
Received 2 June 2024, accepted 30 June 2024, date of publication 5 July 2024, date of current version 15 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3424234

A Novel Method for Ground Vehicle Tracking
With Error-State Kalman Filter-Based
Visual-LiDAR Odometry (ESKF-VLO)
SUDEEPTA R. SAHOO AND P. V. MANIVANAN
Mechanical Department, IIT Madras, Chennai, Tamil Nadu 600036, India

Corresponding author: Sudeepta R. Sahoo (me17d018@smail.iitm.ac.in)

ABSTRACT An autonomous vehicle requires a self-tracking system that can operate both indoors and
outdoors using only on-board sensors. In this work, a vehicle self-tracking scheme called Error-State
Kalman Filter-Based Visual-LiDAR Odometry (ESKF-VLO) that uses camera, LiDAR, and IMU sensors is
proposed. In this scheme, to obtain the 3D vehicle transformation between two consecutive time frames, the
corresponding feature points are detected in the captured camera images and the respective 3D location of the
feature points is obtained from LiDAR points. The relationship between 3D LiDAR points and camera image
pixels is established using the sensors’ LiDAR-to-Camera calibration parameters. In the final step, IMU data
is corrected with this transformation matrix using the Error-State Kalman Filter, and the vehicle position is
tracked accurately. The proposed method’s efficacy is verified using the KITTI dataset and data obtained
through indoor experiments conducted using the P3DX mobile robot. The results show that the proposed
method is able to track the vehicle, and the translational and rotational errors are reduced compared to the
existing methods.

INDEX TERMS LiDAR, optical flow, road detection, error state Kalman filter, visual-LiDAR
odometry (VLO).

I. INTRODUCTION
While autonomous road vehicles are slowly gaining impor-
tance in transporting people, autonomous mobile robots are
also being increasingly used to transport goods to places
where humans may not be able to reach (like hazardous and
harsh environments). Hence, one of the important research
topics in autonomous vehicle development is developing
suitable vehicle navigation systems. Vehicle navigation also
includes the vehicle’s ability to track its own motion (state
estimation) and simultaneously map the environment [1].
Traditionally, the current vehicle state is estimated using
GPS or wheel encoder data, and both have their advantages
and disadvantages. Though the GPS system works properly
in an outdoor environment, its ability to estimate vehicle
position accurately reduces or completely stops in the
case of indoor applications or GPS signal-denied locations,

The associate editor coordinating the review of this manuscript and

approving it for publication was Ángel F. García-Fernández .

TABLE 1. Acronyms details.

as the reception of the GPS signal becomes very poor [2].
When using a wheel encoder for state estimation, wheel

92872

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-1197-8154
https://orcid.org/0000-0003-2368-249X
https://orcid.org/0000-0002-6471-8455

S. R. Sahoo, P. V. Manivanan: Novel Method for Ground Vehicle Tracking With ESKF-VLO

slip reduces accuracy [3]. Further, state-estimating sensors
can be divided into two types: sensors that give absolute
positioning with some position noise and sensors that give
incremental positioning. GPS, IPS [4], and WPS [5] sensors
usually provide absolute vehicle position values through
signal triangulation techniques, but this requires external
infrastructure (GPS satellites, anchors, cameras, etc.). Apart
from these sensors, LiDAR, camera, sonar, IR sensors, etc.,
are used to estimate the incremental vehicle state (position,
velocity, and orientation values) [6], and these sensors are
directly mounted on the vehicle and do not require any
external infrastructure for their operation. However, the noise
in these sensors produces an error at every timestamp (known
as incremental error), and this incremental error accumulates
over time, thereby affecting the estimated path accuracy.
Hence, depending on requirements (accuracy of state esti-
mation, application, cost of sensors, etc.), the autonomous
vehicle can be equipped with any one of the above sensors or
multiple sensors to estimate the vehicle position accurately by
using data fusion techniques to reduce the incremental error
of vehicle odometry. Using multiple sensors also reduces
sensor failure-related navigation failures.

In this work, an incremental location-finding technique
that fuses data fromLiDAR and a vision sensor (monochrome
camera) is used for vehicle state estimation. The above
estimated vehicle state is corrected using IMU sensor data
with the help of an Error-State Kalman Filter to minimize the
incremental error. LiDAR, which stands for Light Detection
and Ranging, is one of the most widely used perception
sensors in the navigation of autonomous vehicles. LiDAR
detects and estimates the distance of any object in front
of it by illuminating the object and receiving the reflected
laser light pulses with multiple laser transceivers. LiDAR
estimates the object’s distance more accurately compared
to the ultrasonic sensor and IR sensor [7]. Also, LiDAR-
based SLAM is the best tool for vehicle navigation [8].
Additionally, a variety of algorithms are available for SLAM
that utilize neural networks for state estimation; however,
for this neural network-based approach, a large amount of
pre-data is required to train the system. Further, in the case
of SLAM, the whole environment data need to be stored as a
map and processed at every instance. Processed current point
clouds are compared with an earlier stored map to estimate
vehicle position [9]. Similarly, using vision data (camera) also
makes vehicle localization possible; however, this method is
also computationally expensive.

Robust segmentation of flat surfaces (can be a road surface
or flat floor in the case of an indoor environment) from the
total environment is a crucial and challenging part of the algo-
rithm that will be developed in this work. Many researchers
have primarily used images from a monocular camera for
road area segmentation. In the past, road section detection
methods have applied various edge detection methods to
achieve better performance [10] (for lane marking detec-
tion). However, presently deep convolutional neural network
(DCNN) approaches such as FCN [11] and DeepLab [12] are

being used to obtain much improved performance. Despite
the progress made in image-based ground segmentation
methods, they have their own disadvantages.

Lane-based road segmentation can’t be used in the indoor
environment, due to the non-availability of fixed lane
markings and also in the case of rural unstructured roads
without lane markings. Further, the performance of DCNN
deteriorates with visual noise present in the captured image,
which can be caused by overexposure, changing lighting,
ambiguous illusions, and blurring of images as described
in [13]. In indoor applications, obstacles with RGB values
similar to the ground plane pose challenges for vision-based
flat surface segmentation. Hence in the present work, to avoid
these issues and to improve the road detection performance,
the LiDAR sensor along with the spatial-based approach
(eliminate effect of illumination) is used to perform the flat
surface segmentation as in [14].

II. RELATED WORK
Navigating the mobile robot using a monocular or stereo
camera is known as Visual Odometry (VO)-based navigation.
The authors of [15] have estimated the robot motion using
the visual information (feature correspondence) available
from the camera. Various methods to determine the relative
movement of the frame have been implemented. Those
methods can be classified as direct methods (minimizing
the photometric error) [15], [16], [17], [18], [19], indirect
methods (minimizing the reprojection error) [20], [21], [22],
[23], and semantic mapping method (segmenting image
and estimating via known pose) [24], [25], [26], [27].
Moreover, the accuracy of the VO can be influenced by
camera imaging quality, lighting conditions, and illumination
variations. Furthermore, camera calibration parameters may
vary due to vibration induced while maneuvering [28].

Besides VO-based navigation, researchers have also
explored LiDAR-based navigation systems for autonomous
navigation in indoor and outdoor environments [29]. There
are two types of LiDARs, namely: 2DLiDAR and 3DLiDAR.
The 2D LiDAR consists of a single scanning layer and
performs well in indoor applications such as SLAM [9], [30].
Similarly, mapping and localization of the environment have
been done using 3D LiDAR [31], [32]. Both 2D and 3D
LiDAR create point clouds of the environment continually,
and the system matches the geometrical structure obtained
from the current point clouds with the structure associated
with the previously obtained point cloud for mapping and
localization. Other sensors like IMU [33], GPS, or wheel
encoder readings are often used to improve the accuracy
of LiDAR odometry by an extended Kalman filter [34] or
particle filter [35]. The primary advantage of LiDAR-based
localization is that as the LiDAR scanning rate is very high
compared to the vehicle motion, distortion due to motion can
be neglected [31]. The drawback of LiDAR-based SLAM is
the high computational cost due to expensive correspondence
point searching [36].

VOLUME 12, 2024 92873

S. R. Sahoo, P. V. Manivanan: Novel Method for Ground Vehicle Tracking With ESKF-VLO

Hence, this paper proposes a hybrid approach that uses
both LiDAR and camera sensors to compute the 3D
corresponding points, instead of the geometrical structure.
The 3D corresponding points are computed by estimating
the depth details of the matched corresponding feature points
from the camera image. Moreover, to estimate the depth of
feature points, a fluctuating point cancellation algorithm is
used to segment the ground plane from the LiDAR point
cloud. Subsequently, using the ground flat surface LiDAR
points, the 3D location of 2Dmatched corresponding features
is obtained. Finally, the transformation matrix is calculated
for the 3D corresponding points at every time instant; thereby
the vehicle motion is detected and recorded.

III. METHODOLOGY
The objective of this paper is to estimate vehicle motion
in the form of the transformation matrix at every instant of
movement (i.e., at time t to time t + δt) by fusing the LiDAR
point cloud and camera image data. The transformation
matrix of the vehicle coordinate system from time t to
time t + δt is calculated from the 3D corresponding points.
These corresponding points are represented as 3D coordinate
values

(
ri =

[
xi yi zi

])
with respect to vehicle coordinate

systems for the above two time stamps. Before starting
the procedure, an extrinsic calibration has been done to
compute the rigid transformation matrix, which provides
the relationship between the LiDAR coordinate frames
and the camera image pixel coordinate frame. At each
timestamp, the LiDAR generates point cloud information,
and the camera produces an RGB image. While the LiDAR
point cloud data provides 3D depth information, it does not
provide the corresponding points between the timeframes.
However, RGB images are able to provide pixel correspond-
ing points, not the depth information. In the developed
algorithm, each step begins with detecting the flat ground
surface by removing fluctuating points (non-flat sections)
from the LiDARpoint cloud data. This flat section (consisting
of cloud points) is then projected over images (captured at
the same time instant) using previously calculated calibration
parameters and a dataset is prepared for LiDAR 3D points
presented in the image with their 2D image pixels.

Using feature selection and matching methods between
two captured images at timestamp t and t + δt , the
image pixel corresponding points are identified. These image
corresponding points may not have their 3D value (depth
information) from LiDAR, so an interpolation method is
used to convert pixel values to 3D points using the prepared
dataset. The interpolation method only works for points
presented on a flat surface. Hence, the flat surface is detected
beforehand and the same flat surface is projected over the
image. After obtaining the 3D corresponding environment
points between the two LiDAR coordinate frames (using
the previously generated dataset), the vehicle transformation
matrix (vehicle motion) between time t to time t+δt (T t+δt

t ∈

R3×4) is calculated. As the LiDAR is rigidly fixed on the
vehicle with a pitch angle of (17o) with respect to the vehicle

frame, the relationship between the vehicle frame and LiDAR
frame involves only rotation with zero translation.

By fusing IMU sensor data and the previously obtained
vehicle transformation matrix (T t+δt

t) obtained using the
camera and LiDAR, the vehicle state (x) is estimated
(consisting of vehicle position, velocity, and quaternion)
using an error state Kalman filter. The IMU sensor data
(which consists of both the linear acceleration and angular
velocity data) is used to predict the vehicle state (x̌) and
T t+δt
t is used to correct the predicted vehicle state (x̌) as part

of the Error State Kalman Filter method. By accumulating
the vehicle position value (from the vehicle state) at each
timestamp, vehicle odometry is estimated; therefore it is
called Error-State Kalman Filter Visual-LiDAR Odometry
(ESKF-VLO). The entire procedure of the method is shown
as a flowchart in Figure 1.

IV. LIDAR-BASED FLAT GROUND PLANE SEGMENTATION
LiDAR (Light Detection and Ranging) is a sensor that
estimates the distance between itself and an object in front
as points; i.e., by sending single/multiple pulsed LASER
beams (called channels) and capturing the reflected light
pulses using photo sensors. Using a technique called time-of-
flight, the LiDAR estimates the distance from the individual
reflected pulse to the object’s surface and generates a 3D
environment map. Velodyne LiDAR has built-in laser heads
(varying from 1 to 128 channels) and a motor that gives
rotary motion to those laser heads. This section provides
the mathematical approach to segregating flat surfaces from
the ground plane in LiDAR point clouds. A multi-channel
LiDAR sensor carries multiple laser scanners, as many as
the number of its channels, usually installed vertically inside
the sensor. To tackle the task of flat surface detection, the
LiDAR data are rearranged to meet a presentation mode with
spatial relationship and low complexity. The calibration file
provided by the manufacturer contains the pitch angle φ of
each laser head. The output of LiDAR data point clouds
is in Cartesian form and in the file format of ‘.pcd’. This
LiDAR detects 1.33 million sample points per second, so it is
necessary to rearrange the 3D LiDAR data before processing
them.
Each LiDAR point cloud can be further subdivided into

a number of rings for different pitch angles or laser heads
(N - number of laser heads) as shown in Figure 2. Each
ring has a different radius (ρ) and polar angle (θ). Therefore,
each Cartesian form of the point cloud is rearranged for each
laser head ‘n’ (n varies from 1 to N) and the polar angle (θ
varies from −π to +π), as seen in Figure 3. The relationship
between the Cartesian form (x, y, z) and the polar form (θ, ρ,

and z) is expressed in Eqs. 1, 2, and 3, and shown graphically
in Figure 4.

θ = tan−1 x
y

(1)

ρ =

√
x2 + y2 (2)

z = z (3)

92874 VOLUME 12, 2024

S. R. Sahoo, P. V. Manivanan: Novel Method for Ground Vehicle Tracking With ESKF-VLO

FIGURE 1. State estimation through lidar and camera data: A concise overview of the
comprehensive procedure.

The external environment scanned by the LiDAR consists
of flat road sections, shoulders with grass, and objects such as
vehicles, pedestrians, roadside buildings, trees, etc. Further,
in the given environment, the ground plane can be defined
as the flat road surface and the areas closer to the road with
minimal undulations (i.e., road shoulders). Figure 5 shows the
total point cloud data received from all the channels of LiDAR
(in this case, LiDAR channels ‘n’ vary from 1 to N). In the
plotted point cloud data, it can be noticed that the flat road

section has minimal fluctuations in the Z-direction, while
the road shoulders and nearby areas have more fluctuation
in the Z-direction. Also, some of the cloud points will
have fluctuations in the Z-direction and along with angle
variation, when that particular cloud point represents the
obstacle surfaces (i.e., other than flat road surface) as shown
in Figure 5. In the indoor case, the ground plane consists of
flat surfaces for vehicle free movement and obstacles have
some angle with respect to the flat surface in the Z-direction.

VOLUME 12, 2024 92875

S. R. Sahoo, P. V. Manivanan: Novel Method for Ground Vehicle Tracking With ESKF-VLO

FIGURE 2. LiDAR data segmentation into rings for nuanced analysis in
cylindrical coordinates.

FIGURE 3. LiDAR data points structured in a table for exploration and
analysis.

FIGURE 4. LiDAR sample point representation (cartesian and polar
coordinates).

The Figure 6a shows the individual LiDAR channel point
cloud data in three dimensional Cartesian space. By looking
closely at this plot, it is possible to distinguish a flat
surface (road section) which has minimal fluctuations in the
Z-direction (shown in green colour), compared to the other
cloud points (in magenta colour). By converting cloud point
data into Polar form and plotting it as a 2D-graph between
θ and z (Figure 6b), it’s even easier to differentiate the
road section with minimum fluctuation (green colour line
segment) and the fluctuation part representing non-road
section (Magenta colour). Mathematically in this fluctuating
part there is a rapid change in the slope value. Using this
property for each layer, the fluctuating part is separated from
the linear part (green section) shown in Figure 6. The flat
surface segment (green segment) is separated from the ground

(Magenta colour section), by joining the linear parts for each
layer (for each channel), which is shown in the Figure 7.

V. LIDAR POINTS TO IMAGE PIXEL - TRANSFORMATION
This section gives relationship between LiDAR point cloud
data and Camera image pixel coordinate frame in the form of
transformation matrix (K) that helps to project LiDAR cloud
points (Q̄) to image pixel points (q̄), and the relationship is
represented as the Eq.4. This rigid transformation matrix K
consists of rotationmatrix (R) and translation vector (τ) and it
is a product of two parameters (Intrinsic matrix and extrinsic
matrix) - Eq. 5.

K × Q̄ = q̄ (4)

K = Kin × Kex (5)

where
• Q̄ ≡

[
x̄l ȳl z̄l ω̄l

]T
→ Generalized LiDAR Co-ordinate

points

• Q ≡
[
xl yl zl

]T
=

[
x̄l
ω̄l

ȳl
ω̄l

z̄l
ω̄l

]T
→ LiDAR Co-

ordinate points
• q̄ ≡

[
x̄i ȳi ω̄i

]T
→Generalized Image Pixel Coordinate

points

• q ≡
[
xi yi

]T
=

[
x̄i
ω̄i

ȳi
ω̄i

]T
→ Image Pixel Coordinate

points
• Kin ∈ IR3×4

→ Camera Intrinsic Parameter Transfor-
mation Matrix

• Kex ∈ IR4×4
→ Extrinsic Parameter Transformation

Matrix
• K ∈ IR3×4

→ LiDAR points to image pixel
Transformation Matrix

The transformation matrix (K) is formed using Intrinsic
matrix (Kin) and Extrinsic matrix (Kex) (Eq.5), which gives
the relationship between three coordinate systems i.e. World /
LiDARCoordinate

([
xl yl zl

]T)
with Camera 3D coordinate([

xc yc zc
]T)

and Camera 3D co-ordinate
([
xc yc zc

]T)
with the Camera Pixel coordinate

([
xi yi

]T)
respectively.

This can be easily understood by Figure 8.
The intrinsic and extrinsic parameters is calculated by

calibrating both the Camera and LiDAR using a checker-
board-like pattern and each box size is of 50 × 50 mm.
For better calibration, multiple checker-board Camera images
(in .png format) and several LiDAR point clouds (in .pcd
format) were captured using MATLAB code, with different
checkerboard positions at the same timestamp.

In the first step, the Camera intrinsic parameter is calcu-
lated using the method in [34] by automatically detecting
the checkerboard section in all images. Camera intrinsic
parameters are: focal length, principal point, image size,
radial distortion, tangential distortion, skew, and intrinsic
matrix. The MATLAB Single-Camera Calibration App
makes it easy to calculate intrinsic parameters. By removing
faulty images, optimized Camera intrinsic parameters for
low reprojection error are calculated. Initially, a batch

92876 VOLUME 12, 2024

S. R. Sahoo, P. V. Manivanan: Novel Method for Ground Vehicle Tracking With ESKF-VLO

FIGURE 5. LiDAR point cloud at any instant timestamp (with KITTI Dataset).

FIGURE 6. LiDAR Single Layer view (a) Cartesian Co-ordinate (x-y-z) and (b) Polar (θ vs z).

FIGURE 7. Road detection in LiDAR point cloud data highlighted in blue (KITTI Dataset).

FIGURE 8. Formation of Transformation Matrix (K) merging Intrinsic and Extrinsic
parameters.

of 33 images with checkerboards were considered for
calibration; however, only 25 images were used as the eight

images found to be defective. Finally, the mean error of
those 25 images are plotted as a bar diagram (Figure 9)

VOLUME 12, 2024 92877

S. R. Sahoo, P. V. Manivanan: Novel Method for Ground Vehicle Tracking With ESKF-VLO

FIGURE 9. Calculating intrinsic parameters: mean reprojection error
analysis.

and overall mean error of the calculated intrinsic parameters
is 0.15.

In the next step, extrinsic parameters are calculated,
which is nothing but a rigid transformation matrix. This
transformation matrix gives the relationship between the
LiDAR coordinate and Camera image pixel coordinate.
Similar to intrinsic parameter calibration, checkerboard
selection and matching method are used to calculate extrinsic
parameters. In the present case, the MATLAB Toolbox
for automatic checkerboard detection is not able to detect
the checkerboard, as there are fewer number cloud points
available above the checkerboard (this is due to the LiDAR
(Velodyne VLP16) used has less number of LiDAR channels
i.e., 16-channels only). Therefore the checkerboard cloud
points are traced manually for each LiDAR point cloud.
Initially, 30 combinations of LiDAR point cloud and image
datasets were considered. Using the method described
in [37], the extrinsic parameters and the rigid transformation
matrix were calculated. The calibration process involved
iteratively removing datasets with higher translational and
rotational errors. The calibration was concluded with an
overall translational error of 0.079m and a rotational error of
1.7801 degrees, resulting in 13 datasets being used. The rigid
transformationmatrix (K) consists of both intrinsic parameter
(Kin) and extrinsic parameter (Kex) is given below:

K =

 0.4112 0.9111 0.0082 0.0395
−0.12 0.0631 −0.9908 −0.2572

−0.9033 0.4072 0.1353 0.0946)

The overall procedure used for extrinsic parameter calcu-

lation is shown in the Figure 10
To check the accuracy of the above procedure that cal-

culates extrinsic parameter, three types of errors mentioned
below are calculated using the method available in [37] and
presented as a bar charts (Figure 11).

1) Translation Error (Overall mean Error = 0.079019 m)

FIGURE 10. Mapping extrinsic parameters: calculating transformation
from camera frame to LiDAR coordinates.

2) Rotation Error (Overall mean error = 1.7801 degree)
3) Re-projection Error (Overall mean error =

13.8397 pixel)

Using the transformation matrix (K) calculated above,
earlier detected road surface’s LiDAR cloud points are
projected onto the corresponding Camera image (that was
captured at the same time stamp at which LiDAR point
cloud was recorded). This projection operation gives a
correspondence between 3D LiDAR points and Image 2D
pixel points for the road surface.

VI. OPTICAL FLOW TO GET IMAGE CORRESPONDING
POINTS
Normally, video images captured in each successive times-
tamp will have number of common pixel points among
themselves. These common points are identified by the
feature selection & matching algorithm, otherwise known as
optical flow algorithm. Texture information is assigned as
feature value to each pixel and the pixels with high feature
value are considered Interesting Feature Point (IFP). To find
these Interesting Feature Points (IFPs), the minimum Eigen
value method [38] is used. In this method the Hessian matrix
is computed for all the pixel points, then its Eigen value
matrix is computed. The Hessian matrix (C) is calculated
using its surrounding pixel values (grayscale values) for each
image pixel point using the Eq. 6.

C =

[∑
I2x

∑
IyIx∑

IxIy
∑
I2y

]
= R−1

[
λ1 0
0 λ2

]
R (6)

where, Ix and Iy are the grey-scale value of pixels in the
‘x’ and ‘y’ direction from the current pixel. After computing
the Hessian matrix, its eigenvalues λ1 and λ2 are calculated.
Based on the values of λ1 and λ2, three cases are possible:

92878 VOLUME 12, 2024

S. R. Sahoo, P. V. Manivanan: Novel Method for Ground Vehicle Tracking With ESKF-VLO

FIGURE 11. LiDAR and camera extrinsic parameter (a) translation error (b) rotation error
(c) reprojection error.

FIGURE 12. Detected road for two frames (Road LiDAR points projected over the camera images).

1) When both λ1 and λ2 are very small; The Hessian
matrix is constant in all directions and the pixel point
is a flat area and cannot be considered as interesting
feature point.

2) Either λ1 and λ2 is high and this is the condition of Edge
pixel and can be considered as interesting feature point.

3) Both λ1 and λ2 are large, the Hessian matrix increases
in all directions, so this is the corner point con-
dition and is considered as the interesting feature
point.

As mentioned earlier, the Interesting Feature Points (IFPs)
depend on the texture information presented in the images
and the flat road segment usually has less texture information.
Hence, image correction (contrast adjustment by histogram
equalization [39]) is needed to reveal the hidden texture
information as following method. The results of histogram
equalization of the both the original and corrected images are
shown in the Figure 13.

After finding the Interesting Feature Points (IFPs) of the
images captured at time t and t + δt (say img1 and img2), its
feature value matrix is calculated with the method described
in [31]. However, as every vehicle has a speed limit, the
feature points of Camera image can’t move more than a
particular radius in next frame. Hence, feature valuematching
has to be done within this radius using [40] to find the
corresponding points (pixels) in the img1 and img2.

VII. INTERPOLATION USING DELAUNAY
TRIANGULATION
Figure 12 shows the projected LiDAR cloud points on
the camera image. The image pixels on which the cloud
points are projected have 3D coordinate values with respect
to the LiDAR coordinate frame {L}. However, these pixel
points may not be the interesting feature points. Therefore,
a 2D interpolation method is used to find the 3D loca-
tion of matched interesting feature points of both images

VOLUME 12, 2024 92879

S. R. Sahoo, P. V. Manivanan: Novel Method for Ground Vehicle Tracking With ESKF-VLO

FIGURE 13. Image correction results (a) Original image (b) Corrected image (c) Histogram diagram for original image (d) Histogram diagram
for corrected image.

(between img1 and img2), and this interpolation method
can only work for flat surfaces. As described in the
previous section, the flat surface (road surface) has already
been separated from the aggregate point clouds. For these
flat sections, applying interpolation to the two matching
interesting feature points set (from img1 and img2), the 3D
corresponding points with respect to the LiDAR coordinate
system are found. MATLAB provides a function to perform
interpolation called scatteredInterpolant on 2D or
3D scattered data sets. This function returns an interpolant
F for the given data set and utilizes Delaunay triangulation,
a powerful tool for interpolation. The process is done
separately for x, y, and z data sets, which offers several
advantages. Advantages of Separating x, y, and zComponents
for Interpolation are below:

1. Preserves Locality: Delaunay triangulation in 2D
considers geometric relationships between points in the x-y
plane. This local property is crucial for accurate interpolation,
especially with non-uniformly distributed data.

2. Computational Efficiency: Separate triangulations are
more efficient to compute,

A. UNDERSTANDING DELAUNAY TRIANGULATION
Delaunay triangulation is a geometric technique for subdivid-
ing a set of points in a plane (2D) or space (3D) into triangles
(2D) or tetrahedra (3D). It ensures that no point lies inside the
circumcircle (2D) or circumsphere (3D) of any other triangle
or tetrahedron in the triangulation. This results in well-shaped

elements and avoids elongated or skinny triangles/tetrahedra,
which can lead to interpolation errors. The complete process
is explained from [41] Steps for Interpolation with Delaunay
Triangulation is explaned below.

STEP 1: TRIANGULATE POINTS IN THE X-Y PLANE
• For all 2D image points (xi, yi) and each corresponding
lidar point (xl, yl, zl), set up the interpolation for each
lidar coordinate (xl , yl , or zl).

• Triangulate the points in the xi, yi plane to create a
piecewise triangular surface over the plane.

STEP 2: DEFINE TRIANGLE VERTICES AND VALUES
• Each triangle’s vertices have coordinates (x1, y1),
(x2, y2), (x3, y3) and values z1, z2, z3.

• The value z at any point Pwithin a triangle is determined
using the plane equation z = ax + by+ c.

STEP 3: SOLVE FOR PLANE COEFFICIENTS
• Form a system of linear equations using the coordinates
and values of the vertices:

z1 = ax1 + by1 + c
z2 = ax2 + by2 + c
z3 = ax3 + by3 + c

• Solve for the coefficients a, b, c.
Applying the method described above to the xl , yl , and

zl coordinates, and repeating the process for the matched

92880 VOLUME 12, 2024

S. R. Sahoo, P. V. Manivanan: Novel Method for Ground Vehicle Tracking With ESKF-VLO

FIGURE 14. Road points tracked across two frames captured at different
times.

feature image pixel points captured at times t and t + δt ,
two sets of corresponding 3D points are calculated. Figure 14
illustrates the resulting 3D-corresponding points and their
corresponding 2D pixels from the same sections of the road
images (frames).

B. COMPARISON WITH GRID-BASED INTERPOLATION
METHODS
Although MATLAB provides grid-based interpolation
methods, tests have shown that these methods often
incur higher computational costs compared to
scatteredInterpolant.

1. Data Transformation: Grid-based methods require
the scattered data to be transformed into a regular grid.
This transformation process can be computationally expen-
sive, particularly for large datasets or when dealing with
non-uniformly distributed data.

2. Computational Complexity: Grid-based methods
involve more complex algorithms to fit the data into a
structured grid, which increases computational time and
resources.

VIII. FINDING 3D TRANSFORMATION MATRIX OF
VEHICLE
This section describes the method for finding the homoge-
neous transformation matrix of two consecutive coordinate
frames of the vehicle during its motion using the method
explained in [42]. Consider two instantaneous coordinate
frames for two time stamps with an interval of ‘‘δt’’ i.e.,
‘‘t’’ and ‘‘t + δt’’. For any 3D corresponding point ‘‘r’’
(obtained in the previous section), assume the coordinate
value concerning t th frame is r t =

[
xt yt zt

]T and (t +

δt)th frame is r t+δt
=

[
xt+δt yt+δt zt+δt

]T . An augmented
transformation matrix (T t+δt

t) as in Eq.7 is considered to
show the homogeneous transformation between t th and (t +

δt)th frames. The augmented transformation matrix (T t+δt
t)

is a 4 × 4 matrix (i.e. T t+δt
t ∈ IR4×4), in which the top left

3 × 3 matrix (i.e. Rt+δt
t = T t+δt

t (j, k) where j, k = 1, 2, 3)
is defines the rotation vehicle and top right 3 × 1 matrix
(i.e. τ t+δt

t = T t+δt
t (j, k) where j = 1, 2, 3 and k =

4) defines the translation of the vehicle. The bottom row
consists perspective factor

([
0 0 0

])
i.e., orthonormal) and

scaling factor (having value of 1, i.e., 1 : 1 transformation)

respectively. Transformation matrix:

T t+δt
t =

[
Rt+δt
t τ t+δt

t
0 0 0 1

]
=

rxx rxy rxz τx
ryx ryy ryz τy
rzx rzy rzz τz
0 0 0 1

 (7)

The section below explains, how the transformation matrix
(T t+δt
t) is calculated by applying the linear regression method

and using the corresponding points.
Converting matrix multiplication form of frame transfor-

mation shown in Eq. 8 into a set of linear equations, three
equation formed as shown in Eq. 9.

r t+δt
= T t+δt

t r t (8)

⇒

xt+δt
yt+δt
zt+δt
1

 =

rxx rxy rxz τx
ryx ryy ryz τy
rzx rzy rzz τz
0 0 0 1

 =

xt
yt
zt
1

⇒ xt+δt = rxxxt + rxyyt + rxzzt + τx

yt+δt = ryxxt + ryyyt + ryzzt + τy

zt+δt = rzxxt + rzyyt + rzzzt + τz (9)

As a part of linear regression here, the square of error is
considered as cost function andminimizes to get solution. For
a linear form of equation, yl = mxl + b (for, l = 1 to n) the
cost function (J) is represented as Eq. 10

J = ϵ2 =

n∑
l=1

[yl − (mxl + b)]2 (10)

Writing cost function of above linear equations (Eq. 9)
in the form of Eq. 10, three equation obtained as shown in
Eq. 11. These equation basically square of location error in
x, y and z directions.

ϵ2x =

n∑
l=1

[x(t+δt)l − (rxxxtl + rxyytl + rxzztl + τx)]2 (11a)

ϵ2y =

n∑
l=1

[y(t+δt)l − (ryxxtl + ryyytl + ryzztl + τy)]2 (11b)

ϵ2z =

n∑
l=1

[z(t+δt)l − (rzxxtl + rzyytl + rzzztl + τz)]2 (11c)

To find the minimum value of the square of the error ϵ2x ,
ϵ2y and ϵ2z , its derivative must be zero. Thus, take the partial
derivative of Eq. 11 and make the results equal to zero. For
the first part of Eq. 11a, differentiating it concerning rxx , rxy,
rxz and tx :

∂ϵ2x

∂rxx
=−2

n∑
l=1

[x(t+δt)l−(rxxxtl+rxyytl + rxzztl + τx)]xtl =0

(12)

∂ϵ2x

∂rxy
= −2

n∑
l=1

[x(t+δt)l − (rxxxtl + rxyytl+rxzztl + τx)]ytl =0

(13)

VOLUME 12, 2024 92881

S. R. Sahoo, P. V. Manivanan: Novel Method for Ground Vehicle Tracking With ESKF-VLO

∂ϵ2x

∂rxz
= −2

n∑
l=1

[x(t+δt)l−(rxxxtl+rxyytl + rxzztl + τx)]ztl =0

(14)

∂ϵ2x

∂τxz
= −2

n∑
l=1

[x(t+δt)l − (rxxxtl + rxyytl + rxzztl + τx)] = 0

(15)

Writing the above equations in matrix form, they will
become as given below:

rxx
rxy
rxz
τx

 =
[
M

]−1

∑n

l=1 x(t+δt)lxtl∑n
l=1 x(t+δt)lytl∑n
l=1 x(t+δt)lztl∑n
l=1 x(t+δt)l

 (16)

where, the matrixM is a symmetric matrix and take the form
as given below:

M =

∑
x2tl

∑
xtlytl

∑
xtlztl

∑
xtl∑

xtlytl
∑
y2tl

∑
ytlztl

∑
ytl∑

xtlztl
∑
ytlztl

∑
z2tl

∑
ztl∑

xtl
∑
ytl

∑
ztl n

 ∈ IR4×4 (17)

Similarly, repeating the above process for the 2nd and 3rd
parts of Eq. 11 (for 11b, 11c), they will become Eq. 18 and
Eq. 19 respectively, where M is defined as in Eq. 17.

ryx
ryy
ryz
τy

 =
[
M

]−1

∑n

l=1 y(t+δt)lxtl∑n
l=1 y(t+δt)lytl∑n
l=1 y(t+δt)lztl∑n
l=1 y(t+δt)l

 (18)

rzx
rzy
rzz
τz

 =
[
M

]−1

∑n

l=1 z(t+δt)lxtl∑n
l=1 z(t+δt)lytl∑n
l=1 z(t+δt)lztl∑n
l=1 z(t+δt)l

 (19)

Combining eqs. 16, 18 and 19, the resulting equation will
be the Eq. 20.

rxx ryx rzx
rxy ryy rzy
rxz ryz rzz
τx τy τz

 =
[
M

]−1 [
N

]
(20)

where

N =

∑n

l=1 x(t+δt)lxtl
∑n

l=1 y(t+δt)lxtl
∑n

l=1 z(t+δt)lxtl∑n
l=1 x(t+δt)lytl

∑n
l=1 y(t+δt)lytl

∑n
l=1 z(t+δt)lytl∑n

l=1 x(t+δt)lztl
∑n

l=1 y(t+δt)lztl
∑n

l=1 z(t+δt)lztl∑n
l=1 x(t+δt)l

∑n
l=1 y(t+δt)l

∑n
l=1 z(t+δt)l

∈ IR4×3 (21)

Now the final transformation matrix (T t+δt
t) of the vehicle,

for the frames t to t + δt can be computed using the Eq. 22.

T t+δt
t =

rxx rxy rxz τx
ryx ryy ryz τy
rzx rzy rzz τz
0 0 0 1

 =

[([
M

]−1 [
N

])T
0 0 0 1

]
(22)

IX. ERROR STATE KALMAN FILTER (ESKF)
The transformation matrix obtained in above section using
LiDAR andCamera data containsmeasurement noise. Hence,
the error state Kalman filter is used to fuse the above
results with IMU sensor data to improve the results. Inertial
Measurement Unit (IMU - Model) primarily consists an
accelerometer, a gyroscope, and a magnetometer sensors.
By integrating linear acceleration (accelerometer reading)
and angular velocities (pitch and roll rate from gyroscope
and yaw rate from the magnetometer) over time, the
vehicle position and orientation (Hamilton quaternion) are
obtained. These obtained position and orientation data are
prone to drifting error. Traditionally this drifting error is
corrected using the absolute position obtained from GPS
system. However, in the present work, as the LiDAR
and the Camera-based primary positioning system is an
incremental position measuring system (not providing abso-
lute position data), the incremental error of the vehicle
odometry is minimized by data fusing the LiDAR-Camera
system and IMU data using the error state Kalman
filter.
The error-state Kalman filter (ESKF) is an advanced

version of Kalman filtering algorithm and according to [43].
The following are advantages of ESKF over the traditional
Kalman Filter:

1) Here number of parameters are the same as degrees
of freedom, so ESKF avoids redundancy of param-
eters and risk of singularity in the covariance
matrix.

2) By neglecting second-order terms, ESKF makes Jaco-
bian matrix calculations very easy.

A. VEHICLE SYSTEM KINEMATICS
The vehicle speed is tracked relative to the global reference
frame. Here the global reference frame is assumed to be
in a north-east-down direction according to the classical
approach, and the position is the same as that of the
initial vehicle frame. IMU reading (linear accelerations
(am) and angular velocities(ωm)) is defined w.r.t inertial
reference frame; however, the vehicle state is defined w.r.t
global reference frame. The vehicle state consists of three
parameters: Position(p =

[
px py pz

]T
∈ IR3×1), Velocity

(v =
[
vx vy vz

]T
∈ IR3×1) and Quaternion (q =[

q0 q1 q2 q3
]T

∈ IR4×1). The vehicle control parameters
include: acceleration (am ∈ IR3×1) and angular velocity
(ωm ∈ IR3×1). Vehicle state

x =

pv
q

 ∈ IR10×1 (23)

Vehicle control parameter

u =

[
am
ωm

]
∈ IR6×1 (24)

92882 VOLUME 12, 2024

S. R. Sahoo, P. V. Manivanan: Novel Method for Ground Vehicle Tracking With ESKF-VLO

Vehicle kinematic equation of motion in discrete-time
format for a varying time interval δt > 0 considering classical
mechanic’s approach can be given as below:

xt+δt =

pt+δt
vt+δt
qt+δt

 =

pt + vtδt +
1
2 (Rt {qt }am + g) δt2

vt + (Rt {qt }am + g) δt
qt ◦ q{ωmδt}

(25)

In above equation, xt =
[
pt vt qt

]T and xt+δt =[
pt+δt vt+δt qt+δt

]T are vehicle states at two consecutive
timestamps i.e. within the time interval of δt . This discrete-
time state-space model is in nonlinear format and can be
represented as:

xt+δt = f (xt , u, δt) (26)

In Eq. 26, the term qt ◦ q signifies the multiplication
of quaternions, where qt and q represent quaternion values.
Additionally, the expressions q{} and R{} are detailed in the
corresponding appendix for reference.

B. ERROR-STATE KINEMATICS
The error-state analysis is less complex than the normal
state analysis. The vehicle error state can be defined as
δxt+δt =

[
δpt+δt δvt+δt δθt+δt

]T
= xt+δt ⊖ xt ∈ IR9×1and

by expanding this error state formation using Taylor series
expansion (only using the first derivative), the final equation
can be expressed as:

δxt+δt =

δpt+δt
δvt+δt
δθt+δt

=

 δpt + δvtδt
δvt + (−Rt {qr }[am]X δθt + δg)δt + vi

R{ωmδt}T δθt + θi

 (27)

In the above equation, the terms vi and θi are random
impulse inputs of velocity and orientation modelled as white
Gaussian Processes [42]. [am]X represents the skew operation
explained in appendix. The above error state equation can
be further expressed in a non-linear function format as given
below:

δxt+δt = F (xt , δxt , u, i) = Fx (xt , u) δxt + Lii (28)

In above equation Fx and Li are the Jacobians of function
F (xt , δxt , u, i) w.r.t vector δxt =

[
δpt δvt δθt

]T and i =[
vi θi

]T with xt and u as constant.

Fx =
∂F
∂δx

∣∣∣∣
xt ,u

=

I3×3 I3×3δt 03×3
03×3 I3×3 −Rt {qt }[am]X δt
03×3 03×3 Rt {ωmδt}T

 ∈ IR9×9

(29)

Li =
∂F
∂i

∣∣∣∣
xt ,u

=

03×3 03×3
I3×3 03×3
03×3 I3×3

 ∈ IR9×6 (30)

The ESKF prediction equation for error state and covariance
matrix will be:

δx̌t+δt = Fx(xt , um)δx̌t (31)

P̌ = FxPFTx + LiQiLTi ∈ IR9×9 (32)

C. FUSING IMU DATA WITH VISUAL-LIDAR DATA
After prediction of the error state (δx̌t+δt)) and state covari-
ance matrix(P̌), both needs to be corrected using the available
measurement data. In the present case, the transformation
matrix (T t+δt

t) obtained from Camera and LiDAR data fusion
will be used for correcting the predicted error state and
covariance matrix of the ESKF. The transformation matrix
(T t+δt
t) consists two parts: a translation (τ t+δt

t) and change
in angle in the form of Rotation matrix (Rt+δt

t) as shown in
Eq. 33

T t+δt
t =

[
Rt+δt
t τ t+δt

t
01×3 1

]
∈ IR4×4 (33)

The measurement update, Eq.33 (data obtained from
LiDAR and Camera sensors) should be converted into the
form yt+δt = h(xt) + v, where yt+δt =

[
τ t+δt
t q{Rt+δt

t }
]

∈

IR7×1 and v is white Gaussian noise with covariance V (v ≈

N {0,R}). Here is the new transformation matrix Tt+δt of the
vehicle will be calculated using the old vehicle transformation
matrix Tt and current transformation matrix (T t+δt

t).

Tt+δt = Tt ⊕ T t+δt
t = Tt × T t+δt

t (34)

⇒

[
Rt+δt pt+δt
01×3 1

]
=

[
Rt pt
01×3 1

]
+

[
Rt+δt
t τ t+δt

t
01×3 1

]
(35)

τ t+δt
t = RTt pt+δt − RTt pt (36)

Similarly the rotational matrix is calculated from Eq. 35
and is given below:

Rt+δt = Rt × Rt+δt
t (37)

As yt+δt is consist of Quaternion instead of Rotation
matrix, the rotation matrix is converted into Quaternion as
given below [44]:

qt+δt = qt ◦ q{Rt+δt
t } = Qt × q{Rt+δt

t } (38)

⇒ Q−1
t qt+δt = q{Rt+δt

t } (39)

The appendix contains a detailed explanation of Qt ∈

IR4×4 which represents the tensor form of the quaternion
qt . Writing Eq.36 and Eq.39 in matrix form to represent as
yt+δt = h (xt+δt , xt)

yt+δt =

[
τt

q{Rt+δt
t }

]
=

[
RTt 03×3 Q

−1
t

] pt+δt
vt+δt
qt+δt

 +

[
−RTt pt
03×3

]
(40)

Using the measurement equation (Eq.40), following filter
correction Eqs. (41,42,43) are obtained:

K = P̌HT
(
HP̌HT

+ R
)−1

∈ IR9×7 (41)

VOLUME 12, 2024 92883

S. R. Sahoo, P. V. Manivanan: Novel Method for Ground Vehicle Tracking With ESKF-VLO

FIGURE 15. Error state kalman filter based sensor fusion process for VLO and IMU data.

δxt+δt = K
(
y− y

(
x̌t

))
(42)

P = (I − KH) P̌ (43)

However, the Eqs. (41, 43) requires Jacobean matrix H ,
which is defined as differentiation of hw.r.t error state δx and
is calculated using chain rule defined in [45]

H ≜
∂h
∂δx

∣∣∣∣
x

=
∂h

∂xt+δt

∣∣∣∣
x

∂xt+δt

∂δx

∣∣∣∣
x

= HxXδx ∈ IR7×9 (44)

Hx =
∂h

∂xt+δt

∣∣∣∣
x

=
[
RTt 03×3 Q

−1
t

]
∈ IR7×10 (45)

Xδx =
∂xt+δt

∂δx

∣∣∣∣
x

=

[
I6×6 06×3
04×6 Qδθ

]
∈ IR10×9 (46)

In the above equations, the Quaternion termQδθ is defined
as

Qδθ =
1
2
Qt

[
01×3
I3×3

]
∈ IR4×3 (47)

Using the filter correction error-state δxt+δt the actual
vehicle state (position, velocity and quaternion) is updated
using Eq.48:

xt+δt = xt ⊕ δxt+δt (48)

The Error State Kalman Filter (ESKF) explained above can
be represented in the flowchart form and shown in Figure 15.

X. EXPERIMENTAL SETUP
The developed algorithm has been verified using sets of
data. First, using KITTI Dataset [46] and subsequently
using the experimental data obtained from our laboratory
setup in IIT Madras (referred as indoor case). The KITTI
dataset [46] consists of different vehicle mounted sensor
readings obtained by driving a vehicle (for autonomous
driving application - in Karlsruhe University, Germany) for

FIGURE 16. Mobile robot (P3DX) equipped with LiDAR and camera
sensors.

around 6 hours. In the case KITTI data, the vehicle mounted
sensors are two grey scale Cameras, 2 Colour Cameras, 4
Edmund Optics lenses, one Velodyne HDL-64E (64 Laser
head), and an OXTS system (Inertial and GPS navigation
system). The data set also provides the Camera-to-Camera
calibration and Camera LiDAR calibration for Intrinsic and
extrinsic parameters.

The Figure 16 shows the experimental setup used for
testing and verifying the developed algorithm for the indoor
case (i.e. without GPS data). The experimental system
consists P3DX Mobile robot, which is mounted with a

92884 VOLUME 12, 2024

S. R. Sahoo, P. V. Manivanan: Novel Method for Ground Vehicle Tracking With ESKF-VLO

16-channel Velodyne VLP-16 LiDAR and a 5-megapixel
Camera. The LiDAR and Camera combined structure is
placed with a pitching angle of 17o with respect to vehicle
co-ordinate frame, to cover more ground surface. The P3DX
mobile robot is controlled via programmes written using
the ARIA and MATLAB environment. The mobile robot’s
encoder reading in the form of instantaneous location is
saved w.r.t to a global coordinate frame for obtaining the
vehicle ground truth. The vehicle’s starting coordinate frame
is considered a global coordinate frame. The vehicle is
programmed to follow different standard paths: Straight,
Circular, ‘S’ shape trajectory, and lemniscate trajectory)
and data from various sensors are recorded for all further
analysis. Additionally, it is also possible to mount the
GPS sensor to obtain ground truth by processing GPS
data, when the mobile robot is operated in the outdoor
environment.

XI. RESULTS
In order to validate the developed algorithm and find
its effectiveness in tracking the given path, KITTI data
and experimental data are given as the inputs and the
vehicle state (position, velocity and orientation) is obtained
over the time. Using these results and the ground truth,
the percentage translation error and rotational error are
calculated. The following section presents the obtained
results in the graphical and tabular formats for easy
understanding.

The developed algorithm is able to find the vehicle path and
represents it as the transformation matrix for each timestamp.
This transformation matrix consists of rotation angle and
translation for each time stamp. Here percentage translation
error and rotational error per meter are calculated using
Eq.49 and 50, by comparing with the ground truth (consid-
ered as actual path vehicle travelled). Considering

• τ ∈ IR3×1
= Calculated translation

• τa ∈ IR3×1
= Actual translation

• 2 ∈ IR3×1
= Calculated Rotation angle in degree

• 2a ∈ IR3×1
= Actual Rotation angle in degree

Percentage translational error:

||τ − τa||

||τa||
× 100(%) (49)

Rotational Error:
||2 − 2a||

||τa||
(deg/m) (50)

A. ESTIMATION OF TRACKING ERROR WITH KITTI
DATASET
By inputting different samples of the KITTI data-set
(obtained when the vehicle was following the given path), the
vehicle state is estimated. Subsequently, the mean percentage
translational error and rotational error are computed and
presented through the Figures 17 to 20. As mentioned earlier,
these errors are the difference between tracked path and
the ground truth. Further, the obtained overall percentage

translational error and overall rotational error (deg/m) values
are presented along with the same type errors reported for
some of the existing methods for comparison purpose in the
Table.2

In the below Table.2, EB3DTE (Example-based 3D
Trajectory Extraction) and MonoDepth2 represents errors of
monocular stereo odometry system, and it may be noted
that the monochrome systems produce more errors (both the
translation and rotation errors). This is because, generally it is
difficult to get depth information using single Camera. Even
with self-supervised learning methods, the monocular vision
based system errors can’t be reduced. VOFS (Stereo Visual
Odometry with Flow Separation) and CFORB (Circular
FREAK-ORB Visual Odometry) are the stereo vision odom-
etry systems and they provide better results with lesser errors
than the monocular Camera system as indicated in the table.
However, the depth information provided by these systems
are affected by their Cameras resolution. BLF (BUT-LOAM-
FULL, LOAM-lidar odometry and mapping), BCC (BUT-
CNN-CLASS), and D3DLO (Deep 3D LiDAR Odometry)
are LiDAR based tracking systems and the tracking error of
these systems mainly depend on the identification geometri-
cal structure in the environment and structure matching. Any
structure mismatching leads to tracking errors in the form of
translational and rotational errors. Algorithms such as Traj-
LIO (Trajectory - LiDAR-inertial Odometry) and mVLINS
(Multilevel Visual-LiDAR-Inertial Navigation System) can
deliver significantly better results; however, they rely on
multiple LiDAR and IMU sensors for their operation. These
methods are also computationally intensive, as can be seen
from Table 2. It’s worth mentioning that LiDAR odometry
techniques such as SLAMesh (Simultaneous Localization
and Meshing) and PUMA (Poisson Surface Reconstruction
for LiDAR Odometry and Mapping), which are compared
with our proposed method in Table 2, demonstrate superior
performance in terms of translational and rotational accuracy.
Thesemethods create an offlinemeshmap of the environment
from LiDAR data and subsequently utilize it for LiDAR
odometry. However, it’s important to note that these methods
are considerablymore computationally intensive compared to
our proposed approach, as evident fromTable 2. Additionally,
there are other methods within these categories, such as
Voxblox+ALOAM (Advanced implementation of LOAM)
[56] and ULF-ESGVI (Unsupervised Lidar Feature Learning
with ESGVI) [57].

Hence, by using LiDAR, Camera and IMU sensors data
along with the Error State Kalman Filter (ESKF-VLO)
to estimate the vehicle position, vehicle tracking errors
are reduced (Translational Error = 3.142% and Rotational
Error = 0.007 deg/m - as indicated in Table.2) compared
with the other systems that use anyone of the sensors alone.
However, even with this new vehicle tracking method, the
tracking error can’t be completely eliminated and this is due
to the lack of identifiable features available in the road section
even after image correction using histogram equalization.
Any further reduction of tracking error can be achieved by

VOLUME 12, 2024 92885

S. R. Sahoo, P. V. Manivanan: Novel Method for Ground Vehicle Tracking With ESKF-VLO

TABLE 2. Performance comparison with existing methods (KITTI dataset).

FIGURE 17. KITTI data-set Sample-1 (a) Trajectory track (b) Translational Error (c) Rotational Error.

FIGURE 18. KITTI data-set Sample-2 (a) Trajectory track (b) Translational Error (c) Rotational Error.

doing accurate calibration of Camera and LiDAR sensors,
since any small error in calibration parameters can create a
significant error in motion estimation.

Due to the limitation of computational power, the code was
executed on a laptop with a single-core 2.30 GHz processor.
Despite this limitation, the laptop provided a fairly good
computational speed. The Table 3 lists the computational
cost of each major module of the process in MATLAB. The
overall mean computational cost is 0.17 seconds, which is
quite good compared to other methods that utilize higher
processing power. It is worth noting that the processing
speed could be improved by using a multi-core system or
a GPU.

TABLE 3. Time taken by each step in a single process.

B. ESTIMATION OF TRACKING ERROR WITH
EXPERIMENTAL DATASET
Similarly, by inputting the experimental data set, the mean
percentage translational error and rotational error in deg/m

92886 VOLUME 12, 2024

S. R. Sahoo, P. V. Manivanan: Novel Method for Ground Vehicle Tracking With ESKF-VLO

FIGURE 19. KITTI data-set Sample-3 (a) Trajectory track (b) Translational Error (c) Rotational Error.

FIGURE 20. KITTI data-set Sample-4 (a) Trajectory track (b) Translational Error (c) Rotational Error.

TABLE 4. Error comparison for different datasets.

TABLE 5. Translational and rotational error comparison KITTI and
experimental datasets (with ESKF-VLO method).

along with tracked path compared with ground truth are
plotted in the Figures 21 to 24.

From Table.5, it can be observed that the overall trans-
lational and rotational errors for the KITTI dataset are
lesser than the results obtained with the data from real-time
experiments conducted in the laboratory condition (indoor
condition). This is mainly due to the use of High-resolution
LiDAR (64-channel) in the KITTI dataset compared to
16-channel low-resolution LiDAR used for the real-time
experiments. Moreover, outdoor road contains various

components like lane markings, shadow, and other textures,
so it is possible to get more useful features (edges, corners)
than the indoor condition with less texture even after the
image contrast enhancement. In the KITTI dataset, the
vehicle speed (maximum speed obtained can be 150 KM/hr)
is much higher than the mobile robot (P3DX) experiment
performed in the laboratory (maximum speed of P3DX
mobile robot is 4 KM/hr). Therefore the rotation per unit
translation of the mobile robot is higher than that of the
KITTI dataset vehicle. This causes a higher rotational error
per meter in the laboratory vehicle than in the KITTI
dataset.

XII. OBSERVATION
The algorithm exhibits a general resilience to various
environmental conditions, yet its efficacy hinges significantly
on the process of feature matching. Within different contexts,
the algorithm encounters distinct challenges:

In Indoor Environments with Sparse Features:

• Surfaces Uniformity: Within indoor spaces charac-
terized by vast expanses of uniform surfaces like
monochromatic floors or plain walls, the algorithm
grapples with identifying sufficient distinctive features
essential for reliable matching. This dearth of features
invariably undermines the algorithm’s accuracy.

VOLUME 12, 2024 92887

S. R. Sahoo, P. V. Manivanan: Novel Method for Ground Vehicle Tracking With ESKF-VLO

FIGURE 21. Straight line Trajectory (a) Trajectory track (b) Translational Error (c) Rotational Error.

FIGURE 22. Circular Trajectory (a) Trajectory track (b) Translational Error (c) Rotational Error.

FIGURE 23. S-shape Trajectory (a) Trajectory track (b) Translational Error (c) Rotational Error.

• Lighting Dynamics:

– Dim Illumination: Operating in dimly lit settings
presents a formidable obstacle for the algorithm to
discern features accurately. Dark surfaces pose a
particular challenge as their limited light reflection
complicates feature capture.

– Shadows: Paradoxically, shadows sometimes offer
assistance by engendering contrasts useful for
feature matching.

– Fluctuating Lighting: Swift alterations in lighting
conditions, encompassing phenomena like moving

shadows or fluctuating light sources, introduce
inconsistencies in feature detection. These dis-
crepancies engender errors in matching, thereby
compromising the accuracy of state estimation.

Within Outdoor Environments with High Congestion:
• Surface Obstructions: In scenarios replete with vehic-
ular and pedestrian traffic, the algorithm contends with
obstructed ground surfaces, impeding its ability to detect
ground features. This obstruction culminates in a paucity
of reliable features for matching, thereby undermining
the algorithm’s overall performance.

92888 VOLUME 12, 2024

S. R. Sahoo, P. V. Manivanan: Novel Method for Ground Vehicle Tracking With ESKF-VLO

FIGURE 24. Lemniscate Trajectory (a) Trajectory track (b) Translational Error (c) Rotational Error.

Problem of Detection of Multiple Flat Surface:
The purpose of identifying flat surfaces is to enable precise

interpolation between 2D image points and 3D LiDAR data.
This is crucial for determining the 3D coordinates (relative
to the LiDAR frame) of matched feature points between
images taken at times t and t + δt . Interpolation works
effectively on flat surfaces, which is why it is important.
Feature matching algorithms typically detect a limited set of
points on an image, and it is preferable for these points to
be located on flat surfaces. The presence of numerous flat
surfaces is advantageous because it provides a larger area for
feature matching in images, resulting in more corresponding
points for finding the 3D transformation matrix, as explained
in Section VII. To manage computational complexity, the
LiDAR data undergoes a filtering process based on specific
height ranges, considering the Z values prominent for the
ground plane. This filtering primarily focuses on identifying
the most prominent flat surface, which is usually the ground
plane. The ground plane can also accommodate sloping roads
as long as they remain flat.

XIII. CONCLUSION
In this work, a self-tracking method (ESKF-VLO) that uses
Camera, LiDAR and IMU sensors data alone, without using
data from any external infrastructure (i.e. GPS) has been
developed for effective vehicle navigation. From the LiDAR
point-cloud information, movable free space for the vehicle
is segmented using the ground plane segmentation method.
A LiDAR to Camera dataset is prepared for finding the
relationship between the 3D location of the segmented ground
plane and Camera-image pixel 2D coordinate frame, using
the calculated LiDAR to Camera calibration parameters.
Developed feature matching algorithm finds the correspon-
dence points between the two consecutive Camera image
frames (for segmented ground plane) and using interpolation
in above dataset its (correspondence points), 3D locations
of the Interested Features Points (IFPs) are obtained. This
corresponding 3D location points are used to compute the
vehicle transformation matrix of the two consecutive vehicle
coordinate frames. Finally, Error State Kalman filter is used

to reduce the tracking error by data fusing the IMU sensor
data with the vehicle transformation matrix, to find the state
of the vehicle.

The developed algorithm has been verified in terms of
tracking error (translation error in % and rotational error
in deg/m) with publicly available KITTI dataset. Further,
to find the usefulness of developed algorithm in tracking
vehicle at indoor environment, vehicle state and state errors
were estimated using the data obtained from real time
experiments conducted with a P3DX Mobile robot that is
instrumented with 16-channel Velodyne LiDAR – VLP-16,
Monochrome Camera and IMU sensor. The results show
algorithm is working and is able to track the vehicle with
minimal error. For the KITTI dataset, the overall translational
error is 3.142 %, and the rotational error is 0.007 deg/m, and
for the indoor real-time experiments, the overall translational
error is 4.695 %, and the Rotational error is 0.052 deg/m.

APPENDIX
1) Quaternion Product:

q ◦ p = (q0 + q1i+ q2j+ q3k) (p0 + p1i+ p2j+ p3k)

=

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

p0
p1
p2
p3

 = Q× P

2) Tensor form of quaternion q is:

Q =

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

 ∈ IR4×4

3) Skew Operator:

[a]X ≜

 0 −az ay
az 0 −ax

−ay ax 0

4) q{v} = Quaternion associated with the rotation v
5) R{q} = Rotation matrix associated with the current

nominal orientation q

VOLUME 12, 2024 92889

S. R. Sahoo, P. V. Manivanan: Novel Method for Ground Vehicle Tracking With ESKF-VLO

REFERENCES
[1] S. R. Sahoo and P. V. Manivannan, A Hybrid Approach for Dynamic

Observer to Detect and Track Dynamic Obstacles, vol. 10, no. 2, 2020.
[2] G. Dedes and A. G. Dempster, ‘‘Indoor GPS positioning–challenges and

opportunities,’’ in Proc. IEEE 62nd Veh. Technol. Conf. (VTC–Fall), vol. 1,
Sep. 2005, pp. 412–415.

[3] S. Lee and J.-B. Song, ‘‘Robust mobile robot localization using optical flow
sensors and encoders,’’ in Proc. IEEE Int. Conf. Robot. Autom., Sep. 2004,
pp. 1039–1044.

[4] J. Kunhoth, A. Karkar, S. Al-Maadeed, and A. Al-Ali, ‘‘Indoor positioning
and wayfinding systems: A survey,’’ Hum.-Centric Comput. Inf. Sci.,
vol. 10, no. 1, Dec. 2020.

[5] M. A. Nassar, M. Hasan, M. Khan, M. Sultana, M. Hasan, L. Luxford,
P. Cole, G. Oatley, and P. Koutsakis, ‘‘WiFi-based localisation datasets for
no-GPS open areas using smart bins,’’ Comput. Netw., vol. 180, Oct. 2020,
Art. no. 107422.

[6] J. Wang, R. K. Ghosh, and S. K. Das, ‘‘A survey on sensor localization,’’
J. Control Theory Appl., vol. 8, no. 1, pp. 2–11, Feb. 2010.

[7] K. J. Chandan and A. M. Akhil, ‘‘Investigation on accuracy of ultrasonic
and LiDAR for complex structure area measurement,’’ in Proc. 6th Int.
Conf. Trends Electron. Informat. (ICOEI), Apr. 2022, pp. 134–139.

[8] K. Yokoyama and K. Morioka, ‘‘Autonomous mobile robot with simple
navigation system based on deep reinforcement learning and a monocular
camera,’’ in Proc. IEEE/SICE Int. Symp. Syst. Integr. (SII), Jan. 2020,
pp. 525–530.

[9] M. Mihálik, B. Malobický, P. Peniak, and P. Vestenický, ‘‘The new method
of active SLAM for mapping using LiDAR,’’ Electronics, vol. 11, no. 7,
p. 1082, Mar. 2022.

[10] P Srinivas, Y. L. Malathilatha, and M. V. N. K. Prasad, ‘‘Image processing
edge detection technique used for traffic control problem,’’ Int. J. Comput.
Sci. Inf. Technol., vol. 4, no. 1, pp. 17–20, 2013.

[11] E. Shelhamer, J. Long, and T. Darrell, ‘‘Fully convolutional networks for
semantic segmentation,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,
no. 4, pp. 640–651, Apr. 2017.

[12] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
‘‘DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2018.

[13] Z. Chen, J. Zhang, and D. Tao, ‘‘Progressive LiDAR adaptation for
road detection,’’ IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 693–702,
May 2019.

[14] F. Xu, L. Chen, J. Lou, and M. Ren, ‘‘A real-time road detection method
based on reorganized LiDAR data,’’ PLoS ONE, vol. 14, no. 4, Apr. 2019,
Art. no. e0215159.

[15] R. Wang, M. Schwörer, and D. Cremers, ‘‘Stereo DSO: Large-scale direct
sparse visual odometry with stereo cameras,’’ in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Oct. 2017, pp. 3923–3931.

[16] H. Alismail, B. Browning, and S. Lucey, ‘‘Photometric bundle adjustment
for vision-based SLAM,’’ in Proc. Asian Conf. Comput. Vis., vol. 10114,
2017, pp. 324–341.

[17] J. Engel, V. Koltun, and D. Cremers, ‘‘Direct sparse odometry,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 40, no. 3, pp. 611–625, Mar. 2018.

[18] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza,
‘‘SVO: Semidirect visual odometry for monocular and multicamera
systems,’’ IEEE Trans. Robot., vol. 33, no. 2, pp. 249–265, Apr. 2017.

[19] J. Stühmer, S. Gumhold, and D. Cremers, ‘‘Real-time dense geometry from
a handheld camera,’’ in Proc. Joint Pattern Recognit. Symp., vol. 6376,
2010, pp. 11–20.

[20] H. Jin, P. Favaro, and S. Soatto, ‘‘Real-time 3D motion and structure
of point features: A front-end system for vision-based control and
interaction,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Feb. 2000, pp. 778–779.

[21] G. Klein and D. Murray, ‘‘Parallel tracking and mapping for small AR
workspaces,’’ inProc. 6th IEEEACM Int. Symp.Mixed Augmented Reality,
Nov. 2007, pp. 225–234.

[22] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, ‘‘ORB-SLAM: A
versatile and accurate monocular SLAM system,’’ IEEE Trans. Robot.,
vol. 31, no. 5, pp. 1147–1163, Oct. 2015.

[23] R. Mur-Artal and J. D. Tardós, ‘‘ORB-SLAM2: An open-source SLAM
system for monocular, stereo, and RGB-D cameras,’’ IEEE Trans. Robot.,
vol. 33, no. 5, pp. 1255–1262, Oct. 2017.

[24] I. Cherabier, J. L. Schönberger, M. R. Oswald,M. Pollefeys, and A. Geiger,
‘‘Learning priors for semantic 3D reconstruction,’’ in Proc. Eur. Conf.
Comput. Vis. (ECCV), vol. 11216, 2018, pp. 325–341.

[25] N. Savinov, C. Häne, L. Ladický, and M. Pollefeys, ‘‘Semantic 3D
reconstruction with continuous regularization and ray potentials using a
visibility consistency constraint,’’ inProc. IEEEConf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 5460–5469.

[26] J. Stückler, B. Waldvogel, H. Schulz, and S. Behnke, ‘‘Dense real-time
mapping of object-class semantics from RGB-D video,’’ J. Real-Time
Image Process., vol. 10, no. 4, pp. 599–609, Dec. 2015.

[27] C. Toft, C. Olsson, and F. Kahl, ‘‘Long-term 3D localization and pose from
semantic labellings,’’ in Proc. IEEE Int. Conf. Comput. Vis. Workshops
(ICCVW), Oct. 2017, pp. 650–659.

[28] M. O. A. Aqel, M. H. Marhaban, M. I. Saripan, and N. B. Ismail, ‘‘Review
of visual odometry: Types, approaches, challenges, and applications,’’
SpringerPlus, vol. 5, no. 1, Dec. 2016.

[29] A. Nüchte, K. Lingemann, and J. Hertzberg, ‘‘6D SLAM3D mapping
outdoor environments,’’ J. Field Robot., vol. 33, no. 1, pp. 1–17, 2014.

[30] H. Zhan, C. S. Weerasekera, J.-W. Bian, and I. Reid, ‘‘Visual odometry
revisited: What should be learnt?’’ in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2020, pp. 4203–4210.

[31] J. Zhang and S. Singh, ‘‘LOAM: LiDAR odometry and mapping in real-
time,’’ Auto. Robots, vol. 41, no. 2, pp. 401–416, 2017.

[32] M. Velas, M. Spanel, M. Hradis, and A. Herout, ‘‘CNN for IMU assisted
odometry estimation using velodyne LiDAR,’’ in Proc. IEEE Int. Conf.
Auto. Robot Syst. Competitions (ICARSC), Apr. 2018, pp. 71–77.

[33] S. Scherer, J. Rehder, S. Achar, H. Cover, A. Chambers, S. Nuske,
and S. Singh, ‘‘River mapping from a flying robot: State estimation,
river detection, and obstacle mapping,’’ Auto. Robots, vol. 33, nos. 1–2,
pp. 189–214, Aug. 2012.

[34] M. Duarte-Silva, J. Henriques-Calado, and V. Camotim, ‘‘FastSLAM: A
factored solution to the simultaneous localization and mapping problem
Michael,’’Women Therapy, vol. 35, nos. 3–4, pp. 221–232, 2012.

[35] S. Thrun, ‘‘Probabilistic robotics,’’ Commun. ACM, vol. 45, no. 3,
pp. 52–57, 2002.

[36] C. Debeunne and D. Vivet, ‘‘A review of visual-LiDAR fusion based
simultaneous localization and mapping,’’ Sensors, vol. 20, no. 7, p. 2068,
Apr. 2020.

[37] L. Zhou, Z. Li, and M. Kaess, ‘‘Automatic extrinsic calibration of a
camera and a 3D LiDAR using line and plane correspondences,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2018, pp. 5562–5569.

[38] V. K. Nagaraja, ‘‘Feature selection using eigenvalue optimization and
partial least squares,’’ Cgis.Cs.Umd.Educ., 2013.

[39] S. S. Bagade, ‘‘Use of histogram equalization in image processing for
image enhancement,’’ Int. J. Softw. Eng. Res. Practices, vol. 1, no. 2,
pp. 6–10, 2011.

[40] M. Muja and D. G. Lowe, ‘‘Fast matching of binary features,’’ in Proc. 9th
Conf. Comput. Robot Vis., May 2012, pp. 404–410.

[41] I. Amidror, ‘‘Scattered data interpolation methods for electronic imaging
systems: A survey,’’ J. Electron. Imag., vol. 11, no. 2, p. 157, Apr. 2002.

[42] J. Cashbaugh and C. Kitts, ‘‘Automatic calculation of a transformation
matrix between two frames,’’ IEEE Access, vol. 6, pp. 9614–9622, 2018.

[43] V. Madyastha, V. Ravindra, S. Mallikarjunan, and A. Goyal, ‘‘Extended
Kalman filter vs. error state Kalman filter for aircraft attitude estimation,’’
in Proc. AIAA Guid., Navigat., Control Conf., Aug. 2011, p. 6615.

[44] B. Graf, ‘‘Quaternions and dynamics,’’ 2008, arXiv:0811.2889.
[45] J. Solà, ‘‘Quaternion kinematics for the error-state Kalman filter,’’ 2017,

arXiv:1711.02508.
[46] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, ‘‘Vision meets robotics: The

KITTI dataset,’’ Int. J. Robot. Res., vol. 32, no. 11, pp. 1231–1237, 2011.
[47] P. Adis, N. Horst, and M. Wien, D3DLO: Deep 3D LiDAR Odometry

Institute of Imaging and Computer Vision. Aachen, Germany: RWTH
Aachen Univ., 2021, pp. 3128–3132.

[48] M. Kaess, K. Ni, and F. Dellaert, ‘‘Flow separation for fast and robust
stereo odometry,’’ in Proc. IEEE Int. Conf. Robot. Autom., May 2009,
pp. 3539–3544.

[49] D. J. Mankowitz and E. Rivlin, ‘‘CFORB: Circular FREAK-ORB visual
odometry,’’ 2015, arXiv:1506.05257.

[50] Z. Boukhers, K. Shirahama, and M. Grzegorzek, ‘‘Example-based 3D
trajectory extraction of objects from 2D videos,’’ IEEE Trans. Circuits Syst.
Video Technol., vol. 28, no. 9, pp. 2246–2260, Sep. 2018.

92890 VOLUME 12, 2024

S. R. Sahoo, P. V. Manivanan: Novel Method for Ground Vehicle Tracking With ESKF-VLO

[51] C. Godard, O. M. Aodha, M. Firman, and G. Brostow, ‘‘Digging into self-
supervised monocular depth estimation,’’ in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 3827–3837.

[52] X. Zheng and J. Zhu, ‘‘Traj-LIO: A resilient multi-LiDARmulti-IMU state
estimator through sparse Gaussian process,’’ 2024, arXiv:2402.09189.

[53] B. Zhang, W. Yao, Y. Wang, P. Li, X. Shao, and G. Sun, ‘‘MVLINS:
A multilevel visual-LiDAR-inertial navigation system with completely
decoupled odometry and adaptive environmental mapping,’’ IEEE Trans.
Intell. Vehicles, pp. 1–13, 2024.

[54] J. Ruan, B. Li, Y. Wang, and Y. Sun, ‘‘SLAMesh: Real-time LiDAR
simultaneous localization and meshing,’’ in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2023, pp. 3546–3552.

[55] I. Vizzo, X. Chen, N. Chebrolu, J. Behley, and C. Stachniss, ‘‘Poisson
surface reconstruction for LiDAR odometry and mapping,’’ in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), May 2021, pp. 5624–5630.

[56] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, ‘‘Voxblox:
Incremental 3D Euclidean signed distance fields for on-board MAV
planning,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Sep. 2017, pp. 1366–1373.

[57] D. J. Yoon, H. Zhang, M. Gridseth, H. Thomas, and T. D. Barfoot,
‘‘Unsupervised learning of LiDAR features for use ina probabilistic trajec-
tory estimator,’’ IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 2130–2138,
Apr. 2021.

SUDEEPTA R. SAHOO received the bachelor’s
degree in mechanical engineering from NMIET,
Bhubaneswar, in 2014, and the master’s degree in
mechanical system design from IIT Bhubaneswar,
in 2017. He is currently a Ph.D. Scholar with the
Mechanical Engineering Department, IIT Madras,
India. His master’s project concentrated on motion
planning for ground vehicles. His Ph.D. research
involves the navigation and control of Swarm
Aerial vehicles. His primary research interests

include developing a cooperative navigation and control system for
unmanned ground and aerial vehicles.

P. V. MANIVANNAN received the Ph.D. degree
in control system for SI engines from IIT
Madras, India, and the master’s degree in applied
electronics from the College of Engineering,
Anna University, Chennai, India. He is currently
an Associate Professor with the Department of
Mechanical Engineering, Indian Institute of Tech-
nology Madras, Chennai, India. He has extended
his expertise globally. He has contributed to
academia as a Visiting Faculty Member of the

University of South Australia, Adelaide, Australia; the University of
Nebraska, Lincoln, USA; and the University of Kaiserslautern, Germany.
Notably, he has taught the summer term course ‘‘Mechatronic Systems.’’
He was a distinguished recipient of the DAAD Fellowship and ERASMUS
MUNDUS Teaching Fellowship. His instructional and research interests
include mechatronics, robotics, automotive control systems, embedded
system design, and sensor networks.

VOLUME 12, 2024 92891

