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ABSTRACT The development of a cost-effective surface scanning system tailored for live animal image
capture can play an important role in biomedical research. The primary aim was to introduce a low-cost
system, achieving a surface reconstruction error of less than 2mm, and enabling rapid acquisition speeds
of approximately 1 second for a complete 360-degree surface capture. Leveraging a five RGB-D camera
configuration, our approach offers a simple, low-cost alternative to conventional lab-based 3D scanning
setups. Key to our methodology is a novel calibration strategy aimed at refining intrinsic and extrinsic
camera parameters simultaneously for improved accuracy. We introduce a novel 3D calibration object,
extending existing techniques employing ArUco markers, and implement a depth correction matrix to
enhance depth accuracy. By utilizing Simulated Annealing optimization alongside our custom calibration
object, we achieve superior results compared to conventional optimization techniques. Our obtained results
show that the proposed depth correction method can reduce the reprojection error from 3.12 to 2.89 pixels.
Furthermore, despite the simplicity of our reconstruction method, we observe around a 22% improvement in
surface reconstruction compared to factory calibration parameters. Our findings underscore the practicality
and efficacy of our proposed system, paving the way for enhanced 3D surface reconstruction for real-world
surface capture.

INDEX TERMS Azure Kinect, depth correction, RGB-D calibration, sensors, surface reconstruction.

I. INTRODUCTION
The Azure Kinect DK is the latest generation of Kinect
cameras which includes two different types of sensors for
3D scanning: a 12-megapixel RGB sensor that produces 2D
images; and a 1-megapixel time-of-flight IR depth sensor [1].
Experimental evaluation demonstrated that the Azure Kinect
DK camera can reduce depth error and increase spatial and
temporal accuracy in comparison with previous versions of
Kinect cameras [1], [2]. These types of cameras are known
as RGB-D sensors which are widely used for a range of
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tasks including robot navigation [3], gait recognition [4],
object recognition [5], and 3Dmodel scanning for biomedical
applications [6], [7].

In our case, we were motivated to use this technology
for developing a 3D surface capture system in order to
investigate correlations in canine head surface shape as
indicators of inherited neurological disorders (Chiari-like
Malformation and Syringomyelia). This system needed to
be low cost, portable, but sufficiently accurate to capture
the head surface shape for correlation with the internal
anatomy obtained from MRI/CT, and thus applied as a
triage system for identifying subjects at risk of these clinical
conditions.
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The first step for preparing a 3D surface scanning sys-
tem is to calibrate the RGB-D sensors. These sensors are
usually factory calibrated but the accuracy is insufficient for
sensitive applications such as in a medical and veterinary
setting. Updated intrinsic and extrinsic camera parameters
can enhance camera performance in such cases [8]. However,
the choice of calibration object also plays a key role in the
quality of the final 3D reconstructed model. One of the most
common calibration objects used in surface reconstruction
consists of a planar checkerboard, in which corners of each
square are considered as reference points for calibration [8],
[9], [10], [11]. Although such a checkerboard pattern could
be sufficient for some applications, to increase the accuracy
of the detected calibration points ArUco markers may be
combined with a checkerboard, referred to as a ChArUco
board [12]. However, using planar objects for calibration
requires variation in object-camera distance to generate depth
information, which has motivated the move to 3D calibration
objects that do not require such motion. For example, in [13],
[14] two checkerboards coupled at a 90-degree angle have
been proposed. This helps to represent depth information
that may be perfect for single view 3D reconstruction. For
Multiview 3D reconstruction, cubic and spherical versions
of such 3D calibration objects have been proposed in [15]
and [16], respectively. Although, the 3D scan space could
be covered using such objects, these do not offer the advan-
tages of the 90-degree coupled checkerboards, and moreover,
require several refinement steps to obtain the final 3D recon-
struction. Therefore, in this paper we propose an alternative
ArUco marker-based phantom that combines the advantages
of these approaches with a fast and easy-to-use approach for
calibration.

A further challenge for RGB-D sensor calibration is the
accuracy of any depth measurement. Prior works show that
most RGB-D sensors suffer significant depth measurement
errors, and therefore, in most bespoke camera calibration
methods depth correction is also proposed, some of which
are based on correction of depth image data directly and
some are based on using combinations of RGB and IR
images [17], [18], [19], [20], [21], [22], [23]. The main
idea for [17] and [18] is to correct depth error based on a
range measurement correction, because depth data are pro-
duced by range-to-3D transformation. In [17], a single range
bias was considered for depth error correction, and in [18]
range measurement errors are classified into five clusters
using K-means. However, these approaches ignore intrin-
sic depth sensor parameters for depth correction and treat
depth correction and intrinsic parameter estimation as sep-
arate steps. This may result in suboptimal intrinsic parameter
estimates. In contrast, more accurate depth measurement can
lead to better intrinsic parameter estimates, making it impor-
tant to simultaneously estimate depth correction and intrinsic
parameters. Depth information used in [11] and [19], utilizes
a spatially varying exponential offset to correct depth error.
Such techniques may be useful for capturing complete indoor

3D scenes rather than single isolated target object. Such
approaches have been previously based around scanning 2D
planar calibration objects requiring multiple different depth
views over a large area, in contrast to the relatively small
(<1m3) targeted for capture in our application. However,
such an approach is not possible here as we have no access to
the factory-based disparity values. In [20], intrinsic parame-
ters for both RGB and depth sensor data were estimated at
the same time by using IR images and a generalization of
normal distributions as a Gaussian Processes (GP) proposed
for depth correction. The main challenge of the method is
the requirement for large amounts of training data, which
rendered this approach impossible given the relatively small
data set available to us.

It is worth noting that most of the proposed methodologies
for camera calibration and depth correction are based on
an iterative optimization approach [19]. One of the most
common optimization techniques is Damped Least-Squares
(DLS), otherwise known as the Levenberg Marquardt (LM)
algorithm. LM approach is very sensitive to being trapped
in local minima, dependent on initialization of parameter
estimates, especially for complex cost functions.

The last step for surface capture is to use an efficient
registration technique with low computational cost. A variety
of different approaches may be employed for such 3D regis-
tration. The most popular approaches are based on extracted
features from an RGB image such as SIFT [24], SURF [25],
and FAST [26]. Other methods are based on 3D features on
overlapped areas between pairs of point clouds generated
for two cameras, such as ICP [27], CPD [28], and deep
learning-based methods such as Deep VCP [29], and deep
closest point (DCP) [30]. These approaches are useful and
efficient only when the overlap of the views between cameras
are high, and sufficient pairs of match points can be extracted
from the overlap area. Additionally, Deep learning-based
approaches require substantial training data which in many
applications is not viable.

In this paper, the main goal was to develop a low cost
(< $4k) surface scanning system with average reconstruction
error of <2mm and acquisition speeds of ∼1s for a full
360-degree surface capture to allow for unavoidable subject
motion of live subjects. We opted for a five-camera approach
based on the well-establishedAzure Kinect technology, offer-
ing a cost-effective approach that can be used in uncontrolled
settings outside of the laboratory as an alternative to per-
manent lab-based 3D scanning systems. The full 360-degree
field of view for capture using five cameras meant that
overlap in camera views was minimal, rendering several of
the previously published approaches non-viable. Moreover,
early experiments with the factory-supplied intrinsic camera
parameters demonstrated that significant further improve-
ment would be needed via a bespoke calibration approach.
We therefore sought to develop a novel calibration approach
using a novel phantom that extends prior work in this area
using ArUco markers. Our approach is based on a novel
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FIGURE 1. Azure Kinect camera calibration includes optimizing RGB intrinsic, and distortion parameters, depth correction and extrinsic calibration.

depth correction matrix, such that each element of the matrix
represents a depth correction coefficient for a corresponding
pixel in the RGB image which also uses virtual depth calibra-
tion parameters. A Simulated Annealing optimization-based
approach in conjunctionwith a novel calibration object is then
used for calibration which presents better results than LM or
other optimization techniques. This is followed by a simple
registration step based on outlier removal.

In the rest of the paper, the proposed RGB-D calibration
approach is outlined in Section II which includes details of
the novel 3D calibration object, depth correction method,
calibration approach and the proposed 3D headspace surface
reconstruction. Finally, experimental results are discussed in
Section IV.

II. PROPOSED RGB-D CALIBRATION APPROACH
As mentioned before, two items play an important role
in RGB-D calibration results: the calibration object and
the depth correction model. Consider point i on the object
in the world and camera coordinate system as PiW =[
x iW yiW ziW

]T and PiI =
[
x iI y

i
I z

i
I

]T , respectively, and
its corresponding projection in the RGB image is M i

I =[
uiI v

i
I

]T . Equations (1) and (2), represent the transformation
of ith point from world to image plane based on a Pinhole
camera model [31].
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x
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ziC
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where, f Ix and f Iy are focal lengths, and cIx and c
I
x are the center

of the RGB image plane (principal points), which are referred
to as intrinsic parameters. Moreover, the same formulation
could be considered for depth images. In addition, radial
distortion and tangential distortions are considered for the
captured RGB image based on a pinhole camera model.

The Azure Kinect camera provides a set of depth values
(DV) representing each pixel of the RGB image, which is an
estimate of the distance between the origin of camera coor-
dinate system (depth sensor) and corresponding point of the
object in the real word to the pixel. However, ziI is the distance
between the point and the RGB plane. Based on Euclidian
distance there is a relationship between DV and the camera
coordinate system for each point. It is worth noting that the
resolution of the RGB and depth image are different and
therefore an alignment (synchronization) is required. There-
fore, there are two sets of intrinsic (calibration) parameters
for RGB-D cameras: one for the RGB sensor and the other
for the depth sensor (henceforth used for depth correction).
Initial results can be obtained by using the RGB-D camera
pre-set factory calibration factors, but these are not sufficient
for delivering high quality 3D reconstruction needed for our
application, motivating a need for re-calibration. As shown
in Fig. 1, the proposed approach for Azure Kinect camera
calibration has been considered as an optimization prob-
lem, during which each iteration of the intrinsic RGB, and
depth camera distortion parameters are updated. Moreover,
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the system is intended to be used outside a controlled lab-
oratory environment in other indoor field locations where it
may not be possible to control environmental factors such as
illumination.

A. PROPOSED 3D OBJECT
As shown in Fig. 2, the proposed 3D calibration object is
based on a set of 3D columns upon which a set of ArUco
markers are attached based on a cross-ratio pattern as cali-
bration points. Cross ratio patterns are projective invariant,
which means they are robust to camera orientation. More-
over, Fig. 2(a) and (b) show the proposed calibration object
which is made by four 40 × 40 mm aluminum profile struts
manufactured by PS PRO [32]. Four corners or the middle
point of a ArUco marker can be used as calibration features,
with which the location of the marker can be detected by
threshold segmentation, straight line fitting, and quadrilateral
sum conjecture [12].

There are four unique markers on each column, each
repeated four times on each column face, yielding in total
20 markers. This produces 190 Pair-Distances (PDs) (virtual
lines) that can be defined and calculated between each pair of
points by using AM = 20 ArUco markers. However, it was
empirically found that 72 PDs are sufficient for covering
the target 3D reconstruction space. Fig. 3(a) to (f) illustrate
combinations of PDs considered for the proposed calibration.

B. VIRTUAL 3D POINTS OF ARUCO MARKERS
To be able to utilize all the virtual lines shown in Fig. 3, it is
necessary to detect all 20 markers on the test object. There-
fore, an optimization technique is used to extract optimum
detection parameters. Equation (3) is used as a cost function
to minimize the Detection Error (DE) during optimization for
each of the 5 views.

DE = min (|AM − DAM |) , (AM = 20) (3)

where, AM is the maximum number of attached ArUco
markers on the calibration object for each view, and DAM
is detected ArUco markers in each iteration of optimization
algorithm. This optimization must be completed for each
view separately to determine optimum parameters for that
view. The main part of this step is to produce virtual 3D
ArUcomarkers points representing the position ofmarkers on
the calibration object. A total of 72 reference points (PDs) are
established as the ground truth for the object. These reference
points are meticulously measured using a high-grade digital
laser tape measure with an accuracy of ±2mm. Equation (4)
shows the proposed cost function based on Euclidean distance
to minimize the Virtual Position of ArUco Markers Error
(VPAME) during iterations to extract the optimum position
of these virtual markers in the real-world coordinate system.
As shown in Fig. 4, the middle of ArUco marker number 20,
which is in the bottom part of the middle strut is considered
as the origin of the calibration object in the real-world coor-
dinate system. Each strut is 40 × 40 mm2, and thickness of

FIGURE 2. Proposed 3D calibration object. (a), and (b) are RGB image of
the calibration object and IDs 7 and 12. (c) Right Isometric view. (d) Top
view. Red circle which shows the origin of the virtual points is the same
position as it can be found in Fig.4.

the ArUco marker is 0.8 mm, therefore, the reference point
for the front view is P20W =

[
0 0 20.8

]
.

VPAME
(
P1W , P2W , . . . , P19W

)
= min

 1
L

L∑
j=1

∥∥∥PDRj − PDPj
∥∥∥
 , (L = 72) (4)

where, P represents the virtual position defined by the center
of the ArUcomarkers. PDR, and PDP are real (measured) and
predicted pair-distances, respectively.

C. DEPTH CORRECTION MODEL
The Azure Kinect camera has four depth camera supported
operating modes (Narrow Field Of View (NFOV) unbinned,
NFOV 2 × 2 binned, Wide Field Of View (WFOV) 2 ×

2 binned, and WFOV unbinned) and two aspect ratios (4:3
and 16:9) with eight RGB camera resolutions. Choosing a
suitable depth mode and RGB resolution can impact on the
accuracy of calibration and thus the quality of any resulting
surface model. As mentioned in [2], NFOV provides reduced
systematic error for calculating depth and better pixel overlap
is obtained when RGB and depth cameras are in NFOVmode
(75◦

×65◦) and 4:3 resolution (90◦
×74.3◦), respectively.

However, prior works [1], [2] show that systematic error dete-
riorates after depth and RGB image synchronization. In the
proposed method, depth values have been corrected for each
pixel using new virtual depth intrinsic parameters, instead of
directly recalibrating the depth sensor.
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FIGURE 3. Different type of virtual pair-distances (PDs) considered for
the proposed calibration. (a) to (f) are referred to as central star PDs,
horizontal PDs, side diagonal PDs, central horizontal diagonal PDs,
vertical PDs, and central diagonal PDs, respect.

Let Di is a distance between the origin of the camera and
ith point in the image plane.

Di =

√
x i2I + yi2I + zi2I (5)

Equation (5) can be represented by using (1) as

Di =

√√√√((uiD − cDx
f Dx

)
ziI

)2

+

((
viD − cDy
f Dy

)
ziI

)2

+ zi2I

(6)

Di = ziI

√√√√(uiD − cDx
f Dx

)2

+

(
viD − cDy
f Dy

)2

+ 1 (7)

ziCI =
Di√( uiD−cDnewx

f Dnewx

)2

+

(
viD−cDnewy

f Dnewy

)2

+ 1

 (8)

α =
1√( uiD−cDnewx

f Dnewx

)2

+

(
viD−cDnewy

f Dnewy

)2

+ 1

 (9)

where, ziCI is the corrected depth values in depth image, uiD
and viD are corresponding depth image coordination of ith

point which is aligned with the RGB image. f Dnewx , f Dnewy ,
cDnewx and cDnewy are the new intrinsic parameters for the depth
sensor. α is a depth correction factor for each point on the
object or the corresponding pixel. This means that a Depth
Correction Matrix (DCM) can be defined for a M × N 2D
image, as

DCM =

 α(1,1) · · · α(M ,1)
...

. . .
...

α(1,N ) · · · α(M ,N )

 (10)

D. AZURE KINECT CAMERA CALIBRATION
The Levenberg Marquardt (LM) algorithm is conventionally
used as a deterministic approach for calibration. Although it
is reliable and fast, it is highly sensitive to initialisation condi-
tions., To address this issue, Simulated Annealing (SA) which
is a metaheuristic optimization algorithm for approximating
global optimum in a large search space [33] has been pro-
posed for RGB-D calibration. In the formulation used in this
work, 19 parameter estimates must be optimized: 4 param-
eters for RGB intrinsic parameters, 4 parameters for depth
intrinsic parameters, 5 parameters are for RGB distortion,
and 6 parameters for rotation and translation. Equation (11)
shows the Reprojection Error (RE) which is defined as a cost
function of SA optimization,

RE = min

 1
N

N∑
j=1

√(
ujRI − ujPI

)2
+

(
vjRI − vjPI

)2 ,

(N = 20 × 4) (11)

where,
(
ujRI , vjRI

)
and

(
ujPI , vjPI

)
represent the real position of

corners of the ith ArUco markers, and reprojected position of
corresponded point from world coordinate to image plane.

To start optimization, factory parameters were set to for ini-
tializing RGB intrinsic, depth intrinsic, distortion parameters,
and transformation matrix (includes rotation and translation
with 6 degree of freedom) calculated by ICP method [33].
In each iteration, virtual points of the four corners of each
ArUco markers on the calibration object (4 × 20 = 80) were
transferred from the real-world coordinates camera coordi-
nates by using updated rotation and translation parameters,
then by implementing (1) to (3) with updated distortion,
RGB intrinsic parameters, and depth values, new correspond-
ing projected points

(
ujPI , vjPI

)
on image plane could be

calculated.

E. PROPOSED 3D RECONSTRUCTION
The main challenge for working with animals is that the
subject is unlikely to remain stationary for more than a few
seconds. Therefore, it is necessary to propose a setup that can
capture synchronized RGB-D images from multiple view-
points, which can then be used to generate the corresponding
3D model.

The main idea of 3D reconstruction is to use the proposed
3D calibration object as a 3D registration object. As shown
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FIGURE 4. Finding common boundaries for pair-registration and final 3D
reconstruction. The red circle which shows the origin of the virtual points
is the same position as it can be found in Fig.2 a.

in Fig. 5, the proposed structure for 3D scanning includes
five Azure Kinect cameras: four cameras positioned at a
90-degree angle relative to each other, with a fifth camera
placed beneath the front camera to capture the lower jaw
and neck that would otherwise be partially occluded. One
camera (facing the subject) is considered as a reference device
that leads to a daisy-chain configuration for the remaining
four. Moreover, to prevent IR depth illumination interference
between cameras, a 160 µs temporal acquisition offset is
used for each subordinate camera. All point clouds (PCD)
generated from different views are transferred into real world
coordinates. The final reconstruction utilizes a sequentially
additive approach using four pair-wise registrations, where
the first pair-wise registration between PCDs from the top
front view and bottom front view are combined to produce
an initial partial surface reconstruction. We then add in each
PCD from each camera view to extend the partial surface
reconstruction until all PCDs from all camera views have
been incorporated into a complete surface reconstruction.
As shown in Fig. 6, for each pair-registration common bound-
ary between two PCDs are determined, and then outliers are
removed to generate reconstructed model.

III. IMPLEMENTATION AND EXPERIMENT
A. OPTIMIZATION ALGORITHMS
To evaluate the performance of all cameras in a variety of
different locations in the FoV shown in Fig. 5 (c), 14 samples
positions are captured for each view: 10 samples for iterative
calibration, and 4 used as test cases.

As previously discussed, experimental results indicate that
LM is unsuitable for our strategy due to its susceptibility to
becoming trapped in local minima and its failure to achieve
acceptable error levels. Consequently, we advocate for the
utilization of Meta-heuristic optimization algorithms such as
Genetic Algorithm (GA) or SimulatedAnnealing (SA). Given
that the optimization algorithm plays a pivotal role in our
proposed method, it is imperative to optimize the control-
ling parameters effectively. Thus, in this section, we conduct

FIGURE 5. A sample point in the camera coordination system Position of
the cameras. (a) and (b) are top and right views of the position of the
cameras. (c) The position of the cameras in experimental 3D scan setup.

FIGURE 6. Finding common boundaries for pair-registration and final 3D
reconstruction. (a) point cloud (PCD) file for front top camera, (b) PCD file
for left side view camera, (c) finding overlap area for 4th strut,
(d) common boundary on 4th strut on the front.

sensitivity analysis to identify the most suitable parameters
for the optimization algorithms.

1) SENSITIVITY ANALYSIS FOR SA
SA has two important controlling parameters: Initial Tem-
perature (T0) and Cooling Schedule (α). TO determines
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FIGURE 7. Variation of Average of Reprojection error for all 5 cameras by
changing TO value and considering fixed value for cooling schedule.

FIGURE 8. Variation of Average of Reprojection error for all 5 cameras by
changing the cooling schedule value and considering fixed value for TO.

the initial ‘‘temperature’’ of the system which is normally
between 0.1 to 10. A higher initial temperature allows the
algorithm to explore a wider range of solutions initially but
may result in a longer time to convergence. Conversely,
a lower initial temperature may lead to faster convergence
but could risk getting stuck in local optima. The cooling
schedule which is in the range of 0.85 to 0.99 defines how
the temperature decreases over time. The most common
cooling schedules include exponential, linear, and logarith-
mic. The choice of cooling schedule affects the rate at
which the algorithm explores the solution space and balances
exploration (at higher temperatures) with exploitation (at
lower temperatures). As evident from Fig. 7, the error shows
minimal change beyond TO =1. Conversely, higher TO val-
ues may escalate completion costs and hinder convergence.
Therefore, an optimal TO value appears to be one. By setting
TO =1, we can adjust the cooling schedule to identify the

FIGURE 9. Reprojection error of all pixels in all captured images. (a) The
distribution of reprojection errors for Factory parameters, SA, GA, and LM
based parameters. (b) box-chart of optimization algorithms based on
different cameras and 5 separated runs.

most suitable value. Fig. 8 illustrates a descending trend in the
average reprojection error until 0.99, beyond which it begins
to rise. Hence, 0.99 could be chosen as an optimal choice for
alpha.

We applied the same approach to the GA, determining the
best parameters as follows: population size = 50, mutation
rate = 0.05, crossover rate = 0.75, and selection method =

roulette wheel selection. Fig.9 shows reprojection errors of
4 corners of each ArUco marker on the 3D calibration object,
with a box and whisker plot for each camera illustrating the
reprojection errors. As shown in Fig. 9, SA presents better
performance in comparison with the GA and LM methods.
For example, more than 52% of reprojection errors are less
than 3 pixels, while this value for GA, and LM are 43%
and 26%. In addition, the box chart shows that although
LM has a very low standard deviation, it has a much lower
accuracy, while SA with even lower standard deviation and
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FIGURE 10. Reprojection error of all pixels in all captured images.
Evaluating the effect of the proposed depth correction method.

better (lower) mean error in comparison with GA, is more
reliable than GA, and LM.

B. DEPTH CORRECTION EVALUATION
Methods reported in [15] and [16], have been used as a depth
correction method in our RGB-D calibration approach for
comparative purposes. As shown in Fig. 10, our proposed
method significantly improves the accuracy in comparison
with the factory parameters. Moreover, the average errors
with and without depth correction are 2.89 and 3.12 pixels,
respectively, which demonstrates that the accuracy improves
as a direct result of using the proposed calibration pro-
cedure. Furthermore, we conducted comparisons with two
well-known 3D calibration objects: with a cubic [15] and
a spherical [16] structures, along with their respective cal-
ibration strategies, to assess the efficacy of our proposed
method. Like Fig. 3, our evaluation encompassed six distinct
test scenarios representing horizontal, vertical, diagonal, and
depth lines in real-world settings.

As illustrated in Table 1, employing our proposed 3D
calibration object results in reduced prediction errors when
measuring distances between two points in real-world sce-
narios. For instance, when measuring central-diagonal lines,
the average errors are 2.09 mm, 3.309 mm, and 5.06 mm
using the proposed method, the spherical object, and the
cubic object, respectively. Notably, across all scenarios, our
proposed method consistently outperforms both the spherical
and cubic-based approaches, except in cases involving hori-
zontal lines where the cubic-based method exhibits superior
performance over the spherical object.

In addition, the comparison reported in Table 1 shows
that the proposed method is more accurate than other
approaches [15], [16] based on the test samples.

C. 3D RECONSTRUCTION
Fig. 11 shows a 3D scanning setup for the monster and one
of real dogs. Moreover, Fig. 9 (c) to (h) present headspace

FIGURE 11. Experimental arrangement: (a) Monster head ground truth,
(b) live dog during 3D head surface capture, RGB input images used for
reconstruction (c) Bottom-front view, (d) Top-front view, (e) Back view,
(g) Left view, and (h) Right view.

area of RGB images that captured by the proposed setup in
different direction.
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FIGURE 12. Examples of 3D reconstructed models. (a) Monster test object used for quantitative evaluation, (b) 3D reconstructed using proposed method,
(c) and (d) Error heatmaps of alignment result from reconstructed model and ground truth using the proposed method and de default calibration
parameters (factory parameters), respectively. (e) to (g) PCD of the 3D reconstructed models of three CKCSs. This demonstrates the benefit of the
proposed approach compared to using factory settings.

TABLE 1. Comparison between proposed method and exemplar prior
work based on the average errors for different virtual lines in calibration
object of all cameras for test samples.

The main goal of the project is to produce 3D surface
models of live dog heads (without sedation or another immo-
bilization). Therefore, a known test object published in [34]
has been used as ground truth for evaluating the proposed

system. Hausdorff distance was used for measuring the
accuracy of the reconstructed model that obtained results
are minimum = 0.02 mm, maximum = 9.737849mm, and
mean = 1.900918mm with rms = 2.433871. As shown in
Fig. 12 (c) most of the difference between the reconstructed
model and the ground truth are in prominent part of the
Monster face such as eyebrows, Lips, and ears. These are of
lesser importance compared to measuring the notch, top of
head and neck areas in this application.

Moreover, as shown in Fig. 12 (d) error values for
reconstructing by using default calibration parameters (fac-
tory parameters) are minimum = 0.1mm, maximum =

20.433292mm, and mean = 2.439069mm with rms =

3.214377. However, as can be seen in Fig. 12 (d) to (f) 3D
models of 3D scanned dogs with the proposed system appear
qualitatively to be of a high standard, which is attributed to the
largely smooth curved surfaces that we wish to reconstruct.

IV. CONCLUSION AND FUTURE WORK
In this paper, we present a 3D scanning setup tailored
for animal healthcare monitoring, with potential applica-
tions extending to toddler care. Essential criteria for such
a system include rapid scanning, high accuracy for medical
use, and portability for versatile deployment. Conventional
RGB-D scanning systems often fall short on these fronts,
with limitations in mobility, depth accuracy, and calibration
requirements. Our proposed method aims to address these
challenges. Through extensive experiments, we identified the
critical role of RGB-D image synchronization in achieving

VOLUME 12, 2024 98731



M. Taghipour-Gorjikolaie et al.: Novel Multiple Camera RGB-D Calibration Approach

accurate 3D reconstructions. We observed that oversizing the
depth image to match the RGB image reduces its resolution,
leading to increased depth prediction errors, particularly at
the edges.

To mitigate this issue, we introduce a novel 3D calibration
object and propose a depth correction matrix, departing from
conventional single or multi-value methods. Furthermore,
we employ simulated annealing to minimize the reprojection
error during RGB-D calibration, optimizing intrinsic and
extrinsic parameters of Azure Kinect cameras dynamically
based on their surroundings. The simplicity of our setup
facilitates easy installation and usage in diverse uncontrolled
environments, requires only a swift (∼10 mins?) calibration
of all cameras before scanning begins. This user-friendly
approach enhances the applicability of our system to both
veterinary and human healthcare scenarios where both CM
and SM may be present.

According to the obtained results our method represents
a significant advancement in 3D scanning technology, offer-
ing enhanced accuracy, speed, and convenience for medical
monitoring applications. With its potential to revolutionize
healthcare monitoring for animals and toddlers alike, our
system holds promise for widespread adoption in clinical
and research settings. And finally obtained results show that
our bespoke depth correction method can increase the accu-
racy of the calibration especially in comparison with factory
parameters, and finally the proposed 3D calibration object
is best choice for calibrating Azure Kinect cameras using
for 3D scanning setup. Using a simple, low-cost, 3D-surface
scanning and reconstruction system based on five RGB-D
sensors combined with a dedicated calibration scheme can
provide useful surface capture for dogs at risk of breeding
disorders manifest in their physical head presentation. Such
an approach may be a useful adjunct or triage approach prior
to MRI and CT based investigation. We were successful in
obtaining data for our study on CKCS head morphology
supporting our claim. Moreover, our future work is to make
the 3D reconstruction step currently relies on manual inter-
vention, which we aim to automate. This can be achieved
by employing surface-based features to identify common
boundaries, thereby removing outliers and refining the final
3D image automatically.
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