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ABSTRACT Network virtualization is a demanding feature in the evolution of future Internet architectures.
It enables on-demand virtualized resource provision for heterogeneous Virtual Network Requests (VNRs)
from diverse end users over the underlying substrate network. However, network virtualization provides
various benefits such as service separation, improved Quality of Service, security, and more prominent
resource usage. It also introduces significant research challenges. One of the major such issues is allocating
substrate network resources to VNR components such as virtual machines and virtual links, also named as
the virtual network embedding, and it is proven to be NP-hard. To address the virtual network embedding
problem, most of the existing works are 1) Single-objective, 2) They failed to address dynamic and
time-varying network states 3) They neglected network-specific features. All these limitations hinder the
performance of existing approaches. This work introduces an embedding framework called IntelligentDeep
Reinforcement Learning (DRL) Strategy for effective virtual network embedding of an online VNRs (InDS).
The proposed InDS uses an actor-critic model based onDRL architecture andGraph Convolutional Networks
(GCNs). The GCN effectively captures dependencies between the VNRs and substrate network environment
nodes by extracting both network and system-specific features. In DRL, the asynchronous advantage actor-
critic agents can learn policies from these features during the training to decide which virtual machines to
embed on which servers over time. The actor-critic helps in efficiently learning optimal policies in complex
environments. The suggested reward function considers multiple objectives and guides the learning process
effectively. Evaluation of simulation results shows the effectiveness of InDS in achieving optimal resource
allocation and addressing diverse objectives, including minimizing congestion, maximizing acceptance, and
revenue-to-cost ratios. The performance of InDS exhibits superiority in achieving 28% of the acceptance
ratio and 45% of the revenue-to-cost ratio by effectively managing the network congestion compared to
other existing baseline works.

INDEX TERMS Network virtualization, deep reinforcement learning, resource utilization, network features,
congestion, acceptance ratio, virtual network embedding.
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I. INTRODUCTION
NNetwork Virtualization (NV) is a pivotal solution
that significantly contributes to effectively managing the
next-generation Internet architecture. It decouples the
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physical network resources, enhancing the future Internet’s
flexibility, isolation, agility, and scalability [1], [2], [3].
Due to these benefits, Service Providers (SPs) try to
separate physical resources logically into various distinct
Virtual Network Requests (VNRs) to cater to heterogeneous
demands. This allocation problem is referred to as Virtual
Network Embedding (VNE), and is known to be NP-
hard [4]. Figure 1 depicts a sample VNR with three Virtual
Machines (VMs) and three Virtual Links (VLs). The numeral
associated with VMs and VLs signifies their computational
and bandwidth resource demands. The VM v1,3 is associated
with a computational resource demand of 8 units and is
pertained as a Computational Resource Block (CRB) of
that VM. A unit of CRB resource infers 1 core CPU and
512 MB RAM. Many researchers adopt such sizing in
works [5], [6]. Similarly, the VL between the VMs v1,2
and v1,3 has a minimum bandwidth requirement of 11 Gbps
for successful communication. In VNE, the acceptance ratio
analyzes the success rate of accepting VNRs, the revenue-
to-cost ratio examines the profitability of virtualized network
services, and the congestion ratio checks network resource
consumption and efficiency. These primary objectives are
critical for optimizing network performance, maximizing
revenue-to-cost ratios, and increasing long-term profitability
for SPs [2], [5], [7], [8].

FIGURE 1. An instance of a VNR containing three VMs and three VLs,
along with their corresponding CRB and bandwidth demands.

In this context, various traditional approaches, such as
heuristic, meta-heuristic, and exact solution techniques,
have been proposed to address the VNE problem. In [9],
authors Zhang et al. introduced a comprehensive ranking
method for effective load distribution and maximizing the
acceptance ratio. In work [2], authors developed a matching
game-based VNE strategy to lower the prevailing cost of the
embedding. However, these works fail to capture accurate
network dependencies due to a lack of topological attributes,
resulting in degraded performance [2], [9]. Further, in [10],
the authors introduced a Google PageRank-based ranking
mechanism with limited network attributes. However, this
approach is limited to smaller scenarios. Further, in [11], the
authors developed a meta-heuristic-based VNE strategy for
maximizing the acceptance ratio. Randomness in the solution
leads to inferior performance. Most of the above approaches
only focus on maximizing the acceptance and revenue-to-
cost ratiosmetrics and neglect network congestion avoidance,
which leads to poor substrate resource utilization and
decreased network performance. To tackle this, a few
researchers in [12] and [13] developed congestion-aware

heuristic strategies. However, these approaches lack dynamic
network adaptability and are less scalable. On the other
hand, few learning-based approaches exhibit a lack of
network performance due to the negligence of the network
features during the training [14], [15]. Moreover, all these
solution approaches exhibit the following impediments. (i.)
Most heuristic strategies fail to guarantee a global optimal
solution. (ii.) Few exact strategies face scalability issues.
(iii.) Existing meta-heuristic strategies are complex and time-
consuming (iv.) They lack in handling dynamic workloads
during their lifecycle. (v.) Most learning-based solutions
neglect network-specific parameters. To overcome these
limitations, in this work, we propose a framework called
intelligent DRL Strategy for effective VNE over online
VNRs (InDS). It makes use of hybrid Deep Reinforcement
Learning (DRL) andGraph Convolutional Networks (GCNs)
based strategy for effective one-stage VNE. InDS tries to
enhance the acceptance ratio revenue-to-cost ratio and avoid
network congestion, considering both network and system
resources featured during training. The RL provides excellent
decision-potentiality capabilities by efficiently cooperating
between the learning agent and the input environment,
thereby maximizing the reward for the agent [15]. The
GCN is a specific type of graph neural network that
uses convolutional operations on graph-structured data to
dynamically extract network and system-specific features of
the SN and VNRs [16], [17]. Therefore, we use the benefits
of both RL and GCN to aggregate network features, such
as degree and betweenness centrality, along with system
characteristics, such as CRB and bandwidth resources. These
network features help understand the network dependencies
effectively to achieve the desired multiple objectives. The
significant contribution of this work is highlighted below.

• Hybrid DRL and GCN based Dynamic Framework:
This work introduces an intelligent embedding frame-
work named InDS. It uses DRL with an Asynchronous
Advantage Actor-Critic (A3C) architecture to make
sequential decisions considering system and network
features in a dynamic environment. Incorporating GCN
helps capture network features of online VNRs and
the underlying SN. InDS evaluates four main attributes
such as CRB, bandwidth, degree, and betweenness
centrality. The DRL agent is trained on a multiple
of this four-dimensional network environment. We use
synthetic data that closely resembles real-world data to
train the model. The produced data allows for successful
training and regulated testing settings. Thereby InDS try
to maximize the acceptance and revenue-to-cost ratios
by effectively handling network congestion.

• Adaptive Resource Allocation Policies: We construct
learning policies during parallel policy gradient train-
ing using input states from the dynamically varying
network captured using GCNs. We also define a fair
multi-objective reward function that helps to make
informed decisions about the VM allocation over
the substrate server based on the probability reward.
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Followed by Breadth-First Search (BFS) [18], shortest
path link embedding is subjected to various constraints.

• Performance Evaluation and Baselines: We use alib
utility tool to implement InDS, and the source code of
our implementation is made available at [19]. We run
exhaustive simulations to evaluate InDS performance
and compare with four different baseline strategies
such as (i.) Node Ranking Measurement (VNE-NRM)
[11] (ii.) Automatic reinforcement based VNE (A3C-
GCN) [14] (iii.) Modified Worst Fit Strategy (VNE-
MWF) [6] (iv.) Distributed Parallel Genetic Algorithm
(DPGA) [20]. The results of the tests demonstrate that
InDS performs better than other baselines by scoring
an improvement of 28% in acceptance and 45% in
revenue-to-cost ratio.

The remainder of the content is classified as follows.
Section II delivers an exhaustive literature review on the
various traditional and learning-based techniques to address
the VNE problem. Section III provides the proposed system
model and different associated modules and their functional-
ities. The formulation of InDS objectives and the associated
constraints are discussed in Section IV. Section V details
the proposed DRL and GCN-based solution approach and
training strategy adopted in InDS. Section VI details the
testing and performance analysis of the InDS with distinct
baseline approaches. Finally, the conclusion and future scope
of the InDS are discussed in Section VII.

II. RELATED WORKS
This section explores the literature review of several existing
VNE solution strategies.We primarily classify the embedding
strategies into traditional and learning-based techniques. The
VNE problem is divided into two intractable problems:
(i.) VM-embedding and (ii.) VL-embedding. These two
are solved either in a coordinated or uncoordinated tech-
nique. Compared to uncoordinated approaches, a coordinated
embedding technique between the VM and VL embedding
problems can improve overall performance, mainly when
nearby nodes are close together [2], [5]. Based on VM
and VL embedding coordination, these techniques are either
one-stage or two-stage. The former does both embedding
simultaneously, whereas the latter performs them sequen-
tially. This section also elaborates on the type of VNR request
and the features the various solution strategies consider.

A. TRADITIONAL STRATEGIES
The various researchers developed traditional embedding
models based on heuristics, meta-heuristics, and exact solu-
tion approaches. In this context, the authors in [21] and [22]
proposed exact solutions emphasizing enhancing the accep-
tance ratio. The former developed a coordinated two-stage
approach by primal-dual investigation of the Mixed Integer
Linear Programming (MILP) to get a near-optimal solution
over static VNRs. The latter suggested a dynamic one-stage
VHub method to model VNE as a p-hub median problem
to enhance the revenue-to-cost ratio. These exact approaches

are limited to smaller test scenarios and are computationally
complex. To address these limitations, in [11], authors
Zhang et al. presented a coordinated two-stage heuristic
approach with diverse resource restrictions to enhance the
acceptance and revenue-to-cost ratios over dynamic requests.
However, the lack of a sophisticated embedding mechanism
results in inferior performance. Further, in [2], the authors
developed a one-to-many matching game-based two-stage
VNE strategy for cost minimization over online VNRs. How-
ever, due to the preference generation mechanism, it takes
longer computational time for more prominent test cases.
Moreover, all the above approaches neglect the network
features and congestion avoidance, resulting in degraded
performance. To overcome the above shortcoming, authors
Tg et al. in [5] developed a two-stage heuristic-based multi-
attribute embedding approach over static VNRs considering
both network and system features to maximize the revenue-
to-cost ratio. However, a greedy embedding mechanism
results in a local-optimal solution. Further, in work [20], the
authors developed a meta-heuristic-based Genetic Algorithm
(GA) strategy to maximize the acceptance and revenue-to-
cost ratios over static VNRs. However, randomness in the
solution approach leads to poor resource utilization, and it
has more computational overhead. Later, even though these
approaches considered few network attributes, they neglected
congestion avoidance over a network, resulting in degraded
performance. In [13], the authors developed a heuristic-based
perturbation approach to minimize the congestion over a
link and enhance the overall revenue-to-cost ratios. Due to
homogeneous link bandwidth over VNRs, its wider adoption
was limited. Further, in work [24], the authors introduced
a one-stage heuristic strategy to minimize the cost, energy,
and congestion during embedding over dynamic demands
subjected to only system-specific constraints. In [12], the
authors, Pham et al. designed a two-stage heuristic technique.
It entails greedy node mapping to accomplish the goals
of congestion control and resource optimization. However,
the lack of sophisticated network parameters results in
lower performance. Most of the above approaches often
exhibit the following impediments. (i.) These strategies are
static and rule-based (ii.) Lack of adaptability for dynamic
environments, (iii.) Neglected network parameters and (iv.)
Existing approaches are time-consuming, which results in
overall inferior performance.

B. LEARNING-BASED STRATEGIES
To overcome the limitations of the traditional approaches,
a few authors proposed learning-based embedding strategies
to accelerate the revenue-to-cost ratio, acceptance ratio, and
load balancing by effectively utilizing the SN resources.
In this context, in [23], the authors Yao et al. proposed an
RL-based policy network strategy for decision-making dur-
ing VM embedding. It uses a policy gradient to automatically
achieve optimization by using past data from dynamic VNRs.
However, lacking network features during training reduces
network performance and is limited to smaller scenarios. The
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TABLE 1. Overview of the literature review on related VNE studies.

work in [25] introduces an embedding approach based on
DRL to maximize the revenue-to-cost ratio. It uses Deep
Neural Networks (DNNs) for feature extraction. However,
DNN failed to process the graph structure directly, making the
model complex and limiting its wider adoption. To overcome
the limitations of DNN, in [14], the authors proposed a
strategy combining GNN with DRL to handle automatic
VNE problems. It uses parallel training using the RL tech-
nique to enhance the acceptance and revenue-to-cost ratios.
However, it is limited to smaller scenarios, and negligence
of the network features results in degraded performance.
In work [15], the authors developed a GCN and RL-based
model with a self-defined fitness matrix and a fitness value
to minimize substrate resource fragmentation and improve
the revenue-to-cost ratio by considering the system and
limited network features. Moreover, the learning strategy
adopted heavily depends on the system features, which
decays its performance. On the other hand, in [27], the authors
developed a DRL-based embedding strategy considering
limited network features to maximize the revenue-to-cost
ratio for small test case scenarios. Later, in [26], the author
Duan and Wang introduced a two-stage VNE approach using
the proximal policy optimization for embedding policy gen-
eration. Additionally, it uses a composite feature extraction
technique that blends features extracted with GCN to enhance

the acceptance and revenue-to-cost ratios. However, these
learning-based approaches exhibit the following pitfalls.(i.)
Neglected network features during the training, (ii.) Limited
for smaller cases, and (iii.) Failed congestion avoidance over
a network (iv.) Most of the reward functions are specific to
a single objective. These things result in poor SN utilization
and degraded performance.

C. TAKEAWAYS OF THE LITERATURE REVIEW
The following are some key takeaways from the reviewed
literature.

• Inadequate adaptability to dynamic environments.
Most existing approaches are static and based on
predefined rules, resulting in inefficiency in handling
dynamic heterogeneous VNRs.

• Limited scalability. Most traditional heuristic tech-
niques stumble to handle large-scale scenarios effi-
ciently due to dependency on iterative processes-based
solution strategies.

• Computational complex. Most meta-heuristic and
exact approaches are computationally expensive for
more extensive scenarios, making them impracti-
cable for real-time deployments. Moreover, most
meta-heuristic techniques result in sub-optimal solutions.
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• High computational cost. Most of the exact for-
mulations are computationally expensive, requiring
significant computational resources and time. It results
in delayed decision-making and inferior performance.

• Negligence of Network Features. The existing
learning-based approaches inadequately explored criti-
cal network features during training. It results in models
lacking a thorough understanding of network dynamics,
leading to degraded network performance.

• Limited Focus of Reward Functions. Most reward
functions are designed to achieve a specific single
goal. This restricted focus limits the solution techniques
to optimize for larger network performance measures,
perhaps leading to sub-optimal outcomes.

To address the potential risks in the existing literature,
we propose an RL-based framework called InDs for effective
VNE for online VNRs. It uses a hybrid DRL andGCNs-based
strategy that considers diverse network and system features
during training for effective VNE. Finally, Table 1 summa-
rizes the examined literature based on various parameters
such as request type (Static/Dynamic), embedding strategy
type (Traditional/Learning), co-ordination stages (One/Two),
and features considered (System/Network).

III. ARCHITECTURE OF InDS
The proposed model is based on a Hybrid DRL and
GCN-based dynamic framework called InDS, which has
substantial advantages over existing approaches. To handle
complicated network scenarios dynamically and efficiently,
it combinesDRL-basedA3C architecture andGCN. TheA3C
design improves real-time decision-making. GCN captures
intricate network properties of online VNRs and the under-
lying SN, focusing on essential attributes, including CRB,
bandwidth, degree, and betweenness centrality. Training
using synthetic data that simulates real-world circumstances
ensures successful training and testing environments. This
hybrid approach offers a robust, scalable, and intelligent
solution for VNE, outperforming traditional block-based
and modular structures in handling dynamic network envi-
ronments. The proposed InDS architecture is depicted in
Figure 2, and the following sections outline the functionalities
of each component included in the InDS.

A. INPUT ENVIRONMENT
It includes information about the state of the substrate
network, such as available resources, used resources, and
heterogeneous demands for virtual network requests. The
environment simulates the conditions in which the agent
operates and responds to the agent’s actions by updating the
network state and providing feedback as rewards.

1) VIRTUAL NETWORK REQUESTS (VNRs)
The total VNRs arrived for processing are captured in
Gv = {G1, G2, . . . , Gi, . . . }, with each VNR Gi ∈ Gv is
represented as Gi = (Ni, Li). The variable Ni represents a
set of VMs, and |Ni| provides a total VM count in a VNR

FIGURE 2. The proposed architecture of InDS for VNE problem.

Gi. The resource demand of a VM vi,j ∈ Ni is captured in
variable d(vi,j), and it is quantified in CRBs. A unit CRB
corresponds to one CPU core and 512 MB of RAM, and
such sizing is adopted by many of the SPs [2], [28]. For
instance, Figure 1 depicts a sample VNR in which a VM v1,2
is associated with the numeral four, indicating a requirement
for 4 CPU cores and 2 GB of RAM. In addition, the set

V =

|Gv|⋃
i=1

Ni captures the total number of VMs to be embedded

across the VNRs. Additionally, a variable Li captures a set
of VLs, where |Li| gives the total VL count. The variable
d(eij,j′ ) captures the bandwidth demand of a VL eij,j′ between
the VMs vi,j and vi,j′ . Since InDS dealing with online VNRs,
the fluctuating resource demand of VMs and VLs over a time
slot t is captured in d t (vi,j) and d t (eij,j′ ) respectively.

2) SUBSTRATE NETWORK (SN)
The SN formally defined as Gs = (Ns, Ls). In SN, Ns
and Ls represent the substrate server and substrate link set,
respectively. Each server sk ∈ Ns has initial available
resource capacity captured in a(sk ). For example, Figure 3
shows an instance of the SN comprising six servers and
seven physical links. The servers such as s1 and s2 possess
computational resources quantified as 32 and 22 units of
CRBs, respectively. Besides, each SN link el ∈ Ls is
associated with an available bandwidth capacity represented
as a(el). For illustration, in Figure 3, the numeral 23 over
the link connecting servers s1 and s2 denotes its available
total bandwidth capacity. It is important to note that the
numerical values in Figure 3 are provided for illustrative
purposes only. One of the fundamental aspects of VNE
involves the successful embedding of VLs. To achieve this,
we focus on finding appropriate substrate paths that meet
the bandwidth demands of VLs. We denote the set of all
possible explicit paths between two servers sk and sk ′ , hosting
VMs vi,j and vi,j′ , respectively, as Psk , sk ′ . A typical path
psk ,sk′ ∈ Psk , sk ′ within this set can effectively embed VL
eij,j′ , iff the available bandwidth a(el) on each link el ∈ psk ,sk′
exceeds or equals the bandwidth demand d t (eij,j′ ) of the VL
eij,j′ . For reference, we have summarized the key notations
used and their specifications in Table 2.
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TABLE 2. Notations and its specification.

B. REINFORCEMENT LEARNING (RL) ENTITIES
An RL framework comprises four major entities, such as
(i.) State, (ii.) Action, (iii.) Reward and (iv.) Learning agent.
The descriptions of each entity are provided below.

1) STATE DEPICTION
The state st = {spt , s

v
t } represents input information for

an agent from the input environment, and it operates as
the raw input for the subsequent stage. The spt and svt
are the real-time representations of diverse SN and VNR
features in vector form, respectively. The SN feature includes
maximum CRB capacity, maximum bandwidth strength of a
server, available CRB capacity, available bandwidth strength
of a server, betweenness centrality, and degree centrality.
Similarly, the features of the VNRs include CRB demand of a
VM, total bandwidth demand, degree centrality of a VM, and
betweenness centrality of a VM. These features are the most

significant and widely regarded for a VNE [5], [6], [10] and
a description of each feature is as follows.

• Degree centrality: The degree centrality D(n) of a
specific node ′n′ represents the number of nodes
neighboring to it [29], and it is represented as
D(n) = | adj(n) | . The function adj(.) gives the set
of neighboring nodes. Nodes with a high degree of
centrality are frequently considered more prominent in
the network since they have more direct connections for
interactions with other nodes.

• Betweenness centrality: The betweenness centrality
B(n) of a node ′n′ of a network is the proportion of
shortest paths passing through that node [29] and the
same is computed as given by:

B(n) =

∑
n̸=n′ ̸=n′′

σn′n′′ (n)
σn′,n′′

(1)

A node with a high betweenness centrality is located
on many of the network’s shortest pathways and serves
as a crucial intermediary. It also supports efficient
communication and the flow of information throughout
the network.

• Maximum server capacity: The maximum server
capacity of a server sk refers to the maximum available
CRB resources a(sk ) to cater to the needs of the VMs
over a SN [5].

• Bandwidth strength of a server: The bandwidth
strength Bs(sk ) of a server sk in a network often refers to
the server sk ’s ability to manage network traffic in terms
of bandwidth requirement by the VLs [5] and which is
defined as:

Bs(sk ) =

∑
∀ sk′ ∈ adj(sk )

a(el) (2)

• Residual server capacity: The residual server capacity
of a server sk refers to the amount of computational
resources left on a server sk after allocating CRB
resources to fulfill the demands of the VMs that are
embedded over it [5].

• Residual bandwidth strength: A server’s sk ∈ Gs
residual bandwidth strength refers to the remaining
bandwidth capacity available for data transmission
across the substrate server sk after embedding certain
VNRs on it [5].

• CRB demand: The VM vi,j CRB demand d t (vi,j)
denotes the computational resources required by a VM
vi,j of a VNR Gi [5].

• Total Bandwidth demand: The bandwidth demand of a
VM Bs(vi,j) represents the total bandwidth required by a
VM vi,j ∈ Gi for establishing successful communication
with its neighbor [5], and the same can be stated as
below:

Bs(vi,j) =

∑
∀ vi,j′ ∈ adj(vi,j)

d t (eij,j′ ) (3)
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2) ACTION DESCRIPTION
An action (at ) is a viable embedding mechanism representing
the agent’s decisions on embedding VNRs onto the SN
resources. The learning agent in InDS concentrates on a single
VM from a specific Gi at each step, producing a specific
substrate server for embedding. In this work, we follow a
coordinated one-stage VNE mechanism. After embedding a
VM, a VL embedding is carried out using the BFS shortest
algorithm between the servers on which its adjacent VMs are
already embedded. The action space in InDS is captured in
A = {a1,11 , a1,22 , . . . , ai,jk }, where ai,jk represents the action of
assigning VM vi,j to a server sk . It should be noted that if the
embedded VM is the first VM in the specified VNR, there
is no VL embedding to be handled for that VM. The action
space encloses all potential combinations of actions, such as
selecting the servers, allocating resources, and deciding about
accepting/rejecting the VNR, subjected to the constraints
discussed in Section IV.

3) REWARD DEFINITION
In InDS, the learning agent increases the performance by
continuously getting a reward (rt ) from the input environ-
ment. The reward function informs the agent how well the
current action performs compared to other previous actions.
To optimize the assessment of overlooked accumulative
rewards E

(∑
∞

t=0 γtrt
)
, the agent might give up the action

with the best present reward to achieve better long-term
performance. The discount factor γt holds at time slot t .
A successful action is typically considered acceptable and
delivers a positive reward to reinforce the possibility that
the present action is established for the embedding process.
Otherwise, a failed action will get a negative reward, allowing
the agent to explore alternate decisions. The reward function
helps in optimizing the VNE problem. The detailed reward
computation is discussed in Section V-E.

FIGURE 3. An instance of an SN with six servers and seven links and its
available resource capacity.

a: LEARNING AGENT
It generates policies based on hybrid GCN and DRL using
the network and system-specific raw inputs. The GCNs
authorize the DRL agent to learn the network structure
and resource distribution in depth. The customized GCN
model from the Convolutional Neural Network (CNN) is
used to capture these features to cater to maximum VNRs
by effectively utilizing the resource to maximize the SP’s
profit. To achieve this, the agent should competently use

input features, cycle through multiple states and actions,
and imperatively refine the policy. These policies represent
the probability distribution of actions. The detailed learning
agent process is described in Section V.

IV. VNE PROBLEM FORMULATION
This section provides a detailed mathematical formulation of
the constraints and objectives associated with InDS.

A. RESTRICTIONS ON NODE AND LINK EMBEDDING
This section details various node and link embedding
restrictions on the assignment of the VM vi,j ∈ Gi on the
physical server sk ∈ Gs and VL eij,j′ ∈ Li over a substrate
path el ∈ psk ,sk′ over the SN Gp.

1) NODE AND LINK RESOURCE RESTRICTION
Node resource restriction ensures that the server CRB
capacity a(sk ) must satisfy the CRB demand d t (vi,j) of the
VM vi,j being embedded and same is captured as below:

d t (vi,j) ≤ a(sk ) (4)

Similar to node restriction, the link restriction infers that each
VL eij,j′ ∈ Li is associated with the minimum bandwidth
demand d t (eij,j′ ) required to ensure reliable and efficient
communication betweenVMs vi,j and vi,j′ which is embedded
over a server sk and sk ′ , respectively. A link embedding is
successful, iff, VL demand d t (eij,j′ ) is satisfied by the physical
link el ∈ psk ,sk′ throughout the path psk ,sk′ over the SN, which
is represented as below:

d t (eij,j′ ) ≤ a(el); ∀el ∈ psk ,sk′ (5)

2) NODE AND LINK INDICATOR VARIABLE
A node indicator variable χ (vi,j, sk ) is set to 1 if a VM is
embedded on an identified physical server. Otherwise, it is
assigned 0. Similarly, when a VL is established between two
VMs vi,j and vi,j′ , a link indicator variable χ (eij,j′ , psk ,sk′ )
is set to 1, indicating that the appropriate physical links
between the underlying servers sk and sk ′ and corresponding
indicator variable are initialized as χ (vi,j, sk ) = 1 and the
χ (vi,j′ , sk ′ ) = 1, respectively. These variables allow for the
modeling of communication channels between VMs within
VNRs. The same is captured in (6) and (7), respectively.

χ (vi,j, sk ) =

{
1 If vi,j is mapped to sk
0 Else

(6)

χ (eij,j′ , psk ,sk′ ) =

{
1 If a(el) ≥ d t (eij,j′ ), ∀el ∈ psk ,sk′
0 otherwise

(7)

3) NODE MAPPING CONSTRAINT
The node mapping constraint is imposed on the assignment
of VMs onto SN servers. It indicates not embedding more
than two VMs vi,j and vi,j′ of a VNR Gi, on the same
server [10], [30], and constraint is represented in (8). The
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overall purpose of adding this constraint is to assist SPs in
providing distributed services while preventing single-point
failures.

χ (vi,j, sk ) ∧ χ (vi,j′ , sk ) ̸= 1 (8)

4) SUCCESSFUL MAPPING CONSTRAINT
In InDS, a VNR is regarded as successfully embedded if
both its components, VMs and VLs, are completely allotted
to corresponding physical substrate resources, ensuring that
resources and connectivity requirements are met. The same
is captured in (9) and (10), respectively. The successful
embedding signifies the fulfillment of both VM and VL
embedding criteria for a given VNR on the SN.

|Ni| =

∑
∀vi,j ∈ Ni

min

1,
∑

∀sk ∈ Ns

χ (vi,j, sk )

 (9)

|Li| =

∑
∀ei

j,j′
∈ Li

min

1,
∑

psk ,sk′
∈ Psk ,sk′

χ (eij,j′ , psk ,sk′ )

 (10)

5) FLOW CONSERVATION RESTRICTION
The flow conservation restriction confirms that the amount
of data traffic entering a node equals the amount of data
traffic exiting the node. This restriction is critical for optimal
resource allocation and network efficiency. It ensures that
data flow through the VL included in the SN is appropriately
handled, allowing data packets to be sent efficiently and
without interruption. By conforming to this requirement,
VNE algorithms can effectively allocate resources [13].

This assertion is given in the (11). In this context, f
ei
j,j′

sk ,sk′
represents the traffic flow of the VL eij,j′ embedded across
the substrate path between servers sk and sk ′ , which serve as
the source and destination servers for the VMs vi,j and vi,j′ ,
respectively. The flow into and out of an intermediate server
sk ′′ is equal, and d t (eij,j′ ) captures the demand of VL eij,j′ of
VNR Gi.

f
ei
j,j′

sk ,sk′ − f
ei
j,j′

sk′ ,sk =


d t (eij,j′ ), if sk ′′ = sk
−d t (eij,j′ ), if sk ′′ = sk ′

0, if sk ′′ ̸= sk , sk ′′ ̸= sk ′

(11)

B. EVALUATION OBJECTIVES OF InDS
InDS aims to maximize the revenue-to-cost ratio, improving
the acceptance ratio and congestion avoidance by utilizing SN
resources to attain more profit for the SPs.

1) ENHANCING THE REVENUE-TO-COST RATIO
The revenue-to-cost ratio is the proportion of the total
VM and VL resources demanded by the VNRs to the
total substrate resources utilized to cater to these demands.
Revenue R(Gi) is related to the actual demands of the VNR
components defined in (12), whereas (13) describes costs

C(Gi) as the total physical resources consumed to meet
VNR’s demand.

R(Gi) =

∑
∀ vi,j ∈ Ni

d t (vi,j) +

∑
∀ ei

j,j′
∈ Li

d t (eij,j′ ) (12)

C(Gi) =

∑
∀ vi,j∈Ni

d t (vi,j) +

∑
∀ ei

j,j′
∈ Li

∑
∀ el ∈ psk ,sk′

d t (eij,j′ ) (13)

In the meantime, the revenue-to-cost ratio for mapping the
request Gi is computed as follows:

1i =
R(Gi)
C(Gi)

(14)

2) ENHANCING THE ACCEPTANCE RATIO
The acceptance ratio is the proportion of the number of VNRs
successfully embedded to the total number of requested
VNRs, which is captured in Equation (15). In which, Aac and
Aar capture the successfully embedded and total number of
arrived VNRs, respectively.

A =
Aac

Aar
(15)

3) MINIMIZING THE CONGESTION RATIO
Network congestion occurs when an incoming VNR band-
width traffic magnitude strikes or exceeds its capacity of SN
resources. The exceeding traffic reduces the SN performance
and functionality of the embedded VNRs. The proposed InDS
works on a flow basis to prevent congestion by lowering the
congestion ratio Cr as captured in (16). The VL eij,j′ ∈ Li
between the VMs vi,j and vi,j′ which are embedded on servers
sk and s′k over a substrate link el . InDS uses this to optimize
traffic flow throughout the network, consequently boosting
essential performance indicators such as effective resource
utilization [31].

The congestion ratio Cr limits substrate link usage to
reduce maximum utilization. The top limit R is calculated
based on the hose traffic demand model [12]. It indicates the
bandwidth allocated to VLs on the substrate link el over the
substrate path psk ,sk′ is limited to the substrate link bandwidth
multiplied by the Cr [12], [24] and the same is captured

in (17). The notion f
ei
j,j′

sk ,sk′ represents the flow of traffic demand
d t (eij,j′ ) from server sk to server sk ′ of the embedded VL eij,j′ ,

i.e., f (.) captures the incoming and outgoing traffic flow from
the end servers.

Cr =

∑
ei
j,j′

∈Li

f
ei
j,j′

sk ,sk′ + f
ei
j,j′

sk′′ ,sk

a(el)
(16)

The value of R is 0 ≤ R ≤ 1. The chosen value R is near
its upper bound and does not impact the acceptance ratio.
We chose R = 0.945 to avoid exceeding the link bandwidth
capacity, resulting in unbiased test findings. Using R as the
best congestion ratio ensures it never exceeds the value one,
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i.e., R < 1 [12], and it holds 0 ≤ Cr ≤ R.∑
ei
j,j′

∈Li

(f
ei
j,j′

sk ,sk′ + f
ei
j,j′

sk′′ ,sk ) ≤ Cr ∗ a(el)∀ psk ,sk′ ∈ Ls (17)

The vi,j and vi,j′ are the VMs belong to VNR Gi embed over
a link el ∈ psk ,sk′ and a(el) denotes the residual substrate link
capacity after embedding the VLs of a specific VNR.

Eventually, the comprehensive, objective function of the
InDS is confined in (18a), (18b) and (18c) are subjected to
the following constraints. Constraints (18d) and(18e) capture
node CRB and link bandwidth resource restrictions. The node
and link indicator variable indicates that a particular VM and
VL of a VNR are embedded successfully over the server
and link. Same is captured in constraints (18f) and (18g),
respectively. Constraint (18h) holds the flow restriction
between the two servers. Constraints (18j) and (18i) hold
that the congestion ratio over the link cannot exceed the
upper limit. Successful mapping of all the VMs and VLs
is captured in the constraints (18k) and (18l). The node
assignment constraint prohibits assigning two VMs of the
same VNR to the same server, and the same is denoted as a
constraint (18m). Finally, the possible set of choice variable
values is collected in constraints (18n) and (18o).

Maximize
∑

∀Gi ∈ Gv

Ar (18a)

Maximize
∑

∀Gi ∈ Gv

0i (18b)

Minimize
∑

∀el ∈ Ls

Cr (18c)

s.t. d t (vi,j) ≤ a(sk ) (18d)

d t (eij,j′ ) ≤ a(el); ∀el ∈ psk ,sk′ (18e)∑
∀sk∈Ns

χ (vi,j, sk ) = 1 (18f)

∑
∀el∈psk ,sk′

χ (eij,j′ , psk ,sk′ ) = 1 (18g)

f
ei
j,j′

sk ,sk′ −f
ei
j,j′

sk′ ,sk =


d t (eij,j′ ), if sk ′′ = sk
−d t (eij,j′ ), if sk ′′ = sk ′

0, if sk ′′ ̸=sk , sk ′′ ̸=sk ′

(18h)∑
ei
j,j′

∈Li

(f
ei
j,j′

sk ,sk′ + f
ei
j,j′

sk′′ ,sk ) ≤ Cr ∗ a(el)∀ psk ,sk′ ∈ Ls

(18i)

0 ≤ Cr ≤ R (18j)

|Ni| =

∑
∀vi,j ∈ Ni

min

1,
∑

∀sk ∈ Ns

χ (vi,j, sk )


(18k)

FIGURE 4. An instance of a learning agent process used in InDS.

|Li| =

∑
∀ei

j,j′
∈Li

min

1, ∑
psk ,sk′

∈Psk ,sk′

χ (eij,j′ , psk ,sk′ )


(18l)

χ (vi,j, sk ) ∧ χ (vi,j′ , sk ) ̸= 1 (18m)

∀sk ∈ Ns; ∀eij,j′ ∈ Li; ∀vi,j, vi,j′ ∈ Ni (18n)

∀psk ,sk′ ∈ Psk ,sk′ ; ∀el ∈ psk ,sk′ ; ∀ Gi ∈ Gv

(18o)

V. SOLUTION APPROACH
This section provides detailed functionalities of the InDS
learning agent as demonstrated in Figure 4. The learning
agent produces appropriate policies based on the extracted
features. The approximation-based neural network with
trainable parameters extracts the features and generates
policies from environmental input states. In order to train
these input attributes, a policy gradient embedding strategy
is used to enhance the proposed embedding policy [32]. The
subsequent sections further explain the feature extraction,
policy development, and training strategy. Note that the VMs
and servers are referred to as nodes throughout the subsequent
sections.

A. FEATURE EXTRACTION
The GCN primarily uses Laplacian matrix (L) and orthogonal
factorization (U) to describe the SN and VNRs features
during the processing of the requests (refer to Section III-B).
It involves a Fourier transformation in an n-dimensional
space, resembling the traditional Fourier transform that
decomposes a real-value function into orthogonal functions.
It behaves as a semi-supervised learning for convolution
operation on random graph topology based on spectro-graph
theory [14], [16]. The corresponding Fourier transform is
described as below:

F(λv) = f̂ (λv) =

|N|∑
i=1

f (i)µ∗
v (i) (19)
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In which, f (i) represents the network node, µ∗
v (i) conveys

the ith component of the vth feature vector, λv is the eigen
value. The Fourier transformation of the input vector f with
dimension |N|, represented by f̂ , on network Gv or Gs,
is computed using (20), where U={u1, u2, .., un−1} represents
Fourier basis.

f̂ = UT f (20)

The Fourier transform of a convolution of two functions
is the pointwise product of their Fourier transforms [33].
Then, the Fourier transform of f and convolution kernel signal
y on the network topology is represented as follows:

f ∗ y = 0−1 (̂f (w).̂y(w)) =
1
2π

∫
f̂ (w).̂y(w)e−iwtdw (21)

The y =
∑K

k=0 αk3
k holds the kernel filter utilized for

finer feature extraction. In which the trainable characteristics
are seized in αk and 3k represents the diagonal matrix with
eigenvalues ofLk . Finally, (22) provides the result of theGCN
model, where σ represents the neural network’s activation
function, and the order index K specifies locality.

yout = σ (
K∑
k=0

αkLk f ) (22)

A network node’s recognition field can reach neighboring
nodes within K hops under the specified kernel. Features
from the SN and VNRs are extracted using two single-
layer GCNs. The feature matrices corresponding to the
SN and VNRs are processed for every state. It provides
improved node representations, containing crucial structural
and relational data about the two networks, by transmitting
thesematrices across theGCN layer. Each node is represented
as a vector with the specified hidden dimensions by the GCN,
which creates a tensor of size equal to the product of the
number of nodes in a network and hidden units, and hidden
units are set to eight in InDS. The six features extracted from
the SN are combined into one vector. Similarly, the VNR
creates an embedding by combining four features.

B. POLICY GENERATION
After the GCN extracts the features from both the substrate
and the VNRs, these features are combined and sent via a
fully linked layer to learn complex relationships. In an RL
system, a policy layer generates a probability distribution
over substrate servers for each VM, which are then converted
into action probabilities by a softmax layer for efficient
VM embedding [34]. The softmax function turns a neural
network’s output into a probability distribution for diverse
embedding actions. This distribution aids decision-making
by giving each action at probability, allowing for the testing
of various embedding strategies. During training, the policy
network uses DRL to optimize predicted rewards, often
measured by resource consumption and network attribute
status. Once trained, the policy network develops embedding

policies in real-time, allowing for adaptive and efficient VNE
solutions for changing network conditions.

The input layer calculates the feature matrix of the server
and passes it to the convolutional layer. This layer convolves
the matrices, producing a vector reflecting each server’s
available resources as in (23). The variable hk indicates the
softmax’s k th output with the weight vector wk , bk holds the
bias, and Vk captures the k th feature vector. The softmax layer
converts k into the likelihood of each server being selected.
A high-probability server is then chosen to achieve a superior
embedding outcome.

hk =

{
wk ∗ Vk + bk if wk ∗ Vk + bk > 0
0 Otherwise

(23)

C. ACTOR CRITIC BASED POLICY GRADIENT TRAINING
The current work InDS uses the A3C model for training
the agent [35], [36]. In A3C, the actor network responsible
for generating the embedding policy πθ (st , at ) and the critic
network produces the values Vπθ (st , θv). This approach uses
simultaneous threads to train the InDSmodel.Multiple agents
operate concurrently in the local network, interacting with the
environment independently. At the start of each episode, each
agent receives a copy of the global network settings. After
sampling their experiences, the agent uses the loss functions
to change the parameters of its local actor-critic network.
The mean squared error loss for the critic is computed by∑

[V(st )−G2]. The V(st ) is the predicted state-value or state-
action value by the critic, and G is the observed cumulative
reward obtained by the agent after taking an action in the state
st . Similarly, the policy loss is defined − log

(∏
(at |st )

)
∗ A.

The expression
∏
(at |st ) represents the probability assigned

by the actor to selecting action at given the state st .
At the end of each agent’s episode, the global network
receives asynchronous updates about its learning from the
local network. In the actor-critic strategy, the critic provides
feedback to the actor by transmitting a gradient known as the
advantage or temporal-difference (TD) error gradient [37].
The TD error can be used to train the neural network by
altering its parameters to minimize the error. The difference
between predicted and actual observed rewards is used by
TD learning to update value estimations across succeeding
time steps. This strategy balances the bias-variance trade-
off by continuously changing value estimates as fresh data is
observed. This reduces the possibility of overestimationwhile
improving training process stability [38]. Back-propagation
calculates the gradient of the TD error concerning neural
network parameters, which is used to adjust the network’s
weights using stochastic gradient descent. Backpropagation-
based sensitivity analysis involves calculating the output
gradient concerning each input feature. This helps understand
the influence of each input feature on the output. During
training, backpropagation calculates the temporal difference
error gradient concerning the neural network parameters,
adjusting the network’s weights using stochastic gradient
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descent. This process fine-tunes the weights and highlights
the importance of individual features based on their gradients.

This gradient is an essential component of the policy
gradient approach for updating the policy-based actor
network. The advantage gradient shows that the selected
action is better or worse than the predicted value at a given
stage. It reflects the advantage of choosing a specific action
above other options accessible in that state, depending on
the critic’s current value function estimates. The advantage
function helps address the gap between the expected reward
for a chosen action at and the intermediate state significance
calculated as described below:

Aπθ (st , at ) = Qπθ (st , at ) − Vπθ (st ) (24)

The state value function that determines the accumulative
return in state st is denoted by Vπθ (st ). For a given state st ,
the advantage function shows the relative improvement of
the current action above the average action obtained from the
associated policy. It is possible to lower the variance during
training without changing the bias. In the meantime, there is
a more significant distinction between actions taken in the
same condition. In specifically, for a disseminated experience
(st , at , rt , st+1), the estimation of Qπθ (st , at ) is determined
by rt + γtVπθ (st + 1). Now Aπθ (st , at ) is later estimated as
rt + γtVπθ (st + 1) − Vπθ (st ). Therefore, (25) states that the
actor-network update with the aid of the advantage function
follows the policy gradient training.

θ = θ + α
∑
t

▽θ logπθ (st , at )Aπθ (st , at ) + β▽θH (π (.|st ))

(25)

The α represents the learning rate used in InDS, and the policy
for all actions in the current state st is captured inπθ (.|st ). The
actor parameter set θ gradient directs adjustments to network
parameters, impacting the probability πθ (st , at ). Similarly,
θv denotes the critic parameter set. Over successive training
episodes, the agent reinforces actions with superior empirical
rewards in specific states. The entropy term H (.) promotes
a more uniform action distribution, acting as regularization
and limiting premature convergence to local optima with
decaying attribute β = 0.5. The critic network learns using
the TD technique, which is defined as:

θv = θv + α′
∑
t

▽θv(rt + γtV
πθ (st+1; θv) − Vπθ (st ; θv))2

(26)

The InDS has been effectively scaled by enforcing a parallel
training framework where four agents operate concurrently,
each utilizing a shared set of actor-critic network parameters
derived from a central agent. These agents collectively
enhance learning efficiency by gathering diverse expe-
riences simultaneously, thereby mitigating the bottleneck
associated with sequential experience accumulation. The
central agent serves as a repository for network parameters,
continuously updating them based on aggregated experiences

from all agents. Upon completion of each training episode,
updated parameters are disseminated to all agents, ensuring
synchronous progress and parameter alignment across the
system. This approach accelerates the training process.
To address the termination condition, the training process
is bounded by a predefined maximum number of episodes,
i.e., 5000, ensuring that the agent does not undergo infinite
training cycles. This strategic capping facilitates a balanced
trade-off between exhaustive learning and computational
efficiency, promoting a robust and scalable DRL model. The
central agent uses the experiences from independent sources
to mitigate the correlation among state-action pairs within
trajectories. After training completion, the model is subjected
to testing using the parameters detailed in Table 3. The
subsequent section elaborates on the end-to-end embedding
strategy.

D. TESTING PHASE
The Algorithm 1 demonstrates the step-by-step procedure
involved in InDS to perform node and link embedding
procedure. It takes PN Gp and VNRs Gv as input during the
testing process. Initially, Step (1) of Algorithm 1 performs the
initialization of all the VMs to free, and none of the VMs are
rejected. All the VNRs Gi ∈ Gv are set to free from the Steps
(2-4) of Algorithm 1. Select the VNR Gi from the Gv based
on arrival order. The VM vi,j ∈ Ni is chosen based on the
sequence that is present during the generation, and initially,
the number of attempts is set to zero from Steps (5-8) of
Algorithm 1. Then, from Step (9) of Algorithm 1 compute the
probability value of each server using ActorNetwork (state,
vi,j) and stored in the P(.). Followed by this, a server with
the highest probability value is selected for VM embedding
adhering to CRB constraints, and PN resources are updated
accordingly from the Steps (10-19) of the Algorithm 1, and
embedded VM is added to the set N′

i. Otherwise, the next
high-probability server is selected, and suitable action will
be performed from the Steps (20-29) of the Algorithm 1.
If VM embedding fails for a specific VNR, then such VNRs
are set to F and release the allocated substrate resources
from the Steps (30-35) of the Algorithm 1. In the case of
successful VM embedding, a VL embedding is carried out
between the current VM and already embedded VMs in N′

i
using the shortest path algorithm from Steps (37-41) of the
Algorithm1. Otherwise, such VNR is rejected, and already
allocated resources will be released from the Steps (42-48)
of the Algorithm 1. The above steps will be repeated for all
VNRs in Gv, and finally, mapping results are captured in the
set M of Step (52) of the Algorithm1. The following section
provides the detailed experimental results captured during the
testing phase.

E. REWARDING IN InDS
The RL is unsupervised, and the training set contains no
labels. In the policy gradient approach, the RL agents change
policies depending on the reward signals. InDS employs a
customized reward process tailored to specific assignments.
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Algorithm 1 InDS Embedding Strateg
Input: Gv, Gp
Result: M : V → Np

1 Initialization: free[vi,j] = T , reject[vi,j] = F
2 for each Gi ∈ Gv do
3 end
4 free[Gi] = T
5 while Gv ̸= 8 do
6 while ∃ vi,j ∈ Ni | (free[vi,j] and ! reject[vi,j]) do
7 vi,j = Pick (Ni)
8 No_Attempts = 0 ▷ The number of allocation

attempts.
9 P = ActorNetwork(state, vi,j)
10 while Np ̸= 8 and (free[vi,j] and ! reject[vi,j]) do
11 sk = HighprobSelect(P)
12 No_Attempts++
13 if a(sk ) ≥ d t (vi,j) then
14 free[vi,j] = F
15 Np = Np \ {sk }
16 M = M ∪ {(vi,j, sk )}
17 a(sk ) = a(sk ) − d t (vi,j)
18 N′

i = vi,j
19 end
20 else if No_Attempts < |Np| then
21 sk = NextHighprobSelect(Np)

No_Attempts++
22 if a(sk ) ≥ d t (vi,j) then
23 free[vi,j] = F
24 Np = Np \ {sk }
25 M = M ∪ {(vi,j, sk )}
26 a(sk ) = a(sk ) − d t (vi,j)
27 N′

i = vi,j
28 end
29 end
30 else
31 reject[vi,j] = T
32 free[Gi] = F
33 Release_PN_Resources (Gi)
34 break;
35 end
36 end
37 if ∃ vi,j ∈ N′

i | reject[vi,j] = F then
38 for each (vi,j′ ∈ adj(vi,j) & vi,j′ ∈

N′
i) | !(AlreadyEmbeded (e

i
j,j′ )) do

39 if Feasible_Path (M(vi,j), M(vi,j′ ), r(e
i
j,j′ ))

then
40 Reserve_Path (M(vi,j), M(vi,j′ ), r(e

i
j,j′ ))

41 end
42 else
43 free[Gi] = F
44 Release_PN_Resources (Gi)
45 break;
46 end
47 end
48 end
49 end
50 Gv = Gv \ {Gi}
51 end
52 return M

This ensures the agent receives more specific feedback,
reducing the potential for overestimating future rewards. The

reward will be assigned as a positive or negative reward based
on the successful or unsuccessful embedding results. A larger
reward signifies a valid action, whereas a smaller or negative
reward suggests an invalid activity that requires restoration.
InDS set an initial reward of λ = 100 and λ = −100 for
the positive and negative reward respectively. As a result, the
acceptance outcome of the reward is captured as below:

ra =

{
λγt action is success
−λγt otherwise

(27)

In which γt captures the discount factor, which begins at
1/|Nv| and slowly rises for processing of each VM. Note
that the discount factor weight is less for the first VM and
gradually increases for the last VM of a specific VNR.

Furthermore, the learning agent must take successful and
cost-effective behaviors while processing the VNR. A better
embedding policy, such as shorter substrate paths, is possible
by InDS due to the incorporation of the network features,
such as degree and betweenness centrality, along with system
resources during the training. As a result, we add another
element to the reward function as denoted in (28).

rr =
δ(R)
δ(C)

(28)

The variable δ(R) captures the new revenue, and δ(C) holds
new cost resulting from the current action compared to
the previous step. Further, congestion avoidance is another
parameter to be met for each action, at , and a low congestion
ratio is rewarded. The mean of the congestion ratio for every
newly embedded link from the current VM along its path is
determined as follows:

rc =
r(ej,j′ )

a(el)
(29)

Finally, InDS employs the eligibility check Ec for each action
i as captured in (30) to avoid embedding policies that get stuck
in the repeated actions frequently.

Ect [i] =

{
de(Ect−1[i] + 1) i = at
de(Ect−1[i]) i ̸= at

(30)

In InDS, the decay factor de is set to 0.99, which reduces the
eligible trail slightly at each time stamp. This strategy ensures
that regularly selected actions receive constant inspiration
and keep a high value for an extended period, whereas
unpicked actions gradually decay to zero. We use this
eligibility check to partition the reward function. It eliminates
activities that are not frequently chosen, thereby eliminating
the risk of training becoming a sub-optimal state. Finally, the
action at has the following reward function.

Reward[at ] =
ra ∗ rr ∗ rc
Ect [i] + µ

(31)

In which µ is a tiny positive number to prevent the
denominator from zero.

94854 VOLUME 12, 2024



T. G. Keerthan Kumar et al.: InDS: Intelligent DRL Strategy

TABLE 3. Simulation parameters.

VI. PERFORMANCE ANALYSIS AND EVALUATION
This section describes the experimental setup used in InDS
and provides a detailed analysis of the simulation results
using multiple evaluation criteria comparison with diverse
baseline works.

A. EXPERIMENTAL SETUP
To evaluate the performance of the InDS, the simulation
experiment is run over a Windows 64-bit operating system
with a Ryzern processor utilizing alib utility kit [5], [39], [40].
The InDS source code is made freely accessible at [19] and
developed using the Python 3.9 version. The alib utility kit
is a python library incorporating real-time physical network
topologies information from Internet Topology Zoo [41],
[42]. Each network’s topology information is saved in a yml
file based on publicly available data provided by diverse
network operators. It is the most accurate collection of
large-scale real-time SN topology data, and the metadata
given aids in understanding its structure. We simulated an
SN with 84 servers and 93 linkages. The cost of unit SN
resource usage is charged at 1$ [5], [25]. The simulation
parameter settings for training are established according to
works [2], [11], [14], [20], and the same is described in
Table 3. In addition, we build a diverse VNR set for each
scenario, with uniformly generated CRB and bandwidth
demands for testing. The majority of real-world network
traffic demonstrates random VNR arrival times. The Poisson
distribution serves exceptionally well at replicating random
behavior and independent requests. We generated VNRs
using a Poisson distribution with a mean of λ = 0.4. The
λ value in InDS implies a relatively low average arrival rate
of 0.4 requests per unit of time [2]. Meanwhile, 25% of
VNRs suffer resource upgrades or downgrades for VMs and
VLs in the range [1, 10] and [1, 5], respectively, indicating
an automatic DRL setup. Figure 5 depicts the distribution
of the VMs and VLs independently. Meanwhile, Figures 6
to 14 illustrate the combined performance of initial and
remapping VNRs due to resource change, which is elaborated
in subsequent sections.

B. THE BASELINE STRATEGIES
To evaluate the usefulness of InDS, we compare its
performance with four distinct baseline approaches as
follows.

• VNE-NRM [11]. This work presents a heuristic tech-
nique for properly managing SN resources by consider-
ing various system characteristics. It employs a ranking
technique for VMs and servers that considers a variety
of computational parameters during VM embedding
followed by a shortest path VL embedding. It aims
to increase acceptance and revenue-to-cost ratios by
making better use of substrate resources.

• A3C-GCN [14]. The author proposes A3C-GCN,
a learning-based VNE strategy that uses reinforcement
learning techniques with GCNs. It considers diverse
system resource parameters during training using the
actor-critic model. This strategy tries to achieve effective
load distribution andmaximize the revenue-to-cost ratio.
VNE-MWF [6]. In this work, the authors proposed
a modified worst-fit embedding strategy considering
system attributes. The servers and VMs are selected
based on maximum capacity during VM embedding.
Further, it uses a shortest-VL embedding to enhance the
acceptance and revenue-to-cost ratios.

• DPGA [20]. The authors developed a GA-based meta-
heuristic strategy to address the VNE problem. This
approach applies a series of crossovers and mutations
during VM embedding. Further, it regulates VL embed-
ding by creating an initial path collection using the
BFS shortest path algorithm to improve acceptance and
revenue-to-cost ratios.

InDS primary aim is to enhance the revenue-to-cost ratio, and
acceptance ratio and minimize network congestion compared
to baselines [6], [11], [14], [20]. It enables accurate and fair
validation of InDS performance enhancements.

C. THE PERFORMANCE ANALYSIS
The performance of InDS is tested against diverse baseline
techniques using three assessment measures, i.e., (i.) Con-
sumption of Physical Resources, (ii.) Quality of Service, (iii.)
Congestion Metrics and (iv.) Other relevant Metrics [2], [5],
[12].

1) CONSUMPTION OF PHYSICAL RESOURCES
This section describes the various physical resource con-
sumption metrics, such as acceptance and revenue-to-cost
ratios.

a: ACCEPTANCE RATIO
It refers to the proportion of successfully embedded VNRs to
the total number of incoming VNRs. Figure 6 demonstrates
the acceptance ratios of various state-of-the-art techniques,
revealing that InDS has a superior acceptance ratio across
diverse use cases. Figure 6 shows that the average acceptance
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FIGURE 5. Number of VMs and VLs vs. Number of VNRs.

FIGURE 6. Acceptance ratio vs. Number of VNRs.

ratio lowers in subsequent cases due to limited SN resources.
Integrating network and system-specific features in InDS
during training accounts for its improved performance com-
pared to baseline approaches such as VNE-NRM,A3C-GCN,
VNE-MWF, and DPGA. Incorporating continuous learning
utilizing DRL from several episodes and extracting the
diverse attributes employing GCNs is a fundamental cause
for the enhanced acceptance ratio. Further, InDS uses more
active servers than all other strategies (refer to Figure 7).
This is due to the acceptance of more VNRs than different
strategies. Meanwhile, VNE-NRM performs inferior to InDS
due to a poor embedding mechanism based on only system
resource-specific ranking, resulting in inefficient resource
usage, which is the reason for its inferior performance. On the
other hand, A3C-GCN results in poorer substrate resource
utilization due to neglecting network-specific features during
training, which leads to a lower acceptance ratio than
VNE-NRM and InDS. Further, the mechanism used in
VNE-MWF’s assignment leads to more distributed VM
placement, resulting in lower performance. DPGA uses
randomness in mutation and cross-over operation, which is
the reason for its decaying performance compared to all other
approaches and InDS.

b: REVENUE TO COST RATIO
It is the ratio of used resources to total available substrate
resources for successfully embedding the VNRs. Figure 8

FIGURE 7. Active servers (%) vs. Number of VNRs.

FIGURE 8. Revenue to cost ratio vs. Number of VNRs.

displays the average revenue-to-cost ratio across the base-
lines. The proposed InDS exhibits a superior revenue-to-cost
ratio than the VNE-NRM, VNE-MWF, A3C-GCN, and
DPGA baselines. InDS considering network features along
with system resources during the training phase results in
proximal VM embedding, which results in few substrate
link usages. This helps InDS accommodate more VNRs,
thereby enhancing the revenue-to-cost ratio in the long run.
The negligence of the network features by A3C-GCN is the
reason for its decayed performance than InDS. Further, VNE-
NRM uses a ranking mechanism that leads to more scattered
VM placement, resulting in poorer performance than the
A3C-GCN and InDS. On the other hand, the VNE-MWF con-
ducts the VM embedding established on maximum available
server capacity, which results in more dispersed VM place-
ment, leading to more substrate path consumption for fewer
VNRs, which is the reason for its decreased performance than
InDS. Further, DPGA shows the least performance compared
to all other baselines and InDS due to randomness in its
solution.

2) QUALITY OF SERVICE (QoS)
This section explains the diverse QoS metrics, such as
server utilization, link utilization, and substrate path length
utilization.
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FIGURE 9. Active server utilization (%) vs. Number of VNRs.

a: SERVER UTILIZATION
It determines the percentage of the server’s CRB resource
capacity used by the embedded VMs to the overall available
server’s CRB resource capacity. Figure 9 indicates the
average server resource consumption across the baselines.
The proposed InDS consumes more server resources for
initial test cases and decreases for preceding larger test cases
due to decreased acceptance compared to other baseline
strategies. This behavior of NORD attributed to considering
multiple features during training results in better embedding
decisions, which helps in maximizing server utilization by
accommodating more VNRs. Further, VNE-NRM devastates
lower substrate resource utilization than InDS. However, it is
superior to A3C-GCN, VNE-MWF, and DPGA. A3C-GCN
exhibits poorer performance than VNE-NRM and InDS
due to a lack of sophisticated network-related features,
which causes dispersed VM placement and leads to lower
substrate resource utilization. Similarly, VNE-MWF adopts
a poor embedding strategy, resulting in a lack of network
resources for accepting more VNRs. This leads to poor server
resource utilization over the test scenarios than InDS. On the
other hand, due to the involvement of random operations,
DPGA exhibits inferior resource utilization than all other
strategies.

b: LINK UTILIZATION
It reflects the ratio of consumed bandwidth link resources
to the available physical link’s capacity. Figure 10 depicts
the link resource used for various baseline strategies.
The InDS uses more link resources than the VNE-NRM,
A3C-GCN, DPGA, and the VNE-MWF strategies. This
behavior is linked to satisfying maximum utilization lim-
itations on substrate links to avoid congestion (refer to
Section IV-B3). VNE-NRM and VNE-MWF use a system
resource-specific embedding technique, resulting in poor
substrate link utilization than InDS. Alternatively, A3C-
GCN consumes fewer link resources than the VNE-NRM
and InDS due to the poor acceptance ratio throughout
the test cases. VNE-MWF consumes more link resources
than the A3C-GCN due to fairly dispersed VM placement,

FIGURE 10. Link utilization (%) vs. Number of VNRs.

resulting in more link resource consumption for fewer VNRs.
However, the involvement of mutation and crossover in
DPGA leads to degraded performance than InDS and other
approaches.

c: PATH LENGTH UTILIZATION
The average path length measures the efficiency of mapping
VNRs onto the SN based on the length of the paths
consumed. Due to link upper bound capacity constraints, the
proposed InDS approach consumes more average substrate
paths across the cases, which is captured in Figure 11. This
statistic represents congestion prevented by distributing VL
requests over more substrate links by InDS compared to
other baseline techniques such as A3C-GCN, VNE-MWF,
VNE-NRM, and DPGA. On the other hand, due to the
randomization in the embedding technique, the DPGA
uses fewer substrate path lengths than NORD. However,
it consumes more substrate path length than the VNE-
NRM, A3C-GCN, and VNE-MWF strategies. Alternatively,
VNE-NRM and VNE-MWF have lower average path length
usage than InDS for a lower acceptance ratio due to the system
attribute-based embedding mechanism. A3C-GCN uses less
average path length than all other techniques because it
relies solely on system metrics during learning. However,
all baseline techniques overlooked congestion avoidance
over links, resulting in reduced performance compared to
the InDS.

3) CONGESTION METRICS
This section explains the congestion metrics, such as average
server and link stress.

a: AVERAGE SERVER STRESS
It quantifies the load on individual servers in a network
resulting from embedded VMs from the VNRs. Figure 12
demonstrates the average server stress across the SN. In InDS
servers are not overloaded, which will improve the overall
performance. It implies that InDS congestion-control strategy
leads to better load distribution across servers than the other
baseline approaches by achieving maximum acceptance and

VOLUME 12, 2024 94857



T. G. Keerthan Kumar et al.: InDS: Intelligent DRL Strategy

FIGURE 11. Average path length vs. Number of VNRs.

FIGURE 12. Active server stress vs. Number of VNRs.

revenue-to-cost ratios. On the other hand, VNE-MWF uses
a kind of ranking based on resource availability during VM
embedding, which is superior to A3C-GCN, VNE-NRM,
and DPGA approaches across the scenarios. Meanwhile,
VNE-NRMshows slightly less server consumption than InDS
and VNE-MWF, and this is due to the use of a system
resource-specific ranking mechanism. On the other hand,
A3C-GCN delivers slightly lower server consumption than
the VNE-NRM, and InDS across the test scenarios due to
negligence of the network features during training is the
reason for its behavior. The strategy DPGA demonstrates
a decreased acceptance ratio is the reason for its inferior
performance compared to all other approaches and InDS.
Moreover, VNE-NRM. VME-MWF and DPGA neglected
the load balancing in their strategies, leading to diminished
performance.

b: AVERAGE LINK STRESS
It is the proportion of the total number of embedded
VLs by the total number of substrate links, and the
same is captured in Figure 13. Due to the upper bound
limit on the link usage to achieve the congestion avoid-
ance objective, the InDS archives superior performance
than other approaches. Moreover, considering system and

FIGURE 13. Active link stress vs. Number of VNRs.

FIGURE 14. Total execution time (s) vs. Number of VNRs.

network-specific features during training results in improved
acceptance and effective link load distribution. Alternatively,
the strategies VNE-NRM, DPGA, and VNE-MWF show
almost similar performance due to a poorer acceptance
ratio. On the other hand, due to a lack of network features
during the training in A3C-GCN resulted in diminished
link utilization compared to all other baselines and InDS.
Moreover, these approaches neglected congestion avoidance,
leading to decreased performance than InDS.

4) OTHER RELEVANT METRICS
The other relevant metrics reflect the execution time
consumed by different strategies.

a: EXECUTION TIME
DPGA takes the longest time to execute all test cases due
to advanced crossover and mutation processes, resulting in
high execution time overhead. VNE-NRM and VNE-MWF
have slightly longer runtime than A3C-GCN and InDS. This
overhead is due to the use of a ranking process during VM
and server selection. On the other hand, both A3C-GCN
and InDS demonstrate lower execution compared to all other
techniques due to intensive training lowering its assignment
time during the embedding phase.
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From the above illustration, we deduce that InDS deliv-
ers significant performance increases compared to various
baselines employing considerable evaluation criteria.

VII. CONCLUSION AND FUTURE DIRECTIONS
This work proposes a multi-objective framework called
InDS to address fundamental issues in NV, particularly the
VNE. InDS uses hybrid DRL and GCN-based techniques
to dynamically extract network and system-specific features
based on the network environment state during the training.
To accelerate the training process and produce a more
efficient training experience, we utilized parallel training for
policy generation using the A3C algorithm. InDS learning
agent uses GCN to extract multiple characteristics from raw
state inputs efficiently. The recommended reward function
efficiently controls the learning process by considering
diverse objectives such as congestion avoidance, accep-
tance, and revenue-to-cost ratio maximization by effectively
utilizing the substrate resources. The DRL enhances the
decision-making capabilities of InDS by considering four key
attributes such as CRB, bandwidth, degree, and between-
ness centrality. The DRL agent is trained within variants
of this four-dimensional network environment, ultimately
determining the probability of VNRs being mapped onto
specific servers in the SN. The performance evaluation
demonstrates that InDS outperforms four cutting-edge works
in terms of acceptance ratio and revenue-to-cost ratio, along
with controlling network congestion effectively, thereby
improving the overall network performance. This superiority
is demonstrated by a 28% improvement in acceptance and
45% in revenue-to-cost ratio. This highlights InDS assurance
as a resilient and efficient solution to the VNE problem in the
context of NV.

Future directions for the InDS involves integrating
enhanced security and QoS considerations, and to ensure
improved performance, we intend to switch to real-time data
testing. Also, we are planning to include additional network
features during the training to refine InDS robustness and
versatility. Additionally, we also aim to include testing and
validating InDS on commercial cloud platforms such as AWS
and Azure.
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