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ABSTRACT Suppressing random noise and improving the signal-to-noise ratio of seismic data holds
immense significance for subsequent high-precision processing. As one of the most widely used denoising
methods, self-learning-based algorithms typically partition the large zone into several smaller zones for
individual training and processing, thereby achieving lower training costs. However, as the volume of seismic
data that needs to be processed continues to increase, the cost advantage of this method becomes less
apparent. This is because a larger data volume necessitates more independent training, ultimately increasing
the overall training cost. Therefore, we propose a denoising method based on self-supervised learning to
overcome the aforementioned problem. This method can directly acquire higher-quality training data from
large zones by leveraging similarity differences, decreasing the need to divide the large zone into smaller parts
for individual processing. As a result, it can effectively reduce the times for individual processing, leading
to a decrease in the overall training cost. Compared to traditional denoising methods and self-supervised
learning methods, the experimental results on both synthetic and field data demonstrate that the proposed
denoising method exhibits superior performance in random noise attenuation and reduction in training costs.

INDEX TERMS Seismic data, random noise, deep learning, self-supervised learning.

I. INTRODUCTION
With the growing emphasis on deep and ultra-deep seis-
mic exploration, the need for high-precision geological
exploration is becoming increasingly evident. High-precision
seismic exploration necessitates a high signal-to-noise ratio
(SNR) of seismic data, which significantly impacts subse-
quent seismic data inversion and geological interpretation [1].
However, during the process of seismic data acquisition,
it inevitably becomes contaminated by noise, which can be
categorized into coherent noise and random noise. Random
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noise, typically caused by various disturbances in the
acquisition environment, does not possess a fixed frequency
or apparent velocity. Consequently, this random noise has the
potential to significantly diminish the SNR of seismic data
and introduce substantial disruptions to subsequent seismic
data processing. Hence, the suppression of random noise
in seismic data has garnered considerable attention among
researchers.

To suppress random noise in seismic data, numerous
methods have been proposed. These include prediction
filtering methods such as FX deconvolution (FX), transform
domain filtering methods like wavelet transform (WT),
modal decomposition methods exemplified by variational
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mode decomposition (VMD), rank-reduction methods like
multi-channel singular value analysis (MSSA), and deep
learning methods including convolutional neural networks.
The premise of prediction filtering methods [2], [3], [4],
[5] is that effective seismic signals can be anticipated in
the frequency-space or time-space domain, while random
noise remains unpredictable. Leveraging this disparity in
predictive characteristics allows for the design of suitable
filter operators to mitigate random noise in the frequency
domain. Clean data can then be procured through a subse-
quent inverse transformation. Approaches for filtering in the
transform domain [6], [7], [8], [9] can convert the seismic data
into a designated transform domain, and subsequently apply
specific thresholds to perform denoising. These thresholds
are formulated based on the distinguishable disparity between
effective signals and random noise within the transform
coefficients. Despite their proficiency in mitigating random
noise, these methods rooted in transform-domain often fail to
entirely eradicate noise. In other words, they invariably blend
a portion of the noise with valid data, resulting in residual
noise. Modal decomposition methods [10], [11], [12], [13]
strive to enhance signal reconstruction and attenuate random
noise by breaking down seismic data into several signal
components and superimposing the primary components
that represent the clean data. However, this decomposition
process could inadvertently cause the clean data and noise
to intermix. Consequently, this can lead to multiple signal
components with indeterminable mix ratios, resulting in a
potential loss of effective signal and residual noise in the
denoised output. Rank-reduction methodologies [14], [15],
[16], [17] posit that the optimal clean data can be formulated
as a low-rank matrix. The objective is to attenuate the rank
augmentation induced by the random noise present in the
seismic signal matrix, thereby facilitating noise suppression.
Machine learning methodologies, with their innovative and
efficient approach to data processing tasks, have gained
substantial traction. Among these, techniques based on deep
learning, particularly those employing Convolutional Neural
Networks (CNNs), have witnessed significant advancement.
This progress has not been lost in the field of seismic
denoising, where numerous methods [18], [19], [20], [21],
[22], [23], [24], [25] have been proposed that leverage
deep learning to effectively suppress random noise. These
methodologies have proven pivotal in enhancing the signal-
to-noise ratio (SNR) of seismic data and attenuating random
noise, thus providing a conducive environment for subsequent
inversion and geological interpretation.

In recent years, researchers have tended to use self-
supervisedmethods [18], [26] rather than supervisedmethods
for random noise attenuation, due to the high training
cost (high calculation cost and high training data building
cost) of supervised learning. These self-supervised methods
can be directly applied to test data without the need
for additional training data construction, and have less
calculation cost. These methods leverage the disparity in

TABLE 1. Network training comparisons for synthetic example.

correlation between valid data and random noise in the inputs
and labels to suppress random noise. Their objective is to
find a way to cause correlation discrepancy between seismic
signals and random noise, which influences the network’s
learning process. A higher correlation between inputs and
labels results in a higher learning rate of the network.
Consequently, the network can construct a model with a
denoising effect by prioritizing finishing the learning to valid
data.

However, as the amount of test data increases, especially
for self-supervised methods that reorganize data to achieve
difference, it is not practical to train the network using
all of the test data. This is because it can make it harder
for the network to learn from valid data and reduce the
difference between valid data and noise. This could increase
the risk of failure in building the denoising model. If the test
data is divided into smaller parts for separate training and
processing, the overall cost may no longer be advantageous
despite the low cost of individual processing, due to the
increased times of separate processes. In addition, complex
geological structures typically represent a small portion of the
overall data. When using these self-supervised methods, this
proportion is also reflected in the training data. As a result,
processing for these complex structures is less effective
compared to processing for other common and relatively
simple structures.

Therefore, we proposed an improved self-supervised
denoising method based on data reorganization. This method
first selects high-quality zones from all the test data for
training. Then, it constructs training data from the selected
zones. Finally, it performs general self-supervised training
to build the denoising model. Compared to conventional
self-supervised denoising methods, this method utilizes
high-quality zone selection to decrease the times for
individual processing, thereby reducing the overall cost.
Additionally, high-quality zone selection can easily acquire
the data containing complex structures, thereby increasing
the proportion of data representing these structures. This
means this method can perform better in processing complex
structures.

The rest of this paper is organized as follows. Section II
mainly presents the proposed denoising strategy and selec-
tion strategy. Section III introduces the M-ResUNet [26].
In Section IV, experiments are conducted on synthetic and
field data to demonstrate the effectiveness of the proposed
method in attenuating random noise and reconstructing
signals. Finally, Section V concludes this paper.
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FIGURE 1. Processing flows of the self-supervised methods for the original zone. (a) The proposed method (MRN-NEW). (b) Conventional
self-supervised method for comparison (MRN-OLD).

TABLE 2. SNR and RMSE of the synthetic results [SNR (dB)/RMSE].

TABLE 3. Network training comparisons for field example.

II. METHODS
A. DENOISING STRATEGY
As we know, the seismic data (Ym,t ) can be expressed as
follows:

Ym,t = Xm,t + noisem,t ,m = 1, 2, 3, . . . , (1)

where Xm,t denotes clean data; noisem,t denotes Gaussian
white noise; and m, t denote trace number and time sampling
point, respectively. The valid data in adjacent traces exhibit
similar seismic characteristics in terms of interface and phase,
indicating spatial correlation. Conversely, random noise, as a
disordered time series, shows a lack of spatial correlation.{

X2m−1,t ≈ X2m,t

noise2m−1,t ̸= noise2m,t
, m = 1, 2, 3, . . . . (2)

Dividing the traces into two sub-gathers (GAsub and GBsub)
based on the parity of the trace number and using them as
the input and label of the network respectively can affect
the learning rate of the network for valid data and random
noise due to the correlation difference in space. In general,
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FIGURE 2. M-ResUNet framework. (a) Overall framework. (b) Feature
processing module.

FIGURE 3. Synthetic original zone for training.

FIGURE 4. Synthetic example. (a) Noisy data. (b) Clean data. (c) Random
noise.

the network can first finish the learning to valid data due
to its higher spatial correlation. According to the theory of
Gao et al. [26], if we can stop training at an appropriate
epoch (ϕ ∈ [Emin,Emax]), the corresponding denoisingmodel
(FNet ( : ; ϕ)) can successfully map the valid data from the
input (XI ) to those from the label (XL). Simultaneously, this
model can also map the random noise from the input (noiseI )
to its expected value, which is 0, due to the influence of
locally optimal solutions on parameter updating.{

FNet (XI ; ϕ) = XL
FNet (noiseI ; ϕ) = 0.

(3)

FIGURE 5. Denoising performances of synthetic example.
(a)-(f) Denoising results: MRN-NEW, MRN-OLD, MSSA, FX, WT, and VMD.

This is equivalent to attenuating the random noise in the
noisy data and reconstructing the valid data within it.

FNet
(
Ym,t ; ϕ

)
= FNet

(
Xm,t + noisem,t ; ϕ

)
≈ Xm,t . (4)

B. SELECTION STRATEGY
In this approach, we initially identify smaller zones with
a specified number, which determine the sources and
quantity of training samples. Subsequently, each selected
zone generates a pair of samples for training, as illustrated
in Fig. 1(a). Therefore, the key to enhancing the quality of
training data lies in themethodology employed to obtain these
zones. Generally, the higher the diversity of the chosen zones,
the more diverse the features they contain. Increased diversity
in features signifies that the training data derived from these
zones can significantly enhance the network’s generalization
capability.

Therefore, we can enhance the diversity of the zone set by
diminishing the similarity between zones, thereby improving
the quality of the training data. Specifically, each time a zone
is selected, the similarity between this zone and each zone in
the zone set will be analyzed. Only when the selected zone
exhibits dissimilarity to any zone in the set, it will be utilized
as a formal training data source and added to the zone set
for participation in the next round of similarity comparison.
Under this selection mechanism, complex structures in
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FIGURE 6. Denoising performances of synthetic example. (a)-(f) Removed
noise: MRN-NEW, MRN-OLD, MSSA, FX, WT, and VMD.

FIGURE 7. FK domain analysis. (a) Noisy data. (b) Clean data.

seismic data become easier to be selected due to their intricate
geological characteristics. This leads to a higher proportion of
data representing complex structures in the training dataset,
thereby potentially enhancing the quality of the training
data. Consequently, the network’s ability to process complex
structures and its generalization capacity can be improved.
By employing this selection approach, we can acquire a
sequence of high-quality training data sources characterized
by high diversity.

C. SIMILARITY ANALYSIS AND LOSS FUNCTION
The similarity analysis can be performed using the Structure
Similarity Index Measure (SSIM). SSIM is a perceptual
model that quantifies the level of distortion in an image

FIGURE 8. FK domain analysis for denoising results. (a) MRN-NEW.
(b) MRN-OLD. (c) MSSA. (d) FX. (e) WT. (f) VMD.

and also measures the similarity between two images.
This evaluation method can comprehensively assess images
based on three aspects: luminance, contrast, and structure.
We utilized SSIM and threshold a to quantify the level of
similarity between the two zones. We supposed that if the
SSIM value is less than or equal to the threshold a, it indicates
a low similarity between the selected zone and the reference
zone. In this article, the threshold a is set to 0.05.
The mean square error (MSE) is commonly employed to

assess the network’s training efficiency. The loss function in
this article can be expressed as follows:

L (θ) =
1
2M

M∑
i=1

∥∥∥FNet (BIi ; θ
)

− BLi
∥∥∥2
F

, (5)

whereM represents the number of samples in the training set;
∥·∥F represents the Frobenius norm; BIi denotes the patches
from the input; BLi denotes those from the label.

III. NETWORK ARCHITECTURE
In this article, we have adopted M-ResUNet [26] to exhibit
the effectiveness of the proposed methodology, as shown in
Fig. 2(a). M-ResUNet can break through the constraints of
the U-shaped processing pathway in the conventional UNet
network and conduct additional processing on certain feature
maps to achieve superior training outcomes. TheM-ResUNet
network comprises three fundamental structures, namely
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FIGURE 9. Amplitude comparisons on the 40th trace record.
(a) MRN-NEW. (b) MRN-OLD. (c) MSSA. (d) FX. (e) WT. (f) VMD.

the U-shaped structure, feature enhancement structure, and
multi-layer descending structure. The U-shaped structure
serves to extract features at varying levels and provides
an interface for subsequent processing of these features.
The feature enhancement structure can not only perform
additional processing on the features with a specified scale
but also control the bias of the final output towards features
of different scales by manipulating the ratio of the number
of channels associated with these features. The multi-layer
descending structure can not only reduce the extent of feature
loss after convolution operations but also possess a larger
parameter count and a broader parameter selection space,
thereby expediting network learning.

In addition, there is a feature processing module consisting
of two components, Conv Block A and Conv Block B,
is adopted to further facilitate network learning, as shown in
Fig. 2(b). Conv Block A expedites feature extraction across
all data via consecutive double convolutions, while Conv
Block B accelerates the update of the network parameter
vector towards the specific local optimal solution with a
denoising effect via a specific multiple residual structure.

IV. NUMERICAL RESULTS
All experiments were performed on a PC (Intel Core i5-
12400F 2.50 GHz CPU, 16-GB memory, and an NVIDIA
GeForce RTX 3060 GPU).

FIGURE 10. Spectrum comparisons on the 40th trace record.
(a) MRN-NEW. (b) MRN-OLD. (c) MSSA. (d) FX. (e) WT. (f) VMD.

FIGURE 11. SNR and RMSE comparisons at different noise levels. (a) SNR
comparison. (b) RMSE comparison.

FIGURE 12. Field original zone for training.

A. DATA ANALYSIS
To quantitatively assess the denoising performance from
different methods, the SNR and root mean squared error
(RMSE) [27] were applied to evaluate the results. SNR and
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FIGURE 13. Field example.

FIGURE 14. Denoising performances of field example. (a)-(f) Denoising
results: MRN-NEW, MRN-OLD, MSSA, FX, WT, and VMD.

RMSE can be expressed as follows:

SNR = 10log10


N∑
i=1

M∑
j=1

(
Xi,j

)2
N∑
i=1

M∑
j=1

(
FNet

(
Yi,j

)
− Xi,j

)2
 , (6)

RMSE =

√√√√√ 1
NM

N∑
i=1

M∑
j=1

(
FNet

(
Yi,j

)
− Xi,j

)2
, (7)

where FNet
(
Yi,j

)
and Xi,j represent the denoising result and

the clean data, respectively; M and N are the dimensions of
the seismic data. In addition, it is impractical for conventional
self-supervised denoising methods to evaluate the overall

FIGURE 15. Denoising performances of field example. (a)-(f) Removed
noise: MRN-NEW, MRN-OLD, MSSA, FX, WT, and VMD.

computational cost by individually processing small zones
divided from the test zone. To provide a more accurate
assessment of the cost, we have adopted the metric of
computational cost per pixel (CCP), as follows:

CCP =
Tprep + Ttrain

S
, (8)

where Tprep denotes preparation time for training data
construction; Ttrain denotes training time; S denotes the
number of pixel in the training zone.

B. NETWORK TRAINING SETTINGS
In this article, we adopted the self-supervised method from
Gao et al. [26] (MRN-OLD) for comparison, as shown in
Fig. 1(b). The hyperparameters utilized by the proposed
method (MRN-NEW) are the same as those of the MRN-
OLD. Both methods utilized the Adam optimizer with an
initial learning rate of 0.001. The patch size was set to
80 × 80, and the training set consisted of 384 samples. Both
Trainings were conducted for 6 epochs. It is important to
note that the training zone for the proposed method (MRN-
NEW) encompasses the entire original zone. This means that
it only needs to be trained once to process any zone within
the original zone. However, the training zone of MRN-OLD
is limited to its testing zone. Consequently, its processing for
the entire original zone requires repeated and independent
trainings.
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FIGURE 16. Denoising performances of field example. (a)-(f) Local
similarity map: MRN-NEW, MRN-OLD, MSSA, FX, WT, and VMD.

C. EXPERIMENTS ON SYNTHETIC DATA
We utilized the post-stack data from the Marmousi2
model [28] to demonstrate the exceptional performance of
our proposed method. Initially, we chose an original zone
comprising 600 sampling points and 1900 traces for training
the proposed method, as shown in Fig. 3. Subsequently,
we selected a test zone consisting of 160 sampling points
and 240 traces from the original zone to assess the denoising
methods, which includes MRN-NEW, MRN-OLD, MSSA,
FX, WT, and VMD. We added Gaussian white noise of 1dB
to the test zone to create a synthetic example, which is shown
in Fig. 4. The denoising results of MRN-NEW, MRN-OLD,
MSSA, FX, WT, and VMD are shown in Fig. 5, along with
their respective SNRs of 6.894 dB, 7.292 dB, 4.954 dB,
4.690 dB, 2.560 dB, and 1.287dB. The removed noise
corresponding to each denoising result is displayed in Fig. 6.
MRN-NEW and MRN-OLD exhibit similar and commend-
able performances in denoising and amplitude preservation,
surpassing MSSA, FX, WT, and VMD. However, MRN-
NEW demonstrates a lower computational cost compared to
MRN-OLD, approximately one-twentieth of the cost from
MRN-OLD, as shown in Table 1. This means that the
proposed approach incurs substantially lower training costs
than those associated with MRN-OLD.

Then, we conducted the FK analysis on the denoising
results to better capture the distinctions between different

methods. Fig. 7 displays the FK spectra of the synthetic
example. Fig. 8(a)-(f) shows the FK spectra of MRN-NEW,
MRN-OLD, MSSA, FX, WT, and VMD, respectively. MRN-
NEW and MRN-OLD continue to exhibit comparable and
commendable performances in noise reduction, surpassing
traditional methods. In addition, we applied comparisons of
amplitude and spectrum on the 40th trace record, as shown
in Fig. 9 and Fig. 10. It is clear that MRN-NEW and MRN-
OLD have similar performances in noise attenuation, which
is better than traditional methods. Finally, we applied these
methods to the synthetic example with five different levels
of random noise and compared their SNRs and RMSEs in
Fig. 11 and Table 2. It can be observed that MRN-NEW
outperforms MRN-OLD at most noise levels and exhibits
greater resilience to strong noise interference.

D. EXPERIMENTS ON FIELD DATA
To further prove the excellent performance of our proposed
method, we utilized a set of post-stack data from U.S.
East Coast seismic data. The original zone consisted of
1000 sampling points and 2000 traces, which were used to
train the proposed method, as shown in Fig. 12. The test
zone consists of 160 sampling points and 240 traces from the
original zone, serving as a test zone to evaluate the denoising
methods, as shown in Fig. 13. Table 3 shows the training
details of MRN-NEW and MRN-OLD for field example. It’s
evident that the training cost per pixel for MRN-NEW is
lower than that forMRN-OLD, despiteMRN-NEW requiring
more time to prepare the training data. The denoising results
of MRN-NEW, MRN-OLD, MSSA, FX, WT, and VMD are
presented in Fig. 14, while the corresponding removed noise
can be observed in Fig. 15. It is worth noting that both
MRN-NEWandMRN-OLD exhibit better performances than
MSSA, FX, WT, and VMD. In addition, we made local
similarity maps for these methods, as shown in Fig. 16.
It is clear that self-supervised methods have less similarity
than MSSA, FX, andWT, which means these self-supervised
methods have better performance in amplitude preservation.
Even if VMD shows a low local similarity, it has more
obvious reflection events in its removed noise than self-
supervised methods, which suggests VMD exhibits a worse
performance in amplitude preservation.

V. CONCLUSION
Aiming to address the challenge of applying the self-
supervised random noise suppression method to denoise
seismic data with large volumes, we proposed a novel
self-supervised denoising approach that can reduce calcula-
tion costs. The key feature of this method lies in its ability
to identify more valuable data zones via correlation analysis,
enabling the construction of a higher-quality training set.
Consequently, the method only requires a single training
process to enable it to attenuate noise in any zone within
the original zone, which eliminates the need of individual
processings for smaller zones. This results in a significant
reduction in computational costs by minimizing the number
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of individual processings. Experimental evaluations using
synthetic and field data demonstrate the excellent perfor-
mances of the proposed method in random noise attenuation
and seismic signal reconstruction. However, we note that
the denoising ability of our proposed method may degrade
under extremely low signal-to-noise ratio (SNR) conditions.
Moreover, the selection process of SSIM values can also
contribute to a certain degree of time consumption. Despite
these limitations, our proposed method has promising appli-
cations in complex random noise attenuation and seismic
signal processing.
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