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ABSTRACT Automated ventricular function analysis can enhance healthcare consistency and accessibility,
particularly in resource-limited settings. Current segmentation methods trained on adult heart ultrasounds
struggle to accurately outline the irregular shape of the left ventricle owing to their limited exploration of
border features. HFE-Mamba is introduced for left ventricle segmentation with shape awareness in order
to address the existing challenge. Therefore, this proposal introduces the High-Frequency Enhancement
Block (HFEB), enhancing the high-frequency component of left ventricles, particularly the boundary area
in pediatric echocardiograms. Moreover, this also facilitates the investigation of target boundary specifics
while extracting features. The incorporation of newly suggested vision mamba layers into encoder and
decoder branches enhances the model’s computational and memory efficiency while capturing global
dependencies. Tests conducted on two publicly available datasets indicate the superior predictive accuracy
of the HFE-Mamba model in identifying target shapes.

INDEX TERMS Mamba, high frequency, left ventricle, echocardiogram, segmentation.

I. INTRODUCTION
Congenital heart diseases (CHD), known for their significant
impact on mortality and morbidity, has long been a critical
health concern [1]. Due to its portability, affordability,
and real-time capabilities, the Echocardiogram is essential
in clinics to detect and treat CHD in children. Besides,
accurate segmentation of cardiac structure in echocardiog-
raphy images is a critical step for different analytical and
diagnostic processes [2]. A schematic illustration ofmanually
delineating anatomical structures in an echocardiogram is
displayed in Figure 1.

Among these indices, the Left Ventricular Ejection Frac-
tion (LVEF) is the most commonly used and vital metric for
assessing systolic function [3]. The LVEF is predominantly
calculated using the biplane Simpson’s standard protocol
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method in clinical settings [4]. This technique involves the
manual delineation of the left ventricular endocardium by
physicians in specific frames of the apical two-chamber
(A2C) and apical four-chamber (A4C) echocardiographic
views, a process essential for the identification of the
end-systolic volume (LVESV) and end-diastolic volume
(LVEDV). However, echocardiography often encounters
challenges including significant speckle noise, limiting its
imaging technique. This issue can lead to blurred boundaries
and potential artifacts in the cardiac tissue imagery, making
the tracing process more complex and dependent on the
physician’s expertise. Therefore, this manual approach to
calculating LVEF is prone to errors, which can significantly
affect the reliability of the diagnostic outcome, highlighting
the need for precision and care in this critical measurement.

Machine learning and artificial intelligence have signifi-
cantly improved the dependability and precision of evaluating
left ventricular (LV) function using echocardiography in
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FIGURE 1. The examples of manually delineating anatomical structures in an echocardiogram.

adults, as shown by multiple research projects. Machine
learning ismore difficult in youngsters due to diverse anatom-
ical anomalies, heart rate, stature, and cooperative capacity.
Various factors influence the spatial and temporal resolutions,
eventually influencing echocardiographic imaging quality
[5]. As a result, there is concern about how well machine
learning models built on adult datasets can be applied in
pediatric echocardiography owing to the more significant
variabilities.

Numerous transformer topologies have been investigated
following the Vision Transformer’s (ViT) success in medical
image tasks [6]. Swin-Unet [7] refers to a transformer-based
U-shaped Encoder-Decoder network that has been one of
the most vital techniques. Nevertheless, the self-attention
mechanism in Transformers presents difficulties in speed
and memory consumption when dealing with distant visual
relationships, including exploring high-resolution images.
Recently, state space models (SSMs) have exhibited signif-
icant potential for long-sequence modeling. Mamba [8] is a
modern state space model excelling in capturing long-range
relationships compared to transformers. This hardware-aware
model is designed with linear complexity to guarantee
efficient training and inference operations.

The significance of frequency domain analysis in com-
puter vision is well-documented in the literature [9], [10],
emphasizing that low frequencies in images represent
global structures and color while high frequencies expose
particular features. We draw inspiration from frequency
learning research to develop HFE-Mamba, highlighting
high-frequency boundary details. Our HFE-Mamba includes
a unique module, the High-Frequency Enhancement Block
(HFEB), that concentrates on high-frequency (HF) data,
which is essential for identifying object boundaries in
segmentation assignments. Our contributions can be outlined
as follows:

• High-Frequency Enhancement Blocks (HFEB) are
incorporated into our network encoder to emphasize

the high-frequency elements of the retrieved feature
maps, which correspond to the boundaries of segmented
objects, enhancing shape-aware segmentation accuracy
during feature extraction.

• The HFEB and local feature extraction are integrated
with Mamba’s global dependency modeling to obtain
high performance on two distinct pediatric echocardio-
gram datasets.

• Experiments demonstrate that our HFE-Mamba per-
forms exceptionally well on two public datasets
compared to other recently successful segmentation
algorithms.

II. RELATED WORK
Till the present, deep learning (DL) development has
promoted automaticmedical image segmentation, and several
well-known deep learning frameworks have provided good
ideas for echocardiography segmentation with outstanding
performance.

A. CONVENTIONAL LEFT VENTRICLE SEGMENTATION
Recently, innovative deep-learning methods have become
increasingly vital in medical analysis and represent the
forefront of leveraging complex neural networks for precise
left ventricular segmentation in echocardiography, as summa-
rized in Table 1. MAEF-Net [11] employs a multi-attention
mechanism and spatial pyramid feature fusion, signifi-
cantly improving the accuracy. Similarly, SegCaps [12]
introduces an optimized capsule-based network, addressing
conventional CNNs’ limitations through effectively capturing
spatial information and part-whole relationships with fewer
parameters. EchoEFNet [14], another multi-task network,
leverages ResNet50 with dilated convolution. It segments the
left ventricle and identifies landmarks, which can therefore
facilitate the automatic calculation of the left ventricular ejec-
tion fraction (LVEF) using the biplane Simpson’s method.
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TABLE 1. Recent innovative deep-learning methods for precise left ventricular segmentation in echocardiography.

A few researchers have been attempting to overcome
data limitations, processing, and consistency challenges. One
method combines YOLOv7 and U-Net for segmenting multi-
ple anatomical structures in echocardiographic images [13].
Another self-supervised contrastive learningmethodwas pro-
posed [15], particularly effective when annotated images are
scarce and boosts the performance of UNet and DeepLabV3
with minimal training data. Furthermore, a new framework,
which addressed temporal inconsistency in CNN-based
segmentation [16], has enhanced 2D+time apical long-axis
heart shape segmentation in echocardiography using a
constrained autoencoder for spatiotemporal correction based
on physiologically realistic heart shapes.

B. LEFT VENTRICLE SEGMENTATION IN PEDIATRIC
CARDIOLOGY
AI modalities have also expanded feet to the specialty of
pediatric cardiology. It was found that using neural networks
and machine learning has significantly improved the LV
segmentation of echocardiograms, which can thus augment
the clinicians’ diagnostic accuracy of pediatric heart diseases.

A novel algorithm presents a Dual Attention Enhancement
Feature Fusion Network, integrating a dual-path feature
extraction module (DP-FEM) for rich feature extraction
and a high and low-level feature fusion module (HL-
FFM) for semantic and spatial information, with a unique
hybrid loss function to address pixel-level misalignment
and boundary ambiguities [17]. Similarly, an Attention-
Guided Dual-Path Network named AIDAN was introduced
to deal with challenges including low signal-to-noise ratio
and internal variability in heart appearance [18]. It employs a
Convolutional Block AttentionModule (CBAM) for discrim-
inative feature learning and efficient spatial and contextual
path fusion. Furthermore, the Multi-Scale Wavelet Network
(MS-Net) algorithm focuses on hierarchical feature-guided
fusion and uses Discrete Wavelet Transform to lower
the impact of image noise [19]. The MS-Net combines
bidirectional feature fusion (BFF-Net) and a wavelet-Unet
(W-Unet) module, effectively integrating context and detail
information for accurate segmentation.

While exhibiting novel algorithms for pediatric echocar-
diography segmentation, the studies above are limited by their
reliance on proprietary datasets. The EchoNet-Peds dataset,
developed by Stanford University, indicates the first publicly
available pediatric echocardiography dataset [20], featuring
4,467 echocardiograms from 1,958 patients, including a
43% female demographic and ages ranging from newborns
to 18 years. This comprehensive dataset yielded 7,643
video clips and 17,600 labeled images, primarily from A4C
and PSAX view clips. As a result, the video clips were
strategically allocated, with 6,114 (80%) for training, 765
(10%) for testing, as well as 764 (10%) for validation.

C. FREQUENCY DOMAIN ANALYSIS IN VISION
The frequency domain analysis has indicated a significant
advancement in CV tasks. LITv2 [9], utilizing the HiLo
mechanism, differentiates high and low-frequency details.
This therefore enhances local and global features. Simi-
larly, the Camouflaged Object Detection (COD) approach
incorporates frequency domain clues, with key components
Frequency Enhancement Module (FEM) and High-Order
Relation Module (HOR) for better detection of objects
camouflaged in their environments [10].

Innovations including PIDNet [21], SpectFormer [22], and
SVT [23] further demonstrate this trend. PIDNet’s three-
branch design, inspired by Proportional-Integral-Derivative
(PID) controller, adeptly handles detailed, contextual, and
boundary information, which can ensure effective fea-
ture fusion. The SpectFormer merges spectral layers with
attention mechanisms, showing adaptability across various
tasks and datasets. With its spectrally scattering network,
SVT adeptly manages attention complexity and captures
fine-grained details, standing out in both efficiency and
performance. These models are pivotal in the evolution
of vision transformers, emphasizing the significance of
integrating novel concepts for enhanced visual processing.

D. MAMBA
Mamba [8] is a novel deep sequence model architecture
addressing the computational inefficiency of traditional
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FIGURE 2. The overall structure of the proposed model HFE-Mamba.

Transformers on long sequences. It is based on selective
state space models (SSMs), improving upon previous SSMs
by allowing the model parameters to be input functions.
The mathematical function of SSMs can be represented as
follows:

x ′(t) = Ax(t) + Bu(t) (1)

y(t) = Cx(t) (2)

in which, state matrix A ∈ RN×N and B,C ∈ RN are
its parameters, and x(t) ∈ RN denotes the implicit latent
state.

This enables Mamba to selectively propagate or for-
get information alongside the sequence length dimension,
depending on the current token. Despite this change pre-
venting efficient convolutions, the architecture incorporates a
hardware-aware parallel algorithm that operates in recurrent
mode, keeping linear scaling in sequence length while
achieving faster inference speeds.

Specifically, this hardware-aware algorithm utilizes a
scan operation instead of convolution, effectively removing
the requirement to create the extended state. To enhance
GPU utilization and efficiently materialize the state h
within the memory hierarchy, hardware-aware state expan-
sion is enabled by selective scan. This design decision
is vital because it eliminates unnecessary input/output
access throughout the many layers of the GPU mem-
ory hierarchy, thus improving memory management and
utilization.

Moreover, empirical evidence demonstrates that our tech-
nique achieves a speed improvement of up to thrice on
contemporary GPUs compared to earlier methodologies. The
substantial acceleration highlights the benefits of developing
algorithms with a profound comprehension of the fundamen-
tal hardware architecture.

III. METHODOLOGY
As shown in Figure 2, the proposed HFE-Mamba design
comprises an encoder, bottleneck, decoder, and skip con-
nections. Skip connections combine the multi-scale features
from the encoder with the up-sampled features, similar
to the U-Net architecture. Moreover, we will provide a
more detailed explanation of our model in the upcoming
subsections.

A. HIGH-FREQUENCY ENHANCEMENT BLOCK
We provide a new approach called High-Frequency
Enhancement Block (HFEB) to enhance the processing of
high-frequency information for semantic segmentation tasks.
Figure 3 displays the structure of our approach.

The HFEB includes a Dual-Tree Complex Wavelet
Transform (DTCWT) handling Low-Frequency (LF) and
High-Frequency (HF) components. Then, these compo-
nents are passed through the Tensor Blending Method
(TBM) and Einstein Blending Method (EBM) to produce
Low-Frequency Representation (LFR) and High-Frequency
Representation (HFR), which are adjusted by trainable
weight matricesWφ and Wψ [23].

This module employs the Dual-Tree Complex Wavelet
Transform Inverse (DTCWT Inverse) to process only the
High-Frequency Representation (HFR) through eliminating
the low-frequency component, enhancing high-frequency
details. An ‘Adding’ process combines outputs from the
Cross-Attention and Self-Attention modules in order to
emphasize fine-grained details and long-range dependencies
in the data.

The Self-Attention mechanism isolates and processes the
high-frequency component. With the application of this
technique, the model can concentrate on particular regions of
the image with notable textural details, therefore enhancing
the importance of this information. The formulation of
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FIGURE 3. The structure of the high-frequency enhancement block.

Self-Attention is as follows:

Self-Attention(Q,K ,V ) = softmax
(
QKT
√
dk

)
V (3)

where Q, K , and V are the query, key, and value matrices
derived from the HFR after the DTCWT Inverse procedure.

In the HFEB framework, the Cross-Attention mechanism
combines signals from different frequency spectra. Queries
derived from the high-frequency component are applied to
modulate keys and values collected from the low-frequency
domain, enabling the integration of global and fine-grained
information. The simplified expression of Cross-Attention is:

Cross-Attention(QHF ,KLF ,VLF ) = softmax

(
QHFKT

LF
√
dk

)
VLF

(4)

where QHF is the query matrix derived from the HFR, while
KLF and VLF are the key and value matrices derived from the
LFR, respectively.

B. VISION MAMBA BLOCK
A block of SSM handles the input tokens after passing via
the HFEB. In this study, we drew inspiration from Vision
Mamba [24], including bidirectional sequence modeling
specifically tailored for vision applications. These designs
incorporate modest yet crucial changes to the typical SSM
block design.

Figure 4 displays the Vision Mamba Block (VMB)
integrating forward and backward directions. It benefits from

bidirectional state space modeling, providing data-dependent
global visual context and comparable modeling capabilities
for Transformers with reduced computational complexity.

C. ENCODING AND DECODING PATH
The encoder layer combines HFEB and VMB to collect
high-frequency details and focus on relevant spatial regions.
Blocks are stacked systematically to embed the input image
into a latent space and conduct representation learning over
consecutive stages.

The VMB plays a vital role in reconstructing spatial details
from encoded characteristics within the decoder architecture.
The skip connections, like in the Swin-Unet model [7],
combine the multi-scale features from the encoder with the
up-sampled characteristics. Shallow and deep features are
combined to mitigate the loss of spatial information due to
down-sampling.

IV. MATERIALS AND EVALUATION METRICS
The current section will begin by providing a thorough
overview of the dataset utilized to assess the proposed
model’s effectiveness. Then, we will cover the implementa-
tion specifics and describe the assessment metrics used in our
study.

A. DATASET
The dataset comprises echocardiographic evaluations from
patients at Lucile Packard Children’s Hospital Stanford
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FIGURE 4. The structure of the vision mamba block.

TABLE 2. Performance comparison with other methods on both PSAX and A4C.

from 2014 to 2021, authorized by the Stanford University
Institutional Review Board. The dataset contains totally
4,467 echocardiograms collected from 1,958 patients, 43%
female, aged between 0 and 18 years (mean ± SD: 10 ±

5.4 years). The patients were classified into two groups based
on their echocardiographic results: those with structurally
normal hearts and average ejection fraction (EF) and those
with structurally normal hearts but systolic dysfunction
(including dilated cardiomyopathy, chemotherapy-induced
systolic dysfunction) without congenital heart disease [20].

Echocardiograms were performed with Philips iE33,
Siemens Acuson SC2000, or Philips Epiq 7 ultrasound
machines. A Siemens Syngo Dynamics picture archiving and

communication system were used to save and examine the
videos. After additional processing, the dataset was employed
to obtain apical four-chamber (A4C) and parasternal short-
axis (PSAX) video clips, totaling 7,643 video clips and
17,600 annotated pictures. The video clips were partitioned
into training (80%, n=6,114), testing (10%, n=765), and
validation (10%, n=764) sets for machine learning purposes.
In addition, 86% of the trials had an ejection fraction (EF)
equal to or greater than 55%.

B. IMPLEMENTATION DETAILS
The computational setup consists of a single Tesla
V100-32GB GPU, a 12-core CPU, and 61GB of RAM. The
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FIGURE 5. Visual comparisons of different methods on the A4C dataset.

system operates on an Ubuntu 18 environment with CUDA
11.0 and Pytorch 1.13 software.

The network was trained for 200 epochs, beginning with an
initial learning rate of 1e-4. Batch sizes of 24 were selected
for training to obtain a compromise between computational
efficiency andmodel accuracy. Themodel’s performance was
assessed every five epochs, and early halting with a patience
parameter of 10 was implemented to prevent overfitting. The
network architecture was organized with layers configured
in depth [2, 2, 2, 2]. The design depended on the multi-head
attention mechanism with a specified number of heads [3, 6,
12, 24].

C. EVALUATION MEASURES
The current section demonstrates the statistical metrics
adopted for comparing our predicted LV region (SP) with the
ground truth manually delineated by the experts (SG). In this
study, we employed three segmentation performance metrics:
Dice similarity coefficient (DSC), Precision, and Recall [25].
The DSCmeasure is defined as the intersection of the PR and

GT regions and is defined as:

DSC =
2(SP ∩ SG)
SP + SG

(5)

Precision and recall are determined by the number of true
positives (TP), false positives (FP), and false negatives (FN)
in the categorization and can be formulated in the following
definitions:

Precision = (TP+ FP)/TP (6)

Recall = (TP+ FN )/TP (7)

where TP is the number of pixels or points accurately
categorized as LV by both SP and SG and FP represents the
pixels or points that SP mistakenly classifies as LV but are
not misclassified by SG. FN indicates the pixels or points SP
misclassified as non-LV but are LV as defined by SG.
To assess the computational efficiency of deep learning

models and evaluate neural network performance, particu-
larly for deployment in real-world applications or on specific
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FIGURE 6. Visual comparisons of different methods on the PSAX dataset.

hardware, the following additional statistical measures are
also used [26]:

1) Number of Parameters quantifies the combined number
of parameters within the neural network model, which
include weights and biases.

2) Inference Speed pertains to the speed at which the
model can handle input data and generate output
predictions during the inference phase.

3) GPU Memory represents the RAM capacity on the
GPU needed to store the neural network model.

4) GFLOPs evaluate the computational efficiency of a
neural networkmodel based on the quantity of floating-
point operations.

V. EVALUATION RESULTS AND DISCUSSION
This part presents the experimental findings to showcase
the effectiveness of our method compared to other current
methodologies. The study initially performed comparative
experiments using the U-Net architecture with three different
backbones [27]: FCN, DeepLabV3, and PSPNet, ResNet50
[28], in addition to other state-of-the-art segmentationmodels

including Swin-Unet [7], Spectformer [22], Uniformer [30],
[31], PVT [29], Flatten Transformer [32], and MaxVit [33].
The findings in Table 2 demonstrate that our model
outperforms other models regarding DSC on PSAX and
A4C datasets, respectively, implying higher quality in shape-
aware segmentation. The values in bold indicate the highest
numbers for the respective criteria.

A. QUALITATIVE COMPARISON WITH OTHER METHODS
We provide a detailed qualitative visualization of the left
ventricle segmentation results in Figure 5 and Figure 6.
Other approaches struggle with inaccurate segmentation of
target forms in pediatric echocardiograms because they do
not consider boundary information. Our proposed technique
closely resembles the ground truths regarding shape similar-
ity, which can offer more precise and detailed delineations of
the left ventricle in pediatric echocardiograms.

B. ABLATION STUDIES
Initially, experiments were performed to explore the impact
of changing the number of HFEB in the HF-Mamba encoder
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TABLE 3. Ablation study of HFEB on performance metrics across PSAX and A4C datasets.

TABLE 4. Ablation study of vision mamba block on performance metrics across PSAX and A4C datasets.

FIGURE 7. Visualization of efficiency comparisons between HFE-Mamba and other models on the PSAX
dataset.

structure. We inserted 1, 2, and 3 HFEBs into the encoder
path’s first, second, and third stages, namely HFE-Mamba-1,
HFE-Mamba-2, and HFE-Mamba-3, as shown in Table 3.

The results demonstrate that including HFEBs leads to
enhancements in both datasets in terms of evaluation metrics
(DSC and Recall), highlighting the beneficial impact of our
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TABLE 5. Comparison with other methods regarding parameters (M), inference speed (ms), GFLOPs, and GPU memory (GB) on the PSAX dataset.

HFEB in enhancing shape-aware segmentation during feature
extraction.

Table 4 examines the impact of replacing the Mamba
branch with ViT structures of quadratic (PVT) and linear
complexity (Flatten ViT, MaxViT). The results indicate that
Vision Mamba may provide higher accuracy than other
models with linear or quadratic complexity.

C. MODEL EFFICIENCY COMPARISON
Table 5 compares model efficiency between HP-Mamba,
classic deep learning architectures, and ViT methods with
quadratic and linear complexity based on model parameters,
inference speed (ms), GPU memory usage, and GLOPs.
Therefore, our P-Mamba exhibits superior performance
across all metrics compared to other methods. It can be
seen from Figure 7 that our proposed method also has
lower GFLOPs than state-of-the-art approaches, even though
our segmentation performance surpasses them significantly.
In addition, the attention-free architecture of our Mamba
design significantly enhances model efficiency compared to
linear complexity models.

VI. CONCLUSION
To conclude, this study introduces a novel deep network
structure, HFE-Mamba, designed for segmenting the left
ventricle in pediatric echocardiograms, specifically empha-
sizing high-frequency augmentation processes. HFE-Mamba
successfully captures fine details and maintains a balance
with the low-frequency domain by including HFEB in the
encoding phase and applying cross-attention. HFE-Mamba
utilizes vision mamba layers to enhance compute and
memory efficiency through capturing global dependencies
with a lightweight architecture with low computational
requirements. Comprehensive tests on both LV datasets
indicate that it performs well in various imaging scenarios.
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