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ABSTRACT Driver drowsiness is a major contributor to road traffic accidents. A system capable of
detecting drowsiness and consequently warning drivers at an early stage could significantly reduce the
number of drowsiness-related road accidents. Although different measures can indicate driver drowsiness,
eye activity measures are known to indicate drowsiness in the early stages. This study systematically
reviewed empirical studies (with reported performance measures) on driver drowsiness detection (DDD)
systems that use eye activities to indicate drowsiness. The objective of this review was to provide researchers
and practitioners with in-depth information on DDD systems based on eye activities. Forty-one studies were
identified using the preferred reporting items for systematic reviews and meta-analyses methodology. This
review investigated various eye activity measures of drowsiness and provides a classification scheme for
these measures. In addition, the current technologies used to measure eye activity were examined and a
classification scheme for these technologies was formulated. Further, the decision-making algorithms used
to classify and predict drowsiness states were investigated using their associated performance measures.
Finally, future insights and ideas for utilizing eye activity measures to detect drowsiness at an early stage
were discussed. This study forms the basis for future research and development of DDD using eye activities.

INDEX TERMS Drowsiness, detection, driving, eye activity, road safety.

I. INTRODUCTION
According to the World Health Organization (WHO), road
accidents kill 1.35 million people worldwide annually and
result in 20-50 million people suffering from serious
injuries [1]. Road accidents are among the 10 leading causes
of fatalities worldwide, especially in children and young
adults aged 5-29 years [2]. The economic loss due to fatalities
and injuries related to road accidents is estimated at USD
1.8 trillion for the period 2015-2030 [2]. Statistics indicate
that road accidents represent a serious global burden, and pro-
jections suggest that this case will continue in the future [1].
Road accidents often occur because of a combination of
factors related to roadways (e.g., traffic flow), environmental
factors (e.g., thermal comfort), vehicles, and drivers (e.g.,
vigilance state) [3]. Among these factors, driver drowsiness
is a major contributor to road accidents that can result in
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fatalities, severe injuries, and significant economic losses [4],
[5]. Driver drowsiness is referred to as a reduction in the level
of driver vigilance, which can be caused by long hours behind
the wheel, medicines, sleeping disorders, medical illnesses,
fatigue, and drowsiness [6]. Studies show that the major-
ity of road accidents involving driver drowsiness, occurring
between midnight and 6 a.m., involve a single vehicle and a
sober driver traveling alone, and do not involve any attempts
to avoid a crash [7].

Drowsiness is identified as a primary cause of approx-
imately 20% of all road accidents in developed countries
(e.g., 21% in Canada, 17% in Australia, 25% in the UK) [8].
According to the American Automobile Association (AAA)
Foundation for Traffic Safety, 16-21% of fatal car accidents
may involve driver drowsiness [4]. In the trucking industry,
approximately 60% of fatal truck accidents are related to
driver drowsiness [7]. The results of many surveys revealed
that 66—80% of drivers had previously driven while sleep-
ing [9]. The aforementioned data demonstrate that driver
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drowsiness has become a major concern for society; there-
fore, proactive efforts are required to mitigate its contribution
to road accident statistics.

Over the past two decades, extensive research has been
conducted on drowsiness and its impact on drivers, including
reduced mental alertness and awareness, decreased individ-
uals’ ability to operate a vehicle safely, increased risk of
human errors that can lead to fatalities and injuries, slowing
of the driver’s reaction time, and impaired judgment [10],
[11], [12]. Studies have shown that the best way to prevent
drowsiness at the wheel is to have an adequate amount of
sleep before driving as well as regular breaks (naps) during
the driving period, preferably with certain caffeine consump-
tion, such as having a cup of coffee [13], [14]. According to
Horne and Reyner [15], drivers falling asleep are unlikely
to recall having done so until too late. They only recall
the precursory state of increasing drowsiness (i.e., fighting
off sleep before an accident). Therefore, there is a grow-
ing interest among transportation researchers in developing
smart systems for detecting driver drowsiness in the early
stages.

With current technological advances, it has become possi-
ble to detect driver drowsiness in the early stages before acci-
dents, thereby significantly reducing fatalities and injuries
related to road accidents [16]. The literature identifies various
measures of driver drowsiness detection (DDD).

(i) Physiological measures: The alertness level of the driver
is evaluated using physiological body indicators, such as heart
rate, brain activity, muscle activity, and body temperature.
The four main techniques that use physiological measures to
detect driver drowsiness are: electroencephalography (EEG),
electrooculography (EOG), electrocardiography (ECG), and
electromyography (EMG) [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29].

(i1) Behavioral measures: These include facial measures,
such as eye movement, head position, yawning, and facial
expression that indicate the alertness level of the driver [30],
[31], [32], [33], [34], [35], [36], [37], [38].

(iii) Vehicle-based measures: These include vehicle-related
metrics, such as lane deviation, speed, steering movement,
pressure on the accelerator, and hand position that indicate
an increased likelihood of drowsiness when exceeding regular
thresholds [6], [21], [39], [40], [41].

(iv) Subjective measures: The driver’s individual assess-
ments are used to evaluate the level of alertness. The two main
assessment techniques are: the 9-point Karolinska Sleepiness
Scale (KSS) and the 7- point Stanford Drowsiness Scale
(SSS), where numerical ratings indicate different levels of
alertness [6], [21], [39], [42].

The techniques based on physiological measures, despite
their accuracy, are intrusive and not practically feasible in
vehicles because they require sensors and electronic gad-
gets attached to the driver’s body [39], [42]. Vehicle-based
measures are non-intrusive but are considered unreliable
when used solely because they provide warning signals at
late stages or just before an accident [6], [43]. Subjective
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measures cannot instantaneously detect driver drowsiness
because they depend on the driver’s self-assessment [6], [39],
[42]. However, behavioral measures are non-intrusive, reli-
able, and efficient [6], [39], [42]. In particular, measures
related to eyelid/eyeball movement (i.e., ocular parame-
ters) can indicate drowsiness in the early stages [44], [45],
[46], [47], [48], [49]. This advantage is of great importance
because drivers have more time to respond appropriately;
hence, fatalities and severe injuries from road accidents can
be significantly reduced.

This study aimed to systematically review empirical stud-
ies related to eye activity-based DDD systems, focusing on
studies that have measured the performance of their detection
systems. Evaluating the performance of a DDD system is
critical for its integration into advanced driver assistance sys-
tems. Exploring the different performance measures of DDD
systems indicates their effectiveness. A perusal of the litera-
ture reveals that there is a lack of research focusing on DDD
based on eye activities. The contributions of this study to
road safety literature are as follows. This review provides the
research and academic communities with in-depth informa-
tion on DDD systems based on eye activities. It investigates
various eye activity measures that can be used to indicate
driver drowsiness and proposes a classification scheme for
these measures. In addition, the current technologies used to
measure eye activity are investigated and classified based on
their intrusiveness. Further, the decision-making algorithms
used to predict drowsiness are examined based on their asso-
ciated accuracy. Finally, future insights and ideas for utilizing
eye activity measures to detect drowsiness at an early stage
are provided.

The remainder of this paper is organized as follows.
Section II presents the methods used to collect and select
relevant papers. Section III presents the results of the sys-
tematic review, including a summary of the final set of
included studies and the proposed conceptual framework
for eye activity-based DDD systems. It also describes and
classifies the identified eye activity measures indicating
drowsiness, measurement technologies used to monitor eye
activities, and decision-making algorithms for classifying and
predicting the drowsiness state. Section IV presents a dis-
cussion and future directions, followed by the conclusion in
Section V.

Il. METHOD
A systematic literature search was conducted with the help
of a professional librarian based on the preferred reporting
items for systematic reviews and meta-analyses (PRISMA)
methodology [50]. The search aimed to identify empirical
peer-reviewed scientific studies (journal articles and con-
ference proceedings) that have developed eye-activity-based
DDD systems and measured their detection performance.
The literature search involved the following steps: iden-
tifying relevant studies by searching databases, screening
the identified studies (by removing duplicates and checking
relevance), assessing eligibility by reading full-text studies,
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FIGURE 1. Flow diagram of PRISMA approach to identify studies on driver
drowsiness detection based on eye activities.

and finally, including eligible studies in the final list of studies
to be evaluated. Fig. 1 illustrates the search strategy based on
the PRISMA approach.

A. SEARCH KEYWORDS AND DATABASE

Four databases were searched in this review (Web of Sci-
ence, Scopus, IEEE Xplore Digital Library, and PubMed)
to identify studies that used eye activity in DDD system
development. Additional relevant literature identified by a
colleague involved in similar work was manually screened.
A database search was performed using three sets of key-
words using the AND logic. The first set of keywords
included drowsiness, sleepiness, and fatigue. The second set
included ocular, eye activity, eye movement, blink, eyelid
closure, PERCLOS, saccadic, gaze, and pupil. The third
set included keywords related to performance measurement,
such as accuracy, correlation, precision, and error. The search
process considered all possible combinations of keywords
from all three sets (e.g., drowsiness AND blink AND accu-
racy or sleepiness AND blink AND error). After running the
search on the four databases, all articles were downloaded
to a database manager (RefWorks) and all duplicates were
removed. The starting year of publication was not restricted,
and the year of publication was 2023. A study was required
to have at least one combined term from the final keywords
list in its title and abstract to be considered in the sample of
identified studies.
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B. SCREENING OF STUDIES

The identified studies were screened in two stages. The first
screening stage included literature that was in English and
peer-reviewed journal articles or conference proceedings that
explicitly involved using eye activities in developing DDD
systems in their abstracts and related to driving. The second
stage included empirical studies that measured and reported
the performance of the developed DDD systems. Theoretical
studies and literature reviews were excluded from the analy-
sis. Finally, the screened studies were reviewed for eligibility.

C. DATA EXTRACTION AND ANALYSIS

In this step, core results were extracted from the final list
of selected studies, and relevant information was presented
in tabular and graphical formats. A summary of each study
included in the review is provided, including details of the
experiment, ocular parameters used, additional parameters
used, eye measurement technology, drowsiness detection
classification methods, and performance measures. The pri-
mary components of ocular-based DDD systems have been
identified, and various classification schemes have been
presented. All eye activity measures were identified and
classified based on the moving part of the eye. Secondary
measures of drowsiness (additional to eye activity measures)
were identified. Different measurement technologies were
discussed and categorized based on their intrusiveness and the
manner in which they operate. Different algorithms for classi-
fying alertness state were identified. Finally, future directions
were discussed based on the findings.

IIl. RESULTS

The total number of studies identified in the initial search was
2326, among 1697 remaining after removing duplicates. Only
235 studies were deemed relevant after initial screening. The
final number of studies conducted after the second screening
was 39. The list was reviewed by a colleague who participated
in a similar study. Two studies were added to the list, resulting
in a total of 41 studies (27 journal articles and 14 conference
proceedings).

Approximately 48% of the articles appeared in computer
science and engineering journals, 37% in health and human
sciences journals, 7.5% in transportation journals, and 7.5%
were multidisciplinary. Conference proceedings constituted
34% of the identified studies, of which 86% were related to
computer science and engineering, and 14% to transporta-
tion. All identified studies involved driving experiments (83%
simulated driving and 17% real driving). The number of
participants in the driving experiments ranged from 4-60 (for
real driving) and 676 (for simulated driving). A summary of
the final set of studies included in this systematic review is
presented in Table 1.

Table 1 provides information about experiment type and
duration, sample size, drowsiness measures, measurement
technologies, classification algorithms and performance met-
rics. The following subsections (A-E) provide more details
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about the findings of the included studies. First, we describe
the general framework and main components of the driver
drowsiness detection systems. We then report the iden-
tified ocular parameters and classify them based on the
nature of eye activity. We also report secondary measures
of drowsiness (additional to eye activity measures). Addi-
tionally, we discuss the measurement technologies used to
detect drowsiness and classify them based on their functional
properties. Finally, we report classification algorithms used
to detect drowsiness along with their performance measures.

A. FRAMEWORK OF DROWSINESS DETECTION SYSTEMS
This section presents the conceptual framework and main
components of eye activity-based DDD systems. Anal-
ysis of the identified studies revealed three main com-
ponents of DDD systems: technologies used to measure
eye activities, eye activity measures indicating drowsiness,
and decision-making schemes to classify/predict drowsiness.
Fig. 2 illustrates the main components and the proposed
framework of the DDD systems. The proposed framework
provides a basis for the analysis of studies identified through
a systematic search.

This review reveals three classification perspectives of
eye-activity-based DDD systems: measurement technology,
measures indicating eye activity, and decision-making algo-
rithms. Many DDD systems have been classified based
on the nature of the eye activity measures used to
indicate drowsiness in eyelid movement-based systems,
eyeball movement-based systems, and a combination of
eyelid/eyeball movement-based systems. Eyelid movement
measures include blinking behavior (e.g., blink frequency,
blink duration, and blink amplitude) and eyelid closure (e.g.,
PERCLOS). Eyeball movement measures included pupillary
parameters (pupil diameter, latency of pupillary oscillations),
saccadic eye movement (saccadic duration, fixation duration,
and saccadic speed]), and gaze. This classification perspec-
tive has also been reported in previous studies [14], [45], [52],
[56], [86], [87].

Other DDD systems have been classified into active
(electro-based) and passive (contact-free) systems based on
the technology used to monitor eye activities. In active sys-
tems, the measurement technology uses electrodes attached to
the skin of the driver to measure designated eye activities such
as EEG, EOG, and EMG. In passive systems, the measure-
ment technology depends on contact-free methods to measure
designated eye activities, such as video image analysis and
infrared reflectance. This classification perspective has also
been reported in previous studies [14], [52], [86], [87], [88],
[89].

The last classification perspective classified DDD sys-
tems based on the type of embedded decision-making
algorithm into machine-learning-based and non-machine-
learning-based systems. The former uses supervised, deep,
and unsupervised learning algorithms to classify and predict
drowsiness states. The latter uses classical statistical methods
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and rule-based techniques to classify and predict drowsy
states. Many previous studies have indicated these criteria for
classifying DDD systems [14], [55], [90], [91].

Other uncommon classification perspectives have also
been reported in the literature. For example, Dinges et al. [88]
classified DDD systems into four groups based on their sim-
ilarities: readiness-to-perform and fitness-for-duty screeners,
mathematical models/algorithms, vehicle-based driver per-
formance measurements, and vehicle-based operator alert-
ness/drowsiness monitoring devices. In 2005, Williamson
and Chamberlain investigated fatigue and drowsiness mon-
itoring systems. They classified the DDD systems into
three groups based on the methodology used to indicate
drowsiness-related changes: systems related to the driver’s
current state (i.e., eye and physiologically related changes),
technologies related to the driver’s performance (e.g., lat-
eral position and headway), and technologies including a
combination of the driver’s current state and performance.
Wright et al. [14] proposed another classification of DDD
systems. Five categories were proposed based on the vari-
ables used to reflect drowsiness: systems related to physio-
logical measures correlated with sleepiness; systems based
on physical variables (i.e., movement and activity); systems
using behavioral indices, including performance or activ-
ity related to driving tasks (e.g., steering wheel pattern);
model-based systems; and systems combining all the previ-
ous categories. Jo et al. [92] indicated that DDD systems can
be classified into three groups: systems that depend on driving
behavioral, biological, and visual attributes.

The majority of studies reported the following three main
steps for developing DDD systems: selecting eye activity
measures to indicate drowsiness, selecting the measurement
technology to monitor the selected eye activity measures, and
selecting the decision-making algorithm to classify/predict
the drowsiness state. The selection made at each step sig-
nificantly affected the performance of the developed DDD
system.

B. REPORTED EYE ACTIVITY MEASURES INDICATING
DROWSINESS
A total of 78 eye activity measures of drowsiness were
reported from the included studies. In this review, a classifi-
cation scheme was proposed, based on the moving part of the
eye, to classify eye activity measures into: measures related
to eyelid movement and measures related to eyeball move-
ment. The former class included blinking behavior (i.e., blink
frequency, blink duration, and blink amplitude) and eyelid
closure (i.e., closure level and PERCLOS). The latter class
included pupillary parameters (i.e., pupil diameter, pupil-
lary latency, pupillary oscillations, and pupillary constriction
amplitude), saccadic eye movements (i.e., saccadic duration,
saccadic speed, and fixation duration), and eye gaze. Fig. 3
shows the eye activity measures associated with each class.
The majority of the studies (approximately 68%) reported
measurements related to eyelid movement (58% related
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TABLE 1. Summary of the final set of studies included in the systematic review.

No. | Study Experiment Drowsiness measure Measurement Classification method Performance
Type No. of | Time Primary (Eye activity | Secondary technology metric
participants measures)
1 Summala etal. | Real driving | 4 12 Blink frequency, blink | Steering-wheel inputs Video oculography | Comparing  drivers’ | Two-tail t-tests
(1999) [51] participants | hours/participant duration (4 video cameras) performance with | (p<0.05)
passengers’
performance
2 Caffier et al. | Realdriving | 60 Several sessions | Blink frequency, blink Infrared Comparing measured | Two-tail t-tests
(2003) [52] participants | (morning and | duration, closing time, oculography ~ (An | parameters with | (p<0.001)
evening) reopening time, closed infrared sensor | subjective  measures
time, and proportion of clipped to an | (personal state scale
long closure duration eyeglass frame) and visual analogue
blinks scale)
3 Galley et al. | Simulated 76 25 Blink interval, blink Video oculography | Comparing measured | Correlation
(2004) [53] driving participants | hours/participant duration, delay of (IR camera) parameters with | coefficient =
reopening, blink subjective alertness | 0.97
amplitude, opening scores and EOG
duration, opening speed,
standardized opening
speed, closure speed, and
standardized closure
speed
4 Damousis et | Simulated 35 45-90 Blink duration, eyelid Video oculography | Comparing measured | Accuracy =
al. (2007) [54] | driving participants | min/participant closing time, (video-based system | parameters with | 90%
amplitude/peak  closing called SmartEye) Karolinska Sleepiness
velocity, eyelid opening Scale and EOG
speed, eyelid closing
speed, delay of eyelid
reopening, eyelid
opening time, and blink
interval
5 Boyraz et al. | Simulated 30 15 Eye closure, pupil area, | Head motion Video oculography | Fuzzy inference system | Accuracy =
(2008) [55] driving participants | hours/participant gaze vector (a monocular | and artificial neural | 98.00%
complementary networks
metal-oxide—
semiconductor
(CMOS) camera)
6 Schleicher et | Simulated 13 134 Blink duration, delay of Video oculography | Comparing measured | Correlation
al. (2008) [56] | driving participants | min/participant lid  reopening, blink (a video camera) parameters with | coefficient =
interval, and standardized subjective  self-ratings | 0.64
lid closure speed and video ratings
7 Morad et al. | Realdriving | 29 2 months Saccadic velocity, Infrared Comparing measured | Two-tail t-tests
(2009) [57] participants pupillary diameter, oculography (an | parameters before/after | (p<=0.02)
pupillary constriction infrared work
latency, and pupillary pupillometry
constriction amplitude device)
8 Flores et al. | Realdriving | 5 100-frame Blinking frequency, and | Head tilt Video oculography | Condensation Accuracy =
(2010) [58] participants | sequence PERCLOS (a video camera) algorithm and neural | 98.00%
networks
9 Zhang et al. | Simulated 6 20 min/participant | Eyelid closure, blink Video oculography | Computer Vision | Accuracy =
(2012) [59] driving participants frequency, opening and (RGB camera) Technology 86.00%
closing velocity of the
eyes
10 Hachisuka, Simulated 13 1 hour/participant | Eyebrows rise Facial muscle activities Video oculography | Active Appearance | RMSE =0.91
(2013) [60] driving participants (a video camera) Model and K-Nearest-
Neighbor algorithm
11 Dwivedi et al. | Simulated 30 Eye size Skin tone, facial | Video oculography | Convolutional neural | Accuracy =
(2014) [61] driving participants structure, hair, fringes, | (a remote camera) networks 88.00%
facial hair
12 | Han et al. | Simulated 8 30 min/participant | PERCLOS and blink rate Video oculography | Vision based and | Accuracy =
(2015) [62] driving participants (a video camera) feature extraction 90.45%
Correlation
Coefficient =
0.91
13 | Guo et al. | Simulated 21 110 Eyelid movement and | Heart rate, pulse rate, | Video oculography | Bayesian Network Accuracy =
(2016) [40] driving participants | min/participant gaze head movement (a video camera) 79.50%
14 Wang and Xu | Simulated 16 8 hours Eyelid opening, pupil Video oculography | Multilevel ordered | Accuracy =
(2016) [63] driving participants diameter, and eye blink (4 cameras) logit model, ordered | 88.80%
(PERCLOS), logit model, and
artificial neural
networks
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TABLE 1. (Continued.) Summary of the final set of studies included in the systematic review.

15 Eskandarian Simulated 13 52 miles | Eye closure Video oculography | Artificial neural | Accuracy =
and Mortazavi | driving participants | (morning) and 52 _ (4 infrared digital | networks 97.00%
(2017) [64] miles (night) cameras)
16 Huynh et al. | Simulated 36 1.5 million frames | Eye closing Nodding and yawning Video oculography | 3D convolutional | Accuracy =
(2017) [65] driving participants | recorded (high  performing | neural network to | 87.46%
tracker with a Haar- | extract features and
feature face | gradient boosting for
detector) drowsiness
classification
17 Park et al. | Simulated 36 9.5 hours Eye blinking Nodding and yawning Video oculography | Deep neural networks Accuracy =
(2017) [66] driving: participants (surveillance digital 73.06%
publicly camera with infrared
available LEDs and IR
dataset Illuminators)
(NTHU-
DDD)
18 Reddy et al. | Simulated 11 70,000 images Facial landmark Video oculography | Deep neural networks Accuracy =
(2017) [67] driving: participants (surveillance digital 89.5%
publicly camera with infrared
available LEDs and IR
dataset Illuminators)
(NTHU-
DDD)
19 Shih and Hsu | Simulated 36 9.5 hours Blink rate Nodding and yawning Video oculography | Multistage Spatial | Accuracy =
(2017) [68] driving: participants (surveillance digital | Temporal Network 82.61%
publicly camera with infrared F1-score =
available LEDs and IR 87.97%
dataset Tlluminators)
(NTHU-
DDD)
20 Weng et al. | Simulated 36 360 videos Blink rate Yawning and falling | Video oculography | Hierarchical temporal | Accuracy =
(2017) [69] driving participants asleep (RGB  and IR | deep belief network 84.82%
cameras) F1-Score =
85.39%
21 de Naurois et | Simulated 21 110 Behavioral (blink | Physiological (heart rate | Video oculography | Artificial neural | Performance is
al. (2018) [21] | driving participants | min/participant duration, blink frequency, | and respiration rate); | (A webcam video- | networks improved by
PERCLOS, and saccade | vehicle-based (e.g., | recorded 40% for
frequency) lateral  distance from | participants) prediction and
closest lane and center of 80% for
car, time to lane crossing, detection
and steering  angle);
behavioral (head position
and head rotation)
22 Bamidele etal. | Simulated 22 1 hour, 46 minutes | Percentage of eyelid Video oculography | K-Nearest-Neighbor Accuracy =
(2019) [70] driving participants | and 53 seconds closure (PERCLOS), (high resolution | algorithm, support | 72.25%
blink frequency, and camera) vector machine, | Sensitivity =
maximum Closure logistic regression, and | 83.06%
Duration artificial neural
network
23 Guo and | Simulated 36 9.5 hours Facial landmark (position | Position of mouth Video oculography | Hybrid convolutional | Accuracy =
Markoni, driving: participants of eyes) (surveillance digital | neural networks and | 84.85%
(2019) [34] publicly camera with infrared | long short-term
available LEDs and IR | memory
dataset Illuminators)
(NTHU-
DDD)
24 Liu et al. | Simulated 22 380 video clips Eye image Mouth image Video oculography | multi-task  cascaded | Accuracy =
(2019) [71] driving: participants (surveillance digital | convolutional —neural | 97.06%
publicly camera with infrared | networks Sensitivity =
available LEDs and IR 96.74%
dataset Tlluminators)
(NTHU-
DDD)
25 Vijayan and | Real driving Eye blinking Yawning and head | Video oculography | Convolutional neural | Accuracy =
Sherly, swaying (RGB camera) networks 78.61%
(2019) [72]
26 Vu et al | Simulated 36 9.5 hours Driver’s face Video oculography | convolutional neural | Accuracy =
(2019) [73] driving: participants (surveillance digital | networks 84.81%
publicly camera with infrared F1-score =
available LEDs and IR 86.28%
dataset Illuminators)
(NTHU-
DDD)
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TABLE 1. (Continued.) Summary of the final set of studies included in the systematic review.

27 Yu et al | Simulated 9.5 hours Eye condition Head and mouth | Video oculography | 3D-deep convolutional | Accuracy =
(2019) [74] driving: 36 condition (surveillance digital | neural network 76.20%
publicly participants camera with infrared Fl-score =
available 76.50%
dataset LEDs and IR
(NTHU- Illuminators)
DDD)
28 Ed-Doughmi Simulated 36 9.5 hours Eye blinking Nodding and yawning Video oculography | Recurrent neural | Accuracy =
et al. | driving: participants (surveillance digital | networks 92.00%
(2020) [75] publicly camera with infrared F1-Scrore =
available LEDs and IR 85.00%
dataset Tlluminators)
(NTHU-
DDD)
29 Ghourabi et al. | Simulated 36 9.5 hours Eye closure Yawning Video oculography | Multi-layer perceptron | Accuracy =
(2020) [76] driving: participants (surveillance digital | and K-Nearest- | 94.31%
publicly camera with infrared | Neighbor algorithm F1-Score =
available LEDs and IR 79.00%
dataset Illuminators)
(NTHU-
DDD)
30 Gwak et al. | Simulated 16 30 min/participant | Eye blink and closure Video oculography | Majority Voting | Accuracy =
(2020) [77] driving participants (a video camera in | Classifier and Random | 95.4%
front of the driver) Forest
31 Jabbar et al. | Simulated 22 9.5 hours Blinking rate Yawning and  head | Video oculography | Convolutional neural | Accuracy =
(2020) [78] driving: participants movements (surveillance digital | networks 88.00%
publicly camera with infrared
available LEDs and IR
dataset Tlluminators)
(NTHU-
DDD)
32 Saif and | Real driving: | 40 4 hours Pupil occlusion Head pose Video oculography | Distributed Accuracy =
Mahayuddin, (iBUG 300 | participants (monocular  video | convolutional neural | 98.97%
(2020) [79] W dataset) camera) networks
33 Wijnands et al. | Simulated 36 9.5 hours Closing eye Yawning, nodding, | Video oculography | 3D convolutional | Accuracy =
(2020) [80] driving: participants looking aside, talking and | (surveillance digital | neural networks 77.6%
publicly laughing camera with infrared
available LEDs and IR
dataset Illuminators)
(NTHU-
DDD)
34 Zhang et al. | Simulated 27 1 hour Eyelid closure Video oculography | Mixed-effect ordered | Accuracy =
(2020) [81] driving participants (PERCLOS), pupil (4 cameras) logit model 62.84%
diameter, blink
frequency, and blink
duration
35 Zhao et al. | Simulated 36 9.5 hours Driver face and facial Video oculography | 3D Convolutional | Accuracy =
(2020) [82] driving: participants landmarks (surveillance digital | neural networks 88.6%
publicly camera with infrared
available LEDs and IR
dataset Tlluminators)
(NTHU-
DDD)
36 Bakheet ang | Simulated 36 9.5 hours Eye-pair Yawning and Video oculography | Histogram of Oriented | Accuracy =
Al Hamadi | driving: participants head and mouth status (surveillance digital | Gradient features 85.62%
(2021) [16] publicly camera with infrared F1-Score =
available LEDs and IR 87.84%
dataset Tlluminators)
(NTHU-
DDD)
37 Chen et al. | Simulated 36 9.5 hours Eye and face area Video oculography | Hybrid convolutional | Accuracy =
(2021) [2] driving: participants (surveillance digital | neural networks and | 93.30%
publicly camera with infrared | long short-term
available LEDs and IR | memory
dataset Illuminators)
(NTHU-
DDD)
38 Dua et al. | Simulated 31 250 video clips Eye blinking Hand gestures, yawning | Video oculography | Deep  convolutional | Accuracy =
(2021) [38] driving participants and head movements (RGB camera) neural networks 85.00%
Sensitivity =
82%
F1-Scrore =
84.09%
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TABLE 1. (Continued.) Summary of the final set of studies included in the systematic review.

39 Quddus et al.
(2021) [83]

Simulated 38
driving

30 min/participant

participants saccades and fixation

Blinking, eye closure,

Recurrent Neural
Network to detect the [ 95%
drowsiness

Video oculography
(two 60 Hz video
cameras with infra-

Accuracy =

and long
red illumination) short-term memory for

classification

40 Rajamohana et | Simulated 37 2208 images Facial image, eye blink, Video oculography | Hybrid convolutional | Accuracy =
al. (2021) [84] | driving: participants and eye closure (a video camera) Neural Networks and | 96.00%
(MRL Eye bidirectional long
Dataset) short-term memory
41 Siddiqui et al. | Real driving | 40 10 hours Eye blink and eyeballs | Respiration and | Video oculography | Support vector | Accuracy =
(2021) [85] participants movement heartbeat (a video camera) machine, decision tree, | 87.00%
logistic regression, and | Fl-score =
multi-layer perceptron | 73.00%
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FIGURE 2. Proposed framework of driver drowsiness detection systems.

to blinking behavior and 34% related to eyelid clo-
sure). Whereas measures related to eyeball movement were
reported in 19% of the studies (12% related to pupillary
parameters, 7% related to saccadic eye movement, and 5%
related to eye gaze). Fig. 4 illustrates the percentage of
appearance of each type of eye activity measured in this
review.

Among the blinking behavior measures, blink frequency
was the most frequent (36.5% of studies), followed by blink
duration (29% of studies), and blink amplitude (5% of the
studies). Among the blink duration measures, lid closure
duration was the most frequent parameter (12% of the stud-
ies), followed by lid closure speed (9.5% of the studies),
lid reopening speed and duration (each with 7.5% of the
studies), and delay in lid reopening (5% of the studies).
Among eyelid closures, closure level was the most frequent
(19.5% of the studies), followed by PERCLOS (14.5% of
the studies).

Among the measures related to pupillary parameters, pupil
diameter was the most frequent measure (9.5% of the studies),
followed by the latency of pupillary, pupil oscillation, and
pupillary constriction amplitude (each appeared in 2.5% of
the studies). Among the saccadic eye movements, saccadic
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speed was the most frequent (5% of the studies), followed
by saccadic duration and fixation duration (each appeared in
2.5% of the studies). Further details regarding each step are
presented in the following sections.

1) DROWSINESS MEASURES RELATED TO EYELID
MOVEMENT

Two types of eyelid movement measures were identified
in this review: blinking behavior and eyelid closure (PER-
CLOS). Blinking behavior includes blink frequency, blink
duration, and blink amplitude. The following subsections
provide additional information about the history, meaning,
and implications of each type.

a: BLINKING BEHAVIOR

An eyeblink is defined as the state of the eye when it
is temporarily hidden, and the upper and lower lids touch
each other [93]. There are two main types of eyeblinks:
voluntary (controlled by individuals) and involuntary (spon-
taneous). The latter can be further divided into spontaneous
blinks, which occur at approximately constant intervals, and
involuntary fright-blink reflexes, which occur in response
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FIGURE 3. Classification scheme of reported eye activity measures of drowsiness.

to external corneal stimuli. In this review, three blinking
behaviors were identified: blink frequency [blinks/minute],
blink duration [ms] and its subcomponents (lid closure dura-
tion/speed, lid reopening duration/speed, and delay of lid
reopening), and blink amplitude [mV]. The first two are the
most frequently used measures in this review, as shown in
Fig. 3. Results showed that blink frequency and blink duration
are the most frequently appeared drowsiness measures in this
review, with percentage of appearance of 36.5% and 29%,
respectively.

Many researchers have extensively investigated the rela-
tionship between blinking behavior and drowsiness. Studies
have shown that spontaneous blinking behavior is a sensi-
tive indicator of drowsiness [14], [92], [94], [95]. Moreover,
blinking behavior is a suitable measure of drowsiness for
the following reasons: it is natural, easily observable, easily
measurable with contact-free devices, and most importantly,
it reflects the activation state of the central nervous sys-
tem [52].

According to many researchers, blink duration and fre-
quency are the best eye activity measures to indicate driver
alertness [44], [56], [96]. It is well established that drowsiness
is associated with increased blink frequency [21], [53], [54],
[87], [97], [98], [99], [100], [101], [102], [103], [104], [105],
[106], increased blink duration [14], [21], [45], [56], [104],
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[107], [108], and decreased blink amplitude [14], [109],
[110], [111], [112].

Many researchers have concluded that different blink
parameters are controlled by different processes; hence, they
indicate different levels of drowsiness (e.g., [44], [45], [53],
[56]). For example, a study conducted by Hargutt [44] con-
cluded that before a driver falls asleep, he goes through two
successive processes: 1) reduced vigilance (light fatigue),
indicated by an increase in blink frequency, and 2) drowsi-
ness (severe fatigue), wherein an increase in blink fre-
quency is accompanied by an increase in blink duration.
Galley et al. [53] proposed that sleepiness is not a unidimen-
sional process; rather, it comprises two components that can
be reflected through blinking behavior. The first component is
increasing sleep propensity, and the second component is the
maintenance of wakefulness. In 2004, Galley and Schleicher
stated that sleepiness while performing undergoes three par-
tially independent processes: decreasing attention (indicated
by blink interval), decreasing alertness (indicated by blink
duration and amplitude), and finally, the effort to maintain
the required level of alertness (indicated by velocities of the
lid and saccadic movements).

Other researchers have investigated the sub-components of
blink duration separately, namely lid closure duration/speed
or closing time, lid reopening duration/speed, and delay in

97977



IEEE Access

A. Kolus: Systematic Review on Driver Drowsiness Detection Using Eye Activity Measures

- Eye gaze direction

Fixation duration
Saccadic duration
Saccadic speed

Saccadic eye movement

Pupillary oscillations
Latency of pup

Pupillary parameters

[.

Categories of eye activity measures

Eyelid closure

Blink amplitude
Blink behavior

Pupillary constriction amplitude

Pupil diameter

PERCLOS

Closure level

Blink duration

Blink frequency

35 40
3 3

Percentage of studies (%)

FIGURE 4. Percentage of appearance associated with each type of eye activity measure.

lid reopening [45], [52], [53], [56], [113]. For example,
Caffier et al. [52] found that blink duration was positively
correlated with its subcomponents. The results demonstrated
that the correlation with the lid closure duration (closing time)
was the weakest, whereas that with the lid reopening duration
was the strongest. In 2004, Galley and Schleicher concluded
that the increase in lid closure and reopening duration is
controlled by one process, and the delay in the reopening
of the eyelid is controlled by another process, wherein both
processes contribute independently to the increase in blink
duration. Schleicher et al. [56] investigated different param-
eters related to eye activity and sleepiness. These parameters
include blink duration (including its subcomponents), blink
frequency, and saccadic parameters. All parameters, includ-
ing the respective (mean, median, and standard deviation)
were computed in standardized (with regard to blink ampli-
tude) and unstandardized manners. The results showed that
all three subcomponents of blink duration increased with
sleepiness; however, the delay in lid reopening contributed
the most to the increase in blink duration. They suggested
that the delay in lid reopening might represent a marker of
the beginning and end of sleepiness. Moreover, it has been
established that blink duration including (mean, median, and
standard deviation) in both standardized and unstandardized
forms is by far the most important indicator of both subjective
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and objective sleepiness. Another subcomponent of the blink
duration is the average eye-closure speed (AECS), which is
defined as the speed at which a person fully opens or closes
the eye. It can be used as a feature for drowsiness detection
because drowsy people blink significantly slower than awake
people who are awake [114].

Few studies have investigated blink amplitude, although
certain researchers have considered this parameter a mean-
ingful indicator of drowsiness. A six-step procedure was
proposed by [53] for warning devices based on different blink
parameters (including the blink amplitude). Factor analysis
was used to control blinking behavior during wakefulness
and drowsiness because the blink parameters showed con-
siderable individual differences. Galley and Schleicher [45]
proposed that blink amplitude, in conjunction with blink
duration, indicated a reduced level of alertness. A study con-
ducted by [115] found a linear relationship between blink
amplitude and blink velocity under alert conditions. This
relationship changes during the development of drowsiness,
resulting in a longer blink duration. A model for defining
the different stages of drowsiness was developed based on
this characteristic. In 2003, Thorslund used the method devel-
oped by [115] to develop a drowsiness detection system. The
blink parameters were detected using an EOG during the
truck driving simulation. The developed drowsiness detection
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system exhibited some correspondence with KSS ratings
higher than 75%.

b: EYELID CLOSURE

Two types of eyelid closure measures, closure level and
PERCLOS, are reported in this review. Results showed that
both measures were the next most frequent drowsiness mea-
sures that appeared in this review (after blink frequency and
blink duration), with percentages of appearance of 19.5%
and 14.5%, respectively. Eyelid closure is among the earliest
measures considered as reliable indicators of drowsiness.
Many researchers have found a strong relationship among
eyelid closure, sleep onset, and performance impairment [45],
[56], [88], [91], [92].

The literature has shown certain inconsistencies in defining
eye closure levels and their relationship to eye blinks, which
has led to several investigations in this regard [116], [117],
[118]. In fact, eyelid closure is different but at the same
time related to eye blinks. An eye blink can be described as
a combination of two consecutive operations: quick eyelid
closure, followed by quick eyelid reopening, which normally
lasts for 150-200 ms. A change can be observed in the eye-
blink when the subject starts feeling sleepiness or drowsiness,
from the normal eyeblink to prolonged eyeblink states. This
change is considered among the most important indicators of
drowsiness. However, as drowsiness continues to increase,
the eye blink can gradually progress from a prolonged eye
blink to the eye closure state. The threshold time (in mil-
liseconds) required for the transition to the eye-closure state
depends on the definition of the blink duration. For exam-
ple, certain researchers have defined the blink duration as
the time difference between the beginning and end of the
blink, where the beginning and end points are measured at
the point where half of the amplitude is reached. Based on
this definition, eye closure can be described as a blink that
exceeds 1000 ms [116], [117]. Others have defined blink
duration differently to avoid possible measurement problems
owing to the simultaneous occurrence of blinks and vertical
eye movements, such as the sum of half the rise time and
half the fall time in the blink complex [93], [117], [119].
Consequently, eye closure is defined as a blink that exceeds
500 ms [45], [56], [117].

In 1994, Wierwille et al. proposed a measure of drowsiness
that is associated with eye closure, known as PERCLOS (Per-
cent Eye Closure). This is defined as the proportion of time
that the driver’s eyelids are closed 80% or more for a specified
time interval, and it reflects slow eyelid closures (eye droop)
rather than eye blinks. High PERCLOS values are strongly
correlated with drowsiness [101], [105], [120], [121], [122],
[123], [124]. Dinges and Grace [125], Wierwille [126] devel-
oped the PERCLOS system that detects drowsiness based on
eye closure and drooping. This system has been validated in
on-road driving tests [127] as well as with the PVT [88],
[125]. Moreover, PERCLOS is superior to EEG, eyeblink,
and head-nodding technologies [88]. In addition, PERCLOS
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was found to be significantly correlated with lane departures
and lapses of attention; thus, several researchers consider it
the “gold standard” measure of drowsiness [90]. The PER-
CLOS parameter has a limitation in detecting drowsiness
accurately when the driver wears glasses or is sleeping with
eyes open [129].

In 2004, Kruger et al. investigated the relationship between
eyelid activity and drowsiness. This study indicated that
different eyelid-related parameters may indicate different
stages of drowsiness, wherein the “eyelid closure” measures
may indicate late stages of drowsiness. Moreover, [56] indi-
cated that any drowsiness detection system should not solely
depend on eye closure measures since certain drivers manage
to keep their eyes open and “‘stare’” when they are drowsy,
which makes it difficult to measure eyelid closure.

2) DROWSINESS MEASURES RELATED TO EYEBALL
MOVEMENT

Eyeball movement measures appeared in approximately 19%
of the studies identified in this review. Three types of mea-
surements were identified: pupillary parameters, saccadic
eye movements, and eye gaze direction. The following sub-
sections provide additional information about the history,
meaning, and implications of each type.

a: PUPILLARY PARAMETERS

Four pupillary parameters were identified in this review, pupil
diameter, latency of pupil, pupillary oscillations, and pupil-
lary constriction amplitude, with the former being the most
frequent (9.5% of the studies).

The pupil is involuntarily controlled by the autonomic ner-
vous system, is non-invasively and visually observable from
outside the body and enables us to separately evaluate sympa-
thetic and parasympathetic nervous activities. Thus, pupillary
parameters can function as a potential objective indicator of
drowsiness [129]. In addition, pupillary parameters can be
good indicators of drowsiness in situations wherein drivers
stare and have few blinks or saccades. Several studies have
investigated the relationship between pupillary parameters
and drowsiness. In general, results have shown that drowsi-
ness is associated with changes in pupillary parameters such
as a decrease in pupil size or diameter [57], [130], [131],
[132], [133], an increase in pupil constriction latency or
latency of pupillary reaction to light [57], [134] and changes
in speed at which pupil size changes (pupillary oscillations)
[106], [135].

A simulation study was conducted to investigate changes
in pupil diameter associated with drowsiness [129]. Two
reference measures were used in this study: subjective reports
(to indicate drowsiness) and an anti-saccade task to measure
cognitive and motor performance. The results demonstrated
that the transition to drowsiness was characterized by spe-
cific changes in pupil diameter. It was confirmed that the
pupil diameter fluctuated with large amplitudes at low fre-
quencies when the subjects were aware of their drowsiness.
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Moreover, prior to this fluctuation, there was a gradual
decrease in pupil diameter, during which the subjects were
not aware of sleepiness. The authors concluded that this
gradual decrease in pupil diameter could be used to pre-
dict drowsiness. Du et al. [136] developed a driver fatigue
detection method based on eye-state analysis. Three param-
eters were used to analyze the eye state: pupil height,
eye area, and width-to-height ratio. The results demon-
strated the validity of the proposed method under realistic
conditions.

Another study investigated the use of pupillary param-
eters related to pupil size and reaction to light as objec-
tive screening tools for a driver’s fitness for duty [57].
Based on the normality assumption for these parameters,
an index was calculated to indicate driver alertness level.
The results showed that pupillary parameters, namely pupil-
lary diameter, pupillary constriction latency, and pupillary
constriction amplitude, may serve as screening tools for
fatigued drivers. The literature has mentioned certain dis-
advantages of pupillary parameters; for example, they are
affected by changes in illumination and the levels of cognitive
demands. Moreover, the measurement of pupillary param-
eters is mostly based on eye image processing, implying
that eye blinks and saccadic eye movements can affect the
measurements. Hence, several methods have been proposed
to accurately measure pupillary parameters without blinking
artifacts [137], [138].

b: SACCADIC EYE MOVEMENT

In this review, three types of saccadic eye movement were
identified: saccadic speed, saccadic duration, and fixation
duration, with the former being the most frequent (5% of the
studies). Saccadic eye movement (or saccades) is the rapid
movement of both eyes from one fixation point to another.
The time between two saccades is called the fixation duration.
Saccadic eye movements occupy only 10% of the total time
spent in eye movements, while the rest are occupied by the
fixation duration [139]. Studies have focused less on sac-
cadic parameters than on eye blink parameters because of the
difficulties in measuring saccadic parameters. For example,
unlike registering eye blinks, registering saccadic parameters
requires devices with a high sampling rate (500-1000 Hz),
which can only be achieved by advanced video systems [56].
Further, using EOG is not an option for in-car drowsiness
detection devices because of its intrusiveness and obtrusive-
ness.

Despite these challenges, several studies have reported a
relationship between drowsiness and saccadic parameters.
For example, saccadic speed has been considered by many
authors as a reliable indicator of drowsiness [53], [57], [133].
An experiment was conducted under sleep-deprived condi-
tions to investigate the possibility of evaluating alertness
using saccadic eye movements [140]. The results showed
that saccadic eye movement parameters, namely peak veloc-
ity/duration ratio, normalized peak velocity, and normalized
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duration, were strongly correlated with sleepiness and sub-
jective alertness. In 2004, Galley and Schleicher indicated
that the compensatory effort applied by drivers to maintain
alertness could be indicated by the velocities of the lid and
saccadic eye movements. Schleicher et al. investigated sev-
eral saccadic parameters such as saccadic duration, speed,
and amplitude. The study included the mean, standard devi-
ation, and median of the standardized and nonstandardized
forms of these parameters. Among these saccadic measure-
ments, the standard deviation of saccadic duration showed
the highest correlation with objective fatigue. In addition,
the fixation duration (categorized according to length) shows
specific changes with increasing drowsiness [141]. Saccadic
parameters are useful in revealing drivers who stare and rarely
show blinks [107].

c: EYE GAZE DIRECTION

Eye gaze direction has appeared in only 5% of the studies
included in this review. Many researchers have considered
gaze direction as an indicator of inattentive driving rather than
drowsiness or sleepiness [142], [143], [144], [145]. However,
other studies have associated gaze direction with inattention
and/or fatigue while driving [58], [67], [100], [101], [131],
[143], [146], [147]. Although looking straight ahead while
driving may indicate that the driver is paying attention to the
road, this does not necessarily mean that he or she is aware
of it [149]. Fixed gaze is considered a remarkable behavioral
change that indicates drowsiness [143].

Gaze tracking systems are used to track eyeball move-
ments to determine gaze directions through a calibration
process. This process compensates for the error, the differ-
ence between the actual gaze direction and that measured
by the tracking system, caused by individual and environ-
mental differences, such as eyeball shape, facial features, and
light conditions [145]. Although eye-gaze tracking systems
have become extremely sophisticated, they still suffer from
certain technical problems; for example, they are sensitive
to fast-changing in-vehicle conditions (lighting conditions),
do not give accurate results when drivers wear glasses or
under strong illumination changes, are sensitive to large head
movements, and require certain training for each individual
subject.

C. REPORTED SECONDARY MEASURES INDICATING
DROWSINESS

All the studies identified in this review used ocular mea-
sures as the primary measure of drowsiness. In addition to
ocular measures, different secondary measures were used in
approximately 56% of the studies. Three types of secondary
drowsiness measures were reported: behavior measures (54%
of the studies), physiological measures (7% of the studies),
and vehicle-based measures (5% of the studies). Behavioral
measures included head position, yawning, mouth position,
and facial expressions. The physiological measures included
heart and respiratory rates. The vehicle-based measures
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included the steering angle, time to lane crossing, lateral
distance to the closest lane, number of direction changes,
accelerator pedal angle, vehicle speed, and number of run-off
roads per minute. Fig. 5 shows the percentage of appearance
of each type of secondary measure. Among the secondary
drowsiness measures, head position (nodding) and yawning
were reported the most with percentages of appearance of
41% and 27%, respectively.

D. MEASUREMENT TECHNOLOGIES USED TO MONITOR
EYE ACTIVITIES

The current technologies used to measure eye activities
are investigated and classified based on their intrusiveness
(both physically and psychologically) to drivers. According
to [177], there are three levels of intrusiveness: low, moderate
and high. The first level indicates measurement technologies
that have no intrusion and are unnoticeable by the driver, such
as sensors fully immersed within a car seat. The moderate
level of intrusiveness includes two types: psychological intru-
siveness (when a driver is monitored by video and can be
easily identified) and physical intrusiveness (where minimal
contact is required). The high level of intrusiveness includes
physically intruding sensors.

The decision about the technology used to measure eye
activities for drowsiness detection is important because it can
affect the accuracy of the recorded ocular measure, and hence,
the performance of the detection system. The selection of the
type of measurement technology depends on several factors,
such as the purpose of measuring eye activity, the type of
transportation system, the nature of light, and environmental
conditions.

This review identified three types of measurement tech-
nologies: passive (or contact-free), active (or electrode-
based) and embedded technologies. Passive technology
includes video oculography (VOG) and infrared oculogra-
phy (IR-OG). Passive technology is considered the second
most accurate in identifying drowsiness. It has low physical
intrusiveness, but high psychological intrusiveness since the
driver is personally monitored by video and can be eas-
ily identified. The majority of studies (approximately 95%)
reported contact-free measurement technologies because of
their practicality and cost-effectiveness in the real-time moni-
toring of driver eye activities. Active technology is concerned
with measuring brain waves (EEG), muscle fatigue (EMG),
cardiovascular measurements (ECG), and eye movement and
closure (EOG). Although this technology is considered the
most accurate, it is also the most intrusive for identifying
drowsiness. The embedded technology includes sensors that
are completely immersed within the vehicle. These sensors
have low intrusiveness to the driver, but considered the least
accurate methods for identifying drowsiness. The embedded
technology was excluded in this review because it does not
depend on eye activity measures. The following subsections
present further details regarding the two types of measure-
ment technologies.
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1) CONTACT-FREE (PASSIVE) EYE MONITORING
TECHNOLOGIES

This review identified two contact-free measurement tech-
nologies for monitoring driver eye activities: VOG (based on
video image analysis) and IR-OG (uses infrared reflection
technology). These two types are described in detail in the
following subsections.

a: VIDEO OCULOGRAPHY

VOG, or video image analysis technology, has been widely
used to measure eye activity to monitor drowsiness [86],
[149], [150], [151], [152], [153]. VOG is the most commonly
used technology for real-time drowsiness detection based on
eye activity [35], [84], [154]. This is because VOG tech-
nology is contact-free, non-intrusive, and non-obtrusive, and
hence suitable for real-time vehicle-based driver alertness
monitoring systems [148]. Moreover, the eyelids are known
to be among the most movable parts of the body; thus, image
analysis technologies may provide a better evaluation of
eyeblink patterns [155]. In addition, these technologies offer
the flexibility to be integrated and positioned in the vehicle
depending on the cabin design such that they can monitor the
driver’s head and eyes without being intrusive or obtrusive to
the driver. A study conducted by [14] mentioned that image
analysis technologies enable the eye point to be measured
through the combined use of head and eye positions, and
therefore, may provide information that helps in detecting
sleepiness as well as inattention.

Systems that use video image analysis to detect driver
drowsiness mainly comprise a video camera (to capture
images of the driver while driving), image processing soft-
ware (to analyze the images and then identify different eye
activity parameters such as eyelid opening, head position, and
gaze direction), and light sources (to provide adequate illumi-
nation under all ambient conditions). These systems operate
as follows: A camera is mounted in the cabin in a position
such that it can monitor the driver’s head and face continu-
ously. Certain specifications and requirements must be met,
such as adequate resolution, frame rate, sensitivity, and field
of vision (must include the driver’s face in different head and
body postures, as well as different seating positions). The
camera continuously captures images of the driver’s head and
eyes and uses an infrared spot to lighten the retina such that
the pupil and retina can be easily identified. These images are
then sent periodically to the image processor for analysis to
determine the different eye activity parameters; more details
are provided in [148].

Previously, video image analysis technologies were used
with caution, particularly when dealing with situations such
as drivers wearing glasses because reflections from lenses
or frames may cause errors during image processing and
evaluation, unfavorable lighting conditions, and large head
movements [14], [148]. Moreover, VOG technology requires
heavy image recognition software and hardware [156]. The
limited specifications of video imaging technologies made
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FIGURE 5. Percentage of appearance of secondary drowsiness measures.

it difficult to overcome the previously mentioned situations
and caused certain difficulties in measuring fast eye move-
ments. For example, in 1995, Nissan developed a drowsiness
detection technology based on monitoring a driver’s eye
activity (i.e., blink duration and blink frequency) using a
video camera and an image processor. One of the disad-
vantages of this technology is its inability to detect fine
eye movements owing to the frame rate of the installed
video camera (5075 fps), which limits the best time reso-
Iution limit (13-20 ms) [96]. However, recent advances in
video imaging technologies have facilitated the monitoring
of different eye activities in real-time and under all driving
conditions [10].

Ejidokun et al. [149] used a low-cost webcam with a
capture rate of 30 fps to monitor the blinking behavior of
drivers. The proposed approach achieved a blink accuracy of
94.8% and a missed blink error of 2.4%. Varma et al. [99]
developed a real-time fatigue tracking system based on a front
camera equipped with an infrared illuminator. The system
uses eye blinking and head movements to determine the
driver’s degree of fatigue. Lenskiy and Lee [98] used monoc-
ular color cameras with infrared illumination to monitor eye
blinking and ocular closure time. Jin et al. [100] used video
cameras with infrared lighting on a dashboard to track eye
movements and detect tires. Dasgupta et al. [157] developed
a smartphone-based drowsiness detection system that uses the
percentage of eyelid closure obtained from images captured
using a front camera. The system uses near-infrared lighting
for the driver’s face during nighttime.
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b: INFRARED OCULOGRAPHY
Although video image analysis technologies have shown
efficiency, particularly in laboratory experiments, they suffer
from serious problems in real-life implementation, which
may affect the accuracy of the entire monitoring sys-
tem. Alternatively, IR-OG, or infrared reflection technology,
is more suitable for real-life implementation because of its
ability to measure a driver’s eye activity under different
light conditions, with or without prescription glasses, contact
lenses, or sunglasses [86], [158], [159], [160], [161]. In addi-
tion, it is portable, wearable, contact-free, non-intrusive, and
inexpensive compared to electrode-based technologies [156].
Infrared reflection technology involves a transmitter and
receiver mounted on a pair of spectacles worn by the driver,
and a beam of infrared light directed at the eyelids of the
driver [14], [110], [162]. This is based on the idea that, if a
fixed light source is directed against the eye, the amount
of light reflected back to a fixed detector changes with the
eye-opening level and pupil position [156]. IR-OG technol-
ogy can be described as follows. Brief pulses of infrared
light are directed repeatedly from a small light-emitting diode
(LED) attached to the frame of the glasses against the eye.
The total infrared light reflected from the eye and eyelid is
received by a detector beside the LED. This detector is sen-
sitive only to infrared light and is not affected by other light
sources [156]. The characteristics of each reflected infrared
pulse depend mainly on two factors: 1) the color, shape, and
texture of the reflectance; and 2) the proximity of each part
of the reflecting surface (cornea, iris, sclera, conjunctiva, and
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skin of the eyelids) to the infrared light source [86]. This
claim coincides with the conclusion of Hoffman et al. that
the amount of light reflected from the eye is proportional to
the degree of lid closure [163]. This indicates that different
eye activities are associated with different reflected infrared
pulse characteristics.

A study conducted by Castro demonstrated that when
IR-OG technology is used to measure several eye activities
in addition to eyelid movement, blinks could cause cer-
tain problems. For example, after blinking, the eye retracts
slightly, affecting the amount of reflected infrared pulse
for a short time, which in turn affects the measurement
accuracy. In addition, the eyes are covered by lids during
blinking, which causes errors in the measurements. However,
this technology would be considered convenient if mainly
used to measure parameters related to eyelid movement.
Another drawback of this technology is the pair of specta-
cles worn by the driver, which can be considered partially
obtrusive.

2) ELECTRODE-BASED (ACTIVE) EYE MONITORING
TECHNOLOGIES

This review identified three types of electrode-based mea-
surement technologies: EEG, EMG, and EOG. Studies have
shown that vigilance can be defined using criteria derived
from EEG, EOG, and EMG. These techniques have been
frequently used for drowsiness detection, particularly in labo-
ratory experiments, because they provide direct and objective
measures of drowsiness. An early study by Loomis et al. [164]
indicated profound changes in the appearance and spectrum
of EEG signals during drowsiness [165]. In 1968, Rechtschat-
fen and Kales [166] reported a correlation between EEG
power-band measurements and visually defined sleep stages.
Other studies on the appearance of EEG during drowsiness
indicated that in different subjects, EEG can take a variety
of routes from wakefulness to sleep [165], [167]. In EOG,
three silver/silver chloride or gold electrodes are placed on
the skin around the eye to measure the potential differ-
ence between the front and back of the eyeball, which is
directly related to eye movements and blinking [117], [176].
It has been established that the EOG is a suitable measure
for the objective characterization of drowsiness [45], [168],
[169], [170]. Thus, EOG can be used as a validation method
during the development of a new drowsiness detection sys-
tem [117]. Khushaba et al. [171] proposed a fuzzy-based
approach for classifying drowsiness levels based on EOG
signals.

Other researchers believe that EOG is not as reliable as
EEG, although it performs fairly well; thus, they recom-
mend the use of EEG as a reference for drowsiness detection
and EOG as a complementary measure [172]. Furthermore,
EMG uses electrodes to capture signals from muscles close
to the eyes because it is well established that the muscular
tonus decreases as the alertness level decreases to reach its
minimum when asleep [172], [173]. It is usually used in
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conjunction with EEG to distinguish between different alert-
ness levels during the gradual transition from wakefulness to
sleep [174].

The main drawback of electrode-based technologies (EEG,
EOG, and EMQG) is that they are obtrusive because they
require electrodes to be attached to the driver. Hence, they
are not suitable for use in in-vehicle real-time drowsiness
detection systems [117]. Other disadvantages have been men-
tioned in [156], such as the movement of the driver, which
could cause artifacts in the signal; electrodes could detach
from the skin for any reason (e.g., if the driver is sweaty),
which could cause poor recording quality; and plaster that
holds up the electrodes could cause local irritation or disturb
the driver.

E. DECISION-MAKING ALGORITHMS

The majority of the identified decision-making schemes
used for the classification and prediction of drowsiness
states are based on machine-learning algorithms. Three
decision-making schemes were identified in this review:
deep learning algorithms (58.5% of the studies), supervised
learning algorithms (53.7% of the studies), and rule-based
techniques (2.5% of the studies). Fig. 6 illustrates the
identified decision-making schemes with the associated clas-
sification accuracy.

Deep learning algorithms include convolutional neural
networks, long short-term memory, deep neural networks,
recurrent neural networks, multistage spatial temporal net-
works, and hierarchical temporal belief network. Convolu-
tional neural network was the most frequent classification
algorithm observed in the identified studies (34.1% of the
studies). Supervised learning algorithms include artificial
neural networks, k-nearest-neighbor, support vector machine,
ordered logit model, logistic regression, gradient boosting,
random forest, histograms of oriented gradient features, deci-
sion trees, and Bayesian networks. Artificial neural networks
were the second most frequent classification algorithm that
appeared in the identified studies (19.5% of the studies).
Fuzzy logic was the only rule-based technique identified in
one of the studies in this review.

The classification accuracy associated with each decision-
making algorithm is shown in Fig. 6. The classification
accuracy of convolutional neural networks (reported based
on 14 studies) ranged from 77-99% with an average of
87.5%. When convolutional neural networks were used in
conjunction with long short-term memory algorithm, the
average classification accuracy increased to 91.5%. The
average classification accuracy of artificial neural networks
as reported based on 8 studies was 97.5%. The k-nearest-
neighbor algorithm was reported in three studies, with an
average classification accuracy of 94%. Recurrent neural net-
works were used in conjunction with long short-term memory
algorithm, with an average classification accuracy of 95%.
Random forest algorithm was reported in one study with a
classification accuracy of 95.5%. Fuzzy logic was reported
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in one study with an average classification accuracy of 98%.
The variation in the classification accuracy of different algo-
rithms (between 79.5-99%) is due to several factors related
to: 1) the classification algorithm (e.g., whether it depends on
deep learning, supervised learning or rule-based algorithms
and whether it is used solely or in conjunction with another
algorithm). For example, the results indicate that the highest
classification accuracy obtained by convolutional neural net-
works was 99%, in comparison to the one obtained by fuzzy
logic (98%) and by random forest algorithm (95%). More-
over, the results showed that average classification accuracy
of convolutional neural networks was 87.5%. However, when
convolutional neural networks were used in conjunction with
long short-term memory algorithm, the average classification
accuracy increased to 91.5%. 2) the dataset (e.g., richness of
the dataset, preprocessed vs. not preprocessed, and robustness
of features) [175], [176].

IV. DISCUSSION AND FUTURE DIRECTIONS

The quality assessment and risk of biasness associated with
included studies were performed based on the following crite-
ria: performance measure, participants’ diversity and sample
size. The majority of the included studies used accuracy
metric to evaluate their proposed DDD systems. Accuracy
is a good indicator of how well the system can identify
true positives (TP) and true negatives (TN), especially when
the data are balanced (i.e., the number of alert and drowsy
drivers are equal in an experiment) [183]. However, in a
real-life scenario, data are usually unbalanced with more
awake drivers on the road than drowsy drivers. In this
case, accuracy metric will be biased towards the class with
more samples. Therefore, to avoid this biasness, performance
metrics, such as sensitivity and precision work better with
unbalanced data [183]. Precision indicates the proportion
of correctly identified drowsy drivers to those labeled as
drowsy (whereas they are alert in reality). Low precision
means the system may give a false alarm by incorrectly
identifying alert drivers as drowsy. On the other hand, sensi-
tivity indicates the proportion of correctly identified drowsy
drivers to those labeled as alert (whereas they are drowsy
in reality). Low sensitivity means that the system may fail
to identify drowsy drivers, which could result in serious
accidents. Therefore, the sensitivity metric is important in
evaluating the performance of DDD systems. This review
showed that only three studies [22], [24], and [38] used
sensitivity, in addition to accuracy, to evaluate their proposed
DDD systems.

The included studies — [17], [18], [19], [23], [24], [26],
[27], [28], [29], [31], [33], [35], [36], and [37] — used the
most diverse publicly available dataset. The review showed
that gender and ethnicity biasness were largely present in the
remaining 27 studies. Gender and ethnicity splits are impor-
tant especially in behavioural-based dowdiness detection
where facial features can differ across different gender and
ethnicity groups. Moreover, two studies [2] and [3] included a
sample size of 60 and 76, respectively. The remaining 39 stud-
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ies included a sample size lower than 40 participants. DDD
systems developed with such a low sample size have been
criticized with their poor generalizability, especially when
using deep learning algorithms that require large amounts of
training data [178].

A. CHALLENGES AND LIMITATIONS

Different studies used different performance metrics to eval-
uate the efficiency of their classification methods. The
included performance metrics were: accuracy (in 34 studies),
F1-Score (in 7 studies), sensitivity (in 3 studies), Student’s
t-test (in 3 studies), correlation coefficient (in 3 studies)
and root mean square errors (RMSE) (in one study). The
variations of performance measures made the comparison
across studies very difficult. In addition, the analysis using
area under the receiver operating characteristic curve (AUC)
could not be performed, owing to the small number of studies
reporting sensitivity and specificity of the driver drowsiness
detection methods.

Although majority of the included studies (83%) used
accuracy metric, it is very difficult to compare accuracy
measurements across studies. This is because classification
accuracy depends on a variety of factors that cannot all be
accounted for when comparing between the studies. These
factors include: 1) training, testing and validation splits; 2)
level of drowsiness used; 3) number of drowsiness levels;
4) number and diversity of participants; 5) differences in the
dataset used; 6) differences in the type of experiments (simu-
lator vs. on-road); 7) differences in modelling (per subject vs.
cross-subject); 8) differences in acquisition configuration; 9)
lighting and environmental factors. All the aforementioned
factors contributing to the outcome, make the comparison
across studies challenging [177].

In addition to variations in performance measures, the
included studies are highly diverse in: the data/measures
used (real-time experiment vs. publicly available dataset),
extracted features, driving setting (on-road vs. simula-
tor), sample sizes (ranging from 4 to 76 participants)
and classification algorithms including machine learning
(i.e., supervised, deep, and unsupervised learning algo-
rithms) and non-machine learning algorithms (i.e., classi-
cal statistical methods and rule-based techniques). There-
fore, performing a meta-analysis is out of the scope of
this review.

Although many studies (5], [8], [15], [24], [30], [32], [39],
and [40]) showed high classification accuracy (95-99%), the
reliability of these studies is questionable and need be tested
under real driving conditions (i.e., normal traffic with no
experimenter on the car), where variety of situations and
unpredictable events may occur. This type of studies is known
as naturalistic driving studies and it is out of the scope of this
review.

As in any review, one limitation is that the findings of
the study were limited by the quantity and methodological
quality of the included studies. This suggests that there may
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FIGURE 6. Identified decision-making algorithms with associated classification accuracy.

be further eye activity- measures and decision-making algo-
rithms that have not yet been studied. In addition, the number
of studies reporting a given ocular parameter or classifica-
tion algorithm was not necessarily related to its importance.
Another common limitation is the possibility of missing rel-
evant studies that were not detected by the keywords or did
not match the systematic extraction criteria. To minimize the
effects of this problem, the final list of included studies was
checked by a colleague involved in a similar study. Moreover,
the review excluded books, reports, and unpublished works
that could contain important research findings on detecting
driver drowsiness using eye activity.

Additional limitations and gaps in the current research are
related to the following:

o Prediction vs. detection: predicting how long until a
driver becomes drowsy, rather than detecting the drowsi-
ness state itself, can significantly reduce fatalities and
injuries related to road accidents. For example, stud-
ies that solely used prolonged eye closure to detect
drowsiness, i.e. [15], [16], and [29], might not be able
to detect a microsleep state, which occurs at earlier
stage (before drowsiness). Majority of the included
studies focused on detecting drowsiness, except
studies [6] and [21].

« Physiological intrusiveness: two studies, i.e. [3] and [4],
used electrooculography (EOG) in their methods, which
is known to be highly intrusive to drivers.

o Subject diversity: diversity, especially in ethnicity, can
affect the classification accuracy in behavioural-based
models. Majority of the included studies lack ethnicity
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variations and some studies do not even report it. Some
of the included studies, i.e. [17], [18], [19], [23], [24],
[26], [27], [28], [291, [311, [33], [35], [36], [37], used
the NTHU dataset, which is considered the most diverse
publicly available dataset [96]. However, this dataset has
been criticized for its poor generalization for end-to-end
learning models, which require large amounts of training
data [178].

Sample size: approximately 25% of the included studies,
ie. [1],[6], [8], [9], [10], [12], [14], [15], [18], [30], have
a sample size below 20. Drowsiness detection models
developed with such low sample size cannot be general-
ized to broader populations.

Experiment protocol: protocols for data collection need
to include both daytime and night scenarios to ensure
the efficiency of the detection system. Majority of road
accidents associated with drowsiness occur between
midnight and 6 a.m. [7], yet only 40% of the included
studies considered a night driving scenario [15], [16],
(171, [18], [19], [23], [24], [26], [27], [28], [29], [31],
[33], [35], [36], [37].

Type of experiment: the differences between real and
simulated driving have been reported (e.g., in duration,
sensitivity to speed and perception of risk) [177]. Only
17% of the included studies [1], [2], [7], [8], [25], [32],
[41], involved real and on-road driving, owing to the
complexity of setting real experiments and the difficulty
of collecting data and finding participants.

Drowsiness measure: the review showed that different
studies used different drowsiness measures to detect
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driver drowsiness. Some of the limitations associated
with different drowsiness measures are described as
follows. Detection systems based on eye gaze, i.e. [5]
and [13], are sensitive to rapid changes in in-vehicle
conditions (e.g., lighting conditions) and head move-
ments. In addition, they may give inaccurate results
under strong illumination changes or when drivers
wear glasses [145]. Detection systems based on sac-
cadic parameters, i.e. [7], [21], and [39], are difficult
to measure because they require high sampling rate
(500-1000 Hz), which cannot be attained by classical
video systems. Detection systems based on pupillary
parameters, i.e. [5], [7], [14], [32], and [34], are sen-
sitive to changes in illumination and cognitive demands.
In addition, the measurement of pupillary parameters
mostly depends on eye image processing, which can
be affected by eye blinks and saccadic eye move-
ments [137]. Detection systems based on eyelid closure
or PERCLOS, i.e. [2], [3], [4], [5], [6], [8], [9], [12],
[14], [15], [16], [21], [22], [29], [301, [33], [34], [39],
and [40], cannot be measured easily under special con-
ditions, such as when wearing glasses or sleeping with
eyes open [129].

o Performance measures: different studies used differ-
ent performance metrics to evaluate the efficiency of
their classification methods. These performance metrics
include: accuracy (in 34 studies), F1-Score (in 7 studies),
sensitivity (in 3 studies), Student’s t-test (in 3 studies),
correlation coefficient (in 3 studies) and RMSE (in one
study). The variations of performance measures made
the comparison across studies impossible. Although
majority of the included studies (83%) used accuracy
metric, it is very difficult to compare accuracy mea-
surements across studies. This is because classification
accuracy depends on a variety of factors that cannot all
be accounted for when comparing between the studies.
These factors include: 1) training, testing and valida-
tion splits; 2) level of drowsiness used; 3) number of
drowsiness levels; 4) number and diversity of partici-
pants; 5) differences in the dataset used; 6) differences
in the type of experiments (simulator vs. on-road); 7)
differences in modelling (per subject vs. cross-subject);
8) differences in acquisition configuration; 9) lighting
and environmental factors. All the aforementioned fac-
tors contributing to the outcome, make the comparison
across studies challenging [177].

o Several studies ( [5], [8], and [32]) showed very high
classification accuracy ranging from 98-99%. These
accuracy results were not validated on independent
dataset.

The majority of the identified studies have focused on
decision-making algorithms and their accuracy in classifying
and predicting drowsiness. Although this component is criti-
cal for developing DDD systems, the classification accuracy
does not depend solely on the decision-making algorithm.
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The careful selection of drowsiness measures can also sig-
nificantly affect the classification and prediction accuracy
of drowsiness. In addition, it can aid the early detection of
driver drowsiness when it is not too late to implement safety
interventions. The next section discusses the main research
directions concerning driver drowsiness detection based on
ocular parameters.

B. FUTURE DIRECTIONS

The main methods used to identify driver drowsiness include:
physiological, behavioural and vehicle-based techniques.
Physiological methods (e.g., EEG and EOG) have been
shown to be the most accurate in detecting driver drowsiness,
but at the same time the most intrusive to drivers [177]
and [180]. Behavioural methods (i.e., eye activity based)
are considered the second most accurate and less intrusive
than physiological methods, but may have some privacy con-
cerns [177] and [181]. Vehicle-based methods are considered
the least accurate and intrusive method [177]. Individual
methods have their unique strengths and weaknesses, and
therefore the integration of these methods may offer the
possibility of utilizing the strengths of each method while
mitigating weaknesses. Several studies showed that hybrid
models (i.e., with multiple drowsiness measure sources) are
more flexible and accurate than singular techniques in identi-
fying driver drowsiness [77], [177], and [182]. They also have
the advantage of overcoming the drawback of intrusiveness
and allowing for data losses [177]. These advantages, how-
ever, come at the expense of increased cost and complexity
of development [177]. Therefore, future research should be
directed toward the development of hybrid drowsiness detec-
tion models, with consideration to the complexity they bring.

Another future direction is related to data collection pro-
tocols for identifying driver drowsiness with special focus
on: collecting real diving data with appropriate ethical con-
siderations (to improve reliability), recruiting larger number
and diverse range of participants (to improve generalizabil-
ity), and conducting both day and night studies (to improve
efficiency of the detection system).

New DDD systems should focus more on drowsiness pre-
diction rather than detection in order to warn the driver
in time before an accident occurs. Future research should
explore how far early drowsiness can be predicted and which
method is suitable for predicting drowsiness. In this con-
text, physiological and behavior-based methods are highly
effective in predicting the onset of driver drowsiness [177].
Therefore, the integration of these methods can be used by
big automobile manufacturers to minimize drowsiness related
accidents. Further research can also explore the impact of
future driving conditions (i.e., semi/fully automated driving)
on driver behavior and drowsiness, which may reveal new
measures of drowsiness.

Future research should utilize the significant technological
developments in artificial intelligence (Al), the Internet of
Things (IoT) and sensor miniaturization. For example, the
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FIGURE 7. Blinking behavior during different driver vigilance stages (Note BF: Blink frequency; BD: Blink duration; EO:

Eyelid opening).

5G technology may help in conducting real driving scenarios,
where data can be obtained from actual drivers and factors
with consideration to factors, such as light conditions, indi-
vidual differences, road vibrations, noise. Moreover, research
should investigate the application of deep learning techniques
in identifying driver drowsiness. The 5G connectivity may
allow for the use of multi-access edge computing power
for deep learning, which improves the accuracy of real-time
decisions [183]. In addition, vehicles can operate in networks,
where the network can warn the drowsy driver, take control of
the vehicle and contact other vehicles in the network to stay at
a safe distance [183]. These technological advancements will
help in developing accurate and reliable driver drowsiness
detection systems and hence pave the way for their practical
implications in smart cities.

Several studies have shown that blinking behavior is one
of the most experimentally examined drowsiness detection
and prediction indicators [14], [92], [94]. However, few
studies have investigated the intercorrelation between these
indicators and their independent correlation with the level
of induced drowsiness. A simulation study conducted by
Hargutt [44] showed that different driver sleepiness levels
can be determined using different blinking behaviors. Four
levels of sleepiness were determined according to the col-
lected blinking parameters: awake, hypovigilant, drowsy, and
microsleeping. The results showed that light fatigue (the
transition from awake to hypo-vigilant) was indicated by an
increase in blink frequency, whereas the transition to severe
fatigue was accompanied by an increase in blink duration.
In 2004, Galley and Schleicher conducted a study that inves-
tigated the relationship between various ocular parameters
and drowsiness levels as indicated by subjective indicators.
They concluded that sleepiness while driving involves three
partially independent processes: decreasing attention (indi-
cated by blink interval), decreasing alertness (indicated by
blink duration and blink amplitude), and pronounced effort
to maintain the required level of alertness (indicated by
the velocities of saccades and lid movements). This result
was supported by [46], who concluded that blink frequency
and blink duration may have to be considered indepen-
dent aspects of blinking behavior. Another study conducted
by [47] supported the fact that hypovigilance is an early
stage of drowsiness that occurs before microsleeping. This
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indicates that driver drowsiness can be predicted in earlier
stages (i.e., hypovigilance) by detecting an increase in blink-
ing frequency, which will later be accompanied by an increase
in blinking duration. These findings can shift the attention of
researchers, engineers and policy makers of the transportation
industry to the hypovigilance state of the driver, which is an
early stage of drowsiness.

Fig. 7 illustrates the blinking behavior during different vig-
ilance stages and how it can help in predicting drowsiness. For
example, a signal can be initiated if an increase in blinking
frequency occurs (yellow). This signal turns into an alarm
when an increase in blinking duration and half-closed eyelid
opening are detected (orange). This mechanism provides a
great opportunity to detect drowsiness before reaching the
microsleep state, which provides drivers with sufficient time
to react safely before falling asleep. The proposed research
direction may help road safety researchers develop reliable
DDD systems that can detect drowsiness at an early stage.

Several studies, as well as practical experience, have shown
that not all drowsy drivers experience a long blink duration
or high blink frequency at the wheel, but some manage to
keep their eyes open during an episode [47], [56], [179]. This
phenomenon is known as “highway hypnosis™ or *“driving
without awareness (DWA),” wherein drivers are seemingly
unaware of impending driving errors or road accidents, even
with their eyes open.

The majority of DDD systems focus on detecting
microsleep situations without considering that drivers may
sleep with their eyes open (Fig. 8). Therefore, investigating
the DWA phenomenon, its risk factors, and their relation-
ship with drowsiness is critical for the development of DDD
systems. In 2004, Galley and Schleicher investigated the rela-
tionship between various ocular parameters and drowsiness
levels as indicated by subjective indicators. They concluded
that sleepiness while driving involves three partially inde-
pendent processes: decreasing attention (indicated by blink
interval), decreasing alertness (indicated by blink duration
and blink amplitude), and pronounced effort to maintain
the required level of alertness (indicated by the velocities
of saccades and lid movements). Moreover, a simulation
driving experiment was conducted by Karrer et al. [179] to
investigate DWA and its relationship to driver drowsiness.
The results showed a notable correlation between DWA and
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FIGURE 8. Factors causing driver's hypovigilance, DWA, and drowsiness (Note Dashed
line: Current technology; Dotted line: proposed technology).

saccadic parameters, such as mean saccadic amplitude and
mean saccadic duration. Another study conducted by Desai
and Haque [47] supports the fact that DWA occurs in the early
stages of drowsiness (hypovigilance). These results highlight
the need to carefully investigate DWA situations in field driv-
ing and emphasize the use of saccadic parameters to improve
the accuracy and reliability of drowsiness detection devices.

There are some potential challenges to implementing eye
activity-based DDD systems in real-world settings. One of the
main challenges is the difficulty of tracking and recognizing
high-quality data of driver’s head and face, due to the depen-
dency on the driver, environmental conditions and quality of
the equipment [183]. In addition, the difficulty of tracking and
recognizing the eyes in the presence of accessories, such as
sunglasses, beard and mustache. Another challenge is related
to the difficulty of measuring saccadic parameters as they
require high sampling rate (500-1000 Hz) [56]. Variations
in skin colors, face structure and lighting conditions [185],
random head movements [150], distance from the camera,
and the need for powerful computing equipment for real-time
video analysis [184] are all among the potential challenges
that may result in the reduction of detection accuracy or
failure of DDD systems.

V. CONCLUSION

Eye activity-based DDD systems have the advantage of being
reliable, non-intrusive to drivers and able to detect drowsiness
at early stage. Therefore, it was extremely important to pro-
vide researchers and practitioners with in-depth information
on eye activity measures of drowsiness, current technologies
to measure the eye activity and decision-making algorithms
to predict drowsiness.

The current review differs from previous literature reviews
in several respects. First, to our knowledge, the current review
is the first to systematically review empirical studies that
develop driver drowsiness detection (DDD) system based on
eye activity measures and assess its performance. Second,
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it identifies the common eye activity measures of drowsiness
and classifies them based on the moving part of the eye.
Third, it identifies the current technologies used to monitor
and measure eye activities and classifies them based on their
functional properties. Fourth, it explores decision-making
algorithms used to predict drowsiness from eye activity mea-
sures. Fifth, it sheds light on new research avenues that
emphasize predicting driver drowsiness at an early stage and
considering the driver’s hypnotic state when developing DDD
systems.

This study forms the basis for future research and the
development of driver drowsiness detection methods using
ocular parameters. The findings will help researchers better
understand the various eye activities that indicate drowsiness
and different decision-making algorithms.

The outcome of this literature review could help prac-
titioners improve existing DDD systems by incorporating
measures of blinking behavior in conjunction with head posi-
tion or yawning to detect drowsiness in the early stages. It is
also expected to help practitioners improve existing DDD
systems by incorporating deep learning algorithms such as
convolutional neural networks to increase prediction accu-
racy.

ACKNOWLEDGMENT

The author would like to acknowledge the support of the King
Fahd University of Petroleum and Minerals and the Interdis-
ciplinary Research Center of Smart Mobility and Logistics.
In addition, the author wishes to acknowledge Dr. Daniel
Imbeau and Dr. Bruno Farbos for their support and valuable
comments.

REFERENCES
[1]1 Global Status Report on Road Safety 2018, World Health Org., Geneva,
Switzerland, 2018.
[2] S. Chen, Z. Wang, and W. Chen, ““Driver drowsiness estimation based

on factorized bilinear feature fusion and a long-short-term recurrent
convolutional network,” Information, vol. 12, no. 1, p. 3, Dec. 2020.

VOLUME 12, 2024



A. Kolus: Systematic Review on Driver Drowsiness Detection Using Eye Activity Measures

IEEE Access

[3]

[4]

[5]

(6]

[8

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

A. H. Al-Bayati, A. S. Shakoree, and Z. A. Ramadan, ‘“‘Factors affecting
traffic accidents density on selected multilane rural highways,” Civil Eng.
J., vol. 7, no. 7, pp. 1183-1202, Jul. 2021.

B. C. Tefft, “Prevalence of motor vehicle crashes involving drowsy
drivers, United States, 2009-2013,” AAA Found. Traffic Saf.,
Washington, DC, USA, 2014, pp. 1-10.

P. M. Salmon, G. J. M. Read, V. Beanland, J. Thompson, A. J. Filtness,
A. Hulme, R. McClure, and I. Johnston, “Bad behaviour or societal
failure? Perceptions of the factors contributing to drivers’ engagement in
the fatal five driving behaviours,” Appl. Ergonom., vol. 74, pp. 162-171,
Jan. 2019.

M. E. Shaik, “A systematic review on detection and prediction of driver
drowsiness,” Transp. Res. Interdiscipl. Perspect., vol. 21, Sep. 2023,
Art. no. 100864.

L. M. Bergasa, J. Nuevo, M. A. Sotelo, R. Barea, and M. E. Lopez, ‘‘Real-
time system for monitoring driver vigilance,” IEEE Trans. Intell. Transp.
Syst., vol. 7, no. 1, pp. 6377, Mar. 2006.

D. J. Gottlieb, J. M. Ellenbogen, M. T. Bianchi, and C. A. Czeisler, ““Sleep
deficiency and motor vehicle crash risk in the general population: A
prospective cohort study,” BMC Med., vol. 16, no. 1, pp. 1-10, Dec. 2018.
S. Shekari Soleimanloo, T. L. Sletten, A. Clark, J. M. Cori, A. P. Wolkow,
C. Beatty, B. Shiferaw, M. Barnes, A. J. Tucker, M. M. Huda, C. Ander-
son, S. M. W. Rajaratnam, and M. E. Howard, “The association of
schedule characteristics of heavy vehicle drivers with continuous eye-
blink parameters of drowsiness,” Transp. Res. F, Traffic Psychol. Behav.,
vol. 90, pp. 485-499, Oct. 2022.

L. Barr, H. Howarth, S. Popkin, and R. Carroll, “A review and evalu-
ation of emerging driver fatigue detection measure and technologies,”
U.S. Dept. Transp., Federal Motor Carrier Saf. Admin., Volpe Nat.
Transp. Syst. Center, Washington, DC, USA, Tech. Rep. FMCSA-RRR-
09-005, 2005.

R. Ghoddoosian, M. Galib, and V. Athitsos, ““A realistic dataset and base-
line temporal model for early drowsiness detection,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Vancouver,
BC, Canada, Jun. 2019, pp. 178-187.

M. S. Mahmoud, A. Jarndal, A. Alzghoul, H. Almahasneh, I. Alsyouf, and
A. K. Hamid, “Driver drowsiness detection system using deep learning
based on visual facial features,” in Proc. 14th Int. Conf. Develop. eSyst.
Eng. (DeSE), Vancouver, BC, Canada, 2021, pp. 453-458.

J. A. Horne and L. A. Reyner, “Counteracting driver sleepiness: Effects
of napping, caffeine, and placebo,” Psychophysiology, vol. 33, no. 3,
pp- 306-309, May 1996.

N. Wright, B. Stone, T. Horberry, and N. Reed, “A review of in-vehicle
sleepiness detection devices,” TRL Ltd., Dept. Transp., Road User Saf.
Division, Washington, DC, USA, Tech. Rep. PPR 157, PPRO 4/001/017,
2007.

J. Horne and L. Reyner, “Vehicle accidents related to sleep: A review,”
Occupat. Environ. Med., vol. 56, no. 5, pp. 289-294, May 1999.

S. Bakheet and A. Al-Hamadi, “A framework for instantaneous
driver drowsiness detection based on improved HOG features and
Naive Bayesian classification,” Brain Sci., vol. 11, no. 2, p. 240,
Feb. 2021.

J. Vicente, P. Laguna, A. Bartra, and R. Bail6n, “Drowsiness detection
using heart rate variability,” Med. Biol. Eng. Comput., vol. 54, no. 6,
pp. 927-937, Jun. 2016.

M. Awais, N. Badruddin, and M. Drieberg, “A hybrid approach to detect
driver drowsiness utilizing physiological signals to improve system per-
formance and wearability,” Sensors, vol. 17, no. 9, p. 1991, Aug. 2017.
L. Wang, H. Wang, and X. Jiang, “A new method to detect driver fatigue
based on EMG and ECG collected by portable non-contact sensors,”
PROMET Traffic Transp., vol. 29, no. 5, pp. 479—488, Nov. 2017.

M. Choi, G. Koo, M. Seo, and S. W. Kim, ‘“Wearable device-based
system to monitor a driver’s stress, fatigue, and drowsiness,” IEEE Trans.
Instrum. Meas., vol. 67, no. 3, pp. 634-645, Mar. 2018.

C. J. de Naurois, C. Bourdin, C. Bougard, and J.-L. Vercher, “Adapting
artificial neural networks to a specific driver enhances detection and pre-
diction of drowsiness,” Accident Anal. Prevention, vol. 121, pp. 118-128,
Dec. 2018.

J. Malik, Y.-L. Lo, and H.-T. Wu, “Sleep-wake classification via quan-
tifying heart rate variability by convolutional neural network,” Physiol.
Meas., vol. 39, no. 8, Aug. 2018, Art. no. 085004.

F. Wang, H. Wang, and R. Fu, “Real-time ECG-based detection of fatigue
driving using sample entropy,” Entropy, vol. 20, no. 3, p. 196, Mar. 2018.

VOLUME 12, 2024

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

S. Barua, M. U. Ahmed, C. Ahlstrom, and S. Begum, ‘“‘Automatic
driver sleepiness detection using EEG, EOG and contextual information,”
Expert Syst. Appl., vol. 115, pp. 121-135, Jan. 2019.

L. Wang, J. Li, and Y. Wang, “Modeling and recognition of driving
fatigue state based on R-R intervals of ECG data,” IEEE Access, vol. 7,
pp. 175584-175593, 2019.

T. G. Monteiro, C. Skourup, and H. Zhang, “Optimizing CNN hyper-
parameters for mental fatigue assessment in demanding maritime opera-
tions,” IEEE Access, vol. 8, pp. 40402-40412, 2020.

S. Murugan, J. Selvaraj, and A. Sahayadhas, “Detection and analy-
sis: Driver state with electrocardiogram (ECG),” Phys. Eng. Sci. Med.,
vol. 43, no. 2, pp. 525-537, Jun. 2020.

S. Yaacob, N. A. I. Affandi, P. Krishnan, A. Rasyadan, M. Yaakop,
and F. Mohamed, ‘“Drowsiness detection using EEG and ECG
signals,” in Proc. IEEE 2nd Int. Conf. Artif. Intell. Eng. Tech-
nol. (IICAIET), Kota Kinabalu, Malaysia, Sep. 2020, pp. 1-5, doi:
10.1109/TICAIET49801.2020.9257867.

M. Zhu, J. Chen, H. Li, F. Liang, L. Han, and Z. Zhang, ‘Vehi-
cle driver drowsiness detection method using wearable EEG based on
convolution neural network,” Neural Comput. Appl., vol. 33, no. 20,
pp. 13965-13980, Oct. 2021.

N.-H. Liu, C.-Y. Chiang, and H.-M. Hsu, “Improving driver alertness
through music selection using a mobile EEG to detect brainwaves,”
Sensors, vol. 13, no. 7, pp. 8199-8221, Jun. 2013.

L. Saju, C. Jestine, F. Yasmin, and S. Varghese, ‘“‘Drowsiness detection
system for drivers using HAART training and template matching,” Int. J.
Eng. Appl. Sci. Technol., vol. 1, no. 6, pp. 106-110, 2016.

F. Mohammad, K. Mahadas, and G. K. Hung, “Drowsy driver mobile
application: Development of a novel scleral-area detection method,”
Comput. Biol. Med., vol. 89, pp. 76-83, Oct. 2017.

R. Jabbar, K. Al-Khalifa, M. Kharbeche, W. Alhajyaseen, M. Jafari, and
S. Jiang, “‘Real-time driver drowsiness detection for Android application
using deep neural networks techniques,” Proc. Comput. Sci., vol. 130,
pp. 400-407, Jan. 2018.

J.-M. Guo and H. Markoni, “Driver drowsiness detection using hybrid
convolutional neural network and long short-term memory,” Multimedia
Tools Appl., vol. 78, no. 20, pp. 29059-29087, Oct. 2019.

C. B. S. Maior, M. J. D. C. Moura, J. M. M. Santana, and I. D. Lins,
“Real-time classification for autonomous drowsiness detection using eye
aspect ratio,” Expert Syst. Appl., vol. 158, Nov. 2020, Art. no. 113505.
B. Fatima, A. R. Shahid, S. Ziauddin, A. A. Safi, and H. Ramzan, “‘Driver
fatigue detection using Viola Jones and principal component analysis,”
Appl. Artif. Intell., vol. 34, no. 6, pp. 456-483, May 2020.

F. You, Y. Gong, H. Tu, J. Liang, and H. Wang, “A fatigue driving
detection algorithm based on facial motion information entropy,” J. Adv.
Transp., vol. 2020, Jun. 2020, Art. no. 8851485.

M. Dua, S. Sharma, R. Singla, S. Raj, and A. Jangra, “Deep CNN
models-based ensemble approach to driver drowsiness detection,” Neural
Comput. Appl., vol. 33, no. 8, pp. 3155-3168, Apr. 2021.

A. Sahayadhas, K. Sundaraj, and M. Murugappan, ‘‘Detecting driver
drowsiness based on sensors: A review,” Sensors, vol. 12, no. 12,
pp. 16937-16953, Dec. 2012.

W. Guo, B. Zhang, L. Xia, S. Shi, X. Zhang, and J. She, “Driver
drowsiness detection model identification with Bayesian network struc-
ture learning method,” in Proc. Chin. Control Decis. Conf. (CCDC),
Yinchuan, China, May 2016, pp. 131-136.

S. Arefnezhad, S. Samiee, A. Eichberger, M. Frithwirth, C. Kaufmann,
and E. Klotz, “Applying deep neural networks for multi-level classifi-
cation of driver drowsiness using vehicle-based measures,” Expert Syst.
Appl., vol. 162, Dec. 2020, Art. no. 113778.

M. G. Lenné and E. E. Jacobs, “Predicting drowsiness-related driving
events: A review of recent research methods and future opportunities,”
Theor. Issues Ergonom. Sci., vol. 17, nos. 5-6, pp. 533-553, Sep. 2016.
O. Dehzangi and S. Masilamani, “Unobtrusive driver drowsiness predic-
tion using driving behavior from vehicular sensors,” in Proc. 24th Int.
Conf. Pattern Recognit. (ICPR), Aug. 2018, pp. 3598-3603.

V. Hargutt, Das Lidschlagverhalten Als Indikator Fiir Aufmerksamkeits-
und Miidigkeitsprozesse Bei Arbeitshandlungen. Diisseldorf, Germany:
VDI Verlag, 2003.

N. Galley and R. Schleicher, “Subjective and optomotoric indicator of
driver drowsiness,” in Proc. 3rd Int. Conf. Traffic Transp. Psychol.,
Nottingham, U.K., 2004, pp. 1-7.

97989


http://dx.doi.org/10.1109/IICAIET49801.2020.9257867

IEEE Access

A. Kolus: Systematic Review on Driver Drowsiness Detection Using Eye Activity Measures

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

97990

P. Meinold, “Psychologie des lidschlags. Eine literatur—Und meth-
odenkritische studie,” Ph.D. thesis, Fac. Philosophy, Univ. zu Koln,
Cologne, Germany, 2005.

A. V. Desai and M. A. Haque, ““Vigilance monitoring for operator safety:
A simulation study on highway driving,” J. Saf. Res., vol. 37, no. 2,
pp. 139-147, Jan. 2006.

A. Anund, G. Kecklund, B. Peters, A. Forsman, A. Lowden, and
T. Akerstedt, “Driver impairment at night and its relation to physiological
sleepiness,” Scand. J. Work, Environ. Health, vol. 34, no. 2, pp. 142-150,
Apr. 2008.

T. Arakawa, “Trends and future prospects of the drowsiness detection and
estimation technology,” Sensors, vol. 21, no. 23, p. 7921, Nov. 2021.

D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, “Preferred reporting
items for systematic reviews and meta-analyses: The PRISMA state-
ment,” J. Clin. Epidemiol., vol. 62, no. 10, pp. 1006-1012, Jul. 2009.

H. Summala, H. Hakkanen, T. Mikkola, and J. Sinkkonen, “Task effects
on fatigue symptoms in overnight driving,” Ergonomics, vol. 42, no. 6,
pp. 798-806, Jun. 1999.

P. P. Caffier, U. Erdmann, and P. Ullsperger, “Experimental evaluation
of eye-blink parameters as a drowsiness measure,” Eur. J. Appl. Physiol.,
vol. 89, no. 3, pp. 319-325, May 2003.

N. Galley, R. Schleicher, and L. Galley, “‘Blink parameter as indicators of
driver’s sleepiness—Possibilities and limitations,” in Vision in Vehicles X.
Amsterdam, The Netherlands: Elsevier, 2004, pp. 189-196.

I. Damousis, I. Cester, S. Nikolaou, and D. Tzovaras, ‘“‘Physiological
indicators based sleep onset prediction for the avoidance of driving
accidents,” in Proc. 29th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.,
Aug. 2007, pp. 23-26.

P. Boyraz, M. Acar, and D. Kerr, “Multi-sensor driver drowsiness mon-
itoring,” Proc. Inst. Mech. Eng. D, J. Automobile Eng., vol. 222, no. 11,
pp. 2041-2062, Nov. 2008.

R. Schleicher, N. Galley, S. Briest, and L. Galley, “Blinks and saccades as
indicators of fatigue in sleepiness warnings: Looking tired?”” Ergonomics,
vol. 51, no. 7, pp. 982-1010, Jul. 2008.

Y. Morad, Y. Barkana, D. Zadok, M. Hartstein, E. Pras, and Y. Bar-Dayan,
“Ocular parameters as an objective tool for the assessment of truck
drivers fatigue,” Accident Anal. Prevention, vol. 41, no. 4, pp. 856-860,
Jul. 2009.

M. J. Flores, J. M. Armingol, and A. de la Escalera, ‘“Real-time warning
system for driver drowsiness detection using visual information,” J. Intell.
Robotic Syst., vol. 59, no. 2, pp. 103-125, Aug. 2010.

W. Zhang, B. Cheng, and Y. Lin, “Driver drowsiness recognition based
on computer vision technology,” Tsinghua Sci. Technol., vol. 17, no. 3,
pp. 354-362, 2012.

S. Hachisuka, “Human and vehicle-driver drowsiness detection by facial
expression,” in Proc. Int. Conf. Biometrics Kansei Eng., Jul. 2013,
pp. 320-326.

K. Dwivedi, K. Biswaranjan, and A. Sethi, “Drowsy driver detection
using representation learning,” in Proc. IEEE Int. Adv. Comput. Conf.
(IACC), Feb. 2014, pp. 995-999.

W. Han, Y. Yang, G.-B. Huang, O. Sourina, F. Klanner, and C. Denk,
“Driver drowsiness detection based on novel eye openness recognition
method and unsupervised feature learning,” in Proc. IEEE Int. Conf. Syst.,
Man, Cybern., Oct. 2015, pp. 1470-1475.

X. Wang and C. Xu, “Driver drowsiness detection based on non-intrusive
metrics considering individual specifics,” Accident Anal. Prevention,
vol. 95, pp. 350-357, Oct. 2016.

A. Eskandarian and A. Mortazavi, “Evaluation of a smart algorithm for
commercial vehicle driver drowsiness detection,” in Proc. IEEE Intell.
Vehicles Symp., Jun. 2007, pp. 553-559.

X. P. Huynh, S. M. Park, and Y. G. Kim, “Detection of driver drowsiness
using 3D deep neural network and semi-supervised gradient boosting
machine,” in Proc. Asian Conf. Comput. Vis., 2017, pp. 134-145.

S. Park, F. Pan, S. Kang, and C. D. Yoo, “Driver drowsiness detection
system based on feature representation learning using various deep net-
works,” in Proc. Asian Conf. Comput. Vis., 2017, pp. 154-164.

B. Reddy, Y.-H. Kim, S. Yun, C. Seo, and J. Jang, “Real-time driver
drowsiness detection for embedded system using model compression
of deep neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jul. 2017, pp. 438-445.

T. H. Shih and C. T. Hsu, “MSTN: Multistage spatial-temporal network
for driver drowsiness detection,” in Proc. Asian Conf. Comput. Vis., 2017,
pp. 146-153.

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

C. H. Weng, Y. H. Lai, and S. H. Lai, “Driver drowsiness detection via a
hierarchical temporal deep belief network,” in Proc. Asian Conf. Comput.
Vis., 2017, pp. 117-133.

A. A.Bamidele, K. Kamardin, N. Syazarin, S. Mohd, I. Shafi, A. Azizan,
N. Aini, and H. Mad, “Non-intrusive driver drowsiness detection based
on face and eye tracking,” Int. J. Adv. Comput. Sci. Appl., vol. 10,
no. 7, pp. 549-569, 2019.

W. Liu, J. Qian, Z. Yao, X. Jiao, and J. Pan, “Convolutional two-stream
network using multi-facial feature fusion for driver fatigue detection,”
Future Internet, vol. 11, no. 5, p. 115, May 2019.

V. Vijayan and E. Sherly, “Real time detection system of driver drowsi-
ness based on representation learning using deep neural networks,”
J. Intell. Fuzzy Syst., vol. 36, no. 3, pp. 1977-1985, Mar. 2019.

T. H. Vu, A. Dang, and J.-C. Wang, “A deep neural network for real-time
driver drowsiness detection,”” IEICE Trans. Inf. Syst., vol. E102.D, no. 12,
pp. 2637-2641, 2019.

J. Yu, S. Park, S. Lee, and M. Jeon, ‘““Driver drowsiness detection using
condition-adaptive representation learning framework,” IEEE Trans.
Intell. Transp. Syst., vol. 20, no. 11, pp. 4206-4218, Nov. 2019.

Y. Ed-Doughmi, N. Idrissi, and Y. Hbali, “Real-time system for driver
fatigue detection based on a recurrent neuronal network,” J. Imag., vol. 6,
no. 3, p. 8, Mar. 2020.

A. Ghourabi, H. Ghazouani, and W. Barhoumi, “Driver drowsiness detec-
tion based on joint monitoring of yawning, blinking and nodding,” in
Proc. IEEE 16th Int. Conf. Intell. Comput. Commun. Process. (ICCP),
Sep. 2020, pp. 407-414.

J. Gwak, A. Hirao, and M. Shino, “An investigation of early detection
of driver drowsiness using ensemble machine learning based on hybrid
sensing,” Appl. Sci., vol. 10, no. 8, p. 2890, Apr. 2020.

R. Jabbar, M. Shinoy, M. Kharbeche, K. Al-Khalifa, M. Krichen, and
K. Barkaoui, “Driver drowsiness detection model using convolutional
neural networks techniques for Android application,” in Proc. IEEE Int.
Conf. Informat., loT, Enabling Technol. (ICIoT), Doha, Qatar, Feb. 2020,
pp. 237-242.

A.F. M. S. Saif and Z. Rasyid, ‘“‘Robust drowsiness detection for vehicle
driver using deep convolutional neural network,” Int. J. Adv. Comput. Sci.
Appl., vol. 11, no. 10, pp. 343-350, 2020.

J. S. Wijnands, J. Thompson, K. A. Nice, G. D. P. A. Aschwanden, and
M. Stevenson, ‘“‘Real-time monitoring of driver drowsiness on mobile
platforms using 3D neural networks,” Neural Comput. Appl., vol. 32,
no. 13, pp. 9731-9743, Jul. 2020.

X. Zhang, X. Wang, X. Yang, C. Xu, X. Zhu, and J. Wei, “Driver
drowsiness detection using mixed-effect ordered logit model considering
time cumulative effect,” Anal. Methods Accident Res., vol. 26, Jun. 2020,
Art. no. 100114.

L. Zhao, Z. Wang, G. Zhang, and H. Gao, “‘Driver drowsiness recogni-
tion via transferred deep 3D convolutional network and state probability
vector,” Multimedia Tools Appl., vol. 79, nos. 35-36, pp. 26683-26701,
Sep. 2020.

A. Quddus, A. Shahidi Zandi, L. Prest, and F. J. E. Comeau, “Using
long short term memory and convolutional neural networks for driver
drowsiness detection,” Accident Anal. Prevention, vol. 156, Jun. 2021,
Art. no. 106107.

S. P. Rajamohana, E. G. Radhika, S. Priya, and S. Sangeetha, “Driver
drowsiness detection system using hybrid approach of convolutional neu-
ral network and bidirectional long short term memory (CNN_BILSTM),”
Mater. Today, Proc., vol. 45, no. 2, pp. 2897-2901, Jan. 2021.

H. U. R. Siddiqui, A. A. Saleem, R. Brown, B. Bademci, E. Lee,
F. Rustam, and S. Dudley, “Non-invasive driver drowsiness detection
system,” Sensors, vol. 21, no. 14, p. 4833, 2021.

M. W. Johns, A. Tucker, R. Chapman, K. Crowley, and N. Michael,
“Monitoring eye and eyelid movements by infrared reflectance oculog-
raphy to measure drowsiness in drivers,” Somnologie, vol. 11, no. 4,
pp. 234-242, Dec. 2007.

M. S. Bhuiyan, “Driver assistance systems to rate drowsiness: A pre-
liminary study,” in New Advances in Intelligent Decision Technologies
(Studies in Computational Intelligence), vol. 199. Berlin, Germany:
Springer, 2009, pp. 415-425.

D. Dinges, M. Mallis, G. Maislin, and J. Powell, “Evaluation of tech-
niques for ocular measurement as an index of fatigue and as the basis for
alertness management,” Nat. Highway Traffic Saf. Admin., Washington,
DC, USA, Tech. Rep. DOT HS 808 762, 1998.

VOLUME 12, 2024



A. Kolus: Systematic Review on Driver Drowsiness Detection Using Eye Activity Measures

IEEE Access

[89]

[90]

[91]

[92]

[93]
[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

C.T.Lovelace, W. R. Elmore, and D. L. Filion, “Infrared reflectance as an
alternative to EMG for measuring prepulse inhibition of startle eyeblink,”
Psychophysiology, vol. 43, no. 5, pp. 511-515, Sep. 2006.

R. Knipling and W. Wierwille, “Vehicle-based drowsy driver detection:
Current status and future prospects,” in Proc. IVHS AMERICA Conf.
Moving Toward Deployment, Atlanta, GA, USA, 1994, pp. 2-24.

W. Wierwille, L. Ellisworth, S. Wreggit, R. Fairbanks, and C. Kirn,
“Research on vehicle-based driver status/performance monitoring:
Development, validation, and refinement of algorithms for detecting
driver drowsiness,” Nat. Highway Traffic Saf. Admin., Washington, DC,
USA, Final Rep. HS 808 247, 1994.

J. Jo, S. J. Lee, K. R. Park, I.-J. Kim, and J. Kim, “Detecting driver
drowsiness using feature-level fusion and user-specific classification,”
Expert Syst. Appl., vol. 41, no. 4, pp. 1139-1152, Mar. 2014.

J. L. Andreassi, Psychophysiology: Human Behavior and Physiological
Response, 5th ed., London, U.K.: Psychology Press, 2010.

R. J. Sternberg, K. Sternberg, and J. S. Mio, Cognitive Psychology,
6th ed., Belmont, CA, USA: Wadsworth, 2012.

V. E. Wilkinson, M. L. Jackson, J. Westlake, B. Stevens, M. Barnes,
P. Swann, S. M. W. Rajaratnam, and M. E. Howard, “The accuracy of
eyelid movement parameters for drowsiness detection,” J. Clin. Sleep
Med., vol. 9, no. 12, pp. 1315-1324, Dec. 2013.

S. K. L. Lal and A. Craig, “A critical review of the psychophysiology of
driver fatigue,” Biol. Psychol., vol. 55, no. 3, pp. 173-194, Feb. 2001.
D. S. Bowman, W. A. Schaudt, and R. J. Hanowski, “Advances in

drowsy driver assistance systems through data fusion,” in Handbook of

Intelligent Vehicles, A. Eskandarian, Ed., London, U.K.: Springer, 2012,
pp. 895-912.

A. A. Lenskiy and J.-S. Lee, “Driver’s eye blinking detection using novel
color and texture segmentation algorithms,” Int. J. Control, Autom. Syst.,
vol. 10, no. 2, pp. 317-327, Apr. 2012.

A.R. Varma, S. V. Arote, C. Bharti, and K. Singh, “Accident prevention
using eye blinking and head movement,” Int. J. Comput. Appl., pp. 18-22,
Apr. 2012.

L. Jin, Q. Niu, Y. Jiang, H. Xian, Y. Qin, and M. Xu, “Driver sleepiness
detection system based on eye movements variables,” Adv. Mech. Eng.,
vol. 5, Jan. 2013, Art. no. 648431.

T. P. Nguyen, M. T. Chew, and S. Demidenko, “Eye tracking system to
detect driver drowsiness,” in Proc. 6th Int. Conf. Autom., Robot. Appl.
(ICARA), Feb. 2015, pp. 472-477.

H. A. Kholerdi, N. TaheriNejad, R. Ghaderi, and Y. Baleghi, “Driver’s
drowsiness detection using an enhanced image processing technique
inspired by the human visual system,” Connection Sci., vol. 28, no. 1,
pp. 2746, Jan. 2016.

J. He, W. Choi, Y. Yang, J. Lu, X. Wu, and K. Peng, “Detection of driver
drowsiness using wearable devices: A feasibility study of the proximity
sensor,” Appl. Ergonom., vol. 65, pp. 473—480, Nov. 2017.

J. M. Cori, C. Anderson, S. Shekari Soleimanloo, M. L. Jackson, and
M. E. Howard, ‘““Narrative review: Do spontaneous eye blink parameters
provide a useful assessment of state drowsiness?”” Sleep Med. Rev.,
vol. 45, pp. 95-104, Jun. 2019.

Y. Li, S. Zhang, G. Zhu, Z. Huang, R. Wang, X. Duan, and Z. Wang,
“A CNN-based wearable system for driver drowsiness detection,” Sen-
sors, vol. 23, no. 7, p. 3475, Mar. 2023.

Y. Yi, Z. Zhou, W. Zhang, M. Zhou, Y. Yuan, and C. Li, “‘Fatigue detection
algorithm based on eye multifeature fusion,” IEEE Sensors J., vol. 23,
no. 7, pp. 7949-7955, Apr. 2023.

M. D. Mulhall, T. L. Sletten, M. Magee, J. E. Stone, S. Ganesan,
A. Collins, C. Anderson, S. W. Lockleyy, M. E. Howard, and
S. M. W. Rajaratnam, “‘Sleepiness and driving events in shift workers:
The impact of circadian and homeostatic factors,” Sleep, vol. 42, no. 6,
pp. 1-13, Jun. 2019.

S. Shekari Soleimanloo, V. E. Wilkinson, J. M. Cori, J. Westlake,
B. Stevens, L. A. Downey, B. A. Shiferaw, S. M. W. Rajaratnam,
and M. E. Howard, “Eye-blink parameters detect on-road track-driving
impairment following severe sleep deprivation,” J. Clin. Sleep Med.,
vol. 15, no. 9, pp. 1271-1284, Sep. 2019.

T. L. Morris and J. C. Miller, “Electrooculographic and performance
indices of fatigue during simulated flight,” Biol. Psychol., vol. 42, no. 3,
pp. 343-360, Feb. 1996.

M. W. Johns, A. Tucker, and R. Chapman, ‘A new method for monitoring
the drowsiness of drivers,” in Proc. Int. Conf. Fatigue Transp. Oper.,
Seattle, WA, USA, 2005, pp. 11-15.

VOLUME 12, 2024

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

P. Ebrahim, W. Stolzmann, and B. Yang, “Eye movement detection for
assessing driver drowsiness by electrooculography,” in Proc. IEEE Int.
Conf. Syst., Man, Cybern., Manchester, U.K., Oct. 2013, pp. 4142-4148.
M. Shahbakhti, M. Beiramvand, I. Rejer, P. Augustyniak,
A. Broniec-Wojcik, M. Wierzchon, and V. Marozas, “Simultaneous
eye blink characterization and elimination from low-channel prefrontal
EEG signals enhances driver drowsiness detection,” IEEE J. Biomed.
Health Informat., vol. 26, no. 3, pp.1001-1012, Mar. 2022, doi:
10.1109/JBHI.2021.3096984.

P. Choudhary, R. Sharma, G. Singh, and S. Das, “A survey paper on
drowsiness detection & alarm system for drivers,” Int. Res. J. Eng.
Technol., vol. 3, no. 12, pp. 1433-1437, 2016.

D. Artanto, M. P. Sulistyanto, Ign. D. Pranowo, and E. E. Pramesta,
“Drowsiness detection system based on eye-closure using a low-
cost EMG and ESP8266,” in Proc. 2nd Int. Conf. Inf. Technol.,
Inf. Syst. Electr. Eng. (ICITISEE), Yogyakarta, Indonesia, Nov. 2017,
pp. 235-238.

V. Hargutt and H.-P. Kriiger, “Eyelid movements and their predic-
tive value for fatigue stages,” Psychologisches Institut der Universitit
Wiirzburg, Wiirzburg, Germany, Tech. Rep. 00927207, 2000.

S. R. Quartz, M. Stensmo, M. S. Makeig, and T. J. Sejnowski, “Eye blink
rate as a practical predictor for vigilance,” Soc. Neurosci., San Diego,
CA, USA, Tech. Rep., 1995.

U. Svensson, “Blink behavior based drowsiness detection-method devel-
opment and validation,” M.S. thesis, Dept. Biomed. Eng., LiU-IMT-EX-
04/369, Linkoping Univ., Linkoping, Sweden, 2004.

D. M. Wiegand, J. McClafterty, S. E. McDonald, and R. J. Hanowski,
“Development and evaluation of a naturalistic observer rating of drowsi-
ness protocol,” Nat. Surf. Transp. Saf. Center Excellence, Blacksburg,
VA, USA, Tech. Rep. 09-UF-004, 2009.

B. Thorslund, “Electrooculogram analysis and development of a system
for defining stages of drowsiness,” Linkoping Univ., Dept. Biomed. Eng.,
Linkoping, Sweden, Tech. Rep. LiU-IMT-EX-351, 2003.

Q. Ji, Z. Zhu, and P. Lan, “Real-time nonintrusive monitoring and pre-
diction of driver fatigue,” IEEE Trans. Veh. Technol., vol. 53, no. 4,
pp. 1052-1068, Jul. 2004.

J. Jo, “Vision-based method for detecting driver drowsiness and distrac-
tion in driver monitoring system,” Opt. Eng., vol. 50, no. 12, Dec. 2011,
Art. no. 127202.

P. Agarwal and R. Sharma, “Driver drowsiness detection techniques:
Review,” EasyChair, vol. 2213, pp. 1-8, 2019.

D. Cardone, C. Filippini, L. Mancini, A. Pomante, M. Tritto, S. Nocco,
D. Perpetuini, and A. Merla, “Driver drowsiness evaluation by means of
thermal infrared imaging: Preliminary results,” Proc. SPIE, vol. 11831,
pp. 111-121, Aug. 2021.

M. Oztiirk, A. Kiiciikmanisa, and O. Urhan, “Drowsiness detection sys-
tem based on machine learning using eye state,” Balkan J. Electr. Comput.
Eng., vol. 10, no. 3, pp. 258-263, Jul. 2022.

D. F. Dinges and R. Grace, “PERCLOS: A valid psychophysiological
measure of alertness as assessed by psychomotor vigilance,” Fed-
eral Highway Admin., Office Motor Carriers, Washington, DC, USA,
Tech. Rep. MCRT-98-006, 1998.

W. W. Wierwille, ““Historical perspective on slow eyelid closure: Whence
PERCLOS?” in Proc. Ocular Measures Driver Alertness Tech. Conf.,
Herndon, VA, USA, 1999, pp. 130-143.

W. W. Wierwille, M. G. Lewin, and R. J. Fairbanks, ‘“Research on
vehicle-based driver status/performance monitoring. Part II,” Nat. High-
way Traffic Saf. Admin., Washington, DC, USA, Tech. Rep. DOT HS 808
638, 1996.

P. K. Alvaro, M. L. Jackson, D. J. Berlowitz, P. Swann, and M. E. Howard,
“Prolonged eyelid closure episodes during sleep deprivation in pro-
fessional drivers,” J. Clin. Sleep Med., vol. 12, no. 8, pp. 1099-1103,
Aug. 2016.

J. Nishiyama, K. Tanida, M. Kusumi, and Y. Hirata, “The pupil as a
possible premonitor of drowsiness,” in Proc. 29th Annu. Int. Conf. IEEE
Eng. Med. Biol. Soc., Lyon, France, Aug. 2007, pp. 1586-1589, doi:
10.1109/IEMBS.2007.4352608.

A. Kircher, M. Uddman, and J. Sandin, ‘“Vehicle control and drowsi-
ness,” VTI, Swedish Nat. Road Transp. Res. Inst., Linkoping, Sweden,
Tech. Rep., 2002.

Q. Wang, J. Yang, M. Ren, and Y. Zheng, “Driver fatigue detection: A
survey,” in Proc. 6th World Congr. Intell. Control Autom., Dalian, China,
2006, pp. 8587-8591.

97991


http://dx.doi.org/10.1109/JBHI.2021.3096984
http://dx.doi.org/10.1109/IEMBS.2007.4352608

IEEE Access

A. Kolus: Systematic Review on Driver Drowsiness Detection Using Eye Activity Measures

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

97992

C. Ahlstrom, M. Nystrom, K. Holmgvist, C. Fors, D. Sandberg, A. Anund,
G. Kecklund, and T. Akerstedt, “Fit-for-duty test for estimation of
drivers’ sleepiness level: Eye movements improve the sleep/wake predic-
tor,” Transp. Res. C, Emerg. Technol., vol. 26, pp. 20-32, Jan. 2013.

M. Niezgoda, A. Tarnowski, M. Kruszewski, and T. Kaminski, ‘“Towards
testing auditory—vocal interfaces and detecting distraction while driving:
A comparison of eye-movement measures in the assessment of cognitive
workload,” Transp. Res. F, Traffic Psychol. Behav., vol. 32, pp. 23-34,
Jul. 2015.

M. Russo, M. Thomas, H. Sing, D. Thorne, T. Balkin, N. Wesensten,
D. Redmond, A. Welsh, L. Rowland, D. Johnson, and R. Cephus,
“Sleep deprivation related changes correlate with simulated motor vehi-
cle crashes,” in Ocular Measures of Driver Alertness, R. Carroll,
Ed., Washington, DC, USA: Federal Highway Administration, 1999,
pp. 119-127.

S. Belz, ““An on-road investigation of self-rating of alertness and temporal
separation as indicators of driver fatigue in commercial motor vehicle
operators,” Ph.D. thesis, Dept. Ind. Syst. Eng., Virginia Polytech. Inst.
State Univ., 2000.

Y. Du, P. Ma, X. Su, and Y. Zhang, “Driver fatigue detection based
on eye state analysis,” in Proc. 11th Joint Conf. Inf. Sci. (JCIS), 2008,
pp. 132-137.

M. Nakayama, “Estimation of eye-pupil size during blink by support
vector regression,” in Proc. Int. Workshop Modeling Natural Action
Selection, 2005, pp. 121-126.

M. Nakayama and Y. Shimizu, “An estimation model of pupil size
for blink artifact in viewing TV programs,” IEICE Trans., vol. J84-A,
pp. 969-977, Apr. 2001.

A. C. Guyton, Basic Human Physiology: Normal Function and Mecha-
nisms of Disease. Philadelphia, PA, USA: Saunders, 1977.

A. Ueno, T. Tateyama, M. Takase, and H. Minamitani, “‘Dynamics of sac-
cadic eye movement depending on diurnal variation in human alertness,”
Syst. Comput. Jpn., vol. 33, no. 7, pp. 95-103, Jun. 2002.

M. Costa, D. Oliveira, S. Pinto, and A. Tavares, “Detecting driver’s
fatigue, distraction and activity using a non-intrusive ai-based monitoring
system,” J. Artif. Intell. Soft Comput. Res., vol. 9, no. 4, pp. 247-266,
Oct. 2019.

A. Whitlock, “Driver vigilance devices: Systems review,” Railway Saf.,
London, U.K., Final Rep. 03 T024 QUIN 22, 2002, no. 1.

L. M. Bergasa, J. Nuevo, M. A. Sotelo, and M. Vazquez, ‘Real-time
system for monitoring driver vigilance,” in Proc. IEEE Intell. Vehicles
Symp., Parma, Italy, Jun. 2004, pp. 78-83.

G. Kecklund, T. Akerstedt, D. Sandberg, M. Wahde, T. Dukic,
A. Anund, and M. Hjdlmdahl, ““State of the art review of driver sleepi-
ness,” DROWSI Project Rep., Deliverable 1.1, 2006.

K. Yamashiro, D. Deguchi, T. Takahashi, I. Ide, H. Murase, K. Higuchi,
and T. Naito, “‘Automatic calibration of an in-vehicle gaze tracking sys-
tem using driver’s typical gaze behavior,” in Proc. IEEE Intell. Vehicles
Symp., Xi’an, China, Jun. 2009, pp. 998-1003.

A. Williamson and T. Chamberlain, “Review of on-road driver
fatigue monitoring devices,” NSW Injury Risk Manag. Res. Centre,
Univ. New South Wales, Australia, Apr. 2005. [Online]. Available:
http://www.maa.nsw.gov.au/getfile.aspx ?Type=document&ID=3988&
ObjectType=3&ObjectID=715

L. Xia, B. Sheng, W. Wu, L. Ma, and P. Li, “Accurate gaze tracking from
single camera using Gabor corner detector,” Multimedia Tools Appl.,
vol. 75, no. 1, pp. 221-239, Jan. 2016.

T. Von Jan, T. Karnahl, K. Seifert, J. Hilgenstock, and R. Zobel, “Don’t
sleep and drive-VW'’s fatigue detection technology,” in Proc. Int. Conf.
Enhanced Saf. Vehicles, Washington, DC, USA, 2005, pp. 1-12.

T. Ejidokun, K. Ayodele, and T. Yesufu, “Development of an eye-blink
detection system to monitor drowsiness of automobile drivers,” IFE J.
Technol., vol. 20, no. 2, pp. 51-55, 2011.

E. Ouabida, A. Essadike, and A. Bouzid, “Optical correlator based
algorithm for driver drowsiness detection,” Optik, vol. 204, Feb. 2020,
Art. no. 164102.

T. Bafna and J. P. Hansen, “Mental fatigue measurement using eye
metrics: A systematic literature review,” Psychophysiology, vol. 58, no. 6,
Jun. 2021, Art. no. e13828.

A. F. Klaib, N. O. Alsrehin, W. Y. Melhem, H. O. Bashtawi, and
A. A. Magableh, “Eye tracking algorithms, techniques, tools, and appli-
cations with an emphasis on machine learning and Internet of Things
technologies,” Expert Syst. Appl., vol. 166, Mar. 2021, Art. no. 114037.

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

C. Ryan, B. O’Sullivan, A. Elrasad, A. Cahill, J. Lemley, P. Kielty,
C. Posch, and E. Perot, “Real-time face & eye tracking and blink detec-
tion using event cameras,” Neural Netw., vol. 141, pp. 87-97, Sep. 2021.
M. S. Satyanarayana, T. M. Aruna, and Y. K. Guruprasad, “Continuous
monitoring and identification of driver drowsiness alert system,” Global
Transitions Proc., vol. 2, no. 1, pp. 123-127, Jun. 2021.

S. A. Schellini, A. A. Sampaio, E. Hoyama, A. A. V. Cruz, and
C. R. Padovani, “Spontaneous eye blink analysis in the normal individ-
ual,” Orbit, vol. 24, no. 4, pp. 239-242, Jan. 2005.

F. Lo Castro, ““Class i infrared eye blinking detector,” Sens. Actuators A,
Phys., vol. 148, no. 2, pp. 388-394, Dec. 2008.

A. Dasgupta, D. Rahman, and A. Routray, “A smartphone-based drowsi-
ness detection and warning system for automotive drivers,” IEEE Trans.
Intell. Transp. Syst., vol. 20, no. 11, pp. 40454054, Nov. 2019.

S. V. Deshmukh, D. P. Radake, and K. N. Hande, “Driver fatigue detection
using sensor network,” Int. J. Eng. Sci. Technol., pp. 89-92, Feb. 2011.
E. Aidman, C. Chadunow, K. Johnson, and J. Reece, ‘“Real-time driver
drowsiness feedback improves driver alertness and self-reported driving
performance,” Accident Anal. Prevention, vol. 81, pp. 8-13, Aug. 2015.
R. Naqvi, M. Arsalan, and K. Park, “Fuzzy system-based target selection
for a NIR camera-based gaze tracker,” Sensors, vol. 17, no. 4, p. 862,
Apr. 2017.

H. Zhang, D. Ni, N. Ding, Y. Sun, Q. Zhang, and X. Li, “Structural
analysis of driver fatigue behavior: A systematic review,” Transp. Res.
Interdiscipl. Perspect., vol. 21, Sep. 2023, Art. no. 100865.

J. G. Webster and R. Leder, “Tiny device in eye glasses could
help keep employees awake and safe while on the job,” College
Eng., Annu. Rep. Eng. Ideas Tomorrow, 1997. [Online]. Available:
http://www.engr.wise.edu/news/ar/1997

H. S. Hoffman, M. E. Cohen, and L. M. English, “Reflex modification by
acoustic signals in newborn infants and in adults,” J. Exp. Child Psychol.,
vol. 39, no. 3, pp. 562-579, Jun. 1985.

A. L. Loomis, E. N. Harvey, and G. A. Hobart, “‘Cerebral states during
sleep, as studied by human brain potentials,” J. Exp. Psychol., vol. 21,
no. 2, pp. 127-144, Aug. 1937.

S. Makeig and M. Inlow, ‘““Lapse in alertness: Coherence of fluctuations in
performance and EEG spectrum,” Electroencephalogr. Clin. Neurophys-
iol., vol. 86, pp. 23-35, Jan. 1993.

A. Rechtschaffen and A. Kales, “A manual of standardized terminology,
techniques and scoring system for sleep stages of human subjects,” U.S.
Dept. Health, Educ. Welfare, Public Health Service, Nat. Inst. Health,
Nat. Inst. Neurol. Diseases Blindness, Neurol. Inf. Netw., Washington,
DC, USA, 1968.

J. Santamaria and K. H. Chiappa, “The EEG of drowsiness in normal
adults,” J. Clin. Neurophysiol., vol. 4, no. 4, pp. 327-382, Oct. 1987.

H. De Rosario, J. S. Solaz, N. Rodriguez, and L. M. Bergasa, ““Controlled
inducement and measurement of drowsiness in a driving simulator,” IET
Intell. Transp. Syst., vol. 4, no. 4, p. 280, 2010.

D. Chen, Z. Ma, B. C. Li, Z. Yan, and W. Li, “‘Drowsiness detection with
electrooculography signal using a system dynamics approach,” J. Dyn.
Syst., Meas., Control, vol. 139, no. 8, Aug. 2017, Art. no. 081003.

Y. Tian and J. Cao, “Fatigue driving detection based on electrooculog-
raphy: A review,” EURASIP J. Image Video Process., vol. 2021, no. 1,
pp- 1-17, Dec. 2021.

R. N. Khushaba, S. Kodagoda, S. Lal, and G. Dissanayake, ““Uncorre-
lated fuzzy neighborhood preserving analysis based feature projection for
driver drowsiness recognition,” Fuzzy Sets Syst., vol. 221, pp. 90-111,
Jun. 2013.

G. Larue, A. Rakotonirainy, and A. Pettitt, “‘Predicting driver’s hypovigi-
lance on monotonous roads: Literature review,” in Proc. Int. Conf. Driver
Distraction Inattention, Gothenburg, Sweden, 2010, pp. 1-14.

A. George and A. Routray, “Fast and accurate algorithm for eye local-
isation for gaze tracking in low-resolution images,” IET Comput. Vis.,
vol. 10, no. 7, pp. 660-669, Oct. 2016.

M. Akin, M. B. Kurt, N. Sezgin, and M. Bayram, “Estimating vigilance
level by using EEG and EMG signals,” Neural Comput. Appl., vol. 17,
no. 3, pp. 227-236, Jun. 2008.

R. M. Salman, M. Rashid, R. Roy, M. M. Ahsan, and Z. Siddique, “Driver
drowsiness detection using ensemble convolutional neural networks on
YawDD,” 2021, arXiv:2112.10298.

H. Boubenna and D. Lee, “Image-based emotion recognition using evolu-
tionary algorithms,” Biologically Inspired Cognit. Architectures, vol. 24,
pp. 70-76, Apr. 2018.

E. Perkins, C. Sitaula, M. Burke, and F. Marzbanrad, “Challenges of
driver drowsiness prediction: The remaining steps to implementation,”
IEEE Trans. Intell. Vehicles, vol. 8, no. 2, pp. 1319-1338, Feb. 2023.

VOLUME 12, 2024



A. Kolus: Systematic Review on Driver Drowsiness Detection Using Eye Activity Measures

IEEE Access

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

M. Ngxande, J.-R. Tapamo, and M. Burke, “Bias remediation in driver
drowsiness detection systems using generative adversarial networks,”
IEEE Access, vol. 8, pp. 55592-55601, 2020.

K. Karrer, T. Vohringer-Kuhnt, S. Briest, and T. Baumgarten, “‘Fatigue-
related driver behaviour in untrained and professional drivers,” in Driver
Behaviour and Training (Human Factors in Road and Rail Transport),
vol. 2, L. Dorn, Ed., London, U.K.: Ashgate Publishing, 2005, p. 349.
M. Ramzan, H. U. Khan, S. M. Awan, A. Ismail, M. Ilyas, and
A. Mahmood, “A survey on state-of-the-art drowsiness detection tech-
niques,” IEEE Access, vol. 7, pp. 61904-61919, 2019.

S. Martin, A. Tawari, and M. M. Trivedi, “Toward privacy-protecting
safety systems for naturalistic driving videos,” IEEE Trans. Intell. Transp.
Syst., vol. 15, no. 4, pp. 1811-1822, Aug. 2014.

C. N. Watling, M. Mahmudul Hasan, and G. S. Larue, “Sensitivity and
specificity of the driver sleepiness detection methods using physiologi-
cal signals: A systematic review,” Accident Anal. Prevention, vol. 150,
Feb. 2021, Art. no. 105900.

Y. Albadawi, M. Takruri, and M. Awad, ““A review of recent developments
in driver drowsiness detection systems,” Sensors, vol. 22, no. 5, p. 2069,
Mar. 2022.

K. Fujiwara, E. Abe, K. Kamata, C. Nakayama, Y. Suzuki, T. Yamakawa,
T. Hiraoka, M. Kano, Y. Sumi, F. Masuda, M. Matsuo, and H. Kadotani,
““Heart rate variability-based driver drowsiness detection and its valida-
tion with EEG,” IEEE Trans. Biomed. Eng., vol. 66, no. 6, pp. 1769-1778,
Jun. 2019.

A. Altameem, A. Kumar, R. C. Poonia, S. Kumar, and A. K. J. Saudagar,
“Early identification and detection of driver drowsiness by hybrid
machine learning,” IEEE Access, vol. 9, pp. 162805-162819, 2021.

VOLUME 12, 2024

AHMET KOLUS received the Ph.D. degree in
industrial engineering from the University of
Montreal, Canada, with a focus on human factors
and ergonomics.

He was a Postdoctoral Fellow with the Uni-
versity of Waterloo and Toronto Metropolitan
University, Canada, where he investigated the
impact of human factors on product quality. He is
currently an Assistant Professor of industrial and
systems engineering with the College of Comput-
ing and Mathematics, King Fahd University of Petroleum and Minerals
(KFUPM), Saudi Arabia. He is also affiliated with the Interdisciplinary
Research Center of Smart Mobility and Logistics, KFUPM. He has published
many journal articles and conference proceedings in the areas of human
factors, occupational safety, quality control, maintenance planning, and
scheduling. His current research interest includes the integration of human
factors into decision support models for industrial systems.

Dr. Kolus is a member of the Institute of Industrial Engineers (IIE),
American Society for Quality (ASQ), and the Society for Engineering and
Management Systems (SEMS). He received many awards and certificates
of appreciation and recognition from KFUPM, IEEE, Advanced Electronic
Company, and the University of Montreal. He organized several conferences,
symposiums, and workshops in Toronto, Montreal, and Waterloo. He also
delivered several talks as a panel and invited speaker at conferences and
symposiums in Canada.

97993



