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ABSTRACT Course recommendation is vital for improving students’ learning efficiency. In the learning
process, students’ interests evolve, learning cycles and course scheduling are closely related to temporal
information. However, previous course recommendation methods discard it as irrelevant, leading to poor
recommendation performance. In addition, the lack of explainability of the course recommendations reduces
students’ engagement and trust in online learning. To solve two problems, this paper proposes a Learning-
motivation-boosted Explainable Temporal point process model for Course Recommendation (LETCR).
Firstly, LETCR considers the timestamps in interaction records as absolute time and the sequence of
records as relative time, and it calculates the different contributions of historical interaction records to
the recommendation results. Secondly, LETCR proposes four factors that affect students’ course selection
from the perspective of learning motivation: interest preference, follow relationship, conformity and
popular course. Finally, LETCR models these with a temporal point process, so as to improve model’s
explainability. Extensive experiments on the MOOCCourse dataset show that LETCR outperforms other
advanced recommendation models by 7.09% and 9.28% on R@10 and NDCG@5, respectively, and has
high explainability.

INDEX TERMS Course recommendation, temporal point process, e-learning, explainable recommendation,
learning motivation.

I. INTRODUCTION
The advent of educational technology has simplified stu-
dents’ access to courses via online platforms [1]. However,
with the burgeoning number of available courses, information
overload has become a significant issue [2]. In response,
course recommendation (CR) systems have garnered substan-
tial interest among researchers, aiming to bolster learning
efficiency [3].

Researchers have developed various models for CR [4],
[5], including models based on collaborative filtering [6],
models based on GNN [7] and models based on reinforce-
ment learning [8] etc. Current CR methods have achieved
good results but still face two problems:
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(1) These methods only utilize static student-course
interactions as input and assume only previously learned
courses and their order will affect the next recommended
course [9]. Jiang et al. [10] input interactions into a modified
RNN. Wang et al. [11] input interactions as a bipartite
graph. However, students’ preferences change over time and
temporal features in interactions provide crucial information,
such as students’ learning cycles. For example, in Figure 1,
both student A and student C studied advanced mathematics.
So CR system may suggest study linear algebra at t7. It is
noteworthy that student A studied advanced mathematics at
t6, while student C studied at t1. Their interaction time will
influence the recommendation result differently.

(2) Many researchers have opted for complex model
architectures to achieve higher accuracy, often at the expense
of explainability—a key factor in user satisfaction with
recommender systems [12]. CR should not only recommend
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FIGURE 1. Examples of Student Learning Sequences. The black arrows represent the order in which students studied the courses. The red
arrow represents the impact on students’ course selection.

suitable courses, but also explain students’ motivations for
choosing them. Such potential information is contained in
student’s historical interaction. For example, if Student A,
seen as a role model by Student B, chooses a particular
course, it might influence Student B’s choices. Similarly, if a
course like ChatGPT gains popularity at t7, it’s more likely
to be recommended. Previous CR methods have overlooked
these nuanced factors that influence course selection.

In this paper, we propose a Learning-motivation-boosted
Explainable Temporal point process model for Course
Recommendation (LETCR). To address problem 1, temporal
features are introduced. We explore two useful temporal
patterns: absolute time and relative time. Absolute time
models the month and date of each interaction. Relative time
models the sequence of interactions. To address problem 2,
we explore the factors that influencing course selection based
on learning motivation. According to self-determination
theory (SDT) [13], [14], the motivation is divided into
intrinsic and extrinsic learning motivations. Intrinsic learning
motivation reflects students’ interest and satisfaction, which
is manifested in CR as interest preference. Depending on
degree, extrinsic learning motivation can be divided into
external regulation, intake regulation, identity regulation, and
integration regulation. External pressure and the desire to
avoid punishment are the main sources of the first two,
manifested in CR as popular course and conformity. Identity
regulation and integration regulation are the transition from
extrinsic to intrinsic motivation, when students realize the
value of learning by observing role models, reflected in
CR as follow relationship. Since temporal point process
(TPP) can model the impact of past events on the present,
we take it as backbone. Five parameters, combined with the
base rate specific to TPP, will bring rich explainability to
recommendation results.

The principal contributions of this work are outlined as
follows:

(1) We introduce a Learning-Motivation-Boosted Explain-
able Temporal Point ProcessModel for Course Recommendation

(LETCR), which leverages a temporal point process
(TPP) as its core architecture. This model integrates both
temporal features and learning motivation factors, aiming to
improve both the accuracy and the explainability of course
recommendations.

(2) To maximize the utilization of temporal information,
our model distinguishes between absolute and relative time.
We employ an attention mechanism to assess how past
interactions based on these temporal patterns influence
current recommendations.

(3) Grounded in Self-Determination Theory (SDT), our
model identifies and integrates four motivational factors
into the recommendation process: interest preference, follow
relationship, conformity, popular course. Model use the
attention module to calculate the values of the four factors,
and further input into TPP to make predictions.

(4) Rigorous testing on real-world datasets confirms
that our model outperforms existing advanced course
recommendation systems. Additionally, a detailed case
study is presented to illustrate the model’s high level of
explainability.

II. RELATIVE WORK
A. COURSE RECOMMENDATION
The early CR is mainly based on collaborative filtering [15],
[16], [17], which assums that students with similar interests
in the past will also choose the same course in the future [18].
For example, Symeonidis and Malakoudis [19] made use of
external resource information (user skills) and adopted the
matrix decomposition method to recommend courses. This
type of approach lays the theoretical foundation for future
research.

In recent years, CR methods based on deep learning
have made great progress in accuracy due to the strong
expressive power of neural networks [20], [21], [22]. The
mainstream deep CR methods are divided into RNN-based
and GNN-based. Jiang and Pardos [23] used RNN to analyze
students’ learning sequences chronologically to predict
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recommended courses. The method based on RNN can
capture the sequential information of the learning process.
But there are potential information implicit in student-course
interactions. Researchers have started incorporating GNN
into CR to capture such information. Wang et al. [24]
proposed a hyperedges graph attention network to mine
similarity relationships among learners. Wang et al. [11]
proposed a Top-N personalized CR model, utilizing GNN
to capture higher-order relationships between courses. GNN
can address RNN’s limitations but overlooks crucial temporal
features.

In the latest study, researcheres introduced reinforcement
learning into CR [25], [26]. As models become increasingly
complex, few researchers have been able to preserve the
temporal features in the interaction behavior while fully
leveraging latent information to enhance the explainability of
recommendation results.

B. TEMPORAL POINT PROCESS
TPP can explicitly incorporate temporal information and
correlations between events using conditional intensity
functions, offering greater explainability [27]. TPP has been
widely used in event prediction, including employee check-in
prediction [28], aviation market prediction [29].
TPP assumes past events can increase the probability of

future events [30]. This phenomenon is known as the self-
motivating effect, which additive in past events and decays
exponentially over time. In recent years, some researchers
have applied Hawkes process in recommendation systems.
Wang et al. [31] proposed an attention TPP for music
recommendation. This model can dynamically adjust the
influence of past listening records on future recommen-
dations. Wang et al. [32] employed the multidimensional
Hawkes process to enhance sequential recommendation accu-
racy by incorporating users’ long and short-term preferences.
Zhou et al. [33] combined hyperbolic space and Hawkes
process to tackle scale-free data distribution, proposing a
novel method for generating user-item interaction sequences.

A clear advantage of TPP is the ability to provide
meaningful explanations, especially valuable in educational
scenarios [34]. Explainability in education not only help
students in understanding learning content but also enhances
the scientific aspect of educational decision-making.

C. EXPLAINABLE RECOMMENDATION
Providing clear explanations can enhance users’ acceptance
of recommended content [35], [36], [37]. The explain-
ability of recommendation models is categorized into
model-agnostic approaches and model-intrinsic [38].
Model-agnostic method trains a recommendation model

and an explainable model separately to provide reasons for
the recommendations. Tan et al. [39] used a counterfactual
module to provide straightforward explanations for model
decisions. Yera et al. [40] used model-agnostic approaches
to enhance the explainability of nutritional recipe recommen-
dation. However, explanations are not directly derived from

the recommendation model, leading to no guarantee of the
credibility of the provided explanation.

Model-intrinsic method aims to establish a decision-
making process based on specific reasons from the beginning.
Chen et al. [41] extracted various user-item interaction
paths from the knowledge graph and consolidated them into
common behavioral rules, which serve as explanations. Sim-
ilarly, Shimizu et al. [42] proposed an enhanced knowledge
graph attention network model, which utilized item side
information to achieve a direct interpretation by visualizing
attention scores. Model intrinsic method obtains explanations
directly from the recommended model, however, this often
comes at the expense of reduced model accuracy.

Research on enhancing the explainability of recommenda-
tion models will focus on utilizing model intrinsic methods
to maintain good performance.

D. DIFFERENCES
Our work differs significantly from existing work in several
ways:

(1) Existing advanced CR algorithms either utilize RNN
to obtain the sequential order relationship in the learning
sequence, or utilize graph neural networks to capture the
potential information between the student and the course,
and are unable to consider the contribution of the potential
information in the past interactions to the recommendation
results from the temporal perspective, which affects the
recommendation accuracy. In this paper, we not only consider
the sequential order in the learning sequence, but also
combine the absolute time of interaction. Under the premise
of considering two temporal patterns, the influence of
potential information in past interactions on recommendation
results is calculated through the attention layer.

(2) In the model-intrinsic approach, previous studies used
too much side information to train the model improving the
interpretability of the model, but reducing the recommen-
dation accuracy of the model. In contrast, our study takes
advantage of TPP to view course selection behavior as a result
of students making choices because of specific motivations
based on self-determination theory. Students’ motivations for
choosing courses will bring convincing explanations for the
recommendation results while maintaining good accuracy.

III. PRELIMINARY
A. DEFINITION OF COURSE RECOMMENDATION
This section gives some basic definitions as follows:

1) INTERACTION RECORD
Let U = {u1, u2, . . . , um}, C = {c1, c2, . . . , cn} represent
the set of m users n courses. A record is a triple

(
uj, ci, tl

)
∈

U × I ×T , which represents student uj studied course ci at tl .

2) INTERACTION SEQUENCE
Let S be the set of all students’ interaction sequences.
For a student uj, an interaction sequence is denoted as
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TABLE 1. Key mathematical symbols and descriptions.

Suj = {(cuj1, t1), (cuj2, t2), . . . , (cujL , tL)}, each bracket is
an interaction containing the course and timestamp of the
interaction.

3) COURSE RECOMMENDATION TASK
Given a student uj ∈ U and a historical sequence Suj ∈ S. The
goal of the task is to predict the course ci that best matches
student uj at tL+1.

For ease of presentation, the key symbols and their
descriptions are summarized in Table 1.

B. TEMPORAL POINT PROCESS MODELING
TPP allows modeling event sequences by capturing the
temporal dependencies between events. An event (uj, ci, tl)
is a interaction between student uj and course ci at tl .

TPP models the probability of an event occurring at t
as λ(t), also known as the intensity function. In this paper,
we select one of the most famous TPP-the multidimensional
Hawkes process [43]. The multidimensional Hawkes process
allows for the modeling of sequences of events and the effects
of interactions between events in a sequence. The conditional
intensity function in it depicts the arrival rate of past events
to the current event. It is defined as follows:

λ(t) = µ +

∫ t

0
βk(t − s)dN(s) (1)

µ is the base rate of the current event’s fundamental
probability, unaffected by past occurrences.β is the excitation
rate of the past events on the current event. k(t-s)dN(s) is the
kernel function describes how historical event N(s) affects
the current event at t. In general, the excitation is positive,
additive on historical events, and decays exponentially over

time. A conditional intensity function λ(t) represents the
incidence of an event, defined as the probability of an event
occurring within a small time window [t, t + 1t).

We aim to determine the probability of event ci occurring
in the recommended course, given the student interaction
sequence Suj.

C. LEARNING MOTIVATION
We categorize course selection motivation into intrinsic and
extrinsic motivation according to SDT, and identify four
factors.

Intrinsic learning motivation reflects students’ interest,
enjoyment, and satisfaction, originating from the course’s
meaning and value. Students select courses based on their
interest, driven by curiosity and inquisitiveness. Intrinsic
learning motivation in this paper refers to:

1) INTEREST PREFERENCE
Students’ own interest preference is a unique feature and
evolves over time. We take the course sequence Suj as a
reflection of interest preference, and calculate the score K ip

of student uj’s interest preference with the candidate course
ci (see 4.3.2 for calculation details).

Extrinsic learning motivation is categorized into external
regulation, intake regulation, identity regulation and integra-
tion regulation. Identity and integration regulation are the
closest to intrinsic motivation, often stemming from students’
desire to good grades and the rolemodeling effect of excellent
students. External and intake regulation come entirely from
external rewards or punishment, usually from social pressure
and competition. Extrinsic learning motivation of this paper
includes: follow relationship, conformity, popular course.
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2) FOLLOW RELATIONSHIP
If student A is a role model for student B, the probability that
student B takes the course which student A had taken will
increase. We call this behavior a follow relationship. Based
on interaction sequences Su, we find students ufrj who had
taken the same course before student uj taken. The score K fr

of the follow relationship of student uj is calculated by uj and
ufrj (see 4.3.3 for calculation details).

3) CONFORMITY
Students tend to follow the choices of others to avoid standing
out or conflicting with the majority, which is a psychological
tendency to seek belonging and social acceptance. We search
for a number of students ucj who had recently interacted
before the recommendation time tL+1. The score K c of
conformity is computed by uj and ucj (see 4.3.3 for calculation
details).

4) POPULAR COURSE
Students prefer courses that are popular and in demand to stay
current with societal development. We search for a number of
courses cpc that had recently generated interactions before the
recommendation time tL+1. The score K pc of popular course
is computed by candidates ci and cpc (see 4.3.3 for calculation
details).

IV. METHOD
A. OVERVIEW
In this section, the learning-motivation-boosted explainable
temporal point process model for CR will be presented in
detail. The model framework, as illustrated in Figure 2,
comprises three main parts: (1) Embedding layer: All
students and courses are embedded as vectors. Temporal
features are embedded in absolute and relative time, then
spliced together to form time vectors (the schematic diagram
will be shown in Section IV-B). (2) Learning-motivation-
enhanced TPP Modeling Layer: Learning motivation is
divided into intrinsic and extrinsic learning motivation, and
the scores for each factor are obtained through the attention
layer according to the intensity function of the temporal point
process. (3) Prediction Layer: The final recommendation
probability is obtained by the score value of each factor
calculated in the previous module and is iteratively updated
by the binary cross entropy loss function.

TPP serves as the backbone framework of this model,
modeling the impact of historical student interactions on the
next recommendation. In order to increase interpretability,
four motivations influencing students’ course selection are
proposed and used as a kernel function to predict the
probability of recommendation. The formulas are as follows:

λci|uj(tL+1) = µci,uj + β i ∗ ILM + βe ∗ ELM (2)

λci|uj(tL+1) is the probability of recommending course ci
to uj at tL+1. µci,uj is base rate. ILM and ELM are intrinsic
learning motivation score and extrinsic learning motivation
score. β i, βe are the adaptive weights.

B. EMBEDDING LAYER
1) STUDENT AND COURSE EMBEDDING
Due to the sparse of students and courses, it is common to
transform them into a low-dimensional space. Two distinct
embedding layers are used to map students and courses into
low-dimensional hidden spaces. Let U ∈ R|U |∗d denote the
user embedding matrix generated by the user embedding
layer, and euj is the embedding vector of student uj. Here
d is the embedding size. Let C ∈ R|n|∗d denote the user
embedding matrix generated by the user embedding layer, eci
is the embedding vector of course ci.The student and course
vectors are randomly initialized and updated iteratively with
the loss function.

2) ABSOLUTE TIME EMBEDDING
To generate timestamp embeddings, temporal information
needs to be considered at multiple granularities to enrich the
time representation. We consider granularities at the month
and day levels. The absolute time vector of timestamp tL is
represented as:

eAtL = emtL + edtL (3)

emtL and edtL are vectors of months and days extracted from
the month and day embedding matrices Mm and Md based
on tL . eAtL is the absolute time vector with timestamp tL . The
month and day embedding matrices are randomly initialized
and iteratively updated along with the loss function.

3) RELATIVE TIME EMBEDDING
To capture the relative order of items in the student or course
domain, a position vector is added. In this paper, we utilize
the positional codingmethod proposed by Vaswani et al. [44],
which can be extended to longer sequence lengths without
adding extra parameters. The method is defined as follows:

ePt(pos,2 i) = sin
( pos
100002i/d

)
(4)

ePt(pos,2 i+1) = cos
( pos
100002i/d

)
(5)

pos denotes the position of the word, i denotes the
dimension, and d denotes the dimension size. In position
encoding, each even dimension corresponds to a sine curve,
and each odd dimension corresponds to a cosine curve.
ePt is the relative time vector represents the timestamp tL .
The relative time vector remians fixed and does not update
iteratively with the loss function.

The absolute and relative time vectors are combined
as depicted in Figure 3 to obtain the final time vector
representation:

etL = eAtL + ePtL = emtL + edtL + ePtL (6)

C. LEARNING-MOTIVATION-ENHANCED TPP MODELING
LAYER
1) BASE RATE MODELING
Regardless of what courses a student has taken previously, all
courses have a specific probability of being recommended,
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FIGURE 2. Framework for learning-motivation-boosted explainable temporal point process model.

FIGURE 3. Time embedding module.

called the base rate. To model this, we input the embedding
of students and courses into the intensity function, as shown
in Equation 7:

µci,u j = eTujeci (7)

euj is the embedding of student uj and eci is the embedding
of course ci. µci,u j represents the probability of recom-
mending course ci to student uj without considering any
historical interactions. Other metrics, like cosine similarity
and Euclidean distance, can also be used between vectors in
addition to the dot product.

2) INTRINSIC LEARNING MOTIVATION MODELING
To evaluate the influence of historical learning records
on recommendation outcomes, kernel function modeling
is employed from the perspective of learning motivation.

To modeling intrinsic learning motivation, we consider the
influence of students’ interest preferences.

The student’s historical interactions are stored in Su, from
whichwe obtain the student’s interest preferences. For ease of
calculation, all users uniformly choose the latest ξ interaction
records. If the length exceeds ξ , delete superfluous; if the
length is smaller, fill it with zero vectors. After this, the value
of interest preference is calculated with the candidate course
ci. Specifically, the attention weight asuj,c i of each history
course to the candidate course is initially calculated, which
is obtained from the course vector and the time vector as
shown in Eq. 8. Then, interest preference score is aggregated
by Eq.11.

asuj,c i = softmax
(
suj,c i + tuj,c i

)
=

exp
(
sujr,c i + tujr,c i

)∑ξ
r=1 exp

(
suj,c i + tuj,c i

) (8)
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suj,c i is

suj,c i = ReLU
(
W1esuj + W1eci

)
(9)

esuj is the embedding of student uj history course, andW1 is
the trainable weight matrix. tuj,c i is

tuj,c i = exp
(
−ηc

(
et − e

suj
t

))
(10)

ηc denotes the decay rate of historical influence, which
is a learnable parameter. et is the embedding of the
recommendation time, e

suj
t is the interaction time embedding

of student uj’s ξ history courses.

kipuj,c i =

ξ∑
r=1

asujr,c iesujr (11)

The final value for intrinsic learning motivation is:

ILM = kipuj,c i (12)

3) EXTRINSIC LEARNING MOTIVATION MODELING
Aiming to model extrinsic learning motivation, we examine
students’ follow relationship, conformity and popular course.

Students tend to follow their good or close classmates
when choosing courses. The interaction sequence Suj of
student uj is compared with the interaction sequences of other
students. If student uv has taken a course that student uj has
taken before, student uv is one of the following relations
of student uj. Again, a fixed length ξ is chosen here. The
attention weight aufrj ,u j is used to aggregate the information

of following relations ufrj to get following relationship score.

aufrj ,u j = softmax
(
sufrj ,u j + tufrj ,u j

)

=

exp
(
sufrj r,u j

+ tufrj r,u j

)
∑ξ

r=1 exp
(
sufrj ,u j + tufrj ,u j

) (13)

sufrj ,u j is

sufrj ,u j = ReLU
(
W2eufrj

+ W2euj

)
(14)

eufrj
is the embedding of the student uj’s follow relationship,

and W2 is the trainable weight matrix. tufrj ,u j is

tufrj ,u j = exp
(

−ηu

(
et − e

ufrj
t

))
(15)

ηu denotes the decay rate of historical influence, which is a
learnable parameter where the influence of each user decays
at a different rate. et is the embedding of the recommendation

time, e
ufrj
t is the interaction time embeddingt of student uj’s ξ

followed students.

kfr
ufrj ,u j

=

ξ∑
r=1

aufrj r,c i
euj

frr (16)

In addition, students in the neighborhood can influence
course selection, a phenomenon known as conformity. In this
paper, we identify ξ students who have recently interacted
before the recommendation time as ucj .The attention mecha-
nism is utilized to assess each student’s influence, resulting
in a conformity score.

auj,u j = softmax
(
sucj ,u j + tucj ,u j

)
=

exp
(
sucj r,u j + tucj r,u j

)
∑ξ

r=1 exp
(
sucj ,u j + tucj ,u j

) (17)

sucj ,u j is

sucj ,u j = ReLU
(
W3eucj + W3euj

)
(18)

eucj is the embedding of students who have recently
interacted before the recommendation time, W3 is the
trainable weight matrix. tucj r,u j is

tucj ,u j = exp
(

−ηu

(
et − e

ucj
t

))
(19)

kcucj ,u j
=

ξ∑
r=1

aucj r,c ieucj r (20)

Finally, the popularity of courses also influences their
choices.Wefilter ξ courseswith recent interactions before the
recommended time as cpc. Similarly the attention mechanism
is used to judge the impact of each popular course to get
popular course score.

acpc,c i = softmax
(
scpc,c i + tcpc,c i

)
=

exp
(
sc
pc
r,c i + tc

pc
r,c i

)
∑ξ

r=1 exp
(
sc
pc
,c i + tc

pc
,c i

) (21)

scpc,c i is

sc
pc
,c i = ReLU

(
W4ecpc + W4eci

)
(22)

ecpc is embedding of popular courses, W4 is the trainable
weight matrix. tcpc,c i is

tcpc,c i = exp
(
−ηc

(
et − ec

pc

t

))
(23)

kpccpc,c i =

ξ∑
r=1

acpc,c iecpcr (24)

The final value of extrinsic learning motivation is:

ELM = kfr
ufrj ,u j

+ kcuj,u j + kpccpc,c i (25)

D. PREDICTION LAYER
The values of base rate, intrinsic learning motivation
and extrinsic learning motivation were calculated in
subsection IV-C, and then used in Equation 2 to obtain the
recommended strength λci|uj(tL+1). Finally, the results are
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normalized using a sigmoid to get the final recommendation
probability λ̃ci|uj(tL+1).

λ̃ci|uj(tL+1) = sigmoid
(
λci|uj(tL+1)

)
(26)

To optimize the parameters of the model, binary cross
entropy is used as the loss function:

L = −

 ∑
(u,c,t)∈p+

log λ̃ci|uj(tL+1)

+

∑
(u,c,t)∈p−

log
(
1 − λ̃ci′|uj(tL+1)

) (27)

p+ indicates positive examples, and p− is negative exam-
ples. All parameters and embeddings are learned through
backpropagation in an end-to-end training manner.

V. EXPERIMENT AND RESULT ANALYSIS
In this section, detailed experiments will be conducted to
demonstrate the advantages of our model. The following
questions are studied in our research:

RQ1: How does our model perform compared to other
advanced baselines?

RQ2: Do absolute time modeling and relative time
modeling improve recommendation performance?

RQ3: When considering only intrinsic or extrin-
sic motivation, how does it impact recommendation
performance?

RQ4: How do the three hyperparameters, the dimension of
the embedding, the length of the sequence sampling and the
learning rate, affect the performance of the model?

RQ5: Can our model provide an explanation for the
recommendation results?

A. DATASET
The experiment is conducted on a real dataset MOOCCourse.
MOOCCourse is obtained from the academy online platform.
The data starts from October 1, 2016 and ends on March 31,
2018.Wemainly analyzed the students, courses and temporal
information in the MOOC data, in which each user took more
than 2 courses. The data contains a total of 82,535 students
and 1302 courses, with 458,454 student-course interaction
behaviors, and the average number of user interactions is
5.55. The dataset is divided into a training set and a test set
by 8:2 based on their chronological order.

B. BASELINES
We compare our model with the following baseline models.

POP: This method recommends courses based on pop-
ularity, and prioritizing recommends popular courses. This
method is straightforward yet highly valuable in specific
scenarios.

BPR [45]: This method is a classical top-k item recom-
mendation method based on Bayesian Personalized Ranking.
It models the order of candidate items by pairwise ranking
loss without considering sequence pattern.

GRU4REC [46]: This method uses RNN-based gating
units to predict the transfer probability of items from session
sequences. This model is the first application of RNN to
Session-based Recommendation.

PinSage [47]: A recommendation model that utilizes
graphs to generate user/item feature representations. The
model is the first graph algorithm to apply GCN to an
industrial-grade recommender system.

TP-GNN [33]: An advanced MOOC CR method that
captures higher-order semantic relationships between courses
via GCN and uses an attention mechanism to generate the
final course representation.

EHTPP [11]: Each user-item interaction is treated as an
event in a hyperbolic space, and a TPP is used to model the
probability of the event occurring.

C. EVALUATION METRICS
To facilitate direct comparison with previous work, we use
two evaluation metrics that are widely used in the top-k
recommendation and personalized ranking tasks [48].

Recall, R@K, denotes the percentage of correctly pre-
dicted items among the top k recommended items over all
positive examples. R@K is defined as follows:

R@k =

∣∣predu@k ∩ posu
∣∣∣∣posu∣∣ (28)

predu@k are k recommended courses, posu are courses that
students really like.

Normalized discounted cumulative gain, NDCG@k, is also
called the order-sensitive accuracy rate. First the discounted
cumulative gain (DCG) needs to be calculated:

DCG@k =

k∑
i

r(i)
log2(i + 1)

(29)

r(i) denotes the score of the ith item, predicted correctly as
1. Next, normalization needs to be done with IDCG@k:

IDCG@k =

k∑
i

1
log2(i + 1)

(30)

Finally, we get NDCG@k:

NDCG@k =
DCG@k
IDCGk

(31)

D. EXPERIMENT SETTINGS
In this paper, LETCR is implemented using the Pytorch
accelerated by GeForce RTX 4090 24G GPU. Random
initialization is performed for all parameters. Adam is used
as the optimizer for the model, with a weight decay rate
set to 0.001 and the size of a batch is set to 128. The
hyperparameters are set as follows: learning rate is set to
0.001, embedding dimension is set to 256, and sequence
sampling length ξ is set to 5. All the parameters of the
baseline model are consistent with their settings in the paper,
keeping them as they were when the best performance was
obtained.

VOLUME 12, 2024 93883



W. Zhang et al.: Learning-Motivation-Boosted Explainable Temporal Point Process Model

TABLE 2. Overall recommendation performance (%).

E. PERFORMANCE COMPARISON (RQ1)
Table 2 summarizes the performance of various CR models.
Our model demonstrates superior performance compared
to other baseline models. Compared with the optimal
baseline model (EHTPP), R@5, R@10, R@15, and R@20
improved by 4.36%, 7.09%, 5.82%, and 6.64%, respec-
tively; NDCG@5, NDCG@10, NDCG@15, and NDCG@20
improved by 9.28%, 8.35%, 8.39%, and 7.34%, respec-
tively. From the results, the following observations can be
summarized:

· Traditional recommendation algorithms (i.e., POP and
BPR) achieve the worst results. POP bases its recommenda-
tions solely on the frequency of item occurrence, overlooking
student preferences and attributing all course selections to
popularity. BPR models students’ preferences solely through
matrix decomposition, which cannot capture the sequential
patterns of the students’ learning process. Due to the sparse
nature of theMOOCCourse dataset, it is necessary tomine the
interactions for potential information to enhance student and
course representations. LETCR addresses this limitation by
considering students’ motivations for course selection from
various aspects and incorporating temporal features.

· Deep learning-based methods enhance recommendation
accuracy. GRU4Rec is the first RNN-based session recom-
mendation model that highlights the importance of temporal
features in sequence modeling. However, RNN can only
capture the sequence between adjacent courses, lacking the
ability to model absolute time. This limitation causes the
model to struggle in learning information like students’
learning cycles and course-specific attributes. GNN-based
approaches are more effective than RNN-based approaches.
PinSage and TP-GNNmap all courses or learners into a graph
and update each node’s embedding by aggregating its neigh-
bors’ representations, allowing them to learn higher-order
information among courses or students. Our model mines the
rich information between students and courses, while also
utilizing temporal information to enhance accuracy.

· Temporal-based models yield optimal results. Both
LETCR and EHTPP belong to the temporal point process.
EHTPP considers that recommendation data forms a tree-like
hierarchy and follows a scale-free distribution, where the
number of neighbors of a node grows exponentially. There-
fore, EHTPP maps the data to hyperbolic space instead
of Euclidean space. The MOOCCourse dataset belongs to
short sequences compared to traditional recommendation
algorithms. This is due to students having fewer interactions
on average, which partially alleviates this issue. Our proposed

LETCR model considers both relative and absolute time’s
impact on recommendation results, leading to superior
performance compared to EHTPP.

F. ABLATION STUDY (RQ2&RQ3)
To validate the importance of temporal embedding and learn-
ing motivation modeling in LETCR, this section investigates
the performance of four LETCR variants.

LETCR-w/o-at: This focuses solely on relative positional
order of students and courses in the interaction, discarding
absolute time modeling.

LETCR-w/o-rt: This focuses solely on absolute time
modeling, discarding the relative positional order of students
and courses in the interaction.

LETCR-w/o-ilm: This focuses solely on extrinsic learning
motivation, and believes that influence students’ course
selection are follow relationship, conformity and popular
course.

LETCR-w/o-elm: This focuses solely on intrinsic learning
motivation and assumes that influences students’ course
selection is their own interest preferences.

The results of the experiment are shown in Figure 4, from
which we get the following observations:

· Using temporal information in interaction records
provides a significant performance improvement. LETCR
improves over LETCR-w/o-at by 3.31% and 1.25% on
R@5 and NDCG@20. LETCR improves over LETCR-w/o-
rt by 5.03% and 3.82% on R@5 and NDCG@20. This
highlights the importance of modeling temporal information,
and the improvement from relative time modeling is greater
than that from absolute time modeling. The reason is that
MOOCCourse dataset interactions are relatively sparse, and
students’ learning cycles and course-specific attributes are
not well represented. This also shows that sequence-based
models such as GRU4REC consider the role of relative time
more than BPR, thus bringing performance improvement.
However, LETCR integrating two patterns of time has better
effect than the method considering only one kind, indicating
that the influence of these two patterns of time on the result
is not equivalent, and should be used together.

· Considering both intrinsic and extrinsic learning moti-
vation significantly improve performance. LETCR improves
by 23.63% and 11.67% over LETCR-w/o-ilm on R@5
and NDCG@20. LETCR improves by 10.70% and 3.56%
over LETCR-w/o-elm on R@5 and NDCG@20. Most CR
algorithms focus on intrinsic motivation, but they only lead
to sub-optimal results. For example, TP-GNN considers
higher-order relationships between courses, but is still lim-
ited. The number of students studying onMOOC platforms is
relatively small, and there are interferences from the external
environment in selecting courses. POP takes into account
the influence of popular courses, and completely ignores the
interests of students themselves, which is also undesirable.
Themethod proposed in this paper combines internal learning
motivation and external learning motivation to capture the
incentive of students to choose courses.
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FIGURE 4. Comparison of four variations on MOOCCourse.

FIGURE 5. Dimension of embedding.

G. HYPER-PARAMETER STUDY (RQ4)
In this section, we examine how the embedding dimension,
sequence sampling and learning rate impact the performance
of LETCR. Analysis is performed on the data set by means
of control variables, that is, only the analysis variables are
changed while keeping the other parameters in the model
constant.

Embedding dimension d is adjusted from {64, 128, 256,
512} to examine the effect of it on the model performance.
Figure 5 illustrates how this parameter affects the perfor-
mance of LETCR recommendations on the MOOCCourse
dataset. When embedding dimension is less than 256, R@10,
R@20, NDCG@10, and NDCG@20 increase with embed-
ding dimension, indicating that the expressive power of
LETCR gradually improves.When the embedding dimension

FIGURE 6. Length of sequence sampling.

FIGURE 7. Learning rate.

exceeds 256, R@10, R@20, NDCG@10 and NDCG@20
start to decline. To some extent, a larger embedding
dimension helps the model learn richer information, thereby
improving performance. However, when the embedding
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FIGURE 8. The example of ua for the illustration of LETCR’s explainability.

FIGURE 9. The example of ub for the illustration of LETCR’s explainability.

dimension reaches a certain value, overfitting problems will
be caused, and the performance of the model begins to
decline.

The impact of the length of sequence sampling ξ on
the performance of the model is explored. Leave the
other hyperparameters unchanged, adjusting ξ from 4,5,6,7.
As you can see from Figure 6, the initial increase leads to
better performance, because considering more related items
leads to richer information.However, when exceeding 5, the
aggregation process tends to introduce too much noise, which
degrades the performance of the model. The average number
of student interactions on the MOOCCourse dataset is 5.55,
so 5 is also a reasonable value, which can achieve high
performance at a lower computational cost. The length of
the sequence sampling is usually related to the data set, and
the data set in the education field is relatively sparse and the
sampling length is relatively small.

The impact of learning rate on model performance is
explored. Keeping all other hyperparameters constant, the
learning rate is adjusted from {0.1, 0.01, 0.001, 0.0001}. It is
clearly observed in Figure 7 that themodel performance drops
sharply when the learning rate is 0.1 and 0.0001. A learning
rate that is too large causes the parameter update amplitude to
increase, resulting in the model oscillating around the optimal

solution and failing to converge stably. A small learning rate
slows down convergence of the objective function and may
lead to getting stuck in a local minimum. As depicted in the
figure, optimal results are obtained with a learning rate of
0.001.

H. EXPLAINABILITY ANALYSIS (RQ5)
Previous experiments have demonstrated that LETCR
enhances recommendation precision compared to other base-
line models. In addition, LETCR can provide students with
reasonable explanations regarding learning motivation. This
section uses real examples from the MOOCCourse dataset to
demonstrate how LETCR offers explanations. We randomly
select the behavioral sequences of student ua and student ub
as shown in Figures 8 and 9, respectively. In these figures,
histograms plot the values of all potential influencing factors,
including µci,uj, K ip, K fr , K c, K pc. The higher the score of
an influencing factor, the taller the histogram, showing its
greater contribution to the recommendation results. From the
graph, we have the following observations:

· From a single interaction, our model can directly
understand students’ motivation for choosing a course in each
time step. At t1, ua chose Introduction to Operations due to
its popularity, while at t2, ua chose Data Structure based on
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personal interest. However, in t3 and t4, student ua followed
the crowd trend rather than their own interests. Similarly, ub
chose Finite Element Analysis and Applications and Linear
Systems Theory at t1 and t2 mainly due to the interest and
imitation of role models. At t4, many people around ub
chose Fundamentals of Automotive Crash Safety, so ub also
chose this course. Based on these observations, it helps us to
understand why students choose courses at specific times.

· From multiple interactions, our model also reveals
the dynamics of students’ motivation in selecting courses.
Student ua followed the crowd most of the time. Only at t2
did student ua make a choice that matches interests. It can
be inferred that student ua’s interest is in technology, while
specialization might be management. Student ub’s choices in
the first three moments were driven by interest, but in t4 ub
almost completely followed the crowd. Reduced enthusiasm
for learning is a common issuewith online learning platforms.
Based on these observations, it helps students discover the
reasons behind their course selection and reminds them to
choose courses that align with their interests.

VI. CONCLUSION AND FUTURE WORKS
In this paper, we propose an explainable temporal point
processmodel for course recommendation. Ourmodel refines
temporal features into absolute and relative time modeling
to investigate how interaction records at different times
affect recommendation results. We introduces TPP into
CR to address explainable issue in the education domain.
Based on the self-determination theory, the model attributes
students’ motivations for course selection to four factors:
interest preference, follow relationship, conformity and
popular course. Extensive experiments on the MOOCCourse
dataset demonstrate that incorporating temporal features
significantly enhances recommendation performance. Our
model also provides intuitive insights into students’
course selection motivations and how they change over
time.

We plan to improve this work in this way. Due to the serious
sparsity of MOOCCourse, making it challenging for the
model to accurately capture students’ true interests, leading
to a performance bottleneck. In future work, we will explore
data enhancement techniques to alleviate the issue of sparsity.
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