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ABSTRACT At the end of a production process, the manufactured products must usually be visually
inspected to ensure their quality. Often, it is necessary to inspect the final product from several viewpoints.
However, the inspection of all possible aspects might take too long and thus create a bottleneck in the
production process. In this paper we propose and evaluate a methodology for adaptive, robot-aided visual
quality inspection. With the proposed method, the most probable defects are first predicted based on the
production process parameters. A suitable classifier for defect prediction is learnt in an unsupervised manner
from a database that includes the produced parts and the associated parameters. A robot then steers the camera
only towards viewpoints associated with predicted defects, which implies that the trajectories of robot motion
for the inspection might be different for every product. To enable dynamic planning of camera trajectories,
we describe a methodology for evaluation and selection of the most appropriate autonomous motion planner.
The proposed defect prediction approach was compared to other methods and evaluated on the products from
a real-world production line for injection moulding, which was implemented for a producer of parts in the
automotive industry.

INDEX TERMS Industrial informatics, injection moulding, machine learning, production parameters,
quality inspection, robot motion planning.

I. INTRODUCTION
The required increase in the quality of products, services and
processes of the Industry 4.0 paradigms [1] gave rise to the
Zero Defects Manufacturing (ZDM) approach [2]. Per se,
ZDM does not explicitly rely on defect and fault detection,
but rather on defect and fault prediction and provision of
suggestions on how those can be avoided [3]. However,
quality inspection remains an integral step of production
processes, sometimes in the form of selective inspections
based on the analysis of impact of the action on the overall
economic, production logistics and quality performance [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Huiyan Zhang .

In a multi-stage production process, the quality of pro-
duced parts is often checked during or after every stage
[5]. For example, in production of injection-moulded parts
that have added motor windings, which is also the main
use-case for this paper, the product gets inspected after the
insertion of side windings, after injection moulding, after
cooling, after additional machining of parts, etc. In this
example, each stage of the production is followed by an
intermediate quality inspection process, based on different
physical quantities. However, even if the part is deemed good
after each intermediate step, the final part, when inspected
by a human worker, is sometimes still classified as bad,
because defects such as, e.g., porous material, are difficult
to detect [6]. Thus, one of the solutions to prevent faulty
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products, besides sampling of products and inspecting them
manually, is to visually inspect the parts also in the final stage
of the production [7].

Visual inspection of all possible aspects of a complex
product, however, requires the observation of the part from
many different viewpoints. As stated in [8], this process can
be automated in two different manners. The first option is to
install several cameras so that all the required aspects of the
object are observable at the same time. However, the cameras,
especially if there are a lot of them, could get in the way
of the production process or other means of quality control.
In our practical example with an automotive parts producer,
inspection with dial indicators was already integrated into
the production line and prevented installation of additional
cameras.

The second option is to move the camera around the object
with a robot using an in-hand camera to sequentially collect
the required images [9]. The caveat of the solution with the
moving camera is that the process might take more time
and thus generate a bottleneck in the production process.
A conceptually similar solution of moving the object around
the camera is also a possibility [8], but often not a viable one
because the object is partially occluded when grasped by the
robot.

Machine learning approaches are increasingly being
applied to improve the reliability and robustness of quality
control and even production processes themselves [10],
including injection moulding [11]. They can detect anomalies
that are difficult or even impossible to identify for a
production-line engineer. In this paper, we advance the
application of machine learning approaches to deal with such
challenges.

A. PROBLEM FORMULATION
The problem can be formulated as follows. A visual quality
inspection with an in-hand camera needs to be added to an
existing production line, and it should not create a bottleneck.
This implies that only the most likely defective aspects of the
object should be inspected. However, such aspects need to be
first determined, and later the robot needs to move the camera
so that they can be observed. This further implies that the
motion of the robot might be different for every workpiece,
and thus the motion of the camera needs to be generated
dynamically as a part of the inspection cycle.

B. CONTRIBUTION
The contribution of this paper is a methodology for adaptive
robot-aided visual quality inspection, where not all aspects
of the product but only the most likely predicted areas with
defects are inspected. To achieve this goal, we predict the
possible defects using a database of the available production
parameters and perform visual quality inspection only from
viewpoints that provide clear images of the possible defects.

The methodology for the prediction of defects is based on a
database of production parameters. Starting with the analysis

FIGURE 1. Physical implementation of the visual quality inspection cell
(a) and its visualization in RViz (b).

of several classification methods, we propose an approach
based on clustering of production parameters projected into
a latent space of a deep autoencoder, which is trained with
the parameters of all available good and faulty parts. The
latent space projections of faulty parts are clustered based
on different types of defects, which can be checked from
specific viewpoints. For each new part, the system checks the
posterior probability of its latent space projection belonging
to the clusters, and the robot then steers the camera to
the appropriate viewpoint with sufficiently large posterior
probabilities in descending order to check the area where the
predicted defect is located.

Because the camera path is not determined in advance
but dynamically defined by the sequence of potential
viewpoints, the robot motion cannot be pre-programmed.
We therefore rely on amotion planner to generate the required
motion trajectories. While many robot motion planners exist,
we outline and evaluate a methodology to test and select the
best motion planner using the planner arena motion planning
evaluation tool [12]. In our experiments, motion planners
available in the Open Motion Planning Library (OMPL) [13]
were evaluated.

All aspects of the proposed adaptive visual quality
approach, the prediction of defects and the planning of
robot camera steering trajectories were evaluated on data
from a real-world injection-moulding production of a parts
producer in the automotive industry. A simulated image of the
experimental environment and its physical twin are depicted
in Fig. 1.

II. RELATED WORK
This paper deals with the application of machine learning
methods for quality prediction, robot-aided visual quality
inspection, and robot motion planning. The related works in
each of these areas are discussed separately.

A. MACHINE LEARNING METHODS FOR QUALITY
PREDICTION
Machine learning methods have been applied in different
manners for quality prediction [10]. In [14], the authors
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show that four examined machine learning (ML) algorithms
adequately predict quality in injection moulding even with
very little training data. Pressure data from the mould cavity
was used for quality prediction. A similar analysis was
performed in [15], where tree-based algorithms, regression
based algorithms, and autoencoder were compared. Using a
plethora of collected data, the paper shows that autoencoder
outperforms other examined tree-based machine learning
algorithms in accuracy, precision, recall, and F1-score.
Artificial neural networks (ANN) were compared to decision
trees in [16] for prediction of parts quality in thermoplastics
injection moulding, showing over 99% accuracy rates. On the
other hand, Silva et al. [17] show that only a combination
of ANN and support vector machines (SVM) allowed them
to reach accuracy above 99%. That work was extended to
identify the relevant parameters [18]. Since many injection
moulding machines are not prepared to access their data on
a real-time basis, digitalization of such devices was explored
in [19].

Given that in the real-world the datasets are often uneven or
imbalanced, different methods of dealing with such datasets
have been proposed [20]. Supervised methods are known
to need large quantities of data [21]. Undersampling of the
majority class [22] or oversampling of the minority class
with repeated or synthetic data are often used [23]. Both can
lead to overfitting or loss of characteristics. On the other
hand, unsupervised classification methods can be applied
for uneven databases [24]. These include, among others,
clustering and autoencoders. The latter can be used to detect
difference through the reconstruction error [25]. Clustering
and deep autoencoders can be combined with deep embedded
clustering (DEC) [26].

In this paper we compare several supervised classifiers
and evaluate our proposed unsupervised approach based on
clustering in the latent space of a deep AE.

B. ROBOT-AIDED VISUAL QUALITY INSPECTION
Robot-aided visual quality inspection has been applied in
different manners, either by moving the camera around the
object, or by moving the object to be inspected in front of
the camera [8]. In both cases, achieving a proper spatial
relation between the camera and the object is critical for
obtaining high quality images for subsequent processing and
detection of defects, for example by using advanced deep
learning methods [27], [28]. Thus, camera location [29], [30],
including a robot-supported autofocus mechanism [31], and
camera motion [9] are often the subject of optimization for
quality inspection. Even so, the space in production lines is
usually rather confined due to the production and inspection
equipment and the robot may not be able to achieve optimal
viewpoints for all the aspects of the object that need to be
inspected. Thus, robot in-hand camera motion is sometimes
combined with a rotation of the object to be inspected [8].
In this paper we use an in-hand camera that is moved around
the product, but the motion of the robot is not predefined – it
is planned on-line using a motion planner.

C. ROBOT MOTION PLANNING
In recent years, considerable progress was made to realize
fast and robust algorithms for robot motion planning [32].
Their goal is to enable robots to automatically compute
their motions from descriptors of tasks and models acquired
from sensors [33]. As per the definition, the task of a
path-planner is to ‘‘find a collision-free motion between
an initial (start) and a final configuration (goal) within a
specified environment’’ [34]. Various software packages offer
readily available planning algorithms, one notable example
being MoveIt! [35]. There exist several planning libraries
that offer different types of planners. For instance, the Open
Motion Planning Library (OMPL) [13] provides geometric
and control-based planners and also includes algorithms
for constrained planning [36]. In addition, alternatives such
as Stochastic Trajectory Optimization for Motion Planning
(STOMP) [37], Gradient Optimization Techniques for Effi-
cient Motion Planning (CHOMP) [38], and Search-based
Planning Library (SBPL) [39] are available.

Tools are available within the Robot Operating System
(ROS) framework to evaluate the performance of different
motion planners. This includes the aforementioned MoveIt!,
RViz for visualization, and Planner arena [12] for bench-
marking of different planners. OpenMotion Planning Library
(OMPL) [13] is an integral part of available motion planning
tools. We used it in the context of visual quality inspection
to find planners that can generate collision-free motion
trajectories in a fast and reliable manner when steering the
camera to the desired viewpoints.

III. METHODOLOGY
In this section we provide the methodology of the proposed
defect prediction algorithm.

The proposed defect prediction approach is based on the
assumptions that 1. similar production parameters produce
a similar output and 2. there is a subset of most common
defects, which cover the largemajority of all cases. Therefore,
we use the production parameters from previously produced
parts to predict the outcome of the production process for
each new produced part, i.e., we compute the most probable
defects based on its production parameters.

As discussed in Section II, there exist different classifi-
cation approaches. The most important factors in deciding
which of these classifiers can be applied effectively are the
type and amount of production parameters gathered in the
training database. In this section, we outline our unsupervised
approach that relies on clustering of faulty parts in the latent
space of a deep autoencoder (AE), which is trained on all
available production data. In Section IV we show why other
methods, such as for example a random forest classifier [40]
or a deep neural network classifier with or without a softmax
layer, cannot be effectively applied in our case.

In the proposed approach, we first train a deepAE using the
complete database of production parameters. We then project
the production parameters of parts onto a low dimensional
latent space of a deep AE. The autoencoder passes its input
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FIGURE 2. Diagram of data clustering.

data to the output so that the output matches the input
with the highest possible precision. The data are pushed
through differently sized layers, including through the lowest-
dimensional layer, known as bottleneck or latent space. The
projected data in the latent space now encodes the data
with a small number of parameters. To discover the set of
most common defects, the production parameters of available
faulty parts are projected onto this latent space and clustered
using GMM clustering. It is important to note that the
real-world data is used to match the clusters and the defects.
This process is illustrated in Fig. 2. Each defect type is
associated with a camera viewpoint or a set of viewpoints
from where its occurrence can be inspected.

At production time, the production parameters of each
new part are projected onto the AE latent space. The
posterior probabilities of Gaussian mixture components are
then computed to predict the most probable defects. They
determine the sequence of viewpoints, where the robot
should place the camera to check for the most probable
defects, as detailed in Algorithm 1. Note that only potential
defects where the posterior probability is larger than a cut-off
posterior probability pc, determined empirically based on the
producer’s requirements, are checked. Thus, time is saved by
performing less quality checks, testing only the defects that
are likely to occur.

IV. EVALUATION OF CLASSIFICATION APPROACHES
In the following section, we introduce a functional
database containing production parameters derived from
the injection-moulding process used in manufacturing car
parts. We then discuss and analyze design choices and the
effectiveness of the proposed approach by utilizing the data
obtained from this production process.

A. PRODUCTION PARAMETERS IN INJECTION MOULDING
During the production process, hundreds of production
parameters are stored for every product (part). However,
a large portion of the parameters is not relevant for the process
itself (server name, user name, folder, . . . ). In collaboration
with a production engineer working at the manufacturer,
we identified 22 relevant production parameters. They are
listed in Table 1. Some can easily be understood, while

Algorithm 1 Procedure for Inspecting the Viewpoints of One
Product Based on the Process Parameters
procedure Check viewpoints

project new part θ (Table 1) into the latent space θAE

of a previously trained AE;
compute posterior probabilities P of the established c

GMM clusters associated to c most common defects;
arrange P in descending order;
set i = 1
for probabilities p ∈ P:

if p > pc:
choose viewpoint(s) Vi corresponding to pi;
plan trajectory τ between current robot posture

and Vi;
execute trajectory τ and set i = i+ 1;
if vision check (Fig. 11) returns error:

discard product;
break

end

TABLE 1. Injection moulding parameters θ used for prediction of defects.

the others, such as PD_DIA average and minimum values,
were proposed by the engineer. Normalized data from the
production process are, without identifiers, made available at
https://github.com/abr-ijs/production_parameters.

B. DATABASE
For evaluation we gathered a database that consists of
production parameters for 4436 good (OK) parts and 45 faulty
(NOK) parts. The production parameters for good parts were
collected in 5 days. We also had 32 faulty physical parts
with associated parameters available. The faulty parts were
collected by workers at the production line by manually
inspecting samples of products over the course of three
months. We refer to this complete database as DB1.

The main reason for many more entries for good parts
is that a typical industrial production process produces
significantly more good than bad parts. In addition, the
parts that reach the end of the production line have already
passed intermediate checks, and thus the number of bad
parts is relatively small [10]. In the use-case of this paper,
the parts that are deemed faulty at the intermediate checks
are discarded and their production data is not stored or is
incomplete. In any case, the data about faulty parts identified
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FIGURE 3. Mean Squared Error (MSE) of samples after pushing the data
through AEs with different latent space dimensions.

FIGURE 4. Database DB1 datapoints projected into the 3-dimensional
latent space of a deep AE with red dots marking datapoints for faulty
parts and smaller black dots for good parts.

at the end of the production line can initially only be collected
by assigning a human worker with sufficient knowledge [41]
to manually inspect the parts. Thus, in general, the data for
faulty parts is difficult to obtain.

To obtain the production parameters for each part, their QR
code identifier is scanned and used to extract the data from the
complete production line database. In our practical example,
the discrepancy between the number of faulty physical parts
and the number of data for faulty parts in database DB1 is
due to some parts having the (small) QR code identifier not
readable.

C. DEFECT PROBABILITY PREDICTION USING DEEP AE
AND CLUSTERING
As explained in Algorithm 1, we pass all the parameters
gathered in DB1 through a deep autoencoder (AE). The
projected data is then normalized for each parameter. The
autoencoder was designed empirically, with a 22 dimensional
input and output layers and 5 hidden layers of the size
15, 10, xLS, 10, 15, respectively. The hyperbolic tangent
sigmoid activation function was used for the neurons and
mean squared error (MSE) for the cost function. We first
checked the size of the latent space that still preserves most
of the information. As shown in Fig. 3, the mean squared
error remains consistent after xLS=3. An illustrative example
projections of parameters of parts onto the latent space of a
deep AE for DB1 is depicted in Fig. 4.
From the manufacturer we know that there are 5 typical

errors that occur with the considered parts. These include
porous material, faulty/broken sides, incomplete bottom
edge, fault/broken pins and faulty windings as a result of

FIGURE 5. Five typical defects: (a) porous material — e1, (b) faulty/broken
sides – e5, (c) incomplete bottom edge –e2, (d) faulty/broken pins – e3,
and (e) faulty windings as a result of the injection moulding process –e4.

FIGURE 6. Probability of defect determined by posterior distribution of
GMM components. The colors of the highest defect probability are
associated with defects in Fig. 5.

the injection moulding process. The defects are depicted in
Fig. 5. We therefore partitioned the data into c = 5 clusters.
In order to exclude the effect of the selected clusteringmethod
on the result of clustering, we tested two methods; k-means
andGaussianMixtureModel (GMM) clustering, with 5 target
clusters for each. The former, which is the most commonly
used clustering approach, forms spheres around the centers
of the clusters and performs hard classification, while the
latter can handle non-round shapes of clusters and perform
soft classification [42]. To check if the clustering depends on
the autoencoder, we also trained the deep AE with different
random initial parameters of the deep AE network. The
results of clustering using both methods in latent spaces of
6 different AEs are for illustration shown in Fig. 7. Clusters
are marked with different colors. Except for one object,
both algorithms clustered the data in the same manner in
all shown cases. This shows that training of deep AE with
different initial parameters will change the latent space, but
not necessarily the clustering. Due to its soft classification
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FIGURE 7. Clustering of faulty datapoints in the latent space of six autoencoders trained with different randomly selected initial
autoencoder parameters. (a): k-means, (b): GMM clustering. In all cases, the clustering and color coding is the same as in Fig. 5.

FIGURE 8. The defects on physical parts coincide with the clustering of
the associated production parameters in the latent space of the
autoencoder, highlighted with the same colors in Fig. 7.

outcome, we utilized the GMM clustering method in our
methodology.

Thus, for any new data point, we check to which cluster
it belongs using the posterior probability for all GMM
components in the latent space. Results for the posterior
probability of all DB1 data points are shown in Fig. 6.
Note, that clustering starts with random initial seeds.

As depicted in Fig. 2, to use the clusters for classification of
real data, they have to match. By associating the latent space

data points with the physical parts with known defects, shown
in Fig. 8, we can see that only one part fits into two clusters
(green and purple, shown in Fig. 8 in the 5-th row left). This
result confirms that the clustering procedure is appropriate.

D. COMPARISON OF CLASSIFICATION WITH DIFFERENT
CLASSIFIERS
As stated in Section II, there exist various classifiers that
can be used to classify the data. In this section we compare
the classification results of our proposed approach based on
clustering in the latent space of the AE with three different
supervised classifier methods on the parts with defects from
DB1: simple neural network classification, softmax neural
network classification and random forest classification. For
each of these threemethods, we used 70%of the data points of
parts with defects for training, 15% for validation and 15% for
testing. We additionally tested another unsupervised method,
i.e., classification based on AE reconstruction error.

1) DEEP NEURAL NETWORK CLASSIFICATION (DNN)
We defined a deep neural network with the input and
output normalized in range [−1,1], with the sizes of hidden
layers [15 10 6 3]. When performing the forward pass, the
denormalized output was rounded to the closest number in
range [1, 5], with the rounded output corresponding to the
identity of the defect.

2) SOFTMAX DEEP NEURAL NETWORK CLASSIFICATION
(DNN+SOFTMAX)
We used the same deep neural network but added a softmax
layer at the end.

3) RANDOM FOREST CLASSIFICATION (RF)
We used 50 estimators that describe how many trees are
trained. The minimal number of leaf node observations was
set to 1.

4) AUTOENCODER RECONSTRUCTION ERROR (AE-RE)
The error of AE reconstruction can be used, e.g., see [25]. For
this case, we trained the autoencoder on the good parts and

93904 VOLUME 12, 2024



Z. Lončarević et al.: Adaptive Visual Quality Inspection Based on Defect Prediction

TABLE 2. Average classification and clustering results for 100 attempts
using different classifiers and the proposed AE LS GMM clustering
algorithm.

then checked the reconstruction of good and bad parts, when
passed through the AE. We clustered the reconstruction error
to check if it can match with the real data.

5) GMM CLUSTERING IN THE LATENT SPACE OF AN AE (AE
LS GMM)
We clustered the projection in the latent space to match with
the real data We also tested whether clustering the data points
in the latent space of an AE is consistent. To do this, we first
obtained the clusters that match the real-world data and then
re-clustered the data by changing the initial center of the
clusters.

Note, as mentioned above, the choice of classifier highly
depends on the available database and potentially, with amore
even database, supervised classifier would do much better.
Please see also the discussion in Section VII.

Results in Table 2 show that, as expected, the three
supervised classifiers do not perform well with a low number
of data samples because each data point that is left out
for validation makes a large difference. Using all the data,
however, would lead to over-fitting. Unsupervised anomaly
detection performed better. AR-re could reliably predict that
there was a defect for 78.44% of cases, but could not be
used to classify the defect, as the defect classification was
only 55.45% accurate. GMM clustering in the latent space
of an AE (AE LS GMM), on the other hand, led to better
classification rates, where 31 out of 32 items are correctly
classified (96.9%), and was more consistent with the real-
world data, as changing the cluster centers still matched the
data in 85% of the time.

Our approach proceeds with checking the parts in the
descending order of probabilities of possible defects. This
means that the motion of the robot is potentially different for
each part that needs to be inspected.We therefore generate the
robotmotions that place the camera at the required viewpoints
online using a suitable motion planner.

V. ADAPTIVE VISUAL QUALITY INSPECTION
The production example presented in the introduction calls
for the inspection of parts from 10 different viewpoints, even
though there are only 5most common defects. This is because
some of the defects have to be inspected from more than one
viewpoint (e.g. pins, porous material). In addition, there is
the starting point of the robot. Thus, the robot potentially
needs to move between 11 different postures. The physical
implementation and simulation of the real visual quality
inspection cell are depicted in Fig. 1.

A. INSPECTION VIEWPOINTS
The task of the production engineer is to associate the
potential defects with the predefined camera viewpoints (V).
The viewpoints must be selected in such a way that the critical
surface area of the part is visible and that the acquired images
are sharp. Additionally, the engineer should make sure that
the associated robot postures are reachable in the confined
space of the workcell. Some of the robot postures that provide
good viewpoints of the observed part are displayed in Fig. 9.
Because the part is small, some of the postures are quite close
together. In our practical example, the engineer selected two
viewpoints from the side of the object, one for the sides and
windings and one for the bottom of the product. The other
defects were observed from the top.

The issue with adaptive visual quality inspection is that
potentially there are a lot of different motion trajectories
between viewpoints. If we consider the trajectories from
one viewpoint to another and back as two different motion
trajectories and there arem different camera viewpoints (plus
the initial robot posture), then there are (m+ 1)×m possible
motion trajectories between different viewpoints. In our
practical example, this results in 110 possible trajectories.
They can be either generated in advance and stored or they
can be generated online.

B. MOTION PLANNERS
Many different motion planners exist, as presented in the
related work section. We usedMoveIt! [35] software package
for motion planning and Planner arena [12] for benchmarking
of different planners for steering the camera in adaptive visual
quality inspection. We tested 21 different motion planners
available in Open Motion Planning Library (OMPL) [13].
The planners are listed in Table 3 and the number associated
with each planner is used to present the results of our
evaluations.

C. EXPERIMENTAL PROTOCOL AND METRICS
Each planner was used to generate trajectories between all
possible pairs of 11 robot postures (10 viewpoints + the
starting point), 250 times for each pair. Several executions
were executed because the planners use random sampling
when generating the trajectory points. In general, there
is no motion planner that is optimal for every given
use-case [12]. Thus, we checked various parameters to
determine which planner performed best in our practical
example. The calculations were done on a PC with AMD
Ryzen Threadripper PRO 5975WX processor and 512GB
of RAM.

First, one needs to check if the robot motion generated
by the selected planner reaches the desired final pose. If the
planner does not converge, it is immediately ruled out.

Next, since short cycle times are needed to prevent
bottlenecks in the production, the average time required for
planning was checked.

The length of motion, as the next evaluation metrics, was
computed as the sum of joint angle differences travelled by all
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FIGURE 9. Seven out of eleven postures for visual quality inspection shown in RViz visualization (a) and in real
world (b).

TABLE 3. List of tested OMPL planning algorithms.

robot joints starting at the initial and final robot configuration
q0 and qn, respectively

L =

n∑
i=1

∥qi − qi−1∥. (1)

Finally, smoothness S of the Cartesian space path,
as introduced in [43], was evaluated. It was obtained by
averaging the squared angles between consecutive trajectory
segments

S =
1
n

n−1∑
i=1

φ2
i . (2)

To compute the angles, we sampled a sequence of n +

1 positions r0, r1, . . . , rn ∈ R3 on the Cartesian space path,

TABLE 4. Success rate of planners for 250 planning attempts and
110 movements between the specified camera postures.

distributed from the beginning to the end of the path. The
angle φi between each triple of consecutive points {ri−1, ri,
ri+1} can be calculated using

φi = π − arccos
(
(ri−1 − ri)⊤(ri+1 − ri)
∥ri−1 − ri∥∥ri+1 − ri∥

)
. (3)

VI. MOTION PLANNER EVALUATION
We evaluated the planners listed in Table 3. The results of
convergence to the desired posture are shown in Table 4. It can
be seen that some planners did not converge to the solution in
all 250 planning sessions. These planners were immediately
ruled out.

As shown in Fig. 10a, some of the planners took an order
of magnitude longer than the others and reached the cut-off
time of 2 seconds. These planners were also excluded from
further consideration.

Length of motion metrics results, as defined in (1), are pre-
sented in Fig. 10b. These were combined with Cartesian path
smoothness. Considering the results in Table 4 and Fig. 10,
the best result was obtained by planner #21, Bi-directional
Transition-based Rapidly-exploring Random Trees (BiRRT).
This planner combines the exploratory strength of RRTs with
the efficiency of stochastic optimizationmethods (e.g.,Monte
Carlo optimization) [44]. The BiRRT method converged to
a solution all the time, was very fast, and the resulting
trajectories were smooth and short. Variations of RRT, such
as T-RRT performed on the same level if not better, but
did not converge in all planning attempts. Planners #1, 2,
19 and 20 were excluded because of longer and less smooth
trajectories, even though the results were close to the chosen
planner.
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FIGURE 10. Planner evaluation results. (a) planning times. (b) length as defined in (1), cut at 50 rad. (c) smoothness as defined in (2).

VII. DISCUSSION
It is important to note that parts for the automotive industry
are produced in large series. Any possible defects are
problematic for the overall production process because they
might cause delays in the time of delivery of the final
product or even recall of the vehicles that are already being
used in traffic. Since such recalls can be expensive for the
manufacturer and cause the loss of trust from the customers,
it is important for the manufacturers to invest and implement
better methods for visual quality inspection. It is desirable
to reduce the number of undetected faulty parts to zero.
Note that technological limitations still cannot provide 100%
optical control in real-world production environments.

The defect prediction approach presented in this paper
mostly depends on the available data. Additional data-points
can always be added and the clustering re-trained. Thus, with
an increasing amount of data points for good and faulty parts,
it is possible to raise the trust in the prediction of possible
defects. Manufacturing companies, however, tend to produce
orders of magnitude more of good parts than faulty parts.
Thus, collecting a large database, especially at the end of the
production process where the parts that reached this point
have already passed the intermediate quality checks, is not
easy. As can be seen in the practical production example
considered in this paper, the database of good and faulty parts
(DB1) can be extremely lopsided.

With more data available, the choice of classification
algorithms may also change. Our proposed approach shows
good classification results even though the amount of relevant
data was low. Furthermore, the comparisons show that
some approaches are really not appropriate in this case, i.e,
supervised learning classifiers are known to require a lot
of data [21]. The proposed approach combines both AEs
and clustering. Using them separately, for clustering in the
data space, or for detecting defects through reconstruction
error has not shown good results. Conceptually similar to
our method is also deep embedded clustering (DEC), where
the clustering is implemented as an additional layer of the

encoder. Since it can only be trained on the outcome of
already implemented clustering, it offers only an additional
implementation which will take the data as the input and
provide directly the possibility of belonging to a cluster,
without the need to check separately. Thus, the results will
be the same.

Our approach can be used in two ways: either to i) check
all the parts after the final production stage, but using the
prediction model to change the order of inspections, or ii):
to only checks the most likely defects. Under i), all defects
will be found, but it will take the longest, as shown in
Table 5, which shows the average times for 100 iterations of
the inspections for all the defect combinations. With enough
confidence in the prediction model, we can save close to 80%
of the time when checking for only one defect, or around
55% of the time when checking for two, as listed in Table 5.
Checking for 3 defects saved roughly 36% of the time, while
checking for 4 out of the five most likely defects on average
saved around 23% of the inspection time.

In our approach, the robot must frequently move between
different pairs of viewpoints no matter if we check for all
or only some of the defects. We therefore tested which
of the available motion planners is best for our practical
production process. As stated in [12], there is no motion
planner that works best in every situation. For the considered
production process, the extensive statistical evaluation has
shown that several planners might be appropriate. The best
results were obtained with Bi-directional Transition-based
Rapidly-exploring Random Trees (BiTRRT) method. In this
example, learning 110 trajectories and then recalling them
from the database is still viable. Nonetheless, it is easy
to imagine visual inspection processes where many more
motion trajectories would need to be generated. This is,
however, not necessary because the available motion planners
can generate trajectories for visual quality inspection in a fast
and reliable manner.

For completeness of the adaptive visual quality inspection
approach, we implemented a deep neural network classifier
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TABLE 5. Time required for inspecting different combinations of defects
using the selected BiRRT motion planner. The Table shows the mean and
standard deviation of computational time needed for trajectory planning
and execution for different defect combinations, as well as the percent of
the saved time compared to the inspection from all viewpoints.

FIGURE 11. Results of final visual quality inspection for the ‘‘incomplete
bottom edge’’ (e2) defect of several parts. Faulty parts are marked with a
red edge.

that takes the image as the input and classifies the part as good
or faulty at the output. The results of this classification for the
incomplete bottom edge defect are shown in Fig. 11.

VIII. CONCLUSION
The presented approach, demonstrated on real-world data
and objects, takes the production parameters of an injection
moulding line to predict potential defects of themanufactured
parts. We have shown that both supervised and unsupervised
classification methods can struggle with the problem. As is
common with learning approaches, a small database prevents

the use of supervised learning classifiers, as they either
overfit or achieve poor classification results. Our proposed,
unsupervised method shows how to use autoencoders and
clustering of production parameters to predict what kind of
defect might be present.

The evaluation has shown that the clustering and clas-
sification are robust against the training of AE networks.
The classification results and the comparison to the real data
show, that the proposed method can be effectively applied
for default prediction. The use of the proposed method can,
without having to check the most common defects, reduce
their number without introducing a delay in the production.
it should be noted, that the proposed approach provides the
initial, starting point in the production. Once added to the
production line, the database can be potentially increased.
Thus, either our approach or even supervised deep learning
classification approaches could, at a later stage, be applied
more effectively.

We have also analyzed different motion planners to
generate motions that bring visual inspection cameras to the
required viewpoints in a collision-free manner. The timing
results show that considerable time can be saved when only
some of the most common potential defects are inspected.
However, it is the prediction which potential defects need to
be checked for, that makes the approach more reliable.

While in our approach we close the feedback loop between
the prediction of the defect and the camera viewpoint,
for a true ZDM approach the closed loop should consider
changing the production parameters based on the prediction
of feedback. This remains an open research question and
future work. With a larger database, one could improve the
confidence in the predictions from the model. Additionally,
a larger database would enable one to evaluate the effect
of specific models on the outcome of the production, for
example with Shapely values [45], and thus influence the
production process in a closed-loop manner.
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