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ABSTRACT Anomaly detection is a topic of interest in several areas, ranging from Industry 4.0 to
Energy Management, Smart Agriculture, Cybersecurity, and Bioinformatics. In a wide sense, detecting
anomalies implies finding samples generated within a process that differs from its standard data generation
mechanisms. Identifying these samples is extremely important for a variety of reasons, depending on the
specific application and scenario, ranging from the minimization of production costs to maintaining the
required safety standards. As such, the increasing availability of wide networks of sensors that yield large
amounts of data characterizing the processes under observation allowed the large adoption of deep learning
techniques, which proved worthy of attention due to their capability of identifying anomalies with large
precision, accuracy and reproducibility. Consequently, there is an extensive need to consolidate research
results to provide a common framework to understand the topic and ensure a common foundation to establish
future research trends. To respond to this need, this work systematically reviews the state of the art of
anomaly detection in Industry 4.0, evaluating gaps in the current knowledge and proposing future directions
of interest. To pursue this objective, three main dimensions have been considered: the scenario where the
anomaly detection methodologies were applied, the sensing equipment used to gather data characterizing
the underlying process, and the algorithm employed to properly interpret the phenomena. The study was
conducted following the PRISMA protocol, which allowed the identification of a relevant selection of
papers by extracting a meaningful dataset of 78 papers of interest. The analysis highlighted the diffusion
of autoencoders in several configurations and application scenarios, highlighting their effectiveness and
flexibility for anomaly detection.

INDEX TERMS Anomaly detection, autoencoders, Industry 4.0.

I. INTRODUCTION
Anomaly detection refers to the problem of finding samples
that differ from the normal distribution of data instances.
Several factors, including system failures, human errors,
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malicious operations, or natural environmental changes, can
cause anomalies. Thus, anomaly detection is essential in
decision systems, as it reduces risks and costs associated with
these unexpected events and, in some instances, can even
prevent the failure of the critical parts of a system. In recent
years, various fields and applications have widely used
anomaly detection techniques. Examples include detection
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systems for precision agriculture and life monitoring of
plants [1], [2], [3], fault detection in energy forecasting [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], real time fault detection in
smart manufacturing [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34], [35], [36], [37],
[38], [39], [40], [41], [42], [43], [44], [45], [46], [47],
[48], [49], [50], [51], [52], crack detection and structural
monitoring [53], [54], [55], [56], [57], [58], [59], [60],
environmental monitoring [61], [62], [63], [64], [65], [66],
[67], [68], anomaly detection for vehicles and intelligent
transportation systems [69], [70], [71], [72], fault detectors
for radar and hyperspectral data [73], [74], [75], [76], and
bioinformatics [77], [78], [79].

Most legacy fault detectors or monitoring systems were
based on traditional signal processing and analysis, with
sensors that raise the alarmwhen readings exceed a threshold,
usually manually set by domain experts. However, as the
processes involved in these use cases become larger and more
complex, traditional, handcrafted methods proved inadequate
for proper modelling of the behaviour of the system.

Meanwhile, several concurring factors were introduced
with the advent ofIndustry 4.0. First, wide networks of
cheaper and more efficient sensors were deployed in real-
world scenarios, thus providing larger quantities of data to
characterize the processes under investigation. Finally, the
improvements in the computational power in centralized
servers and edge devices allowed the development, training,
validation, and deployment of models with high represen-
tational capabilities. Consequently, the research community
shifted its focus from traditional methods towards automatic
learning techniques, exploiting the improved representational
capability provided by machine learning (ML) and, more
recently, deep learning (DL) models to deal with processes
characterized by large amounts of complex data. As such,
there is a need to consolidate the vast amount of methods,
approaches, and results achieved by the research community,
providing practitioners with a common ground upon which
novel ideas, models and techniques can be developed.

To fill this gap, this work aims to review anomaly
detection techniques applied to industrial scenarios. Research
articles were read thoughtfully and selected following the
PRISMA [80] protocol. Specifically, three main factors were
first identified as the driving aspects leading innovations in
the anomaly detection field. Then, three research questions
were crafted, each dealing with one of the identified factors.
From this background, a set of 78 papers was carefully
selected and analyzed.

The remainder of this work is structured as follows.
In Section II, the three main factors leading the review work,
namely application areas, data sources, and algorithms, are
analyzed. Section III describes the methodology used to per-
form literature research for this review according to PRISMA
principles. Then, Section IV recaps the results of this review
research, giving a deeper and more technical discussion of
the most relevant algorithms and techniques used in most of

the selected research papers. Finally, Section V concludes the
paper, giving future works perspectives.

II. BACKGROUND
Anomaly detection is paramount in several active research
areas, such as Industry 4.0, energy management, cyberse-
curity, and healthcare. Given the strategic value of these
applications, the scientific community has provided several
advancements over the last few years, particularly by
exploiting the power of deep learning methodologies. The
selected contributions can be characterized and compared by
three different factors on the base.

A. FIRST FACTOR: APPLICATION AREA
The first factor on which the research in the anomaly
detection area focused was the application area of the
proposed detection method. Interestingly, most of the works
are focused on three main areas of interest, that is, smart
manufacturing, energy management, and structural and
environmental monitoring. This is strictly related to the
strategic relevance of these applications:

• Smart manufacturing: Real-time detection of anomalies
in smart manufacturing, either on the production line or
on the outcome, can help in cost reduction and waste
mitigation from production lines, therefore improving
the environmental impact and the sustainability of the
manufacturing process.

• Energy management: Forecasting energy production
and assessing anomalous consumption peaks can help
identify losses in smart grids or possible misuse from
malevolent users.

• Structural and environmental monitoring: Interpreting
anomalous trends and spikes allows maintainers and
decision-makers to quickly adapt to changes and critical
situations. For example, maintainers can use anomaly
detection systems to identify ongoing degradation in
reinforced concrete infrastructures like bridges. Another
example is when an anomalous trend is shown for spe-
cific environmental variables, which decision-makers
can use to define policies to mitigate risks.

Let us mention that several works are also related
to cybersecurity, medical applications, intelligent transport
systems, and agriculture. However, this review did not
consider these specific fields, as the discussion will focus on
Industry 4.0-related challenges.

B. SECOND FACTOR: SENSING EQUIPMENT
The second factor worth highlighting in this review is the
sensing equipment selected for data acquisition, mainly
because it lets us discuss what hardware and enabling
technologies researchers focused on over the last few years.
There is a strict connection between the hardware choice
and the application area, so this factor mainly depended on
the specific operating context: for example, data acquired
in the context of energy management systems were usually
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gathered directly from the SCADAs or PLCs connected to the
generator (e.g., a wind turbine). In other instances, data were
gathered using cameras operating in different domains, such
as visible or hyperspectral cameras. It is also worth noting
that if the work mainly focused on developing algorithms
concerning a specific application domain, researchers used
data synthesized via generative methods or acquired from
publicly available datasets.

C. THIRD FACTOR: ALGORITHMS
The third and last factor on which research focused was
the algorithms used for anomaly detection purposes. Most
selected works used machine learning (ML) or deep learning
(DL) approaches to implement the task. In that sense, the
application and the data source led to selecting the specific
algorithm. For example, in energy management, forecasting
energy production over different periods can be the basis
for evaluating an anomaly behavior of a certain generator
(e.g., a slow decay in energy production by a wind turbine).
Hence, most researchers focused on tools specific to time
series prediction, such as linear predictors (e.g., ARIMA
models and their variants) or predictors based on deep
neural networks, such as Recurrent Neural Networks (RNNs).
Another example was the visual inspection of manufactured
samples, looking for defects and anomalies. In this case,
researchers relied on traditional image processing techniques
and DL tools, such as Convolutional Neural Networks
(CNNs), to better exploit visual cues embedded in the
acquired data.

III. METHODOLOGY
Given the three factors reported in the previous section,
that refer to specific research dimensions, the methodology
described hereafter was followed to systematically identify
the most relevant works that refer to anomaly detection.
This section describes the steps of the research method used
in this systematic review, according to the PRISMA [80]
protocol.

A. RESEARCH QUESTIONS
First of all, the study focused on investigating the three
relevant factors chosen and described in the previous section,
aiming to understand better their influence on the research
works of the last years. In particular, the following three
specific research questions were formulated in a 1 : 1
relationship with the relevant factors and then used as the
basis of this systematic review:

• About application fields - RQ1: Which application fields
mainly involved anomaly detection approaches under
the general framework of Industry 4.0?

• About sensing equipment - RQ2: What sensing equip-
ment is generally used to capture relevant data for
anomaly detection purposes?

• About algorithms - RQ3: Which are the most relevant
algorithms and techniques used to extract and predict the

meaningful features for anomaly detection in different
application fields?

As the literature analysis was designed over the PRISMA
protocol [80], there was the need to define a literature search
strategy, starting from a series of inclusion and exclusion
criteria, followed by a quality assessment, which finally led
to data extraction. All these steps will be described in the next
paragraphs.

B. LITERATURE SEARCH STRATEGY
The first step for defining the literature search strategy was
to gather studies on anomaly detection by performing an
extensive literature search on the Scopus database for the
following reasons:

1) First, using more than one database for a literature
search does not necessarily guarantee a positive impact
on the research outcome. Using several databases may
lead to duplicate papers and low-quality or non-relevant
ones.

2) Second, Scopus is recognized as a high-reliability
database for scientific literature. Hence, high-quality
papers can be effectively found.

C. INCLUSION AND EXCLUSION CRITERIA
The papers have been selected by a combined inclu-
sion/exclusion test starting from a first query that joined the
keywords anomaly, detection, deep, learning using the AND
logic operator. The research dates back to 2023 and produced
a total of 5398 results. Then, after selecting only papers
published after 2017 in international journals and written
in English, 59% papers were filtered (2209/5398 papers
remained). Since the goal of this review is to summarize
those proposed approaches that have had a relevant impact on
the scientific community, in accordance with the mentioned
research questions, only papers from journals classified as Q1
at least once in the last years have been kept in the dataset.
To this end, the ‘‘Scimago Journal & Country Rank’’ has
been used to identify the information about the journals’
best quartile, namely ‘‘SJR Best Quartile’’. Hence, Q2, Q3,
and Q4 papers were discarded, resulting in 514 remaining
papers. Among these, papers with several citations smaller
than the first quartile of the correspondent publication year
were also excluded, resulting in 381 papers. All 381 abstracts
have been read to label each paper with its corresponding
application field. Review papers have been discarded to avoid
redundant reporting of overlapping contributions. About 23%
of these papers relates to cybersecurity: different intrusion
detection systems are proposed for detecting anomalous
behaviors in video surveillance or for self-defending from
threats hiding behind the huge growth of network traffic in
domains such as IoT, 5g networks, smart grids, Industrial
Control Systems. Another 15% of these papers relates to
medical applications such as medical image analysis (with
data from X-ray and magnetic resonance), ECG anomaly
detection, daily human activity recognition, etc. A relevant
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TABLE 1. Exclusion criteria.

TABLE 2. Inclusion criteria.

number of authors try to detect anomalies in data coming
from wearable sensors, fitting in a hybrid domain that is
middle-way between the previous two, that is, the Internet
Of Medical Things. Being interested in real industrial case
studies where data from a huge variety of sensors is needed
for automation, papers that refer to these fields have not
been considered. Rather, the focus was shifted towards
fields such as Smart Manufacturing, Energy Forecasting,
Structural health and environmentalmonitoring, or Intelligent
transportation systems, which all together constitute the 25%
of the 381 papers, namely 95 papers. So, more general
purposes, even if they still refer to anomaly detection, have
not been considered. The exclusion criteria are summarized
in Table 1, while the inclusion ones (dual of the previous ones)
are reported in Table 2.

Finally, table 3 highlights the process used to complete
the data extraction step from the Scopus database. The
process is described in terms of subsequent steps performed
on the selected 95 papers. Hence, the paper analysis has
been extended, going more deeply into detail about the three
research questions and how the authors identified, modelled,
and solved the problem to filter the papers critically. After
further evaluating the relevance of the selected works with
respect to the RQ implemented in the review, a final number
of 77 papers remained.

A visual representation of the protocol followed through-
out this review work is shown in Figure 1, where the main
topic addressed in this paper is represented in blue on
top. From it, column-wise details about the three research
questions and the subtopics analyzed are represented using a
different colour scheme depending on their granularity: green
for the questions and yellow for the subtopics.

TABLE 3. Recap of the subsequent steps performed on the selected
papers.

TABLE 4. Recap of the distribution of the paper based on their
application area.

IV. RESULTS AND DISCUSSION
This section is dedicated to describing the results of the
review of the selected papers, with a subsequent discussion
about the relevant aspects that could be useful to answer the
research questions posed critically. To perform this task, the
section starts with a quantitative description of the selected
works based on different grouping strategies, mainly related
to the application area and algorithms/techniques exploited
by the researchers. It is worth highlighting the following
considerations:

• Table 4 shows the most relevant application areas the
selected works consider. As it can be seen, most of
the works are related to either the Smart manufacturing
or the Energy forecasting application areas. This is
mainly related to the high relevance of these topics in
current society, whosemain focus is improving the smart
manufacturing system’s overall throughput, reducing
costs, and preserving the environment.

• Looking at Table 5, where a recap of the distribution of
the paper based on the type of algorithm used is shown,
more than 50% of the papers considered implement
either an autoencoder or a convolutional neural network,
suggesting that the core of the subsequent description
and discussion will be based on these approaches.
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FIGURE 1. Visual representation of the scheme followed during the review. Starting from the topic of interest (i.e., deep learning anomaly
detection in Industry 4.0), three research questions concerning application fields, sensing equipment, and algorithms led to identifying
relevant works selected following the PRISMA protocol.

TABLE 5. Recap of the distribution of the paper based on the type of
algorithm used.

• In almost all selected papers, the datasets consist of time
series (usually acquired by SCADA systems) or images,
with only a few of them using higher dimensional data.

For this reason, in the next paragraphs, a brief description of
an autoencoder will be first given, followed by its declination
on time series data and images, and finally, highlighting the
combined approach of autoencoders coupled with other kinds
of networks.

A. BRIEF RECAP OF AUTOENCODERS
An autoencoder is an artificial neural network consisting
of two parts: an encoder, which maps input data to a

lower-dimensional representation called latent space, and a
decoder, which restores encoded data to its original size.
During the training phase, the autoencoder learns to encode
an input sample and decode it, minimizing reconstruction
errors. The encoder and the decoder show a symmetric
structure with multiple layers that reduce and enlarge the
input. Each layer is followed by an activation function that
introduces the non-linearity in the model. The bottleneck
structure of an autoencoder makes it particularly useful
for dimensionality reduction and nonlinear feature learning
with an unsupervised approach. In the anomaly detection
context, where the number of anomalous samples is usually
much smaller than normal ones, such a neural network
is used to identify the salient features that allow the
decoder to reconstruct normal encoded samples with small
reconstruction errors while failing to reconstruct abnormal
inputs. The general scheme of an autoencoder is shown
in Figure 2.

A commonly used variant of the standard, undercomplete
autoencoder is the variational autoencoder, which attempts
to map the provided input onto a distribution in the latent
space instead of a single point. The working scheme of the
variational autoencoder is reported in Figure 3.

B. AUTOENCODERS FOR TIME SERIES
Time series data comprises sequential observations collected
at regular intervals. Different authors use time series data
coming from SCADA systems, which stand for ‘‘Supervisory
Control and Data Acquisition’’, even if, in some cases,
scientists and engineers do not rely on such systems but prefer
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FIGURE 2. Working scheme of an autoencoder. The network is composed of an encoding part, which actively compresses the input X,
a latent space Z, and a decoder, which attempts to reconstruct the input X.

FIGURE 3. Working scheme of a variational autoencoder. A variational autoencoder differs from a standard autoencoder in the sense it
projects X onto a distribution in the latent space Z.

to directly sample data from the industrial plant or, more
generally, from the field.

However, a SCADA system is generally used in industrial
control systems (ICS) to monitor and control processes,
machinery, and infrastructure in various fields such as
manufacturing, energy, and transportation. For this review,
the works involving SCADA systems are interestingly related
to the fault detection of wind turbines and are included in
the ‘‘energy forecasting’’ domain. This monitoring system is
installed by default on modern wind turbines and ensures a
cost-effective solution for operators without additional mea-
surement devices. Some key parameters typically monitored
by SCADA include wind speed and direction, power output,
rotor speed, and temperatures across different parts (gearbox,
generator, and bearings) of the turbine. These data can be used
to assess fault events, the health state of components, and
for wind prediction, following a data-driven approach that
exploits machine learning techniques and neural networks.
This approach is more suitable and efficient than model-
based methods, which use explicit system dynamic models
and control theories to generate predictions and residuals
for fault detection and isolation. In this context, the first
comparison between different works concerns processing
raw data from SCADA. In [7], for example, authors first
normalize signals such that they have vanishing mean and

unitary variance, then apply zero-phase component analysis
(ZCA) to decouple them from each other and obtain zero
covariance. The ZCA is an algorithm closely related to PCA
which transforms the vector xt , whose components are the
values of the signals selected from SCADA at time t , into
xZCAt ≡ 6−1/2xt , where 6 is the estimated covariance
matrix. Then, an autoencoder, consisting of fully connected
layers, is fed with whitened vectors of signals from the
normal operational conditions at different timestamps and
reconstructs the input. Since the bottleneck structure of
the autoencoder forces it to learn only the most important
features of the training data, anomalous test signals deviating
from normal ones show large reconstruction errors and
can be classified as faults. In this case, the reconstruction
error, which is evaluated as mean-squared distance between
input signal xZCAt and reconstructed output x̂ZCAt , is the
Mahalanobis distance MD(xt , x̂t ) between original sample xt
and x̂t ≡ 61/2x̂ZCAt :

(xZCAt − x̂ZCAt )2 = (xt − x̂t )T6−1(xt − x̂t ) = MD(xt , x̂t ).
(1)

The threshold on the reconstruction error, which distinguishes
between normal and abnormal behaviour, is calculated
by averaging across signals. The authors also propose a
post-processing step on output signals in the time domain
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consisting of a smoothing technique called exponentially
weighted moving average (EWMA). This additional step
enables the procedure to capture even small shifts in the
average signal without triggering alarms for big but rarely
occurring spikes overwhelming the threshold.

An autoencoder-based approach is also followed in [4].
Still, in this case, the autoencoder is composed of multiple
Restricted Boltzmann Machines (RBMs), and the signals do
not undergo a complex pre-processing step, only normalized
in the [0, 1] interval. The reconstruction error of each sample
is still estimated as the mean squared distance between the
input vector of selected features and its reconstructed output.
Unlike the previously described work, a non-stationary
adaptive threshold is set based on extreme value theory. In the
other two selected works, [5] and [10], the anomaly detection
task is confined to the pre-processing step. At the same time,
the final goal is essentially the prediction of the signals of
interest. The pre-processing consists of smoothing data by
resampling over an appropriate period and removing outliers,
exploiting a manual approach and the Isolation Forest (IF)
algorithm. Feature engineering is performed to select relevant
features from SCADA parameters, and a time series of
correspondent signals is used to train a model for forecasting
purposes. In both works, authors compare two models for
the prediction task: in the first, XGBoost and LSTM are
used, and in the second, GRU and LSTM. XGBoost and
GRU outperform the LSTM regarding computational cost
and forecasting accuracy

C. AUTOENCODERS FOR IMAGES
Among papers whose datasets consist of images, the most
used technique is generally based on exploiting CNNs.
On the other hand, different works also introduce an
encoder-decoder structure to identify anomalies in an end-
to-end fashion or as a part of a bigger detection system.
In most cases, the model is trained with normal samples, and
pixel-wise anomaly maps are generated: each pixel presents
an anomaly score responsible for the binary classification
(normal or anomalous) of the pixel once an appropriate
threshold is fixed. Different strategies are finally applied to
find an overall anomaly score and a second threshold to
classify the image, or a patch of the image, as normal or not.

In [53], the authors follow this approach to detect defects in
concrete structures. The dataset consists of images of cracks
acquired with an RGB camera. Then, multi-scale patches are
extracted and fed to an autoencoder composed of several
convolutional layers. The input samples are augmented
via different types of geometric transformations (flipping
and rotations) to enhance the learning process of invariant
features. The number of channels of each layer is doubled
during the encoding phase to augment the representation of
the encoded features. Before transforming and storing feature
representations in the code, the feature maps are flattened
and down-sampled by a fully connected layer to render good
coherences between features. During the decoding phase,
the reverse mapping is obtained by concatenating transposed

convolutional layers with several channels, each halved at
every step. The mean-squared error (MSE) is used as the
loss function, and the anomaly maps are constructed by
computing the pixel-wise squared difference between the
inputs and outputs. The maximum anomaly score between
pixels is extracted for each patch, and a threshold is set as
the average of the maxima between all patches. A patch
containing a pixel with an anomaly score above the threshold
is classified as anomalous.

A similar strategy is pursued in [52]. In this case, the
dataset consists of photos of printed circuit boards (PCBs)
acquired by an RGB camera. The approach assumes that
PCB is shown from an overhead view. Then, the images
undergo a registration step based on SIFT features and the
RANSAC algorithm to correct planar distortions (the 3D
appearance of the components is not considered). As before,
an autoencoder presenting an architecture similar to the
one previously described is fed using only anomaly-free
patches extracted from the images. To improve network
generalization, each input image is corrupted by randomly
masking out rectangular regions, forcing the model to
consider more of the image context when extracting features.
The proposed loss function combines the pixel-wise MSE
between the ground truth of the input of the autoencoder
and its reconstructed output and the content loss, defined
as the squared and normalized distance of the feature
representations (extracted by a second network, VGG19,
pre-trained on the ImageNet dataset) between the reference
image (ground truth) and the reconstruction. The content
loss function considers structures formed by the relations
between pixel neighbourhoods, while the MSE one assumes
that pixels are not correlated. Finally, each pixel is classified
as normal or anomalous based on its anomaly score and a
threshold that maximizes the geometric mean, a combination
of the true positive rate and false positive rate. In the specific
work, an image with more than 10 anomalous pixels is then
classified as anomalous.

Authors of [2] exploit a similar loss content function,
also using a VGG19 network as a starting point, calling it
perceptual loss, not during the training phase but to generate
anomaly maps and detect unknown objects in pictures
acquired by cameras on board of autonomous agricultural
vehicles. Performances of a vanilla autoencoder, a vector
quantized variational autoencoder (VQ-VAE), a denoising
autoencoder (VAE), and a semisupervised autoencoder
(SSAE) are compared. VQ-VAE combines VAEs with vector
quantization to obtain a discrete latent representation. The
encoder output is mapped to the nearest embedding vector
from the shared discrete embedding space. The decoder uses
the corresponding embedding vector as input. VAE tries to
reconstruct an input corrupted with noise by minimizing the
MSE between the reconstructed output and the non-corrupted
input. A synthetic dataset is used to train the model and
make it able to remove anomalies. A dataset containing
abundant normal images and a relatively small percentage of
anomalous samples is used for the SSAE. In this last case, the
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MSE loss function is modified with the so-called max-margin
term, which keeps the reconstruction error of abnormal pixels
above an experimentally fixed threshold, assuming that the
ground truth mask is available. For each model, the anomaly
map is generated as a relative perceptual L1 loss between the
input image of the autoencoder and the reconstructed image.
The threshold on the anomaly score of each pixel is fixed
by maximizing the intersection over union (IoU) with the
ground truth. The threshold on the total anomaly score of
an image, calculated as the percentage of pixels above the
previous threshold value, maximizes the F1 score on the test
set.

A modification of a VAE is introduced in [81] to detect
underwater unknowns with dynamic undersea backgrounds.
In a VAE the encoder maps a point x̄ in the original space to
the conditional probability pe(z|x̄), describing the distribution
of encoded variable z in the latent space when the point
x̄ is picked up in the original space, while the decoder
maps a point z̄ sampled from pe(z|x̄) to the conditional
probability pd (x|z̄), describing the distribution of decoded
variable x conditioned by z̄. During the training phase, a VAE
models the encoding and decoding conditional distributions
bymaximizing the probability that the reconstructed output x̂,
sampled from pd (x|z̄), is equal to x̄. In a vanilla autoencoder,
p(z) is supposed to be apriori known (generally, it is
represented by the standard multivariate normal distribu-
tion). Since it is related to the conditional distributions
through Bayes’ theorem, it serves as a regularization term,
encouraging the VAE to learn a structured and well-behaved
latent space. The mentioned modification regards the latent
distribution, which is not supposed to be known, but it is
estimated by an autoregressive network. The latent vectors
reformed by this network, composed of fully connected and
masked fully connected layers, consider context information
under dynamic sea background by considering the sequence
dependencies in encoded space. The anomalymap, calculated
at the patch level, contains two contributions: one from the
patch reconstruction between the input and decode image and
one from the similarity between an encoded vector and its
reformed counterpart. Since the model is trained on normal
samples, anomaly images containing unknown objects show
a higher total anomaly score.

So far, approaches based on the definition of anomaly
scores, with a threshold separating normal and anomalous
samples, have been discussed. Nevertheless, clustering algo-
rithms can also be implemented to detect anomalies directly
in the latent space without considering the reconstruction
error. An example of this approach is given by [69], where
the goal is to detect anomalies in urban environments (like
pedestrians on the road) based on stereovision acquisitions.
A deep autoencoder is trained on V-disparity maps of mostly
free scenes (using the cross-entropy as loss function), and
flattened encoded training samples are classified in the latent
space via the KNN algorithm, which is commonly used when
the collected data are non-Gaussian distributed or cannot
be linearly separable. Unlike clustering algorithms such as

K-means, training a KNN algorithm does not require any
prior assumption on the underlying data structure. During the
test phase, the KNN scheme separates inliers from outliers
by computing the distance of each encoded test sample
from its k-nearest encoded training samples. The structure
of the autoencoder makes sure that the distance between
an abnormal sample (i.e., a scene with an obstacle) and its
k-nearest neighbour normal training samples is larger than the
distance between a normal sample (i.e., obstacle-free scene)
and its k-nearest neighbour normal training samples. The
threshold T on the distance is set according to the 3-sigma
rule, that is:

T = µD + 3σD, (2)

In the previous equation, µD and σD are the mean
and standard deviation of KNN distances under obstacle-
free cases. In this case, anomaly detection is obtained by
clustering the encoded representations of data samples to
separate the set of normal samples, which should fall in a
particular region of the latent space, from the anomalous
ones, which should be characterized by out-of-region feature
vectors.

Another example of the application of a clustering
algorithm in the latent space is given by [29], where the
authors provide a framework to process images of the melt
pool acquired during Laser Powder Bed Fusion, which is an
additive manufacturing process where laser power is applied
to fuse the spread powder and fabricate industrial parts layer
by layer. Here, an autoencoder composed of convolutional
layers produces encoded representations of melt pool images,
flattened and fed to an agglomerative clustering algorithm
to annotate data as normal or anomalous. Then, anomalous
data are discarded, and the autoencoder is retrained using
normal samples only. Hotelling’s and Shewhart’s control
charts are used to monitor the deep flattened representation
vectors and the variance of residuals (the reconstruction error
between flattened decoded and input images), respectively.
The control limits on these two charts are set based on
statistical analysis and used to decide if a real-time process is
out of control (if both statistics fall inside the control limits,
the process is considered in control).

D. AUTOENCODERS COMBINED WITH NEURAL
NETWORKS
Depending on the purposes, some authors combine an
encoder-decoder structure with other neural networks to form
a larger segmentation and anomaly detection framework. This
is, for example, the case of [40], where images from met-
allography are inspected to segment impurities (inclusions
originated from outside the sample like oxide particles added
to the melt before solidification or precipitates formed from
the sample itself) and grains (adjacent domains in the sample
where atoms are arranged in a specific crystallographic
orientation). Impurities, appearing as dots in the image,
are segmented by a U-Net-inspired architecture consisting
of convolutional layers organized in an encoder-decoder
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symmetric structure with skip connections between specular
encoding and decoding layers. Skip connections allow the
model to learn deep semantic information while preserving
high-resolution information that might get lost during
down-sampling and up-sampling. A VGG-16 neural network
(composed of 13 convolutional layers followed by 3 fully
connected layers) pre-trained on the ImageNet dataset is
used as the encoder. Since the model is trained on small
patches, a high-overlap sliding window technique is used
to segment impurities on the whole image while averaging
the overlapping pixels among the segmented windows to
help in noise reduction. Once segmented, impurities are
filled by a generative inpainting network to resemble a full
metallographic scan without such defects. At this point,
another U-Net model provides for the segmentation of
grains. Finally, two kinds of anomaly scores are assigned
to classify segmented impurities as normal or anomalous:
spatial anomaly measure, based on a version of kNN properly
modified to account for how much an object is distant from
its neighbours and how large it is compared to them and
shape anomaly measure, based on autoencoder. In this case,
however, the use of the autoencoder is different: it is trained
in a supervised manner to reconstruct not the input but a
specific target image, which in the case of a normal sample is
the sample itself, while in the case of an abnormal sample
is a blank image. The authors find a larger reconstruction
error, representing the shape anomaly score, than training the
autoencoder in a semisupervised manner with only normal
impurities.

In [15], an autoencoder that fits in a pipeline for detecting
faulty solar panels in photovoltaic (PV) power plants is
presented. The dataset consists of thermal and RGB images
of 6 PV power plants acquired by unmanned aerial vehicles
(UAV) equipped with infrared and RGB cameras under
various flight conditions. As a first step, orthophotos for both
kinds of images are generated and then aligned. Then, solar
panels in the images are segmented by a mask region-based
convolutional neural network (Mask R-CNN) architecture,
and anomalies (mostly hotspots, appearing as high-intensity
blobs in thermal images) are detected by an adapted version
of Faster R-CNN. Thermal images undergo normalization
and are augmented via geometrical and appearance-based
transformation. Once an anomaly is detected, the goal of the
autoencoder, which is trained to replicate the most salient
features of a healthy solar panel from an RGB photo, is to
detect the principal cause of the anomaly by inference on
the correspondent RGB image based on a threshold on the
reconstruction error. If the RGB image does not show any
peculiarity, it may indicate that the cause is a deeper physical
failure. The ground truth bounding box for each anomaly is
manually annotated with the help of simple linear iterative
clustering (SLIC), and a threshold set to 0.5 on the IoU
between the predicted and true bounding box determines if
the prediction is a true or false positive.

Reference [8] resumes, in a sense, the approaches followed
by the last described papers, since it compares mask

R-CNN and UNet neural network (together with LinkNet
and a feature pyramid network (FPN)), still for anomaly
cells detection in PV power plant. In particular, after the
normalization of the dataset, the neural network EfficientNet
is used as the backbone feature extractor, while UNet,
LinkNet, and FPN as segmentation networks, which output
an overall mask containing all the anomalous cells. Although
UNet achieves the best results in terms of IoU, the authors
underline the capability of Mask R-CNN to solve multiple
tasks:

• Generation of a bounding box and its class label for each
detected anomaly;

• Segmentation of the image at the instance level means
that objects among the same class are clustered as
different entities.

To compare the result of Mask R-CNN with other models,
all the anomalous predicted cells are finally merged into
one overall mask. Moreover, the authors also compare the
performance of Mask R-CNN in three different cases:

• training the network from scratch;
• pre-training the network on the Microsoft Common
Objects in the Context dataset (MS-COCO), then
retraining all layers;

• pre-training on the MS-COCO dataset, then retraining
only the layers of the head section (the classifier
section);

showing that the best results are obtained in the third case.

E. DISCUSSION AND CHALLENGES
Finally, it is worth highlighting some of the most relevant
challenges posed by using autoencoders for anomaly detec-
tion in industrial scenarios. Let us note that the scope of some
of these challenges is not limited to this specific topic but can
also be applied to other kinds of deep learning models, even
the new ones.

Let us first focus on generic issues that have to be
addressed by all deep learning models. At first, there is the
problem of dealing with local minima. Specifically, most
deep learning models are trained using parameters learning,
which involves minimizing a loss function by solving an
optimization problem via a gradient descent algorithm.
While effective, these algorithms are inherently affected by
the possibility of falling into a local minima, providing a
solution based on sub-optimal parameters. In other words,
gradient descent algorithms update the network’s current
parameters according to the slope of the current solution
of the loss function; ideally, this could be approached as a
convex problem with a single global minimum, which would
also define the desired set of parameters. However, in real
and more complex cases, the loss function could not be
globally convex and show several local minima, meaning
that when the optimization reaches one of these points,
it will stop upgrading the model’s parameters, undermining
the representational capabilities of the learning algorithm.
To partially cope with this issue, several solutions were
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proposed. First, advanced gradient descent algorithms, such
as SGD [82] or Adam [83], introduce stochasticity, which
helps the optimizer escape from local minima. Furthermore,
falling in a local minimum could also be avoided by
adopting other techniques, such as variable learning rate and
hyperparameter tuning.

Another challenge that must be considered is related to
overfitting and generalization. Specifically, the optimization
procedure described before ‘‘adapts’’ the values assumed
by the model’s parameters during training to minimize the
loss function mainly on training data. Furthermore, it is not
guaranteed that a neural network is capable of generalization,
providing the same degree of accuracy when processing data
it was not trained on. To deal with this issue, domain experts
may use different approaches, but the most common working
pipeline involves the following steps:

• Selecting a proper dataset, that is, a dataset able
to provide as many perspectives as possible on the
phenomena under investigation.

• Splitting the dataset, using a certain percentage (usually
70 − 80%) of the data to train the model while the rest
to validate and test its performance.

In the case of anomaly detection, the main problem to
be solved could be represented as implementing a one-class
model based on the observations of a certain phenomenon
in good operating conditions so that the model itself could
identify anomalous situations, capturing a comprehensive
dataset becomes a crucial step. The second step is dataset
splitting, which involves a randomized selection of the data
samples to provide to the model during training, mainly
to avoid biases related to subsets of data acquired under
common and specific conditions. To further stress this
randomization, k-fold cross-validation is often also used: data
are first split into k folds, on which the model is trained
separately, and, finally, results are merged via a specific
strategy.

As for the issues specific to the application of autoencoders
for anomaly detection, one of the most relevant is the lack
of generalization capability of models trained on specific
aspects of the application scenario. For example, the model
trained in [7] was trained from data provided by a single
turbine in a farm and validated accordingly. As different
turbines may present several differences, for example,
in weight, span, underlying technologies, or even orientation,
the generalization capabilities of the trained model were not
guaranteed. This was also the case for several other proposals,
such as the anomaly detector on PCBs proposed in [52] or the
work in [2].

Another challenge arisen from the review was the need
to establish a baseline for improvements achievable by
process optimization and hyperparameters tuning, such
as [29]. Specifically, by gathering data of proper qual-
ity and using algorithms which take into account opti-
mization procedures that involve the automatic tuning of
parameters (e.g. the number of layers in the autoencoder,

TABLE 6. Results achieved by autoencoders for anomaly detection.

the number of neurons per layer, the size of the latent
space, the optimization function, etc. . . ), the reconstruc-
tion capabilities anomaly detection performance can vastly
improve.

Using autoencoders may also lead to several improvements
over classic ML techniques. This may be quantified in
the first place using common metrics such as accuracy,
precision, and recall: most of the works analyzed in this
review demonstrate higher performance when autoencoders
and DL methods are compared with classic ML approaches.
Moreover, in several cases, the use of DL also allows
for improved processing speed, such as [5] and [10]
demonstrated when GRUs were compared with LSTMs and
classic time series modelling approaches, therefore allowing
for real-time implementation of the anomaly detector. Finally,
the representational capabilities of autoencoders can be
further extended, hinting not only at the rise of an anomaly
but also at the nature behind the fault that likely caused it,
effectively providing a way for domain experts to properly
address potentially critical events, such as theorized by the
authors in [7].

A summary of the results of the work that used autoen-
coders for anomaly detection is provided in Table 6. Due to
the wide variety of results in application areas, evaluation
metrics, considered datasets, and experimental procedures,
it is important to underline that Table 6 only provides a
synthetic summary, highlighting only themost relevantmetric
computed by the authors with regards to the scope of this
survey.
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V. CONCLUSION AND PERSPECTIVES
This paper presented a review of deep learning-based
anomaly detection strategies that are applied to industrial
scenarios. The literature strategy search and the subsequent
paper analysis (designed over the PRISMA protocol) have
been guided by three different factors under analysis: i) the
application area of the papers – i.e., their operating context;
ii) the sensing equipment used – i.e., the datasets and the
strategies used to capture data from the field in real scenarios;
iii) the algorithms used to process the high amounts of data
that today are straightforwardly available at relatively low
costs. In brief, the three factors are related to the applications,
hardware, and software used in real scenarios in the last years,
suggesting the three research questions formulated in this
review paper. From the literature analysis, it is possible to
critically evaluate the research trends about applied anomaly
detection, which result in best practices to be also further
investigated as soon as new technologies and instruments
become available in the near future. Even if all the reviewed
papers based their analysis and consequent results on the
effective use of machine/deep learning techniques, they
are focused on solving a problem usually formulated on
specific data, making a high customization of the proposed
algorithms. Given the fact that more computational resources
will likely be available to the large public in the future, the
capability of exploiting innovative approaches using artificial
intelligence should be encouraged, for example, investigating
the cross-domain application of anomaly detection models,
acting as the commonly used pre-training of large convolu-
tional neural network models in computer vision.
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