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ABSTRACT Emerging cellular networks integrate diverse technologies like millimeter wave (mmWave)
to deliver high capacity but face challenges like blockage sensitivity. Dual connections (DC) enhance
throughput but ensuring information freshness (Age-of-Information, AoI) is crucial for real-time
applications. This paper proposes a novel approach for AoI optimization in DC cellular networks (4G/5G)
with TCP multipath transport. We address the stochastic nature of AoI and channel conditions with a
combined random and stochastic optimization approach. Modeling the system as a multi-queue system with
LTE and mmWave connections, we propose a difference learning-based algorithm that dynamically selects
the optimal queue for each packet. This eliminates the need for statistical information like packet arrival
rates, enabling real-time adaptation. Compared to existing methods, our algorithm significantly reduces AoI
under various network conditions (over 40%), demonstrating its effectiveness for real-time applications.

INDEX TERMS Age-of-Information, AoI, dual connectivity, cellular networks, 4G, 5G, MPTCP, real-time
applications.

I. INTRODUCTION
The proliferation of real-time applications, such as
self-driving cars and remote surgery, demands mobile
networks with ultra-low latency and high information
freshness [4], [7]. These applications require timely delivery
of critical data that reflects the latest state of the environment
(e.g., real-time sensor data from a moving vehicle).
To address these demands, 4G/5G cellular networks with
dual connections (DC) have been proposed [6], [21], [27].
In DC networks, a user equipment (UE) can connect to both
a macro base station (MeNB) and a nearby small cell (SeNB)
simultaneously, potentially increasing network capacity [6],
[21], [27].

However, ensuring information freshness, quantified by
Age-of-Information (AoI), remains a challenge in DC
networks. This is due to the heterogeneous nature of LTE and
mmWave connections (commonly used for DC), as well as
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the dynamic channel variations that can impact information
delivery [1], [15]. Traditional network performance metrics
like delay or throughput do not directly address information
freshness. Additionally, existing AoI optimization techniques
in DC networks often struggle to adapt to these changing
conditions andmight rely on statistical information that might
not be readily available.

We explore LTE-mmWave DC for real-time applications
due to its high capacity and wider coverage compared to
LTE. However, recent studies show significant limitations
in outdoor-to-indoor (OtI) scenarios (e.g., [19]), highlighting
the need for solutions that address dynamic channel quality
for low-latency real-time communication.

To address these challenges, this paper proposes a
novel approach for optimizing information freshness in DC
networks with Multipath TCP (MPTCP). We leverage the
capabilities of MPTCP for traffic load sharing across both
connections and propose a reinforcement learning-based
approach for dynamic traffic load distribution. This approach
allows the network to adapt to real-world uncertainties and
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optimize information freshness in a dynamic and stochastic
environment. Our work makes three key contributions as
follows:
• Focus on Information Freshness (AoI) in Dual
Connections: We address information freshness (AoI)
in dual connections, a new perspective compared to the
traditional focus on metrics like delay or throughput.

• Reinforcement Learning for Dynamic Traffic Load
Distribution: We propose a novel approach for opti-
mizing traffic load distribution in a dynamic and
stochastic environment. Unlike previous works reliant
on known information or statistical data, our approach
utilizes reinforcement learning to adapt to real-world
uncertainties such as channel variations and traffic
fluctuations. This enables us to achieve an optimal
policy for maximizing information freshness in dual
connections.

• Technology-Independent Problem Model: Addition-
ally, our problem model is independent of the specific
technology used for connections, allowing for broader
applicability across different cellular network
generations.

• Performance Evaluation: Our solution demonstrates
significant improvements in AoI minimization com-
pared to baseline scheduling algorithms under different
environmental conditions (above 40%), paving the way
for more efficient and reliable data delivery in real-time
applications over mobile networks.

The rest of the paper is organized as follows. Section II
presents a background on the literature of the work.
Section III discusses related work. Section IV presents
the proposed method for the traffic load sharing problem
in dual connection sub-flows. Section V evaluates the
proposed method and finally Section VI concludes the
paper.

II. BACKGROUND
A. DUAL CONNECTIVITY (DC)
Dual connectivity (DC) is a key technology in cellular net-
works that allows a user equipment (UE) to connect and com-
municate with two base stations (eNBs) simultaneously [27].
This capability, typically implemented in active/active mode
for LTE networks, offers several advantages, including sig-
nificantly improved per-user throughput, enhanced reliability
due to redundancy, and smoother handovers during cell
transitions. There are twomain types of DC implementations:
active/active mode, where both connections (typically to a
Master eNB (MeNB) and a Secondary eNB (SeNB)) are
used for data transmission simultaneously, and active/standby
mode, where one connection is primary and the other serves
as a backup [1]. The MeNB and SeNB operate on different
carrier frequencies.

It’s important to note that while DC providesmultiple paths
for data transmission, these paths are interconnected by the
X2 interface, which is a backhaul connection between the
MeNB and SeNB [1], [27]. This X2 interface might introduce

latency due to being non-ideal (e.g., using microwaves)
compared to the direct connection between the UE and the
base stations.

Dual connectivity (DC) is not limited to LTE networks and
is also applicable in 5G deployments [1]. This technology
allows a user equipment (UE) to connect to two base stations
simultaneously, offering potential benefits like improved
throughput and reliability. In the context of 5G, a particularly
relevant application of DC is connecting to both a 4G
(LTE) network and a 5G network concurrently [14]. This
capability is especially useful for Non-Standalone (NSA)
5G deployments, which leverage the existing LTE core
network while utilizing the new 5G NR air interface for data
transmission. Figure 1 illustrates DC technology in cellular
networks.

FIGURE 1. Dual connectivity (DC) technology in cellular networks.

Dual connections can be established using different
technologies. These technologies include 4G (LTE), 5G
(NR), and WiFi [1], [15], [21]. The primary and secondary
connections can be configured in various ways. Among the,
the four main configurations are:
• LTE-LTE: This configuration utilizes two LTE connec-
tions, potentially from different base stations.

• LTE-WiFi: This configuration combines an LTE con-
nection with aWiFi connection, offering a broader range
of connectivity options.

• LTE-mmWave: This configuration utilizes an LTE
connection as the primary connection and a mmWave
connection as the secondary connection, leveraging the
strengths of both technologies for high capacity and
wider coverage.

• mmWave-mmWave: This configuration uses two
mmWave connections, potentially from different access
points, offering extremely high capacity but requiring
careful management due to the sensitivity of mmWave
signals.

In this research, we focus specifically on the LTE-
mmWave mode. This mode is particularly interesting
because it combines the wider coverage and reliability of LTE
with the high capacity of mmWave, making it well-suited for
real-time applications that require both high data rates and
reliable information delivery.
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B. MULTIPATH TCP (MPTCP)
The availability of multiple paths provided by DC paves the
way for utilizing Multipath TCP (MPTCP), a transport layer
protocol specifically designed to manage traffic across these
paths [5]. Unlike traditional TCP, which utilizes a single path,
MPTCP offers significant advantages by enabling the cre-
ation of subflows. These subflows are essentially independent
data streams that can be distributed across available network
connections. This capability allows MPTCP to address
challenges like varying delays and congestion on individual
paths by dynamically adjusting traffic distribution [26].
MPTCP implements various functionalities to manage these
subflows effectively. It can discover and select appropriate
paths for each subflow, perform congestion control to avoid
overwhelming any single path, and ensure in-order delivery
at the receiver despite the potential for reordering of packets
across different paths [26].

C. TRAFFIC SCHEDULING IN MPTCP
After establishing subflows and managing available paths,
MPTCP needs to make informed decisions about how to dis-
tribute packets across these paths. Several factors influence
these scheduling decisions, including the latency (round-
trip time), bandwidth, and packet loss rate experienced
on each subflow [24]. MPTCP utilizes various scheduling
mechanisms to optimize traffic distribution based on
these factors. Two commonly used scheduling mechanisms
are

• Lowest-RTT-First:This is the default mechanism in the
Linux kernel and prioritizes subflows with the lowest
round-trip time (RTT). Packets are preferentially sent
on paths with the shortest delay, aiming for faster
delivery [8].

• Round Robin: This mechanism distributes packets
equally across all subflows in a circular fashion, regard-
less of network conditions. While offering fairness,
it might send packets on congested paths, potentially
impacting performance [8].

III. RELATED WORK
Reference [10] maximizes throughput via window size
adjustment for mmWave links under unfavorable conditions.
However, it relies on fixed rates and RTTs, which are unre-
alistic in dynamic environments. Their focus on minimum
RTT might prioritize low-delay paths over high-throughput
ones. Our Q-learning approach addresses these limitations by
dynamically adapting to real-time conditions, optimizing for
AoI minimization instead of just throughput.

Reference [23] proposes an MDP-based flow control
for energy efficiency and timely transmission, considering
vibration and mmWave blockage. While it reduces delay
difference and avoids blockage penalty, its distance-based
blockage estimation is inaccurate. Our Q-learning approach
learns from real-time information for better blockage proba-
bility estimation, leading to improved AoI minimization.

Reference [2] proposes a heuristic MPTCP scheduling
algorithm for energy-efficient throughput. It balances
energy consumption with maximizing information transfer.
However, its static approach might not adapt well to dynamic
channels. Our Q-learning method addresses this by con-
tinuously learning from real-time information, allowing for
dynamic adaptation and AoI minimization while considering
both energy and channel dynamics.

Reference [17] proposes traffic scheduling for downlink
in dual-connection scenarios, maximizing utilized bandwidth
while meeting constraints. However, it focuses solely on
throughput, neglecting real-time needs. Our Q-learning
approach considers AoI minimization alongside throughput,
leading to better performance for real-time applications.

Reference [12] proposes a DQN-basedMPTCP scheduling
algorithm for LTE-WiFi connections to improve throughput.
It uses a simple neural network and reward based on
ACKs, achieving higher throughput compared to baselines.
However, it neglects AoI and complex channel dynamics.
Our approach addresses this by using a more comprehensive
reward function (AoI, delay, throughput) and potentially
exploring deeper neural networks for better learning.

Reference [11] proposes asynchronous RL for multipath
congestion control in MPTCP. It uses learned rules to adapt
congestion window sizes based on network conditions. This
approach is effective in heterogeneous networks and avoids
the ‘‘curse of dimensionality’’ by employing a rule-based
method. A key strength is its asynchronous design, enabling
real-time decision-making without delays.

Reference [25] uses deep RL for MPTCP packet schedul-
ing, considering QoS features (throughput, RTT, loss) and
offering asynchronous training for real-time adaptation.
However, it shows lower performance in out-of-order packet
queue length compared to Round Robin. This could be due
to exploration-exploitation trade-offs, network architecture,
or reward function design.

Previous approaches do not fully consider the dynamic
nature of mmWave channel quality. Recent research has
shown that device thermal limitations can significantly
impact sustained mmWave throughput due to rising skin
temperature [18]. This can lead to reductions in available
mmWave channels and potential fallback to 4G, impacting
achievable throughput and potentially increasing latency. Our
work addresses this gap by proposing an MPTCP scheduling
approach that incorporates real-time thermal information to
adapt scheduling decisions and minimize AoI in mmWave
deployments with dynamic channel quality.

IV. PROPOSED METHOD
Many existing works on traffic load sharing in dual-
connectivity scenarios neglect a crucial metric for real-
time applications: Age of Information (AoI). AoI measures
the time elapsed since the last update was received, and
minimizing AoI ensures the information utilized by appli-
cations remains fresh and timely. Traditional approaches
for traffic optimization might struggle in dynamic network
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environments where channel conditions, packet arrival rates,
and queue lengths constantly change.

To address this challenge, we propose a novel approach
that leverages reinforcement learning (RL) to optimize traffic
load sharing for minimizing average AoI in dual-connectivity
MPTCP networks. RL enables our method to learn and adapt
to real-time network conditions, making it well-suited for this
dynamic problem.

Our approach utilizes a Markov Decision Process (MDP)
framework to model the traffic load sharing problem. Within
this framework, a reinforcement learning agent observes the
network state, takes actions (adjusting traffic distribution
across paths), and receives rewards based on the resulting
AoI. One specific RL technique we employ is Q-learning,
which allows the agent to learn an optimal policy for traffic
load sharing that minimizes the average AoI.

A. SYSTEM MODEL AND ASSUMPTIONS
We consider a dual-connectivity scenario with an active/
active mode architecture, where a self-driving car acts as
the user equipment (UE). The UE establishes connections
with both a master eNB (5G) and a secondary eNB (LTE)
as shown in Figure 2. Packets representing sensor data or
control signals are generated by the UE according to a
Poisson distribution with a mean arrival rate of λ. A Traffic
Load Sharing Module is responsible for determining how
to distribute these packets across queues for the LTE
and mmWave transmission paths. The capacities of these
channels are dynamic, leading to variable data output rates at
any given time. In the following sections, we will elaborate
on the specific system components and the information
assumptions made for our proposed method.

FIGURE 2. The system model.

1) THE WIRELESS LTE CHANNEL MODEL
The quality of both LTE and mmWave channels can vary
significantly due to factors like noise, path loss, fading, and
shadowing. To model the variable nature of the LTE channel,
we adopt the well-established 3GPP Spatial Channel Model
(SCM) with parameters suitable for our urban macro-cellular
deployment scenario [22]. This model captures the effects
of path loss, multipath propagation, and spatial correlation
between antennas. The channel gain between the UE and the
eNB antennas in the LTE channel can be expressed as [22]:

ht =
√

ζ × D−α (1)

where ht represents the channel coefficient between the UE
and antenna t, D represents the distance between the UE
and the antenna, α is the path loss exponent, a parameter
depending on the specific environment (e.g., urban macro),
and ζ accounts for shadowing effects and is typicallymodeled
as a log-normal random variable.

2) THE WIRELESS mmWave CHANNEL MODEL
The mmWave channel exhibits distinct characteristics com-
pared to the LTE channel. To model these characteristics,
we adopt a two-level Finite State Markov Chain (FSMC)
model [22].
• Level 1: LoS/NLoS: The first level represents the
large-scale fading effects and determines whether the
channel is in a Line-of-Sight (LoS) or Non-Line-of-
Sight (NLoS) state. The transition between these states
depends on factors like blockage and mobility.

• Level 2: Small-Scale Fading: The second level models
the small-scale fading within the established LoS or
NLoS condition from Level 1. This level typically
employs a specific fading model, such as the Rician
fading model for NLoS conditions, to capture the rapid
fluctuations in the received signal strength.

By using a two-level FSMC model, we can effectively
capture the key aspects of themmWave channel, including the
impact of blockage and mobility on LoS/NLoS conditions,
as well as the small-scale fading effects that influence signal
strength.

Due to the significant impact of blockage in mmWave
channels, the antenna can experience three main channel
states relative to the user equipment (UE):
• Line-of-Sight (LoS): A direct line of sight exists
between the UE and the antenna.

• Non-Line-of-Sight (NLoS): The signal path is
obstructed, but a usable path still exists.

• Outage: The link between the UE and the antenna is
completely blocked.

To model the transitions between these states over time,
we employ a three-state Markov chain. In a Markov chain,
the probability of transitioning to a new state depends only
on the current state, and not on the history of previous states.
The transition probabilities between LoS, NLoS, and Outage
states are defined by a transition probability matrix (Py) as
follows [16].

Py =

 PLoS|LoS PLoS|NLoS PLoS|Out
PNLoS|LoS PNLoS|NLoS PNLoS|Out
POut|LoS POut|NLoS POut|Out


The specific values in the Py matrix depend on various

factors such as the mobility of the UE, the dynamics of
blockage in the environment, and the width of the antenna
beam.

Path loss, which refers to the signal attenuation as it
travels from the base station to the user equipment (UE),
plays a crucial role in cellular network performance. In fifth-
generation (5G) networks, path loss characteristics can vary
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depending on the propagation environment [22] (line-of-sight
or non-line-of-sight) [Eq. (2)].

PL(R) =

{
(1− yt )CLR−αL + ytCNR−αN yt = 0 or1
∞ yt = 2

(2)

where,R denotes the distance between the base station and the
UE (in meters), yt is an indicator variable (yt = 0 indicates
line-of-sight (LOS) propagation, yt = 1 indicates non-line-
of-sight (NLOS) propagation, and yt = 2 is an invalid value),
CL and CN are constants associated with LOS and NLOS
paths, respectively (in dB), and αL and αN are path loss
exponents for LOS and NLOS paths, respectively.

Building upon the path loss model described by Eq. (2),
we can now determine the transmit power (PTt x) required to
send a packet during a time slice as follows [13]

PTxt = (2M/τW
− 1)

N0

|gt |2Gmaxs Gmaxb PL(R)
(3)

where, M represents the number of bits transmitted per
symbol, τ signifies the time slot duration (in seconds),
N0 represents the noise power spectral density (in Watts/Hz),
gt represents the channel gain between the user equipment
and the base station, Gmaxs and Gmaxb are the maximum
antenna gains at the base station and user equipment,
respectively,PL(R) is the path loss at distanceR from the base
station (in dB), as defined in Eq. (2).

As mentioned in [16], the link between the user equipment
(UE) and the base station experiences fading, which refers
to the random fluctuations in received signal strength.
To account for this phenomenon, a Nakagami fading model
with different parameters for line-of-sight (LOS) and non-
line-of-sight (NLOS) propagation is employed.

3) TRAFFIC GENERATION MODEL
Traffic generation at the user equipment (UE) follows a
Poisson probability distribution. This means that packets
are generated at random points in time according to a
discrete-time process with 1ms intervals (t = 0, 1, 2, . . .).
At each time slot, we need to decide whether to place the
newly generated packet(s) in the LTE or mmWave queue
based on the current network conditions.

The number of packets arriving in the nth time slot, denoted
by Kn, follows a Poisson distribution with mean arrival rate
λ [3]. This arrival process models the random nature of packet
generation by the UE. The size of each packet is set to 6MB,
which is a typical value for data packets containing sensor
information or control signals.
Queuing Model in Base Stations: Packets generated by the

user equipment need to be placed in one of two queues: LTE
or mmWave. We assume that both queues have unlimited
capacity and their lengths change dynamically. It’s crucial
to maintain a balance between arrival and departure rates to
avoid excessive queueing and information delays. In each
time slot (n), the lengths of the LTE queue (WnM) and

mmWave queue (WnS) are updated based on the following
equations [9]:

WM
n+1 = IMn +W

M
n − C

M
n (4)

W S
n+1 = ISn +W

S
n − C

S
n (5)

In these equations:
• IMn and ISn represent the number of packets arriving in
the mmWave and LTE queues, respectively, during time
slot n.

• CM
n and CS

n represent the number of packets departing
from the mmWave and LTE queues, respectively, during
time slot n. These outgoing packets are calculated using
Equations (6) and (7).

• RMn and RSn represent the output rates of the mmWave
and LTE queues, respectively. These rates depend on
factors like channel capacities and the traffic load
sharing decisions made by the reinforcement learning
agent (details on these decisions will be provided
later).

• L represents the size of each packet (6 MB as specified
earlier).

• t represents the duration of each time slot (1 ms as
specified earlier).

CM
n =

RMn
L
∗ t (6)

CS
n =

RSn
L
∗ t (7)

By dynamically adjusting the routing of packets between
the queues based on real-time network conditions, we aim
to minimize the queue lengths and consequently, the Age of
Information (AoI) experienced by the applications.

4) THE AoI MODEL
To measure the freshness of the data received at the destina-
tion, we employ the Age of Information (AoI) criterion. AoI
represents the time elapsed since the last successful packet
reception at the destination.

If ut denotes the generation time of the most recently
received packet at time t, the AoI of the source node at
the destination is defined as a random process, denoted
by φt (Equation (8)). A lower AoI value signifies fresher
information available at the destination.

φt = t − ut (8)

The symbol φt represents the AoI value at the beginning of
time slot t . This value belongs to a set φ = 1, 2, . . . , φmax .
The maximum AoI, φmax , defines an upper limit for the
information age and is determined based on the specific
requirements of the application (e.g., latency constraints).

Equation (9) describes how the AoI evolves over time:

φt+1 =

{
min(φ(t)+ 1, φmax) at = 0(idle)
1 at = 1(transmit)

(9)
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In Equation (9), at is a binary variable indicating the system
state in time slot t:
• at = 0 (idle): No packet was successfully transmitted in
the current time slot. In this case, the AoI is incremented
by 1, capped by the maximum AoI (φmax).

• at = 1 (transmit): A packet was successfully transmitted
in the current time slot. This resets the AoI to 1,
reflecting the arrival of fresh information.

A table summarizing the symbols used in our system
modeling is provided in Table 1.

TABLE 1. Symbols used in system modeling and their description.

B. PROBLEM FORMULATION
In this section, we formulate the problem of traffic load
sharing between the LTE and mmWave channels as a
single Markov decision process (MDP) framework. An MDP
provides a suitable framework for modeling sequential
decision-making problems under uncertainty.

The MDP is defined by a quadruple (8,A,P,C):
1) State Space (8): The state space, denoted by 8,

represents all possible states of the system at any given
time slot. Each state includes relevant information such
as:
• The current AoI values for both the LTE queue
(|PhiLTE ) and the mmWave queue (mmWave).

• The number of packets in the LTE queue (wSn ) and
the mmWave queue (wMn ).

2) Action Space (A): The action space, denoted by A,
represents the set of possible actions, A = {0, 1}, that
the decision-making entity (the UE) can take in each
state. These actions correspond to how the UEmanages
the incoming traffic:
• at = 0: The UE can choose to place a new packet
in the LTE queue.

• at = 1: The UE can choose to place a new packet
in the mmWave queue.

The number of incoming packets to the queue in
equations (10) and (11) is no longer simply represented
by IMn and ISn , respectively (remeber equations 4
and 5). This is because two influential factors affect the
number of packets entering the queue:

• Poisson Random Process: This process captures
the inherent randomness in packet arrivals, often
modeled using an arrival rate parameter.

• Selected Process: This refers to a specific mech-
anism or policy that governs how packets are
directed towards either the mmWave (M) or
LTE (S) queue.

To account for these factors, the equations are updated
as follows:

WM
n+1 = atKt +WM

n − C
M
n (10)

W S
n+1 = (1− at )Kt +W S

n − C
S
n (11)

where, at represents the probability of a packet being
directed towards the mmWave queue based on the
selected process. (1−at ) represents the probability of a
packet entering the LTE queue. Kt is the arrival rate of
packets at time step t , likely modeled using a Poisson
distribution.

3) Transition Probability (P): The transition probability,
denoted by P, defines the probability of transitioning
from one state (8t , at ) to another state (8t + 1)
given that action at is taken in state 8t according
to equation 12. These probabilities depend on various
factors such as:

• The effectiveness of the chosen action (e.g., suc-
cessful packet transmission in the chosen queue).

• The channel capacities of the LTE and mmWave
channels at the next time slot.

• The arrival of new packets in the next time slot.

P(st+1 | st , at ) = Pφ(φt+1 | φt , at ) (12)

4) Cost Function (C): The cost function, denoted by C ,
assigns a cost or reward to each state-action pair
(8t , at ). The cost function is typically designed to
reflect the goal of the system. In our case, we aim
to minimize the overall Age of Information (AoI)
experienced by the application at the destination. The
cost function should penalize actions that lead to
high AoI values in the queues. The cost function is
calculated as equation 13

Ct (st , at ) = φt (13)

It is clear that the amount of φt depends to the system
state and the chosen action.

Goal of Optimization: Since Age-of-Information (AoI)
is a stochastic (random) process, the optimal approach
for minimizing it is to calculate its long-term average.
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This average cost is denoted by the symbol C̄ (Eq. 14).

C̄ = lim
n→∞

1
N

E
N∑
t=1

C(st , at ) (14)

Equation (Eq. 14) expresses the average cost as the limit,
as the number of time steps (N ) approaches infinity, of the
average cost across those time steps. The summation (

∑
)

iterates through each time step (t) from 1 to N , considering
the cost (C(st , at )) associated with the state (st ) and action
(at ) taken at that time step. The expectation (E) operator
accounts for the randomness inherent in the AoI process.
Optimal Policy: The objective for the source node is to

determine the optimal policy (π∗). This policy dictates the
action (at ) to be taken in each state (st ) to minimize the
long-term average cost function (C̄π ) across all possible
conditions. Equation (Eq. 15) formalizes this optimization
problem. The arg min notation indicates that we are searching
for the policy (π ) that minimizes the average cost (C̄π ).

π∗ = argminπ C̄π (15)

We will delve into the specifics of using Bellman’s
equations to calculate the optimal policy (π∗) in the next
section.

C. BELLMAN EQUATIONS AND OPTIMAL POLICY
Bellman equations are a cornerstone of dynamic pro-
gramming, a powerful technique for solving optimization
problems involving sequential decisions. These equations
express the optimal value of a decision problem at a specific
state as the sum of the immediate reward (or cost) and the
discounted expected value of the remaining problem.

In the context of Markov Decision Processes (MDPs),
where the state of the system depends only on the most recent
state, not the entire history, Bellman equations typically
employ state-action value functions.

State-Action Value Function (Eq. 16): This function,
denoted by Qπ (s, a), represents the expected long-term cost
incurred by taking action a in state s while following policy
π . It is defined by Equation (16):

Qπ (s, a) = [c(s, a)− C̄π∗ ]+
∑
s′∈S

P(s′|s, a)Qπ (s′, a) (16)

• c(s, a): Immediate cost of taking action a in state s.
• C̄π∗ : Minimum average cost achievable with the optimal
policy (π∗).

•

∑
s′∈S

P(s′|s, a)Qπ (s′, a): Expected future cost based on

the transition probabilities (P(s′|s, a)) of reaching state
s′ after taking action a in state s, considering the value
of following policy π in that future state.

Finding the Optimal Policy (Eq. 17 and Eq. 18): The
optimal policy, denoted by π∗, dictates the action that
minimizes the expected long-term cost in each state. We can
find the optimal policy using the state-action value function
and Bellman equations.

Equation (17) is a special case of Eq. (16) where the
policy π is the optimal policy (π∗). Here, Q(π∗)(s, a)
represents the expected long-term cost under the optimal
policy.

Qπ∗ (s, a) = [c(s, a)− C̄π∗ ]+
∑
s′∈S

P(s′|s, a)Qπ∗ (s′, a) (17)

Finally, Equation (18) formally defines the optimal policy
selection:

π∗(s) = argmina∈AsQ
π∗ (s, a) (18)

This equation states that the optimal action in a given state
s is the one that minimizes the state-action value function
Q(π∗)(s, a) under the optimal policy itself (π∗). In simpler
terms, the optimal policy chooses the action that leads to the
lowest expected long-term cost when following the optimal
policy.

D. REINFORCEMENT LEARNING AS A SOLUTION
Limitations of Model-Based Methods:

1) Model Inaccuracy: Building a perfect model of
the environment is often impossible. Changes in the
environment (e.g., weather, traffic patterns) can quickly
render the model invalid. (Eq. 16)

2) Modeling Difficulty: In many real-world scenarios,
accurately modeling the probabilistic structure of the
system can be highly complex or even impractical.
(Eq. 17)

3) Limited Statistical Knowledge: Obtaining accurate
statistical data about random processes in the oper-
ational environment (e.g., data arrival rates, channel
quality variations) can be challenging. (Eq. 18)

Given these limitations, reinforcement learning (RL)
emerges as a compelling approach. RL algorithms can learn
optimal policies without requiring a complete or accurate
model of the environment. They achieve this by interacting
with the environment, receiving rewards or penalties for
their actions, and using these experiences to improve their
decision-making over time.

1) POLICY LEARNING THROUGH Q-LEARNING
This section presents a policy learning algorithm based on
the standard Q-learning method. Q-learning is a popular
RL technique that estimates a state-action value function.
This function helps the agent learn which actions are most
beneficial in different states. Algorithm 1 shows pseudocode
of the Q-Learning algorithm.

Line 1: the first line sets up the initial conditions
for the learning process by initializing the Q-value table
(representing the agent’s knowledge about the environment)
and potentially a tracking mechanism for exploration (visit
count table), along with a counter for the number of learning
steps taken.

Lines 3-8: The loop repeatedly executes these steps,
enabling the agent to interact with the environment,
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Algorithm 1 The Pseudocode of Q-Learning

1: Initialization: Q̂(s, a) = 0∀s, a; visit(s, a) = 0∀s ∈
S, a; t = 0 (initial time index)

2: Main Learning Loop:
3: while t < Max Iter Num do
4: Take action from the action set A in ϵ-greedy

fashion;

at ←

{
argmin Q̂ with probability 1− ϵ

a random action with probability ϵ

5: Compute C(st , at ) by 11;
6: Observe the next system state st+1;
7: Compute Q̂t+1(st , at ) by 18
8: t = t + 1;
9: end while

learn from experiences (rewards and state transitions), and
gradually refine its estimations of Q-values. This iterative
process ultimately guides the agent towards learning an
optimal policy, which specifies the best action to take in each
state to maximize cumulative reward.

Line 4:The ϵ-greedy policy helps the agent decidewhether
to send a packet through the LTE or mmWave channel,
balancing the need to explore both options (potentially
discoveringwhich ismore reliable or efficient) with the desire
to exploit its current understanding and choose the channel
with the lower expected cost (represented by the Q-values).

Line 5: This line in the Q-learning pseudocode likely
calculates the reward received for taking the chosen action
(at ) in the current state (st ). The reward function (13) directly
translate AoI values into rewards. Lower AoI (meaning
fresher information) could lead to higher rewards, and vice
versa.

Line 6: This line focuses on observing the overall state
transition resulting from the action. This information, along
with the received reward, is then used to update the Q-values
in line 7, allowing the agent to learn how its actions impact
the system’s behavior and ultimately influence the AoI.

Line 7: performs a crucial step in the Q-learning process.
By updating the Q-values based on experiences (rewards,
state transitions), the agent gradually learns which actions
are most beneficial in different states, leading it towards an
optimal policy for minimizing AoI.

Lines 8 and 9: manage the loop’s progress and termina-
tion. The time index is incremented within each iteration,
and the loop continues as long as the maximum number
of iterations hasn’t been reached. Once the termination
condition is met, the loop exits, and the Q-learning algorithm
has completed its learning process.

2) LEARNING THE STATE-ACTION VALUE FUNCTION
To use the Q-learning algorithm in the first time slice, the
source node initializes the Q-value function (Q(s, a)) with
zeros for all possible state-action pairs in the first iteration.

In the next step in each iteration step of the algorithm
accrdding to equation 19: The source node being in the
current state (st ), choosing an action (at ) using the ϵ-greedy
policy, calculating the immediate cost (Ct (st , at )) associated
with the chosen action in the current state, and finally,
observing the next state (s(t + 1)) resulting from the action.

Q̂t+1(st , at )← (1− µt )Q̂t (st , at )+ µt (C(s, a)− C̄π∗

+ minat+1∈Ast+1 Q̂t (st+1, at+1) (19)

In equation 19, the optimal cost function (C̄π∗ ) would
represent the average cost achieved by the optimal policy.
However, calculating this value beforehand is generally not
feasible for complex systems.
Approximating the Optimal Cost: The solution proposed

here is to replace the unknown optimal cost (C̄π∗ ) with an
estimate of the Q-value for a fixed state-action pair ((s∗, a∗)).
This pair acts as a reference point, and the true optimal cost
is approximated by the limit of the Q-value at this reference
point as the learning process progresses (limt→∞ Q̂t (s∗, a∗)).
Q-Learning Update Rule: Equation 20 shows the specific

Q-learning update rule used in our application.

Q̂t+1(st , at )← (1− µt )Q̂t (st , at )+ µt (C(s, a)− Q̂t (s∗, a∗)

+ minat+1∈Ast+1 Q̂t (st+1, at+1) (20)

It incorporates the following elements:
• Previous Q-value: ‘Q̂t(st, at )
• Learning rate: (1−µt ) (incorporates a decaying learning
rate µt )

• Reward (replaced by cost here): C(st , at )
• Reference Q-value: Q̂t (s∗, a∗)
• Minimum Q-value of next state actions:
minat+1∈Ast+1 Q̂t (st+1, at+1).

Learning Rate: The text emphasizes the importance of a
decreasing learning rate (µt ) over time. This ensures that
the agent gradually converges to a stable Q-value function.
Equation 21 specifies the standard conditions for the learning
rate function:

µt → 0, t →∞,
∑
t

(µ(t))2 <∞ (21)

where,
• µt → 0 ast → ∞: The learning rate approaches zero
asymptotically as the learning progresses.

•

∑
t
(µ(t))2 < ∞: The sum of the squared learning rates

over time must be finite.
Adaptive Learning Rate: Equation 22 defines a specific

example of a decreasing learning rate function based on the
visit count (visitt (s, a)) for each state-action pair ((s, a)).

µt =
1

1+ (visit st (s, a))0.65
(22)

where,
• visitt (s, a): This value represents the number of times the
specific state-action pair has been encountered during
learning.

VOLUME 12, 2024 94171



A. I. Rasul, H. Beitollahi: Optimizing Information Freshness in DC Cellular Networks

• The learning rate (µt ) is calculated with a denominator
that increases as the visit count grows to a power of 0.65.
This effectively reduces the learning rate as the agent
encounters a state-action pair more frequently.

V. PERFORMANCE EVALUATION
This section evaluates the performance of our proposed
Q-learning based MPTCP scheduling approach through
simulations. We compare its effectiveness in minimizing
Age of Information (AoI) with Round Robin and RTT-based
scheduling algorithms.

A. SIMULATION SETTINGS AND PARAMETERS
We simulate the scenario described in Section IV-A and
our protocol using the MATLAB environment. The origin
node connects to two stations, representing a fifth-generation
(mmWave) and fourth-generation (LTE) antenna, as depicted
in Figure 2. The distance to the antennas ranges from
100 meters to 300 meters, and the transmitted power varies
between 30 and 35 dBm.

The surrounding environment is modeled as uncertain,
with data packet generation and channel quality changing
over time. The simulation operates in fixed 1-millisecond
time intervals. During each interval, the source node produces
data between 1 and 6 MB. Channel quality is assumed to
be constant within a time interval but can change between
intervals.

For the LTE channel, we model the channel gain factor
using a Markov chain with 10 distinct quality states. The
mmWave channel has three discrete states: Line-of-Sight
(LoS), Non-Line-of-Sight (NLoS), and Outage. These states
change randomly throughout the simulation. The LTE and
mmWave channels have bandwidths of 20 MHz and 5 MHz,
respectively, and the data rate adapts based on channel
conditions.

Table 2 summarizes the key simulation parameters used in
our proposed scenario. The table includes details about the
network topology, channel models, and data generation rates.

TABLE 2. Simulation parameters.

B. RESULTS AND ANALYSIS
Here, we examine how the Q-learning agent, which observes
channel states, data rates, and other relevant information,
learns an optimal scheduling policy to minimize AoI.

We compare its performance with the baseline algorithms
under different environmental conditions, such as:
• Varying Traffic Load: We investigate how the algo-
rithms perform under different data generation rates at
the source node (e.g., 1-3 Mb vs 4-6 Mb).

• Channel Quality Distribution: We analyze the impact
of the distribution of channel qualities within the LTE
channel (e.g., more frequent high-quality states vs more
frequent low-quality states).

1) CONVERGENCE ANALYSIS
Here, we analyze the convergence of the Q-learning algo-
rithm used in our proposed method. Convergence refers to
the ability of the algorithm to stabilize its estimates of the
Q-value function as the learning progresses.

Specifically, we focus on the convergence of the Q-value
for a specific state-action pair, denoted as (s, a). Figure 3 indi-
cates that the Q-value for (s, a) converges after approximately
800,000 learning iterations, reaching a value of 3.5.

FIGURE 3. Convergence of the Q-value for state-action function.

2) IMPACT OF ARRIVAL RATE ON AVERAGE AoI
Figure 4 shows the average AoI for all three algorithms
under increasing arrival rates (λ). As expected, the average
AoI exhibits an upward trend with increasing λ, indicating
higher congestion in the channel queue. The Q-learning
algorithm demonstrates the best performance in terms of
AoI minimization across all arrival rates. Results show that
Q-learning significantly decreases AoI on average by 33%
and 64% compared to Round Robin and the LL algorithm,
respectively, for different arrival rates (e.g., packets per
second). This can be attributed to its ability to dynamically

FIGURE 4. Average AoI vs. arrival rate.
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adapt to congestion by selecting paths based on real-time
information, including channel quality and queue lengths.

While the Round Robin algorithm performs worse than
Q-learning at higher arrival rates, its performance is compa-
rable at lower arrival rates. This could be due to the lack of
adaptation of Round Robin under heavy traffic which leads
to suboptimal performance.

The LL algorithm consistently exhibits the highest AoI
among all three methods. This is likely because it prioritizes
path delay without considering other crucial factors like
packet arrival rate or buffer occupancy, leading to suboptimal
scheduling decisions under congested network conditions.

3) IMPACT OF PACKET SIZE ON AVERAGE AoI
Figure 5 depicts the average Age-of-Information (AoI) for
the three packet scheduling algorithms (Q-learning, Round
Robin, and LL) as the packet size increases. As expected,
we observe a slight increase in AoI for all algorithms with
larger packets. This is because larger packets require more
time to transmit over the network, leading to a slight delay in
delivering fresh information to the destination.

FIGURE 5. Average AoI vs. packet size.

However, the Q-learning algorithm demonstrates a slower
increase in AoI compared to Round Robin and the LL
algorithm as packet size grows. This is likely because the
Q-learning agent can prioritize smaller packets when the
queue is congested. By transmitting smaller packets first,
the agent reduces the overall queue length and transmission
delays, ultimately leading to lower AoI compared to Round
Robin’s fixed scheduling strategy, which might treat all
packet sizes equally.

The LL algorithm again exhibits the highest AoI among all
methods due to its reliance on a single criterion (potentially
path delay) that might not be optimal for minimizing AoI
when packet sizes change.

4) IMPACT OF TRANSMIT POWER ON AVERAGE AoI
Figure 6 explores the impact of varying transmit power
(30 dBm to 35 dBm) on average AoI for all three algorithms.
As expected, we observe a downward trend in AoI with
increasing power. This is because higher power translates
to a stronger signal and improved channel quality, allowing
for faster transmission rates and reduced queueing delays.
Consequently, packets experience lower AoI.

The Q-learning algorithm demonstrates the most signif-
icant decrease in AoI compared to Round Robin at lower

FIGURE 6. Average AoI vs. transmit power.

power levels. Notably, it outperforms Round Robin by 16%
in terms of AoI reduction. This advantage can be attributed
to the agent’s ability to exploit the improved channel
quality at higher power. By strategically selecting paths and
potentially prioritizing critical packets, the Q-learning agent
can significantly reduce AoI compared to Round Robin’s
fixed scheduling, which might not fully adapt to these
dynamic channel conditions.

While the LL algorithm still exhibits the highest AoI
overall, its AoI also decreases with increasing power due
to the faster transmission rates. However, its reliance on a
single criterion likely hinders its ability to optimally exploit
the improved channel quality for AoI minimization compared
to the more adaptive Q-learning approach.

5) IMPACT OF DISTANCE ON AVERAGE AoI
Figure 7 illustrates how the distance between the source node
and the stations affects average AoI for all three algorithms.
As the distance increases (up to 350meters in our simulation),
the average AoI exhibits an upward trend. This is because
greater distances lead to signal attenuation and potentially
higher bit error rates. Consequently, transmissions take
longer, queues grow larger, and ultimately, AoI increases.

FIGURE 7. Average AoI vs. distance.

Interestingly, in this scenario, the Q-learning and Round
Robin algorithms demonstrate similar performance in terms
of AoI. This might be because both algorithms prioritize
successfully transmitting packets even with the increased
delay caused by larger distances. Q-learning’s ability to adapt
to varying channel conditions might not be as advantageous
in this case compared to Round Robin’s simpler scheduling,
as both methods might struggle to find optimal paths under
significant signal degradation. Despite similar performance
at larger distances, it’s important to remember that Q-learning
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still outperforms Round Robin on average by 21%. This
emphasizes its overall effectiveness in optimizing AoI
across different channel conditions, particularly when signal
degradation is less severe.

The LL algorithm again exhibits the highest AoI at all
distances. This is likely because its reliance on a single
criterion (e.g., path delay) might not effectively account for
the substantial changes in signal quality over long distances.
While it might choose paths with lower initial delay, the
deteriorated signal at faraway stations can significantly
increase transmission times and AoI compared to the other
two algorithms.

VI. CONCLUSION AND FUTURE WORK
The ever-growing demand for real-time applications in areas
like autonomous vehicles and remote surgery necessitates
stricter guarantees on data freshness in mobile communica-
tion networks. In this paper, we addressed the challenge of
minimizing Age of Information (AoI) âĂŞ a metric crucial
for real-time applications âĂŞ in the context of Multipath
TCP (MPTCP) traffic scheduling over dual connections
(e.g., LTE and mmWave). Our work investigated the use
of reinforcement learning to find an optimal policy for
dynamically allocating traffic between the two paths in a dual
connection scenario. The proposed approach considers the
dynamic and stochastic nature of the environment, including:
• Fluctuating channel quality
• Varying traffic arrival patterns
• Changes in packet transmission rates
• Power level adjustments
To achieve this, we first formulated the problem as a

stochastic optimization problem and then leveraged the power
of reinforcement learning to solve it. This approach allows the
scheduling policy to adapt to real-time changes in network
conditions, unlike traditional static scheduling methods.

Our key innovation lies in incorporating AoI into the
MPTCP scheduling framework for dual connections. This
focus on AoI optimization is particularly relevant for real-
time applications where timely data delivery is paramount.
Additionally, our work utilizes MPTCP, a more advanced
transport protocol compared to traditional TCP, making
it suitable for future network environments. Furthermore,
the non-dependence of our problem model on the specific
technology used in the dual connection allows for broader
applicability across different network scenarios.

As potential future research directions, we can explore
extending this work to consider additional network complex-
ities such as congestion control and security mechanisms.
Additionally, investigating the effectiveness of alternative
reinforcement learning algorithms tailored specifically for
the dynamic characteristics of mobile networks could be an
interesting avenue for further exploration.

As another potential future work, the findings from the
real-world measurement study [20] provide valuable insights
into the dynamic nature of cellular network deployments,
particularly regarding the performance variations across

different bands (low, mid, high/mmWave) and deployment
modes. These insights will be leveraged to inform the
development and evaluation of our MPTCP scheduling
approach with AoI minimization, ensuring its effectiveness
in adapting to real-world network conditions for minimal data
transmission delays.
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