG
brush slip ring increases with the continuous occurrence of
arc faults. It is crucial to diagnose and determine accurate
results in the early stages of arc faults to prevent a vicious
cycle.

The fundamental cause of arc faults in the DFIG brush
slip ring system is the gap between the brush and slip ring.
In future experiments on arc detection in DFIG brush slip ring
systems, the distance between the brush and slip ring can be
adjusted to intentionally create arc faults on the experimental
platform.

B. INTRODUCTION TO EXPERIMENTAL PLATFORM
By analyzing the working principle of DFIG and the mech-
anism of AC series arc faults, as well as considering the
convenience of laboratory environment, experimental plat-
form construction, and experimental repeatability, this article
mainly studies the single-phase arc faults of DFIG brush slip
ring system. The DFIG rotor feeding system was reformed
and replaced, thewiringmethodwas changed, the three-phase
system was adjusted to a single-phase system, and the output
link of the wind turbine was replaced with an equivalent load
to simulate the actual operating conditions of the brush slip
ring system. An experimental platform for DFIG brush slip
ring system arc faults diagnosis was designed based on image
recognition, and its schematic diagram is shown in Figure 4.
The experimental platform for diagnosing arc faults in

DFIG brush slip ring systems based on image recognition
consists of two parts: arc faults occurrence device and arc
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FIGURE 4. Principle diagram of DFIG brush slip ring system arc faults
diagnosis experimental platform.

faults detection device. The arc faults occurrence device
comprises an AC power supply that is adjustable for both
frequency and voltage, a brush slip ring system, and an equiv-
alent load. In a sub-synchronous state, the AC power supply
simulates the power grid to provide AC power of varying
amplitudes and frequencies to the rotor side. This is achieved
by using adjustable reactance and inductance to simulate the
rotor winding. In the ultra-synchronous state, the AC power
supply simulates the AC input on the rotor side, while the
adjustable reactance and inductance simulate the load on the
grid side. The device for detecting arc faults comprises a
camera and a computer. These are used to collect the arc faults
image dataset of the DFIG brush slip ring system. Figure 5
shows the structure of the experimental platform.

FIGURE 5. Diagram of DFIG brush slip ring system arc faults diagnosis
experimental platform.

III. PRINCIPLE OF YOLOv5 ALGORITHM
In order to meet the real-time requirements of arc faults
diagnosis, this article chooses a one-stage object detection
algorithm with faster detection speed for experimentation.
YOLOv5 is an efficient object detection algorithm.
Compared to YOLOv1 to YOLOv4, YOLOv5 has advantages
such as faster inference speed, higher accuracy, simpler
code structure, and support for lightweight deployment.
Compared with updated object detection algorithms such
as YOLOv8 [23] and YOLOv9 [24], the YOLOv5 model
has a smaller volume, fewer parameters, less computational
resources and training inference time, faster training speed,

and comparable detection accuracy, making it more suitable
for scenarios that require real-time arc faults diagnosis.

Figure 6 displays the network structure of theYOLOv5 [25]
algorithm. A typical target detection algorithm comprises
four general modules: Input, Backbone network, Neck net-
work, and Head. The YOLOv5 algorithm has four versions:
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. This arti-
cle uses YOLOv5s, while other versions expand and enhance
the network based on YOLOv5s.

FIGURE 6. YOLOv5 network architecture.

Input: The network’s input image size is 640 × 640.
Typically, this stage involves an image preprocessing step,
which scales the input image to the network’s input size and
performs operations such as normalization.

Backbone network: The YOLOv5’s backbone feature
extraction network is a convolutional neural network that
extracts arc image features. Its main structure comprises the
Focus, CBS module, C3 module, and SPPF module. The
Focus structure performs slicing operations on the image and
merges it with a Concat layer to increase the number of
channels in the arc image. The CBS module includes con-
volution, batch normalization, and SiLU activation functions.
These functions can achieve faster and more efficient feature
extraction compared to ordinary convolutions. The C3 mod-
ule, built using the CSPNet concept, ensures effective feature
extraction of the backbone network while also addressing
the problem of gradient explosion in the network. The SPPF
module is a fast implementation of the SPP module. It max-
imizes input features by adopting three similar concatenated
max pooling layers and achieves multi-scale feature fusion
through feature concatenation.

Neck network: The combination of FPN and PAN struc-
tures in the Neck network enhances the diversity and
robustness of features. FPN structure generates multiple
feature maps of different scales to detect targets of different
scales by upsampling the output feature maps generated
through multiple convolutional downsampling operations in
the backbone network. The top-down feature fusion process
of FPN improves its feature fusion ability. Based on this
approach, the PAN structure is combined with a bottom-up
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feature fusion path, resulting in improved accuracy of the
network model for targets of varying scales.

Head: The head of an object detection algorithm is primar-
ily responsible for determining the position and category of
the target object. It typically includes a classification branch
and a regression branch, with the number of branches varying
depending on the detection algorithm used. YOLOv5, for
instance, uses the CIoU Loss function instead of the Smooth
L1 Loss function to estimate the position loss of bound-
ing boxes [26], resulting in improved detection accuracy.
This module comprises three detection heads with scales of
20 × 20, 40 × 40, and 80 × 80 to detect targets of varying
sizes.

The YOLO series models are preferred for arc faults
diagnosis tasks due to their real-time requirement and fast
detection speed. Among the YOLO series models, the
YOLOv5 network model is lightweight and has a fast detec-
tion speed, making it suitable for deployment on embedded
devices. However, the real-time detection of small targets in
the DFIG brush slip ring system cannot meet daily industrial
needs due to its complexity and the small fault arc target.
Therefore, this article presents an improved YOLOv5 model
for diagnosing arc faults in the DFIG brush slip ring system.

IV. METHODS FOR MODEL IMPROVEMENT
A. SMALL OBJECT DETECTION LAYER
The initial phase of arc faults is crucial for its identification.
During this phase, the arc shape is typically small, making
it essential for the arc faults diagnosis network model to have
the ability to identify small targets. In the feature extraction
process of the YOLOv5 network model, some information
may be lost due to multiple convolution, pooling, and other
operations, resulting in poor detection performance of the
model for small targets. Therefore, this article proposes
adding a small object detection layer to YOLOv5’s multi-
scale detection to enhance the model’s ability to recognize
small targets.

It is important to note that increasing the number of
detection layers will also increase the number of parameters
in the network model, which may result in a decrease in
detection speed. To meet the accuracy and real-time require-
ments of the arc faults diagnosis model, this article added a
160 × 160 detection layer to the output part of the YOLOv5
network model. Four different sized feature maps are used to
identify large, medium, and small targets in the image. The
improved multi-scale detection layer is shown in Figure 7.
The detection layer that has been recently added per-
forms upsampling on the 80 × 80 feature map to obtain a
160 × 160 feature map. This feature map is then connected
to the 160 × 160 feature map in the backbone network.

B. IMPROVED ANCHORS ADJUSTMENT
The YOLOv5 algorithm performs regression prediction of
the final detection box based on pre-set anchor sizes. The
accuracy of the algorithm’s detection is directly affected by

FIGURE 7. YOLOv5 network architecture with small object detection layer.

the anchor sizes. In the YOLOv5 algorithm, anchor sizes
are obtained by clustering the target size of the COCO
dataset [27] using the K-means algorithm. However, this
method may not be perfectly adapted to the precise detec-
tion of arc faults in the DFIG brush slip ring system. The
quality of clustering results in the K-means algorithm is
directly affected by the selection of initial clustering centers,
which can be sensitive to noise points, boundary points, and
isolated points. To avoid possible local optima, this arti-
cle employs the K-means [28] algorithm to cluster anchors,
improving their adaptability. The main difference between
the K-means++ algorithm and the K-means algorithm is
the determination of initial cluster centers. The K-means
algorithm randomly selects cluster centers, whereas the
K-means++ algorithm calculates the probability of a sample
point becoming the next sample center point based on its
distance from the current sample point to the sample center
point. It selects the sample point with the highest probability
as the next cluster center and sequentially selects K cluster
centers. The algorithmic process is as follows.

1) Randomly determine the first cluster center point C1;
2) Calculate the shortest distance D(x) from each sample

point to the cluster center point;
3) Calculate the probability of each sample point becom-

ing the next cluster center point based on the shortest
distance from the sample point to the cluster center
point D(x)2∑

x∈X D(x)2
, and select the sample point with the

highest probability as the new cluster center;
4) Repeat steps (2) and (3) until K cluster centers are

extracted;
5) Calculate the distance from each sample pk in the

dataset to K cluster centers, and assign it to the class
corresponding to the cluster center with the smallest
distance;

6) For each category Ci, recalculate its cluster center
Ci =

1
|Ci|

∑
x∈Ci X ;

7) Repeat steps 4 and 5 until the position of the cluster
center no longer changes.

Output: K cluster centers {C1,. . . ,CK}.
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The regression calculation formula for YOLOv5’s target
box is as follows.

bx = 2σ (tx) − 0.5 + cx (1)

by = 2σ (ty) − 0.5 + cy (2)

bw = pw × (2σ (tw))
2 (3)

bh = ph × (2σ (th))
2 (4)

Among them, (bx , by, bw, bh) represents the center point
coordinates, width, and height of the prediction box, (cx , cy)
represents the upper left corner coordinates of the grid where
the center point of the prediction box is located, (tx , ty) repre-
sents the offset of the center point of the prediction box from
the upper left corner coordinates of the grid, (tw, th) represents
the scaling ratio of the width and height of the prediction box
relative to the width and height of the anchors, and (pw, ph)
represents the width and height of the anchors.

In order to constrain the center point of the prediction box
to the current grid, the Sigmoid function is used to process
the offset, keeping the predicted offset value within the range
of (0, 1) (0, 1) (0, 1) (0, 1).

In this way, according to the regression calculation formula
of the target box, the offset of the predicted box center point
coordinate remains within the range of (-0.5, 1.5) (-0.5, 1.5)
(-0.5, 1.5).

The YOLOv5model is required to detect targets in 3 differ-
ent scales, with each scale being assigned 3 anchor sizes for
prediction, resulting in a total of 9 anchors. Table 1 illustrates
the matching between the initial anchors and the feature maps
set by the YOLOv5 network model.

TABLE 1. Anchors of YOLOv5 network model.

The improved detection layer matches a total of 12 anchors
based on the feature maps of each scale, resulting in K=12
clusters. The K-YOLO++ network model, which uses the
K-means++ algorithm for anchor clustering, can output fea-
ture maps of 4 different sizes. Table 2 shows the matching
situation between the improved anchors and the feature maps.

TABLE 2. Anchors of K-means++ algorithm clustering.

V. EXPERIMENTAL DESIGN AND RESULT ANALYSIS
A. EXPERIMENTAL ENVIRONMENT
The experimental environment for this article utilized a
Windows 10 64-bit operating system, an NVIDIA GeForce

RTX3090 with 24GB of video memory. The Python language
was used in conjunction with the CUDA11.8 GPU accelera-
tion library and Pytorch2.01 deep learning framework. The
experimental code was built using PyTorch and the training
stage was conducted on a Windows 10 operating system
with Python3.8 and PyTorch2.01. The model was trained for
300 epochs with a batch size of 16 and default parameters
were used. The model’s default input size is 640×640 pixels.
Once the dataset image is scaled, it is sent to the network
for training. Inference and calculations are performed on an
NVIDIA GeForce RTX3090 in a Windows 10 environment.

B. MODEL TRAINING
The research data was obtained from the DFIG brush slip
ring system arc faults diagnosis experimental platform in the
laboratory. Figure 8(a) displays the arc images, which suffer
from reduced image quality due to the spark splash produced
by arc combustion. Preprocessing of the arc faults image is
necessary before feature extraction to facilitate subsequent
image processing.

FIGURE 8. Arc image preprocessing.

The fault arc images were binarized resulting in only two
gray values, 0 and 255, and two colors, black and white. The
Otsu method was used to binarize and denoise the images,
as shown in Figure 8(b) and (c).

During arc combustion, the shape and structural character-
istics of the arc, including its area, long axis, and short axis,
will change in response to changes in combustion intensity.
This study categorizes risk into four levels based on the size of
the arc area in the collected image. Level 1 is assigned when
the arc image area is less than 2e3, level 2 when the arc area
is greater than 2e3 and less than 6e3, level 3 when the arc area
is greater than 6e3 and less than 1e4, and level 4 when the arc
area is greater than 1e4.

The OpenCV library is utilized to extract area data of the
faulty arc in the image, as depicted in Figure 9. The collected
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FIGURE 9. Extracting area data of fault arcs.

dataset is then classified into four levels, namely level 1,
level 2, level 3, and level 4, based on the area classification
standard mentioned earlier. Classification labels for the arc
faults image dataset are created using Labelimg software. The
experiment collected more than 3000 images of arc faults at
different levels, with each category containing approximately
900 images. The K-YOLO++ model was used to train and
predict the classified dataset, with a ratio of 8:1:1 for the
number of training, validation, and testing sets. The predicted
results were used to assess the risk level of arc faults. Table 3
shows the amount of data for each level included in the arc
faults dataset.

TABLE 3. Partition of arc faults dataset.

The YOLOv5 network model’s training parameters dic-
tate specific settings for model training during the training
stage, as shown in Table 4. To increase sample diversity
in the arc faults data, this research applies data enhance-
ment techniques to the images input into the network model,
including scale changes, left-right flips, and mosaic data
enhancement.

TABLE 4. Model training hyperparameter settings.

Figure 10 shows the training and prediction process of the
K-YOLO++ model in the experiment.

FIGURE 10. Training and prediction flowchart of K-YOLO++ model.

C. RESULTS ANALYSIS
This study uses Precision (P), Recall (R), mean Average
Precision (mAP, confidence=0.5) and Frames Per Second
(FPS) as evaluation indices for the model.

YOLOv5 uses CIoU as the default method for calculating
bounding box loss. CIoU is based on DIoU and takes into
account the aspect ratio of the bounding box.

DIoU considers factors such as distance, overlap rate, and
scale between the predicted box and the actual box, making
the regression of the target box more stable. Its loss calcula-
tion formula is (5).

LDIoU= 1−IoU +
ρ2

(
b, bgt

)
c2

(5)

where b and bgt represent the center points of the predicted
and true boxes, ρ represents the Euclidean distance between
the two center points, and c represents the diagonal distance
of the minimum closure region of the predicted and true
boxes.

CIoU introduces an influence factor, denoted by αv,
in addition to the penalty term of DIoU. This factor considers
the aspect ratio of the predicted box and the actual box. The
penalty term of CIoU can be expressed as (6).

RCIoU =
ρ2

(
b, bgt

)
c2

+ αv (6)

Among them, α is the weight parameter, and its expression
is (7).

α =
v

(1 − IoU ) + v
(7)

v is used to measure the consistency of aspect ratio, and its
expression is (8).

v =
4
π2 (arctan

wgt

hgt
− arctan

w
h
)2 (8)

The formula for calculating loss for CIoU is (9).

LCIoU = 1 − IoU +
ρ2

(
b, bgt

)
c2

+ αv (9)

Figure 11 illustrates the training process of the
K-YOLO++ network model. Figure 11(a) displays the loss
function’s variation curve during training rounds. The value
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FIGURE 11. Training results of K-YOLO++ network model.

of the loss function converges between 0.05 and 0.08 after
300 rounds of model training. Figure 11(b) shows the mAP
variation curve with training rounds. After approximately
100 rounds of training, the mAP fluctuates less and then
stabilizes.

To assess the impact of the proposed algorithm on model
performance, we compared the K-YOLO++ network model
with Faster-RCNN, YOLOv3, and YOLOv5.

Faster R-CNN, as a two-stage object detection algorithm,
is divided into two steps to perform object classification and
candidate region generation. Firstly, the algorithm extracts
features from the input image and generates a feature map.
These feature maps are not only passed to the classification
layer for target category judgment, but also fed into the
Region Proposal Network (RPN). RPN is responsible for
adjusting the position of candidate regions and classifying
them again.

YOLOv3, as one of the iconic algorithms in the YOLO
series, has won widespread recognition in the industry due
to its excellent performance and ease of use. As an upgraded
version of YOLOv1 andYOLOv2, YOLOv3 not only inherits
the advantages of the previous generation model, but also

TABLE 5. Performance evaluation results of network models.

optimizes in multiple aspects. As a leader in one-stage object
detection algorithms, YOLOv3 abandons the tedious steps of
generating candidate regions in traditional object detection
algorithms and instead adopts a direct regression method,
while outputting the probability of target categories and

FIGURE 12. Training results of the 4 network models.
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accurate prediction boxes. This innovative design signifi-
cantly improves the detection speed of the model, enabling it
to demonstrate excellent performance in processing real-time
object detection tasks.

Table 5 presents the performance evaluation results for
each network model.

Table 5 shows that K-YOLO++ outperforms Faster
R-CNN, YOLOv3, and YOLOv5 in terms of Precision,
Recall, and mAP. Specifically, K-YOLO++ has a 20.07%
higher mAP and a 39.35 fps faster than Faster R-CNN.
Additionally, K-YOLO++ has a 4-point increase in mAP
compared to YOLOv3. The Precision and mAP of the
K-YOLO++ have significantly increased compared to
YOLOv5. The FPS has also increased by 6.36. Figure 12
shows the loss curves and mAP curves of the 4 network
models.

Experiments were conducted using the collected arc faults
dataset to test the performance of the K-YOLO++ network
model. Figure 13 displays the recognition effect, indicating
that the K-YOLO++ network model can accurately iden-
tify fault arcs with a confidence level of over 0.8 for each
level. Figure 13 displays the recognition effect, indicating
that the K-YOLO++ network model can accurately iden-
tify fault arcs with a confidence level of over 0.8 for each
level. Figure 13 displays the recognition effect, indicating
that the K-YOLO++ network model can accurately identify
fault arcs with a confidence level of over 0.8 for each level.
Additionally, it effectively eliminates interference from
objects such as brush holders and brush boxes on the test
platform.

FIGURE 13. Recognition results.

VI. CONCLUSION
This article proposes an image recognition-based arc faults
diagnosis method for DFIG brush slip ring systems by study-
ing the feature extraction network, small object detection,
and anchor mechanism of the YOLOv5 network model. The
article proposes an improved algorithm, K-YOLO++, based
on YOLOv5 to address the problems of small target scale,
insufficient feature extraction ability, complex background,
serious false positives, and missed detections in arc faults
images. A small object detection layer was added to the origi-
nal YOLOv5 network model and the K-Means++ clustering
algorithm was used to obtain anchor sizes. The experimental

results indicate that the K-YOLO++ network model has
a precision of 95.58%, recall of 80.88%, mAP of 88.36%,
and a detection frame rate of 50.62 fps on the experimental
dataset, demonstrating improved recognition performance for
small targets. The aim of this study was to improve the
recognition performance of arc faults images. The next step
is to expand the existing arc faults dataset to enhance the
image information learned by the networkmodel. The experi-
ment demonstrates that the algorithm proposed in this article
has several advantages, including high accuracy and strong
real-time performance.
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