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ABSTRACT Hyperspectral image (HSI) classification has drawn increasing attention in the last decade.
HSIs accurately classify terrestrial objects by capturing approximately contiguous spectral information.
Owing to their excellent performance in image classification and semantic segmentation, many of the
latest deep learning approaches, which can extract complex spatial and spectral characteristics compared
to traditional machine learning methods, have been applied in HSI classification. The paper proposes a new
HSI classification network based on pure multihead attention mechanisms based on a vision transformer.
Due to the unique spatial and spectral attention modules, the network can derive long-range spatial and
spectral contextual relations between pixels in images. The spatial and spectral features are effectively fused
and interacted through the cross-field gating module. The paper evaluates the classification performance of
the proposed network on three HSI datasets by conducting extensive experiments, showing its superiority
over standard convolutional neural networks and achieving a significant improvement in comparison with
other networks. In addition, due to the complete abandonment of the convolution layer and the application
of multihead attention mechanisms, the number of parameters of the network is greatly reduced.

INDEX TERMS Hyperspectral image classification, remote sensing, multihead attention mechanism, vision
transformer.

I. INTRODUCTION
Hyperspectral images (HSIs) are composed of hundreds of
approximately contiguous wavelength bands and play an
important role in remote sensing. Compared to traditional
images, HSIs can provide rich spatial and spectral infor-
mation simultaneously from the same area on the surface
of the earth. The values of each pixel can be regarded as
a high-dimensional vector whose entries correspond to the
spectral reflectance at a specific wavelength. Due to the rich
spatial and spectral information, HSIs can distinguish subtle
differences between similar terrestrial objects and achieve
excellent performance. With their advantages in the classi-
fication of objects, HSIs have been widely applied in many
fields [1], [2], [3].
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FIGURE 1. Hyperspectral images classification is to assign a single pixel
to a certain class instead of the whole image.

HSI classification assigns each pixel to a certain class
based on its spatial and spectral characteristics, as shown
in Fig. 1. In the early stages of HSI classification research,
conventional image classification methods, such as support
vector machines (SVMs) and neural networks, which are
widely used in computer vision, were applied in the remote
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sensing field. Melgani and Bruzzone assessed the potential
of SVM classifiers in HSI classification [4]. Farag et al. used
support vector machines (SVMs) to conduct density estima-
tion based on class conditional probability and increased the
accuracy by up to 10% [5].

In [6], Jimenez et al. introduced a neural network to con-
duct feature fusion and decision making based on project
pursuit and majority voting. Benediktsson and Kanellopoulos
proposed multisource classification methods based on neural
networks and achieved high accuracies compared with con-
ventional classification schemes [7].

Feature-extraction or dimension-reduction techniques are
also applied in HSI classification. In [8], Chang and Du
used ratio-based principal component analysis (SINR-PCA)
and interference-annotated noise-whitened principal compo-
nent analysis (IANW-PCA) to adequately represent image
quality. Experiments showed that modified PCA improved
the estimation of the noise covariance matrix. To capture
all the discriminant information of hyperspectral images,
Chulhee Lee modified PCA with pre-encoding discriminant
information. The proposed method improved the classifica-
tion accuracy compared to that of conventional compression
methods [9].
With the development of deep learning, deep learn-

ing has demonstrated superior performance in traditional
computer vision fields, including image classification [10],
object localization [11], semantic segmentation [12], and
instance segmentation [13]. Lecun et al. proposed LeNet-5,
which applied a back-propagation algorithm and convo-
lutional neural network (CNN) [14], to provide record
accuracy on business and personal chipes. LeNet-5 is con-
sidered the prototype of modern neural networks. However,
its performance in real-world tasks cannot compete with
that of traditional algorithms such as SVM and boosting.
In 2012, Krizhevsky et al. improved LeNet-5 and proposed
AlexNet [15]. AlexNet achieved a 15.3% error rate in
the ILSVRC-2012 competition and far exceeded the sec-
ond place. Compared to LeNet-5, AlexNet has introduced
many new novelties. First, AlexNet uses a rectified lin-
ear unit as an activation function instead of a sigma0d
function. Second, a dropout layer is used to mitigate the
overfitting problem. In addition, AlexNet also uses over-
lapping max pooling layers and data augmentation. Due
to these novelties, AlexNet obtained great results and is
considered the earliest deep learning model. Since the suc-
cess of AlexNet, many advanced networks based on CNNs
have been developed and achieved great success. VGGNet
employs 3 × 3 filters whose stride is one pixel [16].
Small filters can reduce the number of weights and the
training complexity. GoogLeNet employs an inception mod-
ule and auxiliary classification to improve the results of
image classification [17]. In the wake of great success
in the employment of CNNs, an increasing number of
effective networks, such as ResNet [18], MobileNet [19],
and EfficientNet [20], have emerged and achieved great
success.

In addition to traditional CNN-based methods, several
classical neural networks that have been previously applied
in natural language processing, such as recurrent neu-
ral networks (RNNs) [21] and long short-term memory
(LSTM) [22], have also been employed in computer vision
fields. In 2017, Google proposed a new network architec-
ture called the transformer architecture, which is based on
attention mechanisms and entirely abandons recurrence and
convolutions. The experiments showed that the transformer
required less time to train and improved upon the existing
best results. Inspired by the great success of the transformer,
Dosovitskiy proposed the vision transformer (ViT), which
is also based solely on attention mechanisms [23]. Vision
transformers have achieved excellent results compared to
former convolutional networks. ViT showed the great poten-
tial of attention mechanisms in computer vision fields and
proved that CNNs are not necessary. Due to the great success
of neural networks in computer vision fields, deep learning
methods have been considered alternatives in HSI classifi-
cation. Hu et al. proposed a unidimensional CNN based on
individual spectra and achieved better classification perfor-
mance than traditional deep learning methods [24]. To avoid
information loss in representing hyperspectral pixels, L Mou
first proposed a novel RNNmodel to analyze HSIs as sequen-
tial data. The experimental results demonstrated that the
proposed RNN model can efficiently process hyperspectral
data [25]. Given that HSI data are presented in the format
of 3D cubes, Li designed a 3D convolutional neural net-
work to extract spatial-spectral features [26]. Compared to
other deep learning-based methods, the experiments showed
that the 3D-CNN-based model outperformed the previous
methods. Due to the high dimensions, Sigirci and Bilgin
introduced BERT-based (bidirectional encoder representa-
tions from transformers) models for classification, which
have beenwidely applied in natural language processing [27].
The model can also accept spatial features because of its
structure. Experiments showed that the BERT-based models
outperformed conventional 1D/2D convolutional models.

FIGURE 2. Specificities of hyperspectral images classification. Compared
with typical image classification tasks, HSIs classification is more
concerned with how to handle high-dimensional spectral features and
fuse the different dimensional features.

Compared to typical image classification tasks, HSI clas-
sification has the following main differences, as shown
in Fig. 2:
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1) Pixel-level classification: HSI classification aims to
label each pixel in remote sensing imageswith a seman-
tic class. Sometimes pixel-level classification is also
called semantic segmentation. However, typical image
classification tasks seek to classify each image into a
semantic class. Due to the pixel-level classification,
traditional image classification models, such as ResNet
and EfficientNet, are not suitable for HSI classification.

2) High-dimensional spectral features: Each pixel in
HSIs has hundreds of contiguous wave-length bands,
whereas typical images generally have three bands.
Traditional CNNs can hardly capture the potential fea-
tures among continuous spectral bands. In addition,
different orders of magnitude of spectral bands cause
HSI classificationmodels to be unable to use pretrained
models in other image classification datasets, such as
ImageNet or CoCo, and must train the whole model
from the beginning.

3) Spatial and spectral feature fusion: Different locations
and contiguous wavelength bands of each pixel pro-
vide rich spatial and spectral features. To carry out
HSI classification tasks effectively, it is necessary to
integrate spatial and spectral features. Apart from this,
the different features cannot equally contribute to the
task. Due to their different importance, useful spatial
and spectral features should be emphasized compared
to other features.

To address these differences, inspired by the great suc-
cess of the attention mechanism, this paper proposes a
spatial-spectral pure attention network (SSPAN), which is
totally composed of attention mechanism and aborts convo-
lutional structures. The attention mechanism mimics human
visual and cognitive processes by dynamically and selectively
focusing on one part of the spectral or spatial features while
ignoring the rest, helping the network to focus on the signifi-
cant parts of band or neighborhoods when processing the HSI
classification.

In terms of pixel-level classification, this paper takes
the neighborhood block of each pixel as a 3D cube to
capture the spatial features. The proposed spatial attention
module is more concerned with adjacent and significant
pixels and ignores distant and redundant. In terms of high-
dimensional spectral features, a global spectral attention
module can capture the contiguous wavelength band fea-
tures and highlight important spectral band features. These
modules effectively capture the key spatial and spectral fea-
tures and reduce redundant information and computations
to accelerate the model training process. The paper designs
a fusion gating module to integrate the different dimension
features, which emphasizes significant and suppresses unnec-
essary features. This paper validates the proposed SSPAN
model on three HSI datasets. The experimental results
demonstrate that SSPAN can achieve superior classification
results.

The main contributions of the paper can be concluded as
follows:

1) The spectral features of the contiguous wavelength
bands in HSIs are considered using a pure attention
mechanism, which can capture the partial and global
correlations simultaneously for HSI classification.

2) A 3D cube mechanism and neighborhood crossover
attention mechanism for HSIs are designed to empha-
size the adjacent and effective pixels and weaken the
distant and redundant pixels in the spatial context,
which can reduce the computation and model training
time.

3) A joint fusion block is proposed to integrate the cap-
tured spatial and spectral features, which can fully uti-
lize the spatial-spectral contexts for HSI classification.

The remainder of the paper is organized as follows. Section II
introduces the proposed SSPAN model for HSI classification
in detail. Section III describes the datasets and experimental
results. Finally, Section IV concludes the paper.

II. PROPOSED METHOD
A. ARCHITECTURE OF SSPAN
As shown in Fig. 3, the proposed SSPAN model has three
main components: a spectral attention module, a spatial
attention module, and a cross-field adaptive gating module.
This paper will illustrate the parts in the following sections
in detail.

B. SPECTRAL ATTENTION MODULE
CNN-based methods have been proposed for traditional
image classification tasks. Compared to other conventional
image classification methods, CNNs can effectively capture
localized spatial and spectral information via different con-
volution layers. Among the layers, trainable kernels play
a vital role. The trainable kernels are designed to be of a
specific size. Kernels of different sizes scan across the whole
image and extract the local features. Different convolutional
layers can extract different levels of image features. Due to its
proximity to the input layer, the shallow convolutional layer
can extract simple features such as color and texture. The
deeper convolutional layer can capture abstract and high-level
features.

Despite the great success of convolutional neural net-
works in traditional image classification, there are many
problems with the application of convolutional structures to
HSI classification. The first problem is the large amount of
computation. Convolutional neural networks use a convolu-
tional kernel to slide the image to obtain local features of
the image. In traditional computer vision tasks, the size of
the convolution kernel is typically 3 × 3, 5 × 5, or 7 × 7,
and the number of channels usually corresponds to the input
image. For a three-channel RGB image, the image is com-
pressed into a single-channel image after a convolution kernel
calculation.

The compressed image contains all the channel infor-
mation from the original image. In a convolutional layer,
multiple convolutional kernels are generally used for com-
putation to obtain a multichannel image.
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FIGURE 3. Overview of the proposed SSPAN. After preprocessing, HSIs first pass through spectral and spatial attention modules in parallel. Then the
cross-field adaptive gating module fuses the features. Finally, the classification head generates classification maps by exploiting fused features.

When utilizing a convolutional neural network for HSI
classification, the channels of the convolution kernel match
the channels of the HSIs. This leads to the depth of each con-
volutional kernel reaching hundreds. Excessive depth leads
to a significant increase in computation, especially when
multiple convolution kernels are used. In addition, due to
the characteristics of image convolution calculations, all the
channels of HSIs are compressed to one after convolution
calculations. The calculation results in the loss of a massive
amount of spectral information. It is also difficult for convo-
lutional neural networks to capture the dependence between
arbitrary bands and global features.

To address these problems and extract hyperspectral infor-
mation effectively, a novel spectral module is necessary. The
bands of each pixel in HSIs can be considered sequence
data. The spectral information of a single pixel consists of a
succession of bands, which is fully consistent with the charac-
terization of sequence data. There are many ways to process
sequence data, such as RNN, GRU, LSTM, etc. However,
these methods make it difficult to handle the information of
HSIs and easily lead to the problem of vanishing gradients.
Therefore, this paper proposes a spectral attention module for
spectral feature extraction.

Attention mechanism can improve the expressive ability
of the network. It can significantly reduce the computation
time because of parallel computing. In this paper, a spectral
module is designed and conducted to selectively emphasize
significant spectral information and ignore the redundant,
thereby avoiding gradient disappearance or explosion. ViT
references the structure of transformer and converts image
data to sequence data, which consists of embedding layer,
transformer encoder and multi-layer perceptron (MLP) head.
Using the structure of the ViT as a reference, a novel spectral
attention module is designed to calculate the dependence
between arbitrary positional bands and capture the global
spectral features, as shown in Fig. 4.

The attention mechanism is generally modeled as follows:

O = X ⊗ F(X )

X is the input, and F(·) is the weight. ‘‘
⊗

’’ andO represent
the elementwise product and the output, respectively. The
weight F(·) is calculated by specific attention modules, such
as squeeze-and-excitation [28], convolutional block atten-
tion [29], and efficient channel attention [30]. In the spectral
attention module, multihead attention [31] is used, where

multiple self-attention (SA) layers are stacked and integrated.
Compared to other attention mechanisms, the SA mechanism
is better at capturing the global spectral features of a single
pixel band. The SA mechanism can be calculated according
to the following four steps.

FIGURE 4. Structure of spectral attention module. The position encoding
contains learnable parameters with the same size as wave-length bands.
The norm layer is batch normalization. The spectral features are obtained
by the skip connection after the drop path and linear layer.

Step 1: The sequence data x with a length of m, where
xi, i = 1, . . . ,m, are multiplied by a shared matrix W to
obtain the feature embedding, denoted as ai.
Step 2: Each feature embedding is multiplied by three dif-

ferent matricesWq,Wk ,Wv to obtain three vectors, i.e., query
(Q = [q1, .., qm]), key (K = [k1, .., km]), and value
(V = [v1, .., vm]).
Step 3: Q and K are multiplied in the form of an inner

product to compute the attention score s, e.g., qi · kj. Then,
the scaled score is obtained by normalization to stabilize the
gradients, i.e., si,j = qi · kj/

√
d , where d is the dimension

of qi or kj.
Step 4: The attention score is obtained by the softmax

activation function to generate the attention weights z =

[z1, . . . , zm].
In summary, the SA module can be integrally calculated as

follows:

z = Attention(Q,K ,V ) = softmax(
QKT
√
d

)V (1)

To make full use of the sequence information, the feature
embedding is formulated asai+ei, where ei denotes a manual
positional vector and can be optimized by the whole network.
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This paper proposes a novel and generic spectral fea-
ture extraction module (i.e., the spectral attention module).
To focus on spectrometric characteristics, the proposed spec-
tral attention module contains multihead attention layers.
As shown in Fig. 5, it contains multiple different SA modules
and can extract spectral features from multiple perspectives.
To improve the detail-capturing capacity of subtle spectral
discrepancies, the module also applied the SE mechanism.

FIGURE 5. Structure of multi-head attention mechanism.

C. SPATIAL ATTENTION MODULE
Classic image classification or segmentation networks,
including ViT, widely apply convolutional layers. This is
because the calculation method of convolution layers can
effectively capture the local features, and the deeper convo-
lution layers can capture the global features.

For HSIs, the application of convolutional layers has sev-
eral problems. The first problem is the redundancy of partial
local features. Shallow convolutional layers take advantage
of sliding computations to capture all local features. For
traditional image classification tasks, these local features are
essential for the final image classification tasks. In semantic
segmentation tasks, distant local features also play an impor-
tant role in single-pixel classification due to the small scene.
In HSI classification tasks, the final goal is the classification
of a single pixel. HSIs typically encompass vast areas, often
spanning tens of square kilometers in size. Distant local
features could be tens of kilometers away from the pixels to
be classified. These local features are redundant and do not
contribute to the classification task, thereby increasing the
complexity and computational requirements of the model.

To avoid the redundancy and computational complexity
triggered by distant local features, this paper proposes a
spatial attention module based on HSI 3D cubes. The cubes
consist of the neighborhood of the pixels to be classified.
The specific size of the neighborhood depends on the reso-
lution of the HSIs (the sizes of the cubes are h ∗ w ∗ dm ).
Different from other methods for constructing HSI 3D cubes,
the proposed method constructs a global multihead attention
mechanism to extract spatial features, while other methods
still use CNNs [32]. To improve the detail-capturing capacity

of subtle spatial discrepancies, the module also applied a
partial SE mechanism.

Similar to the spectral attention module, the depth of each
convolutional kernel will reach hundreds, leading to a large
amount of computation, despite calculations inHSI 3D cubes.
In addition, CNNs will also result in the loss of spectral
information of the neighborhood of the pixels to be classified.

The proposed spatial attention module calculates the atten-
tion representations oi,j between all the pixels in the cubes and
the pixel to be classified. Different from the SA mechanism
applied in the spectral attention module, the spatial attention
module applies the neighborhood crossover attention mecha-
nism, and the formulation can be concluded as follows:

oi,j = Multi-head Attention(xi,j, xcenter pixel)

xi,j represents the vector with coordinates (x, y).

xcenter pixel denotes the pixel to be classified.
The attention representations form a spatial attention repre-

sentation cube that contains all neighborhood spatial features.
Fig. 6. illustrates an overview of the proposed spatial attention
module in the whole network.

D. CROSS-FIELD ADAPTIVE GATING MODULE
After the spectral and spatial module, spectral and spatial fea-
tures are captured. However, the features are different in the
performance dimension. Spectral features target wavelength
bands and are one-dimensional. The spatial features target
the pixel and its surrounding neighborhood and are two-
dimensional features. The difference in dimensions makes
it difficult to fuse and interact information between two
features, which also makes it difficult to filter features
effectively.

To enhance the information interaction between the spec-
tral and spatial domains and to remove redundant feature
information, this article designs a cross-field adaptive fusion
mechanism. This mechanism applies a gating mechanism to
fuse spectral and spatial domain features of different dimen-
sions, which can remove redundant feature information and
enhance the feature expression capability.

To fuse the spectral and spatial features, the gating module
diffuses the spectral features and aligns them with the spatial
features dimensionally. Let z ∈ R1∗1∗dm and oh∗w ∈ Rh∗w∗dm

represent the outputs of the spectral attentionmodule and spa-
tial attention module, respectively. The cross-field adaptive
gating module can be expressed by

z ∈ R1∗1∗dm diffusion
−→ ẑ ∈ Rh∗w∗dm[

ẑ
oh∗w

]
[ẅ] → ôh∗w

First, the module diffuses the output of the spectral attention
module to the same size as the output of the spatial attention
module. The two outputs ẑ and oh∗w are concatenated and
multiply with the weight coefficient ẅ. ẅ ∈ Rd∗w∗2 is the
learnable network parameter for adaptive fusion. There are
two main reasons for this. The first is to ensure that the two
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FIGURE 6. Structure of spatial attention module. The preprocessing mainly contains normalization and sampling. HSI 3D cubes are made up of
neighborhoods of a particular size around the pixel to be classified. The position encoding contains learnable parameters with the same size as
neighborhoods. Partial squeeze and exaction are applied in HSI 3D cubes. The spatial features are obtained by the multi-head attention
with 8 heads.

output dimensions are aligned. Second, for adjacent pixels,
the different distances result in differences in importance
and contributions to the spectral and spatial features of the
pixels to be classified. This module can adaptively learn the
weights of different adjacent pixel features for the point to
be classified with the help of learnable parameters. This also
enhances the feature interaction and fusion capabilities of
the model. Fig.7 shows an overview of the proposed spatial
attention module in the whole network.

FIGURE 7. Architectural depiction of cross-field adaptive gating module.
Spectral features diffuse into feature cubes of the same size as spatial
features. The cross-field adaptive module contains learnable weights. The
spatial-spectral features are obtained by fusing the spatial and spectral
features selectively.

After the above modules, the spectrally sequential infor-
mation and spatially contextual information are preserved to
a great extent. These features will eventually enter the fully
connected layer to obtain the final classification result of the
pixels.

III. EXPERIMENTAL AND RESULTS
To evaluate the classification performance of the proposed
method, the paper compares the SSPAN with other five mod-
els over three benchmark HSI datasets.

A. DATASETS
Three benchmark hyperspectral datasets are selected for this
experiment, namely, Indian Pines dataset, Pavia University

dataset, and Pavia Center dataset. The datasets have different
sizes and can be used to verify the model’s generalization.

1) Indian Pines dataset: This hyperspectral image dataset
was collected by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor over the Indian Pines
region in northwestern Indiana in 1992. This scene
has a size of 145 × 145 and a spatial resolution of
20 meters per pixel. The scene comprises 220 spectral
channels with wavelengths ranging from 0.4 to 2.5µm.
After 20 spectral bands are removed due to noise and
water absorption phenomena, the remaining 200 radi-
ance channels are used in the experiments. The Indian
Pines dataset contains 10249 samples with 16 mutually
exclusive ground-truth classes. Fig. 8 (a) shows the
ground-truthmap available for the scene. Table 1 shows
the meaning of each class and the number of samples
in each class in the Indian Pines dataset.

TABLE 1. Class name and number of each class for Indian Pines dataset.

2) Pavia University dataset. This hyperspectral dataset
was collected by the Reflective Optics System Imaging
Spectrometer (ROSIS) sensor over the urban area of the
University of Pavia, Italy. The image size is 610 × 340,
with a very high spatial resolution of 1.3 meters per
pixel. The number of data channels in this image
is 115, with spectra ranging from 0.43 to 0.86 µm.
After 12 channels affected by noise are removed, the
remaining 103 channels are used in the experiments.
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Pavia University dataset contains 42776 samples with
9 classes. Fig. 9 (a) shows the ground-truth map avail-
able for the scene. Table 2 shows the meaning of each
class and the number of samples in each class in the
Pavia University dataset.

3) Pavia Center dataset: This hyperspectral dataset was
also collected by the ROSIS optical sensor over Pavia
in northern Italy. The image size is 1096 × 715, with
a spatial resolution of 1.3 meters per pixel. Similar
to Pavia University dataset, Pavia Center dataset has
9 classes and 102 channels. Pavia Center dataset con-
tains 148152 samples with 9 classes. Fig. 10 (a) shows
the ground-truth map available for the scene. Table 3
shows the meaning of each class and the number of
samples in each class in Pavia Center dataset.

TABLE 2. Class name and number of each class for Pavia University
dataset.

TABLE 3. Class name and number of each class for Pavia Center dataset.

B. EXPERIMENT SETUP
This paper evaluates the classification performance of each
model quantitatively in terms of three commonly used
indices, overall accuracy (OA), average accuracy (AA), and
Kappa coefficient (K ×100). The parameter configurations
of these compared methods are detailed as follows.

1) For the SVM, the libsvm toolbox was selected, and the
radial basis function (RBF) kernel was used. To obtain
the optimal parameters, the model uses a grid search
technique and applies an RBF, a linear kernel, and a
poly kernel.

2) For the deep CNN (D-CNN), the paper uses a convo-
lution block, which includes a set of 1D convolutional
filters. a max-pooling layer and a tanh activation func-
tion. A fully connected layer is used for the final
classification.

3) For the contextual deep CNN (CD-CNN), the model
applies two different sizes of 3D convolution kernels
to construct the inception module. Two residual blocks
are designed to capture the features at different scales.

4) For the RNN, there is one recurrent layer with a gated
recurrent unit (GRU) with 64 neuron units.

5) For the semi-supervised CNN (SS-CNN), the model is
composed of an encoder and a decoder module. The
encoder module consists of a 2D convolution layer,
a max pooling layer, a BN layer and a linear layer. The
decoder module is composed of several linear and BN
layers.

6) For the proposed SSPAN model, due to the low spatial
resolution, in the spatial attention module, the size of
the 3D HSI cube is set to 2× 2. The small size reduces
calculations and parameters to accelerate the training
process, which enables models to be trained on general
workstations. When experiments on high spatial res-
olution datasets and high-performance workstations,
the size can be turned up for better performance. The
network consists of one spatial attention module and
one spectral attention module in parallel, followed by
one cross-field adaptive gating module. The dropout
layer is employed after position embeddings, multihead
attention, and the final linear layers for inhibiting 20%
of neurons. The squeeze-and-excitation mechanism
is also applied to enhance the ability to express
features.

All the models are implemented on the PyTorch platform
using a workstation with an i7-9750H CPU and an NVIDIA
GTX 2080Ti GPU. The Adam optimizer with a minibatch
size of 64 is adopted. The learning rate is firstly set to 0.01 and
the epochs over the three datasets are set to 1000.

C. PERFORMANCE ANALYSIS
1) EXPERIMENTS ON INDIAN PINES DATASET
In the Indian Pines dataset, the paper corrects the dataset by
removing a disproportionately small number of categories.
Alfalfa, Grass-pasture-mowed, Oats, and Stone-Steel-Towers
are removed. Due to uneven data across categories, to ensure
the fairness of the experiment, 30% of the data are divided
into training samples, and 70% are divided into test samples
for each class. The classification results are shown in Table 4.
The accuracies are also depicted visually. The classification
maps of the compared methods for the Indian Pines dataset
are displayed in Fig. 8.
According to Table 4, based on K ×100, OA, and AA, the

proposed SSPAN model yields the best classification results.
Compared to the traditional SVM method, SSPAN yields
accuracy increases of 4.62, 4.02, and 2.91 for K ×100, OA,
and AA, respectively. This result exemplifies the great advan-
tage of SSPAN over traditional methods. Compared to the
D-CNN and RNN, SSPAN also has considerable advantages.
More specifically, the main reason for the poor performances
of D-CNN and RNN classification is the low spatial resolu-
tion. The image size is 145 × 145, and the spatial resolution
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TABLE 4. Comparisons of classification accuracies among different methods in the Indian Pines dataset.

FIGURE 8. Classification maps for the Indian Pines dataset. (a) True-color image. (b) Ground-truth map. (c)-(h) Classification maps of SVM, D-CNN,
CD-CNN, RNN SS-CNN and SSPAN.

is 20 meters per pixel. When using a 3×3 convolution kernel
over the image, it yields a feature map of 60× 60 meters per
pixel, which contains considerable redundant information.
This makes it difficult for D-CNN to capture features for
classification. For RNNs, the model only considers spectral
features and ignores spatial features, resulting in poor classi-
fication results.

Relative to the CD-CNN network, SSPAN yields accuracy
increases of 2.83, 2.46, and 1.61 for K ×100, OA, and AA,
respectively. Relative to the SS-CNN network, the SSPAN
network yields accuracy increases of 7.32, 3.85, and 4.11
for K ×100, OA, and AA, respectively. The overall accu-
racy of the SSPAN model is significantly greater than that
of the CD-CNN and SS-CNN models. The most impor-
tant reason may be the low spatial resolution. The SSPAN
model utilizes features only within a small range, which

can greatly reduce the number of redundant features and
improve the training accuracy. Additionally, the classification
accuracy for corn is degraded by the lack of training sam-
ples. For Buildings-Grass-Trees-Drivers, the reason for the
lower classification accuracy may be due to the complexity
of spatial-spectral features along with the small number of
training samples.

The accuracies of all models on Indian Pines dataset are
not high enough, mainly because of the low spatial resolution
and the few training samples. However, the SSPAN model
shows great advantages over the other models. This proves
that SSPAN can achieve better classification results with
fewer training samples over low spatial resolution images.
The classification results of the maps in Table 5 qualitatively
show the differences and reveal that SSPAN performs better
than the other methods.
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TABLE 5. Comparisons of classification accuracies among different methods in the Pavia University dataset.

FIGURE 9. Classification maps for the Pavia University dataset. (a) True-color image. (b) Ground-truth map. (c)-(h) Classification maps of
SVM, D-CNN, CD-CNN, RNN SS-CNN and SSPAN.

2) EXPERIMENTS ON PAVIA UNIVERSITY DATASET
In the Pavia University dataset, the number of categories was
reduced to 9. However, the image size is 4 times larger than
that of the Indian Pines dataset. The number of samples is also
four times larger. To balance the training samples, 300 sam-
ples from each category were randomly selected as training
samples, and the remaining samples were used as testing
samples. The classification results are shown in Table 5. The
accuracies are also depicted visually. The classification maps
of the compared methods for the Indian Pines dataset are
displayed in Fig. 3.

According to Table 5, based on K ×100, OA, and
AA, the proposed SSPAN model yields the best classifi-
cation results. Compared to the traditional SVM method,
SSPAN yields accuracy increases of 4.75, 3.58, and 1.97 for
K ×100, OA, and AA, respectively. This result exemplifies
the great advantage of SSPAN over traditional methods.
Compared to the D-CNN and RNN, SSPAN also has con-
siderable advantages. Relative to the CD-CNN network,
SSPAN yields accuracy increases of 3.59, 2.65, and 0.89
for K ×100, OA, and AA, respectively. Relative to the
SS-CNN network, the SSPAN network yields accuracy
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TABLE 6. Comparisons of classification accuracies among different methods in the Pavia Center dataset.

FIGURE 10. Classification maps for the Pavia Center dataset. (a) True-color image. (b) Ground-truth map. (c)-(h) Classification maps of SVM, D-CNN,
CD-CNN, RNN SS-CNN and SSPAN.

increases of 3.2, 2.54, and 0.28 for K ×100, OA, and AA,
respectively.

Comparing Tables 1 and 2, it can be concluded that the
accuracy of each model improves in the Pavia University
datasets This is due to the increase in spatial resolution
from 20 to 1.3 meters per pixel. Moreover, the training sam-
ples also increase slightly.

3) EXPERIMENTS ON PAVIA CENTER DATASET
In the Pavia Center dataset, all the categories were selected
for training. The size and number of each category of the

Pavia Center dataset are greater than those of the other
datasets. Therefore, 500 samples from each category were
selected as training samples, and the remaining samples were
selected as testing samples. The classification results are
shown in Table 6. The accuracies are also depicted visually.
The classification maps of the compared methods for the
Pavia Center dataset are displayed in Fig. 10.

Compared to the other two datasets, all models achieved
fairly high classification accuracy in the Pavia Center dataset
due to the higher spatial resolution and greater number of
training samples. According to Table 6, based on K ×100,
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OA, and AA, the proposed SSPANmodel yields the best clas-
sification results. Compared to the traditional SVM method,
SSPAN yields accuracy increases of 0.41, 0.28, and 0.49 for
K×100, OA, and AA, respectively. Compared to the

D-CNN and RNN, SSPAN has considerable advantages.
Relative to the CD-CNN network, SSPAN yields accuracy
increases of 0.35, 0.24 and 0.81 for K ×100, OA, and AA,
respectively. Relative to the SS-CNN network, the SSPAN
model yields accuracy increases of 1.11, 0.77, and 0.02 for
K ×100, OA, and AA, respectively.
In Pavia Center dataset, the gaps between SSPAN and the

other models are smaller. The accuracies of D-CNN and RNN
are more than 2% lower than those of the other models.
The classification accuracies of the remaining three models
are very close. To further compare the performances of the
models, this paper focuses on comparing the computational
complexities of the CD-CNN, SS-CNN, and SSPAN models.
The floating point operations (FLOPs) and parameters are
shown in Table 7.

TABLE 7. FLOPs and parameters of different methods.

Table 7 shows that although the number of SSPAN param-
eters is twice that of the CD-CNN, it is only 13% of the
number of parameters of the SS-CNN. However, due to the
complete abandonment of the CNN and the application of
the attention mechanism, the FLOPs of the SSPAN model
are only 26% of those of the CD-CNN and 21% of those of
the SS-CNN. SSPAN ensures the best classification accuracy
while significantly reducing the computational complexity.

IV. CONCLUSION
For HSI classification tasks, this paper proposes a novel
SSPAN framework composed of an attention mechanism
to capture spectral and spatial features. First, the original
spectral bands of the pixels to be classified are directly
used as the input of the spectral attention module, which
can simultaneously capture the partial and global spectral
correlations. Second, the 3D HSI cube is designed and used
as the input of the spatial attention module. The spatial atten-
tion module can emphasize adjacent and effective pixels and
weaken distant and redundant pixels. Then, the cross-field
adaptive gating module fuses the spectral and spatial features
selectively, which can enhance the information interaction
between the spectral and spatial domains. Finally, the SSPAN
model achieved state-of-the-art performance on three datasets
compared to other methods.

The future direction of the proposed work is to incorporate
new variants of attention mechanisms, such as deformable
attention and coordinate attention, aimed at learning more
discriminative spectral-spatial features. Meanwhile future

research will pursue to design an attention mechanism
capable of capturing both spectral and spatial features.
Furthermore, how to design an efficient feature fusion mod-
ule is another research direction. In addition, structural
re-parameterization and is also under consideration for future
research.

REFERENCES
[1] P. Ghamisi, M. D. Mura, and J. A. Benediktsson, ‘‘A survey on spectral–

spatial classification techniques based on attribute profiles,’’ IEEE Trans.
Geosci. Remote Sens., vol. 53, no. 5, pp. 2335–2353, May 2015.

[2] J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders,
N. Nasrabadi, and J. Chanussot, ‘‘Hyperspectral remote sensing data
analysis and future challenges,’’ IEEE Geosci. Remote Sens. Mag., vol. 1,
no. 2, pp. 6–36, Jun. 2013.

[3] C. Zhang, S. Zhu, D. Xue, and S. Sun, ‘‘Gabor filter-based multi-scale
dense network hyperspectral remote sensing image classification tech-
nique,’’ IEEE Access, vol. 11, pp. 114146–114154, 2023.

[4] F. Melgani and L. Bruzzone, ‘‘Classification of hyperspectral remote sens-
ing images with support vector machines,’’ IEEE Trans. Geosci. Remote
Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.

[5] A. A. Farag, R. M. Mohamed, and A. El-Baz, ‘‘A unified framework for
MAP estimation in remote sensing image segmentation,’’ IEEE Trans.
Geosci. Remote Sens., vol. 43, no. 7, pp. 1617–1634, Jul. 2005.

[6] L. O. Jimenez, A. Morales-Morell, and A. Creus, ‘‘Classification of hyper-
dimensional data based on feature and decision fusion approaches using
projection pursuit, majority voting, and neural networks,’’ IEEE Trans.
Geosci. Remote Sens., vol. 37, no. 3, pp. 1360–1366, May 1999.

[7] J. A. Benediktsson and I. Kanellopoulos, ‘‘Classification of multisource
and hyperspectral data based on decision fusion,’’ IEEE Trans. Geosci.
Remote Sens., vol. 37, no. 3, pp. 1367–1377, May 1999.

[8] C.-I. Chang and Q. Du, ‘‘Interference and noise-adjusted principal com-
ponents analysis,’’ IEEE Trans. Geosci. Remote Sens., vol. 37, no. 5,
pp. 2387–2396, Sep. 1999.

[9] C. Lee, S. Youn, T. Jeong, E. Lee, and J. Serra-Sagrista, ‘‘Hybrid
compression of hyperspectral images based on PCA with pre-encoding
discriminant information,’’ IEEEGeosci. Remote Sens. Lett., vol. 12, no. 7,
pp. 1491–1495, Jul. 2015.

[10] S. Li, P. Kou, M. Ma, H. Yang, S. Huang, and Z. Yang, ‘‘Appli-
cation of semi-supervised learning in image classification: Research
on fusion of labeled and unlabeled data,’’ IEEE Access, vol. 12,
pp. 27331–27343, 2024.

[11] K. Sun and J. Zhu, ‘‘Learning consistency from high-confidence pseudo-
labels for weakly supervised object localization,’’ IEEE Access, vol. 11,
pp. 16657–16666, 2023.

[12] Y. Li, T. Shi, Y. Zhang, and J. Ma, ‘‘SPGAN-DA: Semantic-preserved
generative adversarial network for domain adaptive remote sensing image
semantic segmentation,’’ IEEE Trans. Geosci. Remote Sens., vol. 61,
pp. 1–17, 2023.

[13] R. Li, C. He, Y. Zhang, S. Li, L. Chen, and L. Zhang, ‘‘SIM: Semantic-
aware instance mask generation for box-supervised instance segmenta-
tion,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2023, pp. 7193–7203.

[14] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[16] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[17] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR).
NV, USA: IEEE, Jun. 2016, pp. 770–778.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
2014, arXiv:1409.4842.

[19] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ 2017, arXiv:1704.04861.

VOLUME 12, 2024 93687



W. Liao et al.: HSI Classification Using Attention-Only Spatial-Spectral Network

[20] M. Tan and Q. V. Le, ‘‘EfficientNet: Rethinking model scaling for convo-
lutional neural networks,’’ 2019, arXiv:1905.11946.

[21] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using RNN
encoder–decoder for statistical machine translation,’’ inProc. Conf. Empir-
ical Methods Natural Lang. Process. (EMNLP), 2014, pp. 1724–1734.

[22] J. Donahue, L. Anne Hendricks, M. Rohrbach, S. Venugopalan,
S. Guadarrama, K. Saenko, and T. Darrell, ‘‘Long-term recurrent con-
volutional networks for visual recognition and description,’’ 2014,
arXiv:1411.4389.

[23] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, ‘‘An image is worth 16×16 words: Trans-
formers for image recognition at scale,’’ 2020, arXiv:2010.11929.

[24] W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, ‘‘Deep convolutional neural
networks for hyperspectral image classification,’’ J. Sensors, vol. 2015,
no. 1, pp. 1–12, Jul. 2015.

[25] L. Mou, P. Ghamisi, and X. X. Zhu, ‘‘Deep recurrent neural networks for
hyperspectral image classification,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 55, no. 7, pp. 3639–3655, Jul. 2017.

[26] Y. Li, H. Zhang, and Q. Shen, ‘‘Spectral–spatial classification of hyper-
spectral imagery with 3D convolutional neural network,’’ Remote Sens.,
vol. 9, no. 1, p. 67, Jan. 2017.

[27] I. O. Sigirci and G. Bilgin, ‘‘Spectral–spatial classification of hyperspectral
images using BERT-based methods with HyperSLIC segment embed-
dings,’’ IEEE Access, vol. 10, pp. 79152–79164, 2022.

[28] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, ‘‘Squeeze-and-excitation
networks,’’ 2017, arXiv:1709.01507.

[29] S. Woo, J. Park, J.-Y. Lee, and I. So Kweon, ‘‘CBAM: Convolutional block
attention module,’’ 2018, arXiv:1807.06521.

[30] Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu, ‘‘ECA-Net: Effi-
cient channel attention for deep convolutional neural networks,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 11531–11539.

[31] A. Vaswani et al., ‘‘Attention is all you need,’’ in Proc. Adv. Neural Inf.
Process. Systems(NIPS), 2017, pp. 5998–6008.

[32] M. Zhu, L. Jiao, F. Liu, S. Yang, and J. Wang, ‘‘Residual spectral–spatial
attention network for hyperspectral image classification,’’ IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 1, pp. 449–462, Jan. 2021.

WEIYI LIAO received the M.Sc. degree from the
Army Engineering University of PLA, Nanjing,
China. He is currently a Lecturer with the Army
EngineeringUniversity of PLA. His research inter-
ests include remote sensing image processing and
computer vision.

FENGSHAN WANG received the Ph.D. degree
from the Army Engineering University of PLA,
Nanjing, China. He is currently an Associate Pro-
fessor with the Army Engineering University of
PLA. His research interests include system anal-
ysis and remote sensing image processing.

HUACHEN ZHAO received the M.Sc. degree
from the Army Engineering University of PLA,
Nanjing, China. He is currently a Lecturer with
the Army Engineering University of PLA. His
research interests include digital earth and remote
sensing image processing.

93688 VOLUME 12, 2024


