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ABSTRACT Medical image segmentation is crucial for deep learning (DL) applications in clinical settings.
Ensuring accurate segmentation is challenging due to diverse image sources and significant data sharing
and privacy concerns in centralized learning setups. To address these challenges, we introduce a novel
federated learning (FL) framework tailored for breast cancer. First, we use random regions of interest (ROIs)
and bilinear interpolation to determine pixel color intensity based on neighboring pixels, addressing data
inconsistencies from heterogeneous distribution parameters and increasing dataset size. We then employ the
UNet model with a deep convolutional backbone (Visual Geometry Group [VGG]) to train the augmented
data, enhancing recognition during training and testing. Second, we apply the Gaussian Mixture Model
(GMM) to improve segmentation quality. This approach effectivelymanages distinct data distributions across
hospitals and highlights images with a higher likelihood of tumor presence. Compared to other segmentation
algorithms, GMM enhances the salience of valuable images, improving tumor detection. Finally, extensive
experiments in two scenarios, federated averaging (FedAvg) and federated batch normalization (FedBN),
demonstrate that our method outperforms several state-of-the-art segmentation methods on five public breast
cancer datasets. These findings validate the effectiveness of our proposed framework, promising significant
benefits for the community and society.

INDEX TERMS Federated learning, meta-global, Gaussian mixture model, segmentation, breast tumor.

I. INTRODUCTION
Medical image segmentation is a fundamental task in
automated medical image analysis, underpinning essential
applications including diagnosis, prognosis, treatment plan-
ning, image reconstruction, and evaluating patient treatment
responses. This is achieved using a variety of methods
ranging from basic to advanced, such as digital signal
processing and machine learning [1], [2], [3]. Many diverse
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types of cancer exist; however, breast cancer is one of the
most dangerous diseases affectingwomen, and there is still no
natural cure [4]. Many studies have evaluated breast cancer as
a complex disease characterized by the uncontrolled growth
of cells in the breast [5]. Breast cancer presents in many forms
depending on the cells that become cancerous and can spread
beyond the breast through the blood and lymphatic vessels,
affecting other body parts. To determine whether symptoms
indicate malignant or benign breast cancer, doctors conduct
a thorough physical examination and diagnostic tests using
various methods to understand the underlying cause of the
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tumor. The following imaging tests to diagnose breast cancer
are standard as mammography and ultrasound in [6] and [7].

1) Mammography: Mammography is a widely used
method for visualizing the internal structures of the
breast. If a doctor suspects a lump or an area is
suspicious, they may order a mammogram. Further
tests may be recommended based on the findings.

2) Ultrasound: A breast ultrasound employs soundwaves
to generate detailed images of the tissues deep within
the breast, aiding doctors in distinguishing between
solid masses, tumors, and benign cysts. With these
images as a guide, doctors can tailor appropriate
treatment regimens to each patient.

During digital mammography screening, each breast is
typically imaged from two views: the medial oblique and the
cranial-caudal view [6]. Ultrasound imaging is often used to
determine if an abnormality detected during a mammogram
or physical exam is a fluid-filled cyst or a solid tumor.
However, breast ultrasound is not usually used for cancer
screening because it can miss early signs of the disease [7].
The results from these diagnostic methods allow for a
thorough assessment of the breast tissue, supporting early
detection and accurate diagnosis of abnormalities. However,
current datasets are curated for specific use cases, locations,
and devices, often focusing only on manual tumor image
segmentation.

In recent decades, with the advent of artificial intelligence,
basic machine learning (ML) [8], [9], DL [10] models
have been proven effective in detecting breast cancer
and supporting early diagnosis, thereby improving patient
survival. Furthermore, DL requires less human intervention
for feature extraction compared to classical ML techniques.
However, concerns about data segregation, sharing, and
inconsistency have led to a loss of flexibility and increased
privacy concerns in medical treatment facilities.

Many recent studies have proposed collaborative learning
to overcome these limitations in DL, explicitly focusing on
FL [11], [12], which enables the combined training of a global
model across medical treatment facilities without sharing
sensitive data. This approach enhances model efficiency and
generalizability by synthesizing knowledge from datasets
managed at different imaging centers. The ability of FL to
improve privacy and security is crucial, especially in sensitive
fields, such as medicine, ensuring that personal information
remains confidential. Additionally, FL offers advantages,
such as improved overall efficiency, decentralization, and the
potential for edge computing, making it easily deployable in
hospitals without complex and expensive server systems.

In summary, early detection and timely diagnosis of
breast cancer play a crucial role in improving prognosis
and treatment outcomes [11], [12]. Regular checkups and
timely medical care are vital for everyone, with a particular
emphasis on women over 40 years old. Proactive measures,
such as decentralization and FL, can significantly contribute
to advancing medical image diagnosis and segmentation,

leading to better healthcare outcomes in managing breast
cancer.

This research introduces a computer vision technique
called image segmentation, which classifies each pixel
in an image as either tumor or background. Our study
pioneers the use of FL for image segmentation in breast
cancer. The first highlight is the use of rich datasets, both
discrete and mixed, to ensure accuracy and reliability, and
to facilitate sharing findings within the research community.
Second, experiments and evaluations on non-independent
and identically distributed (Non-IID) datasets, combinedwith
techniques like random regions of interest (ROIs) and bilinear
interpolation, demonstrate that the UNet3+model is suitable
for the breast cancer imaging landscape in FL. Third, this
study employs clustering algorithms to improve segmentation
image quality. Finally, comparison results show that our
method achieves higher dice coefficient (DC) results than the
baseline [13] and FedAvg (using the UNet3+ model) [14]
methods across several different data types.

The following section introduces the outstanding contribu-
tions of this research with detailed explanations:

1) We propose a novel FL framework for breast can-
cer image segmentation, aiming to improve tumor
detection (Section IV-A). The objective is to segment
breast images from x-ray and ultrasound data using
distributed nodes, each equipped with a unique local
dataset. We evaluate globally trained models against
individually trained models and a centrally aggregated
model across diverse data types. The evaluation results
demonstrate that the proposed framework is highly
reliable and ready to support hospitals in diagnosing
breast cancer.

2) We propose an effective solution for addressing
data inconsistency caused by nonuniform distribution
parameters within a dataset, thereby increasing its
size. Section IV-B provides a detailed explanation.
The approach involves using random regions of
interest (ROIs) and bilinear interpolation techniques to
determine the color intensity of a fixed pixel based
on the values of four diagonally arranged neighboring
pixels. We employ the UNet model in Section IV-C
with a deep convolutional backbone (Visual Geometry
Group [VGG]) to train the augmented data, enhancing
recognition during both the training and testing phases.

3) We apply the Gaussian Mixture Model (GMM) in
Section IV-D to improve image segmentation qual-
ity by leveraging both generative and discriminative
learning. First, it addresses the issue of separate
data distribution across hospitals. Second, it handles
multiple levels of data distribution, allowing the
GMM to highlight more valuable images whose
high prominence corresponds to the likelihood of
tumor occurrence. This approach yields consistently
high-quality segmentation results, providing reliable
information regarding tumor locations, as detailed in
Algorithm 1.
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FIGURE 1. Summary of the number of tumor types by disease family of
different breast cancer data.

4) We introduce two evaluation scenarios, federated
averaging (FedAvg) and federated batch normalization
(FedBN), to address challenges in training mod-
els within federated environments, as presented in
Section IV-E. To assess the reliability and effectiveness
of this study, we employ five performance indicators
and three loss indicators, as outlined in Section IV-F
and Algorithm 2. The results consistently demon-
strate significantly higher performance compared to
the baseline-centralized method [13] and FedAvg +
UNet3+ [14] across various assessments. These out-
comes substantiate the effectiveness of the proposed
research direction, promising substantial benefits for
the community and society.

In summary, this study investigates the advantages of FL in
medical image segmentation tasks, especially for diverse and
heterogeneously distributed datasets from various imaging
centers. The identified technical objectives, while beneficial,
raise questions regarding performance, which we aim to
address:
• RQ1: Do GMM and UNet accurately segment tumors?
• RQ2: Does the UNet3+ model improve performance
with limited datasets?

The rest of the paper is structured as follows. Section II
provides an overview of related work in this domain.
Next, Section III outlines the datasets and their associ-
ated challenges. The proposed methodology is detailed in
Section IV. Sections V and VI cover the implementation
details, experimental results, and efficiency and effects of
the meta-global model. Finally, Section VII summarizes the
critical findings and concludes the paper.

II. RELATED WORKS
Medical image classification is extremely important today
because it helps medical professionals and doctors provide
additional image-based diagnostic support using algorithms
in image processing and computer vision [2], [3]. Recent
advances in DL models have achieved notable progress
in semantic image segmentation [15], [16], [17]. The
application of DL models to breast tumor segmentation has
attracted significant attention in the research community [18].
Notable studies have extensively used ultrasound imaging

and digital mammography, with some incorporatingmagnetic
resonance imaging to segment breast tumors [19], [20].
A study has demonstrated that UNet and its variants have
emerged as popular architectures for this task [21].
Despite these advances, breast tumor segmentation

remains an open challenge due to complexities such as shape,
boundaries, curvature, intensity, and texture. Current DL
models focus on pixel-level predictions, often considering
interactions between pixels and semantic relationships in the
data. The attention mechanism in DL networks is crucial
for recognizing distinguishing features [22]. Soft attention
is preferred because it is easy to train and optimize [23].

Several studies based on federated learning (FL) have
demonstrated its effectiveness in the medical field. For
example, one study [24] predicted mortality and length
of hospital stay using distributed electronic health records
from many different hospitals. Indeed, data sharing between
hospitals brings great benefits to hospitals, doctors, and
patients, demonstrating the great potential of FL. Another
study [25] introduced computer vision and FL solutions to
increase data labeling efficiency, showing superior results
compared to FedAvg, especially with the Covid-19 image
dataset, which is very encouraging in the clinical medical
field.

In the field of breast cancer, there have been many studies
on image segmentation based on DL models. However, there
is little applied research in the FL setting, where hospitals
participate in the FL process by sharing imaging features
rather than data. The research in [26] focuses on image
classification, introducing a new memory-aware curriculum
learning method for the FL environment but using only
the mammography dataset for classification. The authors of
the large-scale computational pathology study [27] aimed to
demonstrate the feasibility and results of FL on breast cancer
datasets to show its superiority in ensuring privacy using
multi-instance learning.

Another study called FedMix [28] proposes that each client
updates its federated model by integrating and effectively
using all available labeled data, from strong pixel-level labels
to the weakest image-level class labels. Based on these local
models, the authors proposed an adaptive weight assignment
process for local clients, where each client learns to aggregate
weights during the global model update process.

After evaluating the studies and the related DL and FL
models used in visual segmentation of breast cancer images,
we found it necessary to develop new solutions in breast
cancer image segmentation using FL. This study presents the
idea of increasing focus on important regions in breast tumor
segmentation, using UNet for tumor detection, and exploring
a decentralized learning model, which poses significant
distributed challenges. Additionally, the use of FL brings
many benefits, as hospitals can share data, improve the
quality of image diagnosis, and maintain patient information
confidentiality. The authors believe that this study pioneers
breast cancer research, bringing significant benefits to the
community and society.

VOLUME 12, 2024 94233



Nguyen Tan Y et al.: Joint FL Using Deep Segmentation and the Gaussian Mixture Model

TABLE 1. Summary of breast cancer data types.

III. DATASETS
Section III provides a concise overview of five crucial
datasets for this research. In image processing, computer
vision, and particularly deep learning (DL), the selection
of input data significantly impacts the research process and
outcomes. This section introduces the standard and relevant
raw data used in the study. Breast cancer is the most prevalent
and deadliest cancer worldwide. In 2022, an estimated
287,500 new cases of breast cancer were diagnosed in
women in the United States, including 51,400 new cases of
noninvasive breast cancer.
• The University of South Florida’s Department of
Radiology developed the Digital Database for Screening
Mammography (DDSM), which includes 2620 scanned
mammograms with verified patient information. This
dataset supports the development and evaluation of algo-
rithms for breast cancer detection and diagnosis [29].

• The Curated Breast Imaging Subset of DDSM
(CBIS-DDSM) is derived from the DDSM dataset and
improved by a trained mammographer. It includes only
abnormal images for computer-aided classification and
detection tasks [30].

• The Mammographic Image Analysis Society (MIAS)
Digital Mammogram Database, developed with the
University of Aberdeen, includes digital mammograms
with annotations by expert radiologists. It is widely used
in breast cancer research [31].

• The INBREAST database, created by the University
of Santiago de Compostela, contains 410 mammog-
raphy images from 2012, categorized into various
classifications and presented in DICOM format [32].

• The Breast Ultrasound Image (BUSI) dataset consists
of ultrasound images from 600 women aged 25 to 75,
providing a comprehensive resource for breast cancer

detection and diagnosis research [33]. Table 1 summa-
rizes the datasets and data calibration in this study.

Researchers enhance the robustness and generalizability of
breast cancer models by integrating datasets from multiple
hospitals. Using medical datasets requires strict adherence
to ethical considerations for patient privacy. An analysis
of five datasets revealed imbalances due to heterogeneous
distribution (Fig. 1). Addressing these imbalances involves
preprocessing and employing segmentation algorithms. In the
data processing phase, DDSM and CBIS-DDSM data show a
50% abnormality rate. Similar patterns are seen in MIAS and
INBREAST datasets, with 80% normal and 20% abnormal
data. Training data across hospitals are weighted for balanced
representation. In BUSI ultrasound data, 70% are labeled
normal, and 30% show abnormalities.

Handling data imbalance in FL focuses on effective
learning rather than simple data ratios. Sample balancing
is not applied due to limited data and varying tumor
detection targets. Distribution disparities are addressed
through training with a DL model and controlled with GMM
in postprocessing. Completely trusting the global model
is impractical, requiring independent data control at each
hospital. Retraining with fine-tuning, a form of transfer
learning, uses pretrained model weights on hospital data.
After examining common breast cancer datasets, the focus
shifts to processing for high-quality datasets and accurate
evaluations, enabling practical applications in Section IV.

IV. METHODOLOGY
A. PROPOSED FRAMEWORK OVERVIEW
This section delineates the proposed approach within the
FL framework for breast cancer segmentation. Section IV-A
expounds on the comprehensive framework structure.
Section IV-B details the data processing solution encapsulated
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FIGURE 2. Proposed training strategy: Utilize breast cancer datasets (DDSM, CBIS-DDSM, MIAS, INBREAST, BUSI),
preprocess by converting DICOM to 2D images, resizing, augmenting data, extracting ROI, and splitting data; train
UNet with hybrid segmentation loss; and postprocess using GMM decision thresholds, focusing on salient regions
and evaluating performance.

in Algorithm 1—a vital core element of this research.
Section IV-C introduces the selected model architecture and
its practical application. The ensuing postprocessing step
is discussed in Section IV-D and succinctly detailed in
Algorithm 2 to explain the FL framework implementation.
This section elucidates the pivotal choice of GMM for
determining the segmentation threshold, ensuring precision.
The detailed steps are outlined in Fig. 2. After identifying and
explaining the critical algorithms, the application of scenarios
in real-world situations is discussed. Section IV-E introduces
two primary scenarios, FedAvg and FedBN, tailored for
different clients, each representing a hospital with distinct
datasets. Section IV-F delves into the selected methods for
evaluating the research results. These evaluation methods
shape the research and facilitate practical applications in
research centers and hospitals with diverse breast cancer data.
Sections V and VI detail the simulation implementation and
the experimental results.

B. PREPROCESSING
1) REGION OF INTEREST (ROI) EXTRACTION
In medical images for breast cancer analysis, as detailed in
Section III, we identified the imperative need to enhance
image datasets. Typically, these datasets are relatively
small, and annotations tend to be sparse in comparison
to natural images [34]. Hence, this section introduces
data augmentation methods for the datasets outlined in
Table 1. While recent data augmentation methods, such as
Cutout [35], Mixup [36], and their derivatives [37] and
combinations [38], have predominantly employed a fixed set
of image transformations, the proposed approach addresses

the unique challenges posed by the necessity to augment
images with multiple annotations targeting various shapes,
including simultaneously segmenting different object regions
and their contours.

The proposed solution is applicable to all the included
datasets (DDSM, CBIS-DDSM, MIAS, INBREAST, and
BUSI) given their relatively large scans, with an average
height ranging from 2531 to 5295 pixels and an average
width from 1675 to 3131 pixels. Images were extracted from
full-sized scans and downsized to 256 × 256 or 128 × 128,
and the ROIs were extracted using masks.

Each preprocessed image was contextually extracted based
on a bilinear interpolation visual algorithm. The data were
expanded by randomly positioning ROIs in the image
to augment the dataset. This process involves bilinear
interpolation, allowing the conversion of full-size images
to downsized images with pixel matching. This method
ensures the accurate calculation of the intensity for each
pixel, unlike other interpolation techniques, such as nearest
neighbor interpolation [39] and binary interpolation. In this
study, we use the values of the nearest four pixels located
diagonally from a given pixel to determine the appropriate
color intensity values for that pixel, as illustrated in Fig. 3.

Suppose we want to find the value of an unknown function
f at the coordinate point (x, y) and that we know the value
of f at four coordinate points Q11 = (x1, y1), Q12 = (x1, y2),
Q21 = (x2, y1), and Q22 = (x2, y2).
First, we performed linear interpolation in the x direction.

R1 = Q11(1− wx)+ Q21wx ,

R2 = Q12(1− wx)+ Q22wx ,

P = (1− wy)R1+ R2wy,
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= Q11(1− wx)(1− wy)+ Q21wx(1− wy)

+ Q12(1− wx)wy + Q22wxwy (1)

where wx =
x−x1
x2−x1

and wy =
y−y1
y2−y1

. x and y are pixel points
that are reduced in size. We achieved the same results when
performing the interpolation first in the y direction and then
in the x direction.
Next, the DDSM images contain variable-sized borders

and white patches to hide the patient’s personal information.
The MIAS dataset has a background data area at the border
and does not contain mammograms. The BUSI dataset
changes at different rates, mistaking data for a tumor and
ignoring essential information. The DDSM image in the
MIAS dataset was cropped by 5%on each side, with a bilinear
size reduction and segmentation mask template combined
into 10-pixel to 50-pixel source removal data to remove
borders and redundancy. The INBREAST dataset contains
four distinct classes: mass, calcifications, asymmetries, and
distortions, with no background tissue descriptors, small ROI
are dilated by 10% edges. Moreover, BUSI easily focuses
on the tumor area, so the abnormal points are not at the
edge based on the mask layer provided. Determining suitable
augmentation solutions for datasets is also a challenge and is
addressed in this study.

2) PERSPECTIVE TRANSFORMATION
In the realm of medical imaging, especially in breast tumor
analysis, the examination of abnormal tumor data is crucial
for distinguishing between benign and malignant tumors.
Achieving homogeneity across all datasets is vital; thus,
a minimum fixed padding is applied around the ROI during
the preprocessing stage. Each ROI is extracted and dilated 30-
pixel from the four corners of the tumor’s bounding box, with
the ROI randomly positioned within these bounds. Extracting
each ROI in an area larger than its size ensures that tumors
significantly larger than the background are not overlooked.
The size of this dataset is based on the abnormal volume
obtained through zooming in and randomly cropping images
according to the tumor characteristics. In the data processing
step illustrated in Fig. 2, the images containing overlay text
are preserved or predominantly transformed to have a black
background. This process is done to retain tumor formation
while considering the complexity of the semantic segmenta-
tion model, which faces challenges due to diverse prediction
distributions.

3) RESIZING
To enhance the specificity of the dataset, additional data
augmentation tools are employed to improve performance,
recognize diverse tumor morphologies, and prevent overfit-
ting during deep neural network training. The UNet model
discussed in Section IV-C uniformly enhances the image and
mask. These enhancements include changes in brightness
and contrast by 15%, shifts, rotations, image scaling by
15 degrees, a 50% image flip, using PadIfNeeded to expand
the image and create new blank areas if necessary, cropping

FIGURE 3. Four red dots represent data points, and the green dot
signifies the point of interpolation.

random portions of the input, adding 20% Gaussian noise
to the input image, and performing a random four-point
50% perspective transform of the information using the
perspective operation. Algorithm 1 details the data processing
steps.

The image intensity and mask values are normalized
between 0 and 1. A 128 × 128 × 3 random foreground was
extracted for hospital contexts, and the corresponding 128×
128× 1 label is a grayscale image conveying a value of 1 for
the tumor area and 0 for the background. The output includes
post-processed image combinations, providing investigators
with information on intensity mapping and tumor size.

4) GEOMETRIC TRANSFORMATIONS
This comprehensive, performance-optimized approach to
medical image transformation operations offers a concise
yet powerful tool for various computer vision tasks, includ-
ing segmentation. This process includes adjustments in
brightness and contrast, shifts, rotations, flips, scaling, and
random cropping to diversify the dataset as in Fig. 4. These
transformations ensure accurate pixel intensity and enhance
the dataset by introducing variability, thereby improving
the robustness and generalizability of the deep learning
models.

The preprocessing step used Python as the programming
language, with OpenCV and PyTorch being the primary
libraries. OpenCV was used for image processing tasks, such
as contour detection, perspective transformation, resizing,
and augmentations.

C. MODEL ARCHITECTURE SELECTION
This study advocates the use of the UNet architecture,
a widely recognized framework for semantic segmentation
tasks in medical images, characterized by simple connec-
tions. It explores two variants of the UNet architecture,
UNet2+ and UNet3+, which feature simple connections
nested within each other and dense concatenation to extract
comprehensive information across scales. The preferred
backbone for these variants is the state-of-the-art UNet3+
model, leveraging the VGG architecture [40], rather than
older methods, such as PSPNet, DeepLabV2, DeepLabV3,
DeepLabV3, and Attention UNet, [16], [41], [42], [43], [44].
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Algorithm 1 Preprocessing
Input: a given data X = {x1, x2, . . . , xi},
Y = {y1, y2, . . . , yi} , offset = 30
Output:
X
′

=

{
x
′

1, x
′

2, . . . , x
′

i

}
, Y
′

=

{
y
′

1, y
′

2, . . . , y
′

i

}
Randomly initial X
for x, y ∈ zip(X ,Y ) do

/*region of interest*/
r ← finding contours for x follow y box← points
after the rectangle r + offset
/*perspective transformation*/
M ← the perspective transformation matrix← box
x, y← directly warp the rotated rectangle to get the
straightened rectangle←M
/*resizing*/
x
′

, y
′

← from Eq. 1
/* geometric transformations*/
x
′

, y
′

← Compose[Change brightness and
contrast;Shift, Rotate, Flip and Scale; PadIfNeeded;
RandomCrop]← x

′

, y
′

.
end

FIGURE 4. Example of geometric transformations applied to
segmentation images: ROI Image (128 × 128), Change brightness and
contrast (15%), Shift, scale, rotate (15◦), Horizontal flip (50%).

The study also includes the UNet+GM method to stream-
line the investigation and comparison. All networks undergo
optimization using the loss function proposed in [45]. The
selection of UNet3+ is crucial for the complex task of
tumor segmentation, especially when dealing with substantial
medical breast images and the available computational
resources within the hospital. The UNet3+ model serves as
an extension of the UNet architecture, building on UNet2+
by introducing full-scale bypass connections. Apart from the
nested bypass connections, UNet3+ establishes connections
between all encoder and decoder layers, creating a fully
connected structure, ensuring that information from all levels
of the encoder is accessible at each level of the decoder. The
overarching goal of UNet3+ is to enhance the segmentation
accuracy.

D. POSTPROCESSING
1) ESTIMATE GMM COMPONENTS
In Section IV-B, we addressed the challenges of data
enrichment andmodel selection to delineate the segmentation
region in any given image. However, as highlighted, choosing
DL models to achieve highly accurate results presents its
own set of challenges. Therefore, a solution is essential at
the postprocessing stage. In this method, we employ the
Gaussian Mixture Model (GMM). Given the impracticality
of relying solely on the global model and the need for
independent control of data distribution across each hospital
or retraining with fine-tuning, a transfer learning approach
becomes imperative. This approach emphasizes the use of
pretrained models on hospital data to address the nonuniform
data distribution.

The number of components in the GMM heavily depends
on the output image, and no one-size-fits-all threshold
exists for complete segmentation. Manual thresholding, for
example, using a fixed threshold of 0.5/1.0 with the ground
truth, may lead to suboptimal results, as illustrated in Fig. 5,
where noise and deformities in the mammary gland affect the
segmentation process. Clustering with multiple components
using the GMM has proven effective in overcoming these
challenges, yielding reasonable results within the range of
tumor hyperintensities. The output optimization solution uses
the GMM to acquire a comprehensive representation of class
recognition knowledge in a discriminant feature space [46].

2) INDIVIDUAL COMPONENTS
Partly inspired by probing the data structure through intra-
class clustering, the GMM [47], as implemented in this com-
bined training scheme, offers several advantages. First, the
GMM provides the dual benefits of generative and discrim-
inative learning. Through online expectation-maximization
(EM)-based productive optimization, the GMM adeptly fits
the data distribution, even as the feature space expands. The
feature space is trained end-to-end discriminatively, aligning
with the guidance of the GMM classifier to maximize
pixelwise prediction performance.

Second, the GMM’s explicit modeling of the data distri-
bution facilitates handling examples at multiple distribution
levels. Saliency maps are directly input into post-production
as additional information based on areas in the image
with high saliency values, corresponding to an increased
likelihood of tumor presence. Thus, saliency maps must
exhibit suitable quality and provide reliable information
about tumor locations. Conversely, poor-quality saliency
maps can adversely influence model performance.

3) RECONSTRUCTION
For density estimation and clustering, we assume that the
output data are generated from amixture ofmultiple Gaussian
distributions. Each Gaussian component in the mixture
represents the density of a cluster k in the data. The GMM
represents the probability density function as the total weight
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of many Gaussian distributions, which is given according to
the following Eq. 2:

p(v) =
K∑
k=1

πk ·N
(
x | µk + qµk , σ

2
k + qσ 2k

)
(2)

In this equation, qµk and qσ 2k are drawn from a uniform
distribution for each component. Additionally, K is the
number of Gaussian components in the mixture, and πk
is the weight (or mixing coefficient) of the k-th Gaussian
component, satisfying Eq. 3:

K∑
k=1

πk = 1 (3)

whereN
(
x | µk , σ

2
k

)
is a Gaussian distribution with mean µ

and covariance matrix σ 2.
In the EM algorithm, GMM training involves estimating

the parameters of Gaussian components. The E (Expec-
tation) step calculates the probability of each data point
belonging to each Gaussian component. The M (Maximiza-
tion) step updates the parameters based on the probabilities
obtained in theE step. The details for the postprocessing stage
are explained in Algorithm 2.

Algorithm 2 Postprocessing: EM Algorithm for GMM
with each i do Input: a given data X = {x1, x2, . . . , xn}

Output:
π = {π1, π2, . . . , πK } ,

µ = {µ1, µ2, . . . , µK } ,

σ 2
=
{
σ 2

1, σ
2
2, . . . , σ

2
K
}

Randomly initial π, µ, σ 2

for t ∈ T do
//E step for n ∈ N do

for k ∈ K do

γ (znk) =
πkN

(
xn|µk ,σ 2

k
)∑K

j=1 πjN(xn|µj,σ 2j)

end
yn = argmax

k
γ (znk)

end
//M step for k ∈ K do

µk =

∑N
n=1 γ (znk )xn∑N
n=1 γ (znk )

6k =

∑N
n=1 γ (znk )(xn−µk )(xn−µk )

T∑N
n=1 γ (znk )

πk =
1
N

∑N
n=1 γ (znk)

end
µ mixture component means use to state of
environment for policy each i
π scale weight of mixture components
y prediction is conducted by group label for client
each i

end

E. SCENARIO IMPLEMENTATIONS
This section introduces two main FL scenarios, FedAvg [13]
and FedBN [48], to address challenges in training models on

decentralized data while preserving data privacy and security.
A fundamental FL algorithm, FedAvg focuses on training
a global model by aggregating local updates from different
hospitals. However, it may face suboptimal performance
due to sparse and inconsistent hospital data. A modified
version of batch normalization for FL, FedBN addresses
problems related to data distribution differences between
hospitals by aggregating the mean and variance statistics.
This approach enhances model convergence and ensures
more consistent normalization during training. The FedAvg
and FedBN algorithms are explained in detail in the following
section, providing insight into their operation for the depicted
scenario in Fig. 6.
• Data Collection: Data are collected from clients, each
with access to their local datasets. The data remain
decentralized and do not need to be shared with a central
cloud.

• Data Partitioning: Local datasets are partitioned or
sampled into smaller subsets (batches) per hospital.
Each device uses local data to train the local model.

• Initialization: A global model is instantiated in the
cloud.

• Client Update: Each hospital (participant) downloads
the global model and trains the model locally using
its dataset (DDSM, CBIS-DDSM, MIAS, INBREAST,
or BUSI) and calculates model updates (UNet, as dis-
cussed in Section IV-C).

• Model Aggregation: Model updates from all hospitals
are sent to the cloud server, where they are aggregated
by calculating their average. In FedBN, the batch
normalization values are kept separate for each hospital.

• Global Model Updates: The average model updates are
applied to the global model.

• Iterative Process: The process of updating the client,
synthesizing, and updating the global model is repeated
for multiple rounds or epochs until the global model
converges or reaches the desired performance level.

Sections V and VI present the simulation settings and results.

F. TRAINING STRATEGY
After completing the steps and constructing the scenario,
we initiated the training process for the entire system.
To assess the reliability and potential effectiveness of this
study, we identified and emphasized the predicted tumors
by examining the similarities between the predictions and
annotated segments (ground truths). This evaluation is
conducted using five performance evaluation indices and
three loss indices: precision (specificity), recall (sensitivity),
accuracy/range index (ACC), Dice coefficient (DC), area
under the receiver operating characteristic curve, Jaccard loss
(intersection over union [IoU]), focal loss, and multiscale
structural similarity index measure (MS-SSIM) loss [49],
[50]. Algorithm 3 provides a detailed explanation of the
training strategy. All presented performance indicators are
based on calculating the confusion matrix for the binary
segmentation mask.
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FIGURE 5. Diagram of postprocessing. This augmentation is exclusively conducted while
validating the segmentation network.

FIGURE 6. Proposed framework: Client nodes update the global meta-model, and
knowledge aggregation occurs after every two iterations of the local model. The
weights of the global model are shared with client models, allowing nodes to share
knowledge without sharing data.

The range of values for all presented indicators extends
from 0 (worst) to 1 (best). The goal is to determine the factory
testing unit (FTU) mask segment for each histopathological
image. Each mask is indicated by 0 for background or 1 for
FTU.

• TP (True Positive) represents the number of FTU pixels
correctly classified as FTU.

• FP (False Positive) denotes the number of background
pixels misclassified as FTU (due to bias).

• FN (False Negative) is the number of FTU pixels
misclassified as background.

• TN (True Negative) indicates the number of back-
ground pixels correctly classified as background.

The specificity is the TPs divided by the number of all
positive outcomes:

Specificity (PE) =
TP

TP+ FP
(4)

Sensitivity is the number of TPs divided by the number of
samples that should have been identified as positive:

Sensitivity (SE) =
TP

TP+ FN
(5)

VOLUME 12, 2024 94239



Nguyen Tan Y et al.: Joint FL Using Deep Segmentation and the Gaussian Mixture Model

Algorithm 3 Training strategy
Requirements: |w| of modelM , η: learning rate, e:
epochs. unicast initialize - w0 of basic training to
hospital node.
for per i ∈ {R, . . .R− 1} do

to c-th client from round robin scheduling i for c
/*run train on clients c ∈ C*/
augmented data x

′

c,i, y
′

c,i by passing input data
xc,i, yc,i, in Alg. 1.
produces x

′

c,i, y
′

c,i applyingMi model and continues
e epoch training for all c at i generates loss

∑R
i Li by

passing x
′

c,i, y
′

c,i through wt in parallel.
/*run update on server*/
updates |w| via wt ← η.∇wt (

∑R
i Li) ▷ meta

global model at the server-side update.
if FedAvg then

send to c-th modelM with average weight
1
C

∑C
c |w|

for each user c and each layer l do
if layer l is not BatchNorm then

send to c-th modelM with average
weight 1

C

∑C
c |w|

end
if Ci − Pi > 0 then

PSi←(PS tempi − PS lossi )
else

end
end

end
/*run update on clients c ∈ K*/
updates next round weight wc,i+1 viaMc,i← M ▷ local
model at the client-side update
if N is even then

X ← X × X ;
N ← N

2
else

if N is odd then
y← y× X ;
N ← N − 1;

end
end
if frequency then

Perform tumor salient attention with the Alg. 2.
end

The Rand index, referred to as accuracy here, measures
segmentation performance by evaluating all pixel pairs,
calculating the ratio of correctly classified pairs to the total
pairs:

Rand index (ACC) =
TP+ TN

TP+ TN + FP+ FN
(6)

The DC is calculated from the prediction accuracy and
recall, scoring the overlap between the predicted segment and
ground truth. It penalizes FPs, a common factor in high-end

imbalanced datasets, such as medical image segmentation:

Dice Coefficient (DC) =
2TP

2TP+ FP+ FN
(7)

Evaluating medical image segmentation involves chal-
lenges related to imbalanced datasets and different tumor
sizes. In this context, an accurate assessment requires
accounting for the TN results, especially with a small percent-
age of pixels in the ROI and the prevalence of background
pixels. In image segmentation, each pixel should be treated
as a data point. The AUC provides a consolidated measure
of performance across all pixel classification thresholds.
From this curve, representing two recall parameters, TPR =

TP
TP+FN and fallout FPR = FP

FP+TN , the AUC measures the
two-dimensional area beneath the entire receiver operating
characteristics (ROC) curve (integral operation) from (0, 0)
to (1, 1). The dashed line presents the ROC curve in [51],
depending on the baseline, to determine whether the model
predicts the background retention and tumors correctly
(typically, the threshold is 0.5)).

Due to the simplicity of the binary classification task,
the model easily achieves accurate classification results
under the optimization of the binary cross-entropy (CE)
loss function [52], which performs instructions to overcome
the disadvantage of excessive segmentation on tumor-free
images (confusion). We added the loss functions combined
with the standard stochastic gradient descent for associative
learning to update the weight one time, and in each epoch,
there are N data points, so the weight is updated N times.
Source training and post-screening are necessary for the
new source detection phase to ensure that the outputs are
highly reliable to strengthen the boundaries of intermediate
tumor salinity further. We propose expecting a multiscale
structure analog index loss function (MS-SSIM) to assign a
higher weight to blurred boundaries. The UNet monitors and
captures blurred boundaries early because a greater regional
distribution difference results in a higher MS-SSIM value.
Two ROI regions of sizeN are cut from the results of segment
P and the background truth mask G, respectively, which are
p = {pj : j = 1, . . . N 2

} and g = {gj : j = 1, . . . N 2
}.

The MS-SSIM function of p and g is defined as follows:

łms−ssim=1−
M∏
m=1

(
2µpµg + C1

µ2
p + µ2

g + C1

)βm
(

2σpg + C2

σ 2
p + σ 2

g + C2

)γm

(8)

whereM denotes the sum of the scales,µp,µg, and σp, σg are
themean, and the standard deviation of p, g, and σpg, denoting
their covariance. We determine the relative importance of
the two components as βm and γm in each scale, established
according to [53]. Two minor constants, C1 = 0.012 and
C2 = 0.032, are added to avoid the unstable situation of
dividing by zero. This step is followed by the focal loss, which
addresses class imbalances (e.g. misclassification and small
pt ). The coefficient of variation is close to 1, and losses are not
affected. When pt approaches 1, the coefficient progresses to
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0, and the losses for well-classified examples are weighted:

pt =
{

p if y = 1
1− p otherwise

łfl = − (1− pt)γ log (pt)

(9)

When γ = 0 FL corresponds to CE. As the γ increases, the
effect of the modulation factor also increases. For example,
for γ = 2, an example classified with, pt = 0.9 has a loss
of 100 less than CE, and with, pt = 0.968, it has a loss
less than 1000, which increases the importance of correcting
misclassified examples.

The standard Jaccard loss function (IoU loss) works when
the predicted limit boxes coincide with the basic truth box:

lIoU = 1−
TP

TP+ FP+ FN
(10)

Thus, the combined loss is developed for segmentation
according to a three-level hierarchical middle period: pixel,
patch, and map levels, which can capture large- and
small-scale structures with clear boundaries:

lseg = lfl + lms−ssim + lIoU (11)

V. IMPLEMENTATION DETAILS
This section selects and sets the settings for the system. The
details are introduced in the following sections.

A. INDIVIDUAL BASELINE
For each task, the VGG backbone and UNet model variants
were trained based on the FedAvg and FedBN scenarios.
The global model training involved splitting the data into
training and testing sets, using distinct portions of the DDSM,
CBIS-DDSM, MIAS, INBREAST, and BUSI datasets to
prevent overlap. These data are processed as described in
Algorithm 1, Section IV-B, using the OpenCV library com-
bined with Python programming. This involves converting
DICOM images into 2D standard formats (PNG or JPG)
for convenient use. The complete data for each client was
partitioned into training and testing sets at 75% and 25%,
respectively. Consequently, a single model was trained on
a dataset encompassing two types of diagnostic imaging—
radiology and ultrasound—addressing four distinct radiology
types for breast cancer data.

B. CENTRAL AGGREGATION
In a multidistribution segmentation setup, we combine data
types to create a hospital-based model capable of predicting
relevant data. Acknowledging the intricate challenge, we rec-
ognize that aggregating various computational parameters
through FedAvg may result in suboptimal performance
compared to training individual models separately for each
dataset or maintaining individual models to ensure FedBN
stability. The centralized aggregation model is configured
following the same steps as the baseline implementation,
anticipating that the processing models are well-acquainted
with all data and do not incur significant additional costs.

TABLE 2. Parameters for VGG − s1 and VGG − s2 with architecture models.

C. NETWORK ARCHITECTURE
The versatility of this framework lies in its adaptability
to any contemporary deep neural network by substituting
the backbone with an alternative model architecture. In the
experiments (Section VI-A), we explore two backbones,
VGG − s1 and VGG − s2, for the fractional UNet model.
The backbones differ in their model fractions, with s2 being
smaller than s1 (Table 2). This modification adjusts the ratio
of filter s1 to the depth of the encoder and decoder in the
UNet model, transitioning from [64, 128, 256, 512] to filter
s2 [32, 64, 128, 256]. For the postprocessingGMMclassifier,
each pixel feature is transformed into a 128-dimensional
vector. In the implementation of this study, each class K is
canonically represented by a GMM with K = 2.

D. TRAINING
The experiments involved horizontally partitioned image
datasets distributed unevenly across hospitals (clients). All
code was written in Python 3.10.1 using the PyTorch library
(v. 2.1.0). The experimental computer configuration for
simulation included 64 GB of RAM and one graphics
processing unit (GTX 3090 with 24 GB), with the node
architecture x86 and 64. The setup assumes all participating
hospitals update the model in each global epoch (i.e., f = 2
during training). TheUNet datasets and network architectures
were selected based on performance considerations, ensuring
proportionate participation in the study. The learning rate for
all methods was initially set to 0.01 and sharply decreased
with the number of local epochs (e = 2), according to
CosineAnnealingLR, reaching 0.0001 before resuming an
increase in the learning rate. The learning rate was chosen
based on the combined performance, using the stochastic
gradient descent optimization function for the models. Initial
observations were made for the learning client, ensuring
generalized learning with a minibatch size of B = 10,
evaluating training and testing accuracy in Section VI for
comparison:

ηt = ηmin +
1
2

(
ηmax − ηmin

)(
1+ cos

( Tcur
Tmax

π
))

,

Tcur ̸= (2k + 1)Tmax

ηt+1 = ηt +
1
2

(
ηmax − ηmin

)(
1−cos

( 1
Tmax

π
))

,

Tcur = (2k + 1)Tmax
(12)

where Tmax is the maximum number of repetitions and η

is the learning rate. In each training iteration, a momentum
(Sinkhorn) EM loop [53] (i.e., t = 1) is conducted on
the current training batch and external memory to optimize
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TABLE 3. Experimental setup.

the GMM and backpropagation global gradient of CE loss
over the current batch for discriminative training of feature
extractors.

E. LOCAL FINE-TUNING
Similar to postprocessing, where a pretrained model is
customized and at least one internal model parameter (i.e.,
weights) is fine-tuned, as demonstrated in [54] and [55],
which are highlighted the importance of fine-tuning in FL
models. Fine-tuning is crucial for enhancing the accuracy of
the global model while maintaining accessibility for person-
alization. Consequently, the FedAvg and FedBNmodels were
refined on local datasets, aiming to enhance the task-specific
performance of each task block while preserving the block
representation through the fine-tuning method.

VI. EXPERIMENTAL RESULTS
With advancements in imaging technology and artificial intel-
ligence, the experiments demonstrated the incredible ability
of the segmentation system to recognize breast tumors at an
early stage and accurately assess their severity. Section VI
also answers the research questions RQs, demonstrating the
novelty and creativity of this research.

A. MODEL COMPARISON
In exploring advanced models, we conducted a series of tests,
comparing the performance of various models, including
UNet3+, UNet2+, and UNet+. We applied two training
methods, FedAvg and FedBN, as presented in Tables 4. In this
process, we used diverse data from five sources: DDSM,
CBIS-DDSM, MIAS, INBREAST, and BUSI. We mixed
a composite dataset (ALL) by combining data from these
sources, which allowed us to evaluate the performance of
the models on a diverse range of data collected from five
hospitals rather than using just one type of data shared
between hospitals.

The results of the experiment reveal that the UNet3+
model excelled with the highest accuracy. In addition, the
performance of FedAvg and FedBN does not demonstrate
a significant difference. When using the FedBN training
method, the DC performance reached 81.4%, surpassing

the 80.3% reached by FedAvg. No significant deterioration
occurred in performance between the two backbone models
when using VGGs2, which may even have the advantage
of a lower number of model parameters at about 70%.
However, the UNet2+ model did not achieve satisfactory
results, with 60% lower DC performance. These results refer
to the advantages of the UNet3+ model in medical image
segmentation and the performance difference between the
FedAvg and FedBNmethods and the proposed model (ALL).

B. COMPARISON WITH THE STATE-OF-THE-ART
SCENARIO
This study examined a range of datasets, including DDSM,
CBIS-DDSM,MIAS, INBREAST, and BUSI, to evaluate the
performance of an MLmodel. Initially, this model performed
well on the MIAS and BUSI datasets, with an accuracy of
86.9% and 90.3%, respectively, using the FedAvg method.
However, when applying this model to other datasets, its
performance is inferior, and the accuracy is low. To improve
this, we performed local fine-tuning (+FT) beyond linking,
retuning the model on each dataset.

Therefore, performance on the BUSI dataset was reduced
by 2.5% despite improvements from 3.8% to 8.8% on
other datasets. However, when applying another method,
FedBN+FT increased from 4.3% to 11.0%, the BUSI data
node had no change, and the method in the Meta+FedBN
link increased from 4.3% to 6.0% compared to the baseline
(except in BUSI, which decreased by 9.1%). The tough
challenge with the INBREAST and BUSI datasets does not
extend beyond the federated. All experimental results are
listed in Table 5.

C. LOSS ASSESSMENT OF OPTIMAL SCENARIOS
During the comparison and research, we developed a hybrid
loss using a three-level hierarchy: pixel, smashed, and map.
This loss aims to capture large- and small-scale structures in
the data with clear boundaries. We proposed Meta+FedBN
to address the challenges associated with differences in data
distribution across hospitals. This method aggregates the
mean and variance statistics from activations across devices,
differing from the Meta+FedAvg method. In practice, after
applying Meta+FedBN to nodes at hospitals with diverse
datasets, we observed a significant decrease in the total lseg
loss of Meta-FedBN, reaching 1026 at the 100th communi-
cation round. This outcome corresponds to a loss reduction
of about 6.7% compared to the Meta+FedAvg method.
We also found that the most substantial loss reduction occurs
when applying lIoU , especially when the predicted bounding
boxes match the ground-truth boxes exactly. These findings
indicate that Meta+FedBN performs better in this situation,
as presented in Table 6.

D. DECISION THRESHOLDS
From the results in Section VI-A, FedBN outperforms
FedAvg in DC performance. Consequently, we opted to
compare the results using FedBN. Fig. 7 and Table 7
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TABLE 4. Dice coefficient performance on the testing dataset using the FedAvg & FedBN scenarios and various architectural models.

TABLE 5. Performance DC on test dataset when using training strategy with a meta-global model.

TABLE 6. Evaluate the overall semantic segmentation loss between the proposed FedAvg and FedBN scenarios.

TABLE 7. Dice coefficient on the out-of-federation ALL dataset,
considering the standard vs. postproduction GMM combination method.

FIGURE 7. Ground truth segmentation masks with masks generated by
hospitals using the UNet3+ models and meta federated batch
normalization (Meta-FedBN).

illustrate that the fine-tuned FedBN model exhibits superior
performance compared to the basic UNet3+ models when

FIGURE 8. Gaussian mixture model analysis of the image histogram
identifying the optimal threshold for separating the foreground from the
background.

segmenting the DDSM, CBIS-DDSM, MIAS, INBREAST,
and BUSI datasets. This outcome is manifested by the highest
DC scores of 82.7% (without the GMM) and 80.5% (with
the GMM), surpassing the 80.4% achieved by the base
UNet3+ model. The UNet3+FT model, coupled with the
GMM and leveraging the FedBN after fine-tuning, surpasses
the baseline models by more effectively capturing tumor
variability and prominence across datasets.

This finding is crucial when the training model relies on
centrally aggregated data and may not generalize well to
diverse labels. The combination with the GMM retains many
characteristics due to its flexible threshold area, resulting in
a longer and more general convergence time. In the absence
of the GMM, using a fixed threshold of 0.5, the SE drops
as low as 90.8%, lower than that for the UNet3+GMM
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FIGURE 9. Eliminated saliency maps from the original dataset. The left column depicts the output test image, the middle column displays the saliency
with each component after the Gaussian Mixture Model (GMM), and the right column presents the primary tumor mask.

FIGURE 10. Performance evaluations based on five key metrics in meta federated averaging and batch normalization (Meta-FedAvg and Meta-FedBN)
across hospitals.

and UNet3+FT+GMM at approximately 93%, displaying
better sensitivity to detect FNs, especially in Hospital 2
(CBIS-DDSM) and Hospital 4 (INBREAST).

Furthermore, the assessment of other evaluation scores,
such as AUC, accuracy, sensitivity, and specificity,

demonstrates the improved performance of the best-
performing model. This result emphasizes the superiority
of the proposed method for tumor segmentation across
medical datasets, leveraging fine-tuning and the integration
of methods for optimal results. In an extension of the
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FIGURE 11. Total time training comparison of the VGG − s1 and VGG − s2 models in meta federated
averaging (Meta-FedAvg) and meta federated batch normalization (Meta-FedBN) with segmentation
loss across communication rounds.

proposed approach, we used information from the mixture
model instead of employing a fixed decision threshold of
0.5 to classify the data. The GMM determines the decision
threshold (K = 2) based on themean value of the components
of the Gaussian distribution.

To illustrate this, we generated a histogram representing
the data distribution. The tumor retains essential infor-
mation regarding the primary tumor and its surrounding
parts, facilitating the estimation of the tumor spread
and determining its prominence in the prediction pro-
cess. By employing an average threshold based on the
number of tumor components, the data distribution was
concentrated between 0.3 and less than 0.5, serving as an
excellent example of applying distribution-based decision
thresholds, enabling more flexible and accurate tumor
decisions.

In the final phase as shown in Fig. 9, we assessed the
saliency heatmap in various forms within the prediction

output components. With increasing detail, we could better
discern the shape and distribution of the tumor acrossmultiple
layers, ranging from low to high quality. Throughout this
analysis, we employed a specific color code:
• Orange represents weakly involved areas.
• Red indicates the extent of the tumor boundary relative
to the background.

• White symbolizes the tumor’s most vigorous intensity.
Using K = 5 in this context, we found that the

histogramwaswell-suited for calculating the tumor shape and
determining its spread. In contrast, employingK = 1 allowed
us to focus on determining the primary tumor. This adaptive
approach enabled personalized decisions based on the data
distribution at each hospital. To ensure personalized control
over the output of the UNet3+ model, we implemented
supply-port combination losses. This strategic incorporation
enhanced decision-making capabilities, ensuring consistency
in the model output across scenarios.
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FIGURE 12. Convergence comparison of the VGG − s1 and VGG − s2 models in meta federated
averaging (Meta-FedAvg) and meta federated batch normalization (Meta-FedBN) with segmentation
loss across communication rounds.

E. PERFORMANCE EVALUATIONS BASED ON AUC, DC,
ACC, SE, AND PE
This section delves into additional performance evaluations
based on five key metrics (area under the curve, Dice
coefficient, accuracy, sensitivity, and specificity) across five
diverse data types. The analysis compares three scenarios:
traditional, FedAvg, and FedBN, as illustrated in Table 8,
providing crucial insight for a comprehensive understanding
of the study outcomes. The findings highlight significant
performance variations between data types and scenarios.
Notably, the BUSI dataset and ultrasound image data exhibit
impressive predictions, surpassing 90%, whereas x-ray image
data face challenges, performing at levels of around 75%
to 80%. These disparities underscore the complexity of
leveraging varied data types, emphasizing the need for
thoughtful selection aligned with the research objectives.
In addition, the study emphasizes the substantial influence of
the INBREAST dataset on the overall tumor prediction and
segmentation performance, given its unique characteristics.
Recognizing such variations arising from the distinct dataset
characteristics is crucial when training models.

The evaluation extends to two cases, Meta-FedAvg and
Meta-FedBN, assuming each dataset represents a hospital
on each VGG − s1 and VGG − s2 models. This approach
mirrors real-world scenarios where hospitals possess diverse
datasets. The analysis in Fig. 10 provides insight into
data differences, facilitating a realistic assessment of the
method’s applicability. Privacy concerns are acknowledged,
emphasizing that the results serve as a valuable reference for
researchers and hospitals seeking solutions to connect data
and enhance predictive capabilities.

Upon reviewing experimental results and considering
FedAvg and FedBN scenarios with two VGG − s1 and
VGG− s2 models in Fig. 11, no significant time differences
between hospitals were observed. Variations primarily hinge
on training data from the DDSM and CBIS-DDSM datasets,
peaking at 500 seconds per communication round. A time
difference of approximately 200 seconds in architectural
models indicates the influence of the training conditions on
the performance and training time.

This disparity underscores the need for future research to
optimize training processes based on each hospital’s data
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TABLE 8. Scenarios with multiple performance metrics on the Database
for Screening Mammography dataset.

distribution structure and learning opportunities. The process
graph for two VGG − s1 and VGG − s2 models depicted in
Fig. 12 presents the semantic segmentation loss, withminimal
variations observed between models and scenarios. The loss
values consistently range between 0.9 and 1.3, indicating the
stability of the training process. This stability suggests the
model’s robustness during training, its ability to learn under
diverse conditions, and its resilience against overfitting or
performance degradation. Overall, these findings provide a
positive outlook for the reliability of the proposed model in
real-world applications.

VII. CONCLUSION
This study introduces an innovative FL architecture for breast
tumor segmentation in medical images, combining physician
visual observation with X-ray and ultrasound images. Using
the modified UNet model and incorporating special attention
blocks through GMM will improve the segmentation quality.
Applying GMM supports the segmentation of salient images,
focusing on important regions during the segmentation
process. Experiments in the FedAvg and FedBN scenarios,
as well as diverse evaluation methods on five standard
datasets with hyper-global and complete models, showed
superior segmentation performance compared to the baseline
method. This approach addresses challenges in DL for
medical image processing, especially in ultrasound and
mammography segmentation, offering a promising strategy
for physicians and technologists. It provides a tool to support
and anticipate early tumor detection. The next study will

focus on developing a software application, with software
projects collected directly at different cancer hospitals,
in accordance with the architecture of FL, with the aim of
improving the quality of life for the community.
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