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ABSTRACT This paper introduces a novel hybrid deep learning-based approach for short-term electricity
demand forecasting in dance sport activities. Traditional deep learning methods often overlook important
spatial dependencies and key features like trend and seasonal patterns. To address these limitations,
we propose a model that combines Transformer for temporal feature extraction and Graph Neural
Networks for spatial feature extraction, enabling prediction based on spatial-temporal features. Additionally,
we employ the decomposition techniques to extract seasonal and trend features from dance sports data.
By integrating early fusion (feature-level fusion) and late fusion (score-level fusion) strategies, our model
achieves superior performance, outperforming baseline methods by over 4% on benchmark datasets.
Additionally, we conduct the ablation study to comprehensively analyze the impact of each module on
prediction accuracy, providing valuable insights into the contribution of spatial, temporal, seasonal and trend
features to the overall forecasting performance.

INDEX TERMS Short-term demand forecasting, graph neural networks, DanceSport, hybrid fusion.

I. INTRODUCTION
DanceSport, as a competitive form of ballroom dance, can
be usually divided into two subcategories with ten different
dance styles, including International Standard Dance, such
as Waltz, Viennese Waltz, Foxtrot, Quick Step and Tango,
and International Latin Dance, e.g., Rumba, Cha Cha,
Jive, Samba and Paso Doble [1]. In the past two decades,
DanceSport has emerged as a widely embraced physical
activity, captivating enthusiasts worldwide and fostering the
establishment of numerous training institutions [2], [3].
These training facilities, often strategically located in resi-
dential areas, cater to the growing demand of DanceSport
activities. However, unlike conventional training institutes,
DanceSport facilities exhibit a distinctive characteristic:
during training sessions, the instantaneous electricity demand
will experience a significant surge, nearly doubling the
typical power consumption, which demands the proactive
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energy reservoir planning from power grid companies. The
heightened demand primarily stems from the power-intensive
nature of video analytics equipment, air conditioning systems
employed in instructional programs, and various auxiliary
devices such as microwaves.

The pronounced electricity consumption patterns in
DanceSport activities present a unique challenge, as tradi-
tional electricity load forecasting models may not adequately
capture the dynamic and intensified nature of power usage
during training sessions. Recognizing the need for tailored
short-term electricity demand forecasting in this context, this
paper aims at building an DanceSport-specific electricity
demand forecasting model. Such a model would enable
electricity providers to anticipate and make preparations for
peak demand instances, facilitating targeted energy reservoir
planning for specific locations. The proactive approach not
only ensures the efficient allocation of power resources
but also addresses the specific energy dynamics associated
with DanceSport activities. By delving into the intricacies
of electricity consumption within this specialized domain,
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the developed predictive model is able to contribute to
power distribution strategies and the overall sustainability of
DanceSport training facilities [4].

While Section II will present a brief literature review
on short-term time-series data forecasting models, here,
we would like to highlight that existing methods have not
effectively addressed the inherent characteristics of Dance-
Sport, leading to the suboptimal forecasting performance.
DanceSport exhibits salient short-term correlation features,
particularly during warm-up sessions conducted by users and
instructors before training. While the power consumption
may not experience a significant surge during this phase,
the integration of key electrical features associated with
warm-up activities, such as initiating dance music playback
and displaying video footage of users engaging in pre-
training exercises, has the potential to accurately predict
the short-term electricity demand. Additionally, DanceSport
courses exhibit distinct periodic characteristics, with lighter
training sessions like Latin dance occurring on workdays and
more intensified DanceSport activities, such as street dance,
Ballet, taking place during weekends. These recognizable
patterns contribute significantly to the predictive accuracy of
the electricity surge, providing invaluable insights for tailored
forecasting in the context of DanceSport.

In view of the aforementioned characteristics, this paper
introduces a robust short-term electricity demand forecasting
model specifically designed for DanceSport activities. Unlike
traditional approaches, our model utilizes a hybrid deep
learning-based framework which combines early fusion at
the feature level with the late fusion at the score level.
We employ a Transformer-based architecture to capture the
temporal dependence of DanceSport activities using the
multi-head attention mechanism. Furthermore, we integrate
GNN to extract spatial features which characterize the
spatial dependence in DanceSport electricity consumption,
accounting for activities such as users drinking water or
changing clothes during DanceSport warm-up activities.

Furthermore, we employ the time series data decomposi-
tion technique to extract seasonal and trend features. These
features are then combined through feature fusion, leveraging
the outputs of both Transformer and GNN models, which
are subsequently fed into a hybrid Deep Neural Network
(DNN) for electricity demand prediction. Our approach,
which incorporates spatial, temporal, and periodic informa-
tion, surpasses conventional time-series prediction models,
showcasing superior accuracy in forecasting DanceSport
electricity consumption. Figure 1 demonstrates the flowchart
of our proposed method.

The paper’s contributions can be summarized as follows:
(1) A novel hybrid deep learning-based forecasting frame-
work is proposed for short-term electricity demand in Dance-
Sport activities, leveraging Transformer architecture with
a multi-head attention mechanism, graph neural networks,
and time series data decomposition to comprehensively
capture temporal, spatial, seasonal and trend features.
(2) The inclusion of GNN specifically addresses spatial

FIGURE 1. A flowchart of our proposed method.

dependence, modeling user behaviors during warm-up, such
as water consumption and clothing changes. (3) Demon-
strated through quantitative performance comparison, the
proposed model outperforms state-of-the-art algorithms,
showcasing the effectiveness of the multi-faceted strategy
in accurately predicting DanceSport electricity consumption
patterns.

The remainder of the paper is organized as follows: In
Section II, a brief literature review is presented, focusing
on short-term load forecasting methods as well as feature
fusion for predictive modeling. Section III introduces the
background knowledge of Transformer and graph neural
networks (GNN), providing the necessary contexts for
the subsequent methodology presentation. The proposed
hybrid deep learning-based forecasting model, integrating
Transformer, GNN, and time-series data decomposition for
feature extraction, is presented in Section IV. To validate
the model’s effectiveness, comparative experiments with
canonical baseline algorithms are conducted on benchmark
datasets in Section IV, complemented with an ablation study
to discern individual contributions of each component within
the model. We end the paper with conclusion and future work
in Section VI.

II. LITERATURE REVIEW
In this section, we first present a brief overview of
methodologies used for short-term load forecasting (STLF),
and then introduce fusion methods for predictive modelling,
in that the proposed model in this paper is essentially a fusion
model for short-term load forecasting.

A. SHORT-TERM LOAD FORECASTING (STLF)
Short-term load forecasting (STLF) holds paramount impor-
tance in various domains and has thus attracted increasing
attentions from both academic researchers and industrial
entrepreneurs over the past several decades [5], [6],
[7], [8], [9].

Early studies predominantly rely on the auto-regressive
moving average (ARMA) model and its variants [10], [11],
[12], [13] as foundational frameworks for short-term load
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forecasting. These models aimed to predict load based
on linear characteristics within historical load records.
However, the inherent complexity of dynamic load patterns
renders the linearity assumption of these forecasting models
limiting in terms of the prediction accuracy. Consequently,
the introduction of deep learning-based methods (DLMs)
become imperative, seeking to capture intricate features in
diverse manners. The transition from classical statistical
methods to DLMs marks a shift towards more sophisticated
modeling techniques capable of accommodating the intricate
dynamics inherent in short-term load forecasting.

In the realm of short-term load forecasting (STLF),
modern Deep Learning Models (DLMs) like DRN [14],
RNN [6], [15], LSTM [16], and CNN [17] have prominently
advanced temporal feature extraction. However, to the best of
our knowledge, DLMs often focus solely on temporal dynam-
ics and overlook the crucial spatial dependencies within
electricity consumption data [18], [19], [20]. Additionally,
these models often lack explicit mechanisms for capturing the
periodical patterns, potentially compromising their accuracy
in predicting nuanced load variations over specific time
intervals.

B. FUSION METHODS FOR PREDICTIVE MODELING
Fusion methods have emerged as effective strategies to
mitigate the limitations of individual models, making them
promising candidates for constructing robust hybrid models
for prediction. These approaches are particularly valuable for
addressing the inherent challenges associated with complex
and dynamic datasets. In the academic domain, two primary
perspectives on fusion methods have gained prominence:
early fusion and late fusion.

Early fusion operates at the feature level, merging informa-
tion before it reaches the predictivemodel. The approach inte-
grates diverse features from multiple sources, enhancing the
model’s ability to capture comprehensive patterns in the data.
Subsequently, the fused features are fed into Deep Learning
Models (DLMs) for prediction. The advantage lies in the
combination of diverse information, allowing the model to
capitalize on the strengths of each source. Notable examples
include early fusion techniques employed in multi-modal
applications, where features from different data modalities
are integrated for more holistic predictions [21], [22], [23].
On the other hand, late fusion involves individual models to
generating prediction independently. These predictions are
later integrated into a unified hybrid model during the later
stages of the modeling process, providing a deeper and more
comprehensive understanding of data patterns. Late fusion,
particularly observed in ensemble methods like stacking and
bagging, proves highly effective when managing diverse data
sources or models with distinct advantages [24], [25].

The proposed model in this paper employs a hybrid fusion
approach comprising both feature-level early fusion and
score-level late fusion, combining Transformer, GNNs, and
time-series data decomposition, for enhanced forecasting

capabilities in short-term DanceSport electricity demand
prediction.

III. BACKGROUNDS: TRANSFORMER AND GRAPH
NEURAL NETWORKS
Since our proposed methodology leverages the Transformer-
based multi-head attention model for DanceSport’s temporal
feature extraction and integrates Graph Neural Networks
(GNNs) for the spatial feature extraction, this section
provides the essential background knowledge of Transformer
and GNNs.

A. TRANSFORMER AND MULTI-HEAD ATTENTION
The Transformer architecture, introduced by
Vaswani et al. [26], has become a cornerstone in natural lan-
guage processing and sequential datamodeling. Its innovative
design replaces recurrent or convolutional structures with a
self-attentionmechanism that allows for capturing long-range
temporal dependencies efficiently. Transformer consists of an
encoder-decoder structure, and in our context, we primarily
focus on the encoder part for temporal feature extraction.

One pivotal component of the Transformer’s encoder is the
multi-head attention mechanism. Given an input sequence
X = (x1, x2, . . . , xn), the multi-head attention mechanism
operates by computing scaled dot-product attention in par-
allel across multiple attention heads. The attention scores Ai
for each head i are calculated as follows:

Ai = softmax

(
Qi · KT

i
√
dk

)
,

where Qi, Ki, and Vi represent the query, key, and value
projections for the i-th head, and dk is the dimension of
the key vectors. The final attention output for each head is
obtained through weighted summation:

Headi = softmax

(
Qi · KT

i
√
dk

)
· Vi,

The outputs from all attention heads are then concatenated
and linearly transformed to produce the multi-head attention
output. This mechanism enables the model to attend to differ-
ent aspects of the input sequence simultaneously, enhancing
its ability to capture diverse temporal dependencies.

In recent years, GNNs have gained significant attention
and witnessed continuous advancements. Various extensions
and variations, e.g., Graph Transformer [27], Vision
Transformer (ViT) [28], Anomaly Transformer [29], have
been introduced to address specific challenges in different
application domains.

B. GRAPH NEURAL NETWORKS (GNNS)
Graph Neural Networks (GNNs) have emerged as powerful
tools for learning from graph-structured data [30]. Unlike
traditional neural networks that operate on grid-like data,
GNNs can effectively capture relationships and dependencies
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FIGURE 2. Architecture of the proposed multi-task learning model.

within non-Euclidean domains, making them well-suited for
applications involving complex connectivity patterns.

At the core of GNNs is the aggregation of information
from neighboring nodes in a graph. Consider a graph G =

(V, E), where V represents the set of nodes and E denotes
the set of edges. The information propagation in GNN can be
formalized using the aggregation function:

h(l+1)
v = σ

 ∑
u∈N (v)

f
(
h(l)u , h(l)v , euv

) .

Here, h(l)v represents the node features at layer l for node v,
N (v) denotes the neighbors of node v, f is a learnable
aggregation function, and euv represents the edge features
between nodes u and v. The function σ is a non-linear
activation function.

One of the pioneering GNN architectures is the Graph
Convolutional Network (GCN) proposed by Kipf and
Welling [31]. GCN simplifies the aggregation function to:

h(l+1)
v = σ

 ∑
u∈N (v)

1
√
deg(u) · deg(v)

· h(l)u


where deg(u) represents the degree of node u, and the
aggregation weights are normalized by the geometric mean
of the degrees of the connected nodes. GNNs have shown
remarkable performance in tasks such as node classification,
weakly supervised segmentation [32], and detection with
missing data [33], demonstrating their versatility in modeling
complex relationships in diverse domains.

IV. METHODOLOGY
In this section, we first give the problem definition.
Following this, we delve into our proposed approach,
a Multi-Task Learning Model (MTLM), tailored specifically
for multi-variate time series forecasting problems, i.e.,
we investigate the electricity consumption prediction in this
paper. Within MTLM, we elaborate on three key compo-
nents: the Spatial-Temporal Correlation Module (STCM),

the Temporal-Aware Decomposition and Prediction Module
(TADPM), and the Feature-Score Fusion Module (FSFM).

A. PROBLEM DEFINITION
Given the historical time series X ∈ RT×N from the past T
time steps for N variables, where xi ∈ X denotes the i-th
time series, i.e., xi = {x1, · · · , xt , · · · , xT }, i ∈ {1, 2, · · · ,N }

and xt is the electricity consumption at time step t . The
goal of electricity demand forecasting is to predict the values
Ŷ ∈ RTf ×N for the future Tf time steps.

B. OVERVIEW
The overall framework of our proposed multi-task learning
model (MTLM) is shown in Figure 2. MTLM mainly
consists of three modules, namely spatial-temporal cor-
relation module (STCM), temporal-aware decomposition
and prediction module (TADPM) and feature-score fusion
module (FSFM). In particular, STCM aims to learn the
long-term temporal patterns and spatial correlations between
time series based on a Transformer encoder and graph neural
network layer, respectively. TADPM is adopted to capture
both seasonal and trend-cyclical patterns in a decomposition
way, which performs seasonal and trend predictions and
fuses such predictions for the final time series forecasting.
FSFM achieves the goal of multi-task learning by effectively
utilizing the correlations and complementarities among
multiple prediction tasks through fusion at both feature and
score levels.

C. SPATIAL-TEMPORAL CORRELATION MODULE
STCM contains three layers with patch-wise embedding,
Transformer and graph neural network, where the patch-wise
embedding layer encodes the time series to help capture more
semantic relations between patches (i.e., segment) compared
with modeling separate points. Then, these segment repre-
sentations are fed into the Transformer layer for capturing
the temporal dependencies. By doing this, it can significantly
reduce the length of the input time series and make the
representation of time series more efficient. Finally, a graph
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neural network layer takes the last segment representation
together with a graph adjacent matrix as the input to further
learn spatial and temporal correlations.

1) PATCH-WISE EMBEDDING LAYER
We split the time series xi ∈ RT from variable i ∈

{1, 2, · · · ,N } into P non-overlapping patches with length L
following [34], i.e., T = P× L. Hence, the k-th patch can be
denoted as xik ∈ RL , which can be transformed into the latent
space via the patch-wise embedding layer:

rik = fe(xik ), (1)

where fe(·) is a transformation function, such as linear
projection or multilayer perceptron (MLP), rik ∈ Rd is the
representation of segment xik and d is the dimension. As such,
the sequence of segment representations can be denoted as
ri = {ri1, r

i
2, . . . , r

i
P}.

2) TRANSFORMER LAYER
The Transformer layer takes ri as the input and generates a
sequence of latent representations:

Hi
Tf = fTf (ri), (2)

where fTf (·) is a Transformer layer, note that it also can
be a stacked Transformer layer. Hi

∈ RP×d is the latent
representations which encodes the temporal correlations
within time series, i.e., Hi

Tf = {hi1,h
i
2, . . . ,h

i
P}.

3) GRAPH NEURAL NETWORK (GNN) LAYER
The learned patch-wise latent representations in the Trans-
former layer can be utilized in the downstream models
(e.g., GNN-based framework), to further enhance the
spatial-temporal pattern learning. Therefore, the representa-
tions HTf from all time series are fed into a GNN layer (e.g.,
Graph WaveNet [35]) as follows:

HTf−g = MLP(HTf ) + Hg, (3)

Hg = fg(HTf ), (4)

where HTf−g ∈ RN×d is the final representation of STCM,
MLP(·) transforms the HTf to the latent space of Hg.
fg(·) denotes the Graph WaveNet. Thus STCM can predict
future values ŶSTCM with a regression layer and the loss is
calculated by mean absolute error:

LSTCM
= L(ŶSTCM,Y) =

1
Tf N

Tf∑
t=1

N∑
i=1

|ŷSTCMti − yti|. (5)

D. TEMPORAL-AWARE DECOMPOSITION AND
PREDICTION MODULE
The spatial-temporal correlation module, equipped with a
Transformer layer and a GNN layer, shows strong capability
in modeling long-term sequences and spatial correlations
among time series. In the scenario of sports activities,
electricity demand often exhibits seasonal and trend-cyclical
characteristics, for instance, sports activities with periodical

practice schedules and seasonal match arrangements.We thus
design a temporal-aware decomposition and prediction mod-
ule (TADPM) to further explore and exploit such seasonal and
trend-cyclical patterns inspired by the recent study [36].

1) DECOMPOSITION
TADPM separates the time series X ∈ RT×N into two parts
following the decomposition method in [36]:

Xt = AP(Padding(X ))kernel, (6)

Xs = X − Xt , (7)

where Xt , Xs ∈ RT×N represents the trend-cyclical and
seasonal parts, respectively. Padding(·) keeps the series
length unchanged, and AP(·) is adopted to separate different
patterns with different kernels, thus Xt can be generated by
the mean operation:

Xt = mean(AP(Padding(X ))kernel1 , · · · ,

AP(Padding(X ))kerneln ). (8)

2) TREND-CYCLICAL PREDICTION
We adopt a linear regression to perform future trend-cyclical
series prediction by taking Xt ∈ RT×N as the input:

Ŷt
= freg(Xt ), (9)

where freg(·) denotes the regression layer, and Ŷt
∈ RTf ×N is

the prediction results of trend part.

3) SEASONAL PREDICTION
To capture the seasonal patterns from the seasonal part Xs,
we employ a well-designed module1 in [36], thus the final
prediction of the seasonal part can be expressed as:

Ŷs
= fMIC (Xs), (10)

where fMIC (·) indicates the multi-scale isometric convolution
(MIC) layer, and Ŷs

∈ RTf ×N is the seasonal prediction.
Therefore, the final result is calculated by the mean operation
of the trend-cyclical and seasonal predictions:

Ŷs,t
= mean(Ŷs, Ŷt ). (11)

E. FEATURE AND SCORE FUSION MODULE (FSFM)
Although both STCM and TADPM can predict future elec-
tricity demand separately, the prediction bias of individual
modules inevitably affects the stability and robustness of
overall predictions. This inspires us to design an ensemble
strategy to combine the feature outputs and prediction results
of multiple modules, so as to achieve more stable overall
prediction performance. We thus propose a feature-score
fusion module (FSFM), which fuses different features
and the individual predictions from different modules.
Specifically, FSFM concatenates latent representations
(i.e., HTf and HTf−g) from the Transformer layer and GNN

1For brevity, we omit its calculation process, interested readers can refer
to MICN [36] for more details.
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layer as well as both seasonal and trend parts (i.e.,Xs andXt )
as follows:

Hc = HTf ⊕ HTf−g ⊕ HXs ⊕ HXt , (12)

where HXs , HXt are the linear projection results with
Ws,t ∈ RT×d , Hc is the feature concatenation result, which
is fed into the regression layer freg(·) for prediction:

ŶF
= freg(Hc). (13)

After obtaining the predictions from different modules,
FSFM then performs score fusion in a simple mean operation
for the final prediction as follows:

Ŷ = mean(ŶSTCM , Ŷs,t , ŶF ), (14)

where Ŷ ∈ RTf ×N represents the prediction values for the
future Tf time steps.

F. MODEL TRAINING
We first pre-train the STCM and TADPM, respectively,
and then train the multi-task learning model based on the
following loss function:

L = α1L(ŶSTCM,Y) + α2L(Ŷs,t ,Y) + α3L(ŶF ,Y)

+ α4L(Ŷ,Y), (15)

where αi, i ∈ [1, 4] is the hyper-parameter to be learned for
adjusting the importance of different prediction tasks.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. DATASET
This paper utilizes the publicly available Almanac of
Minutely Power dataset (AMPds2) dataset [37], which
captures the residential energy consumption. AMPds2 is
selected as it includes all three major types of energy
usage: electricity, water, and natural gas. The dataset spans a
significant time frame of two years and has beenmeticulously
processed to fill in minor gaps algorithmically, ensuring a
consistent recording frequency of one reading per minute.

Specifically focusing on electricity consumption, the
dataset comprises readings from 21 physical meters and
2 software-calculated meters. Each meter provides compre-
hensive data across 11 measurement parameters: voltage,
current, frequency, displacement power factor, apparent
power factor, real power, real energy, reactive power, reactive
energy, apparent power, and apparent energy. To ensure the
integrity of comparisons, rigorous data cleansing procedures
have been implemented on the AMPds2 dataset.

We exclusively focus on the Electricity_P dataset extracted
from the comprehensive AMPds2, specifically targeting
electrical power loads relevant to the discussed tasks.
We carefully selected 15 meters from this dataset that
align with the requirements of dancing sports activities.
It’s important to note that the electricity usage patterns for
dancing sports are distinct from typical daily demands, as the
devices used are tailored for training or competition in this
specific sport. From the total of 23 meters available in the

Electricity_P dataset, we handpicked and utilized 15 devices
directly related to dancing sports. To consolidate the data,
we calculated the combined load of these 15 meters, treating
them collectively as another representative meter for our
analysis.

B. EXPERIMENTAL SETUP
In this subsection, we compare the performance of our
proposed methods with several baseline prediction models,
which will be introduced in the following. Furthermore,
we also perform the ablation study by removing part of the
components and evaluate the prediction performance of the
remaining modules.

1) EXPERIMENTAL DETAILS
For data pre-processing, we resampled the data to a half-
hourly frequency. Subsequently, we segmented the data based
on timestamp sequences, allocating 60% as the training set,
and the two remaining 20% each as validation sets and testing
sets, respectively.

In line with STEP’s configuration, we set the input length
to 772 (equivalent to 2 weeks) and divided it into patches of
size 12. The prediction length matches one patch size, i.e., 12,
and we assessed prediction performance at 3, 6, and 12 steps,
with each step corresponding to half an hour. The encoder
structure mirrors STEP’s setup, involving pre-training a
reconstruction task with a 70% masking rate to acquire
the trained encoder. Similarly, the STCM structure follows
STEP’s model, while the TADPM structure is patterned after
MICN, both maintaining a hidden dimension of 128 for latent
representations.

Utilizing the same assessment methodology as in the prior
study, we calculate the Mean Absolute Error (MAE) on
z-score normalized data to standardize various variables onto
a comparable scale. Additionally, we employ four metrics
as assessment standards: MAE, Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), and Mean Absolute
Percentage Error (MAPE). Their definitions are outlined as
follows:

MAEt =
1
n

n∑
i=1

∣∣∣y(i)t − ŷ(i)t
∣∣∣ , (16)

MSEt =
1
n

n∑
i=1

(
y(i)t − ŷ(i)t

)2
, (17)

RMSEt =

√√√√1
n

n∑
i=1

(
y(i)t − ŷ(i)t

)2
, (18)

MAPEt =
100%
n

n∑
i=1

∣∣∣∣∣y(i)t − ŷ(i)t
y(i)t

∣∣∣∣∣ , (19)

where y(i)t and ŷ(i)t represent the original and forecasted
consumption time series, respectively, for all instances i at a
specific time step t . It’s important to note that, unlike MAE,
MSE, and RMSE which are computed using normalized
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TABLE 1. Electricity consumption short-term forecasting performance comparison.

FIGURE 3. Ablation Study. sum: feature summation for FSFM; cat: feature concatenation for FSFM; sf: score fusion; ff: feature fusion; fsf: score and
feature fusion.

original and predicted values, MAPE is calculated using
de-normalized values.

2) BASELINE MODELS
This subsection details the implementation of several baseline
models, namely STEP [34], STID [38], MICN [36], Auto-
former [39], LSTM [40] and HA. It’s important to note that
we evaluate each deep learning baseline model alongside
our proposed method using a standardized benchmark,
BasicTS+. We maintain consistency with the experimental
configurations of the baseline models by utilizing their
official core code and hyperparameters for conducting
experiments, with minor adjustments made only to certain
settings such as learning rate and batch size.

STEP: STEP enhances traditional STGNNs by integrating
a pre-trainingmodel that learns from extended historical data,
significantly improving long-term dependency modeling and
forecasting accuracy in multivariate time series.

STID: STID simplifies multivariate time series forecasting
by embedding spatial and temporal identities into MLPs,
enhancing accuracy and efficiency effectively.

MICN: MICN combines local features and global corre-
lations to capture an overall view of the time series data by
employing a multi-scale branch structure to model different
latent patterns.

Autoformer: utoformer revolutionizes long-term time
series forecasting with its novel decomposition architecture
and Auto-Correlation mechanism, designed to effectively
handle complex temporal patterns.

LSTM: LSTM networks utilize gates to manage informa-
tion flow, adeptly handling long-term dependencies in time

series data, thus excelling in contexts where historical context
is key for prediction.

HA: The Historical Average method, while simple,
efficiently forecasts future values by averaging past data,
proving especially effective in stable trend scenarios.

C. RESULTS AND ANALYSIS
We present the comparative results in Table 1. From
Table 1, we can see that our proposed method outperforms
the baseline models across multiple evaluation metrics.
Specifically, our method exhibits the best prediction
performance in terms of MAE, RMSE, and MAPE, across
various prediction horizons, when compared to other models.
For the MSE metric, only for Horizon 6, which is a 3-hour
prediction, MICN achieves the best prediction performance,
but outperforming our model by merely 4%.

The significant improvement can be attributed to the
comprehensive nature of our model. By integrating spatial,
temporal, seasonal, and trend features, our model captures
a more nuanced understanding of the underlying data
dynamics. This holistic approach enables more accurate pre-
dictions, especially in scenarios where factors like seasonality
and trends play a crucial role. The enhanced predictive
capabilities of our model has the potential to contribute
significantly to power-grid companies. By providing a robust
forecasting model, we contribute to the development of
effective electricity distribution strategies. This, in turn,
facilitates optimized resource allocation and operational
cost reduction for power companies, making our model a
valuable asset for the decision-making process in the energy
sector.
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D. ABLATION STUDY
In order to thoroughly assess the effectiveness of our
proposed method, we conducted an ablation study in which
we systematically removed key components and evaluated
their impact on predictive performance. The ablation study
results are presented in Fig. 3.

From the figure, we can see that each component plays
a crucial role in enhancing the predictive accuracy of our
hybrid deep learning-basedmodel.We evaluate the difference
of using summation or concatenation as the aggregation
method inside GNN, and find that in most cases, summation
achieves the better results, as indicated in ‘ours_sum’ and
‘ours_cat’ comparison in Fig. 3. Furthermore, we studied
the effect of ignoring feature fusion (w/o ff), ignoring
score fusion (w/o sf), ignoring both feature fusion and
score fusion (w/o fsf) by merely relying the prediction
results from Transformer+GNN, and report the respective
performance in the figure. We can see that by integrating all
the components together, we achieve the best performance in
terms of the four evaluationmetrics. Overall, the results of the
ablation study reaffirm the effectiveness and robustness of our
proposed hybrid deep learning-based model. By leveraging
a combination of spatial, temporal, seasonal, and trend
features, ourmodel achieves superior predictive performance,
making it a valuable tool for accurate electricity demand
forecasting for DanceSport activities.

VI. CONCLUSION AND FUTURE WORK
This paper presents a hybrid deep learning-based model
for short-term electricity consumption prediction of dance
sport activities. The model utilizes multi-head attention for
temporal feature extraction, and Graph neural networks
for spatial feature distillation. Additionally, time-series data
decomposition is used to explicitly extract the seasonal and
trend feature of dance sports. With the spatial-temporal,
seasonal and trend features, the hybrid model is able to yield
more accurate electricity demands than canonical methods.

In the future, we plan to assess our model’s robustness
with disrupted electricity data and incorporate its results
into power companies’ strategies for improved residen-
tial electricity load balancing. Moreover, ongoing model
refinement will include exploring new feature extraction
techniques and integrating data from IoT devices to enhance
predictive accuracy and reliability [41], with the goal of
developing smarter and more adaptable forecasting models
for sustainable energy management systems.
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