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ABSTRACT Accurate tumor detection and classification are crucial for cancer diagnosis and treatment.
Traditional medical image analysis methods face many challenges when dealing with highly heterogeneous
tumor images, such as large differences in image quality and unclear or complex tumor features. Although
breakthroughs have been made in image processing with deep learning techniques, there are still limitations
in identifying small or irregular tumors. Existing tumor detection models often rely on local feature
extraction, neglecting global information and subtle differences in the images, which limits their accuracy
and robustness in practical applications. To address these issues, this paper proposes a deep learning
model that integrates Feature Pyramid Network (FPN) and Vision Transformer (ViT) within an end-to-
end architecture. Firstly, the model extracts rich features at multiple scales through FPN, covering various
aspects from cellular structures to tissue layouts. Then, by introducing ViT, the model can effectively
process and analyze global features, particularly achieving higher accuracy in recognizing ambiguous
or complex tumor patterns. The self-attention mechanism further enhances the model’s focus on critical
regions of the image, improving its ability to detect subtle differences. Finally, the design of the end-to-end
architecture enhances the overall efficiency and consistency of themodel, facilitating global optimization and
further improving detection and classification performance. The experimental results show that compared to
existing techniques, this model demonstrates higher recognition accuracy on medical image datasets such as
TCIA, BraTS, LUNA, and Camelyon17. The accuracy and F1 scores improved by 4.65% to 6.24%. These
algorithmic improvements not only enhance the efficiency and accuracy of tumor detection but also provide
new pathways for the application of deep learning in medical image analysis.

INDEX TERMS Feature pyramid network, vision transformer, self-attention mechanism, tumor detection,
medical image.

I. INTRODUCTION
Cancer is a serious threat to human health, and early detection
and accurate diagnosis are crucial for treatment and survival
rates. With the continuous advancement of medical imaging
technologies such as computed tomography, magnetic reso-
nance imaging, and nuclear medicine scans, doctors are able
to obtain rich image information to aid in the diagnosis of
cancer. Early detection increases the likelihood of successful
treatment, reducing treatment costs and physiological and
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psychological burdens on patients [1]. Medical imaging
not only helps physicians detect the presence of tumors
but also provides detailed information about their size,
shape, and location, which is essential for formulating
treatment plans and selecting the most appropriate treatment
methods. For example, through precise image analysis,
doctors can determine whether a tumor has spread and
whether surgical removal is necessary. Additionally, medical
imaging provides a reliable means for monitoring disease
progression and evaluating treatment effectiveness [2]. Dur-
ing treatment, regular imaging monitoring helps doctors
assess whether tumors are shrinking or if new lesions are
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appearing, thereby allowing timely adjustments to treatment
strategies.

Currently, there are challenges in tumor detection and
classification due to differences in image quality and
the complexity of tumor characteristics, directly affecting
the accuracy and efficiency of diagnosis. Firstly, images
produced by different imaging techniques (such as CT, MRI,
ultrasound, etc.) vary in terms of clarity, contrast, and reso-
lution [3]. Moreover, even with the same imaging technique,
differences in equipment, variations in operating conditions,
or the characteristics of the patients themselves (such as
body position, tissue density, etc.) can lead to differences in
quality. These differences make automated image analysis
and tumor recognition more complex. Secondly, tumors
may vary greatly in shape, size, boundaries, and density.
Some tumors may exhibit atypical features, making accurate
diagnosis challenging even for experienced radiologists.
Furthermore, the contrast between tumors and surrounding
normal tissue may not be significant, especially in the
early stages, further increasing the difficulty of detection.
Addressing these challenges requires the development of
more advanced image processing techniques and learning
algorithms. These techniques and algorithms need to adapt to
differences in image quality, accurately identify and classify
tumors with different characteristics [4]. Therefore, this study
proposes a tumor detection model that integrates ViT model
to address these issues.

Detecting medical images through machine learning has
gradually become one of the mainstream methods today.
U-Net, as a classic convolutional neural network, performs
well in medical image segmentation tasks, with its encoder-
decoder structure effectively capturing local and global
features in images. However, its performance may degrade
when dealing with images with blurry edges or fine
structures [5]. Faster R-CNN, as an excellent model for
object detection, has advantages in fast and accurate lesion
detection in medical images, but it may be slower and prone
to information loss when processing large-scale images [6].
By reinforcing the feature pyramid network (R-FPN) and
introducing channel space mixed attention (CSMA), the
detection performance of the YOLOv5 algorithm can be
significantly improved, which also has applications in tumor
detection. ResNet, as a deep residual network, can learn
features more deeply and has achieved good results in
medical image analysis, but it requires more training samples
and tuning efforts to achieve optimal performance. Attention
U-Net, which introduces attention mechanisms on top of
U-Net, dynamically adjusts the feature weights at different
positions, thus improving the performance of medical
image segmentation. However, it may increase computational
complexity when processing large-scale images [7]. In tumor
diagnosis, deep learning methods have been able to assist
radiologists inmore accurate image interpretation, sometimes
even detecting subtle lesions that are difficult for the human
eye to perceive. For example, in breast cancer screening,
lung nodule detection, brain tumor segmentation, etc., deep

learning has demonstrated performance comparable to or
even better than that of expert radiologists [8]. Furthermore,
deep learning is playing an increasingly important role in
personalized medicine, treatment planning, and disease risk
assessment. Significant progress has been made in brain
tumor segmentation, with the multi-scale fractal feature
network (MFFN) demonstrating excellent performance in
terms of accuracy, sensitivity, and specificity. It is widely
used in medical image processing, but there are also problems
such as difficulty in data annotation and insufficient model
interpretability. In tumor detection tasks, relying solely on
local features sometimes makes it difficult to accurately
distinguish between benign and malignant tumors, especially
in cases where tumor features are not obvious or similar
to normal tissues. Additionally, existing technologies lack
robustness when facing practical issues such as differences
in image quality and data imbalance [9]. This means that
the performance of the model may significantly decrease
when encountering new images different from the training
data. The paper proposes a new method that integrates FPN,
ViT, and self-attention mechanism, aiming to overcome the
limitations of traditional techniques, achieve higher accuracy
and stronger robustness in tumor detection and classification,
and adapt to the diversity and complexity of tumors. It also
reduces the false positive rate.

The organizational structure of this paper is as follows: The
first section introduces the importance of medical imaging in
tumor diagnosis and the challenges faced by existing tumor
detection technologies are introduced, and discusses the
research motivation. Section two introduces the application
of deep learning in medical image processing, especially the
application of FPN, ViT, and self-attention mechanisms in
image classification and segmentation, providing a theoret-
ical basis for the establishment of the research framework by
emphasizing the innovation points of the research. Section
three details the model we propose, including the use of
FPN, integration of ViT, and application of end-to-end
architecture. The fourth section presents the experimental
results of the model on multiple medical image datasets,
compares it with six other methods, and evaluates the
model’s accuracy, sensitivity, specificity, and other indicators.
The fifth section discusses the advantages, limitations, and
possible directions for improvement of the model. The
sixth section summarizes the relevant findings of the paper,
emphasizes the contributions of the research, and proposes
future research directions.

II. RELATED WORK
The field of medical image processing has undergone rapid
development, with early computer-aided diagnosis systems
emerging to assist physicians in analyzing medical images.
These systems typically use simple processing techniques
such as image enhancement, edge detection, and contrast
adjustment to improve image readability and the visibility
of information [10]. However, traditional methods face
challenges in handling complex image analysis tasks, such as
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accurately locating and classifying pathological features [11].
With the development of deep learning methods, the field
of medical image analysis has undergone revolutionary
changes. Deep learning algorithms can automatically learn
complex patterns in image data, significantly improving the
accuracy and efficiency of diagnosis. These technologies are
not only good at identifying lesions but can also perform
more complex tasks such as pathology grading and disease
prediction. The DeepLab semantic segmentation model uses
dilated convolution and multi-scale processing technology
to improve the accuracy of segmentation by capturing
detailed information and contextual relationships in the
image. However, it may require longer training time andmore
computing resources when processing large datasets [12].
Pix2Pix is used in the field of medical imaging for tasks
such as image registration, image enhancement, and image
generation. Able to learn complex mapping relationships
between medical images and generate high-quality medical
images. However, a large amount of training data and
precise parameters are required to obtain satisfactory results
when processing medical images. In image segmentation,
deep learning techniques play a crucial role in accurately
identifying and labeling specific structures (such as organs,
tumors, etc.) in medical images. This is particularly important
in fields such as surgical planning and radiotherapy plan
formulation. With the continuous advancement of deep learn-
ing technology, more advanced network architectures, such
as residual networks [13], dense connection networks [14],
and attention mechanisms [15], have been introduced into
medical image analysis, further improving the performance
and generalization ability of models.

In recent years, FPN, ViT, and self-attention mechanisms
have played an important role in medical image processing
tasks. FPN is mainly used for feature extraction and
image segmentation in medical image processing. Its core
advantage lies in its ability to capture image features at
multiple scales, which is particularly important for processing
medical images because tumors and other lesions may
exhibit different features on images of different scales. For
example, in a study on lung CT scans, FPN was used to
effectively identify and segment lung nodules, demonstrating
higher accuracy than traditional methods [16]. However,
FPN also has certain limitations. Since it needs to process
feature maps at multiple scales, it may lead to increased
computational complexity and memory requirements. Addi-
tionally, in some cases, FPN may not be fine-grained enough
when integrating features from different scales, affecting the
final segmentation or classification accuracy. ViT models
have brought a fresh perspective to the field of medical
image analysis by introducing the Transformer architecture.
Unlike traditional CNNs, ViT processes the entire image
through self-attention mechanisms, thereby capturing more
complex and global image features [17]. In medical image
applications, such as brain MRI image analysis, ViT demon-
strates better recognition capabilities for irregular shapes

and blurry boundaries of lesions. Although ViT performs
well in handling global information, it also faces some
challenges, especially in dealing with the computational
burden of large amounts or high-resolution medical images.
Moreover, ViT requires relatively large amounts of training
data, which may be a limiting factor in medical image
tasks with limited data. The self-attention mechanism uses
weighted calculations to make the model pay more attention
to important areas in the image to more accurately identify
and focus on the lesion area [18]. In pathological image
analysis of breast cancer, self-attention mechanisms are used
to highlight key pathological features, such as clusters of
cancer cells, thereby improving the accuracy of classification
and diagnosis. However, the self-attention mechanism also
increases the complexity of the model and its sensitivity
to data. This requires careful tuning of the model in order
to balance performance improvements and computational
efficiency [19]. It is important to note that in the process
of image processing, we also need to segment medical
images. Zhang X et al. proposed an improved squeeze-
and-excitation residual network (SERNet), which combines
the squeeze-and-excitation residual module (SERM) and the
refined attention module (RAM). By modeling long-range
dependencies and focusing on global features, it demon-
strated superior segmentation performance. In enhancing
image continuity and clarity, Lu J et al. proposed a method
combining classifier-guided StyleGAN with AdaIN GAN.
By introducing a conditional classifier-guided module and
a linear weighted image stitching method, they overcame
the limitations of style diversity and generation quality.
Additionally, stereoscopic imaging technology significantly
improves doctors’ understanding of patients’ anatomical
structures in medical diagnosis and imaging. However,
stereoscopic imaging faces issues of low resolution and
blurry images. M Hayat et al. proposed a method combining
channel and spatial attention blocks with a parallax attention
module (PAM), as well as a super-resolution (SR) model
specifically for endoscopic images to enhance the super-
resolution of endoscopic images, thereby greatly improving
the accuracy and effectiveness of medical diagnosis and
surgery. The paper aims to improve the accuracy of tumor
or other lesion detection by utilizing FPN for multi-scale
feature extraction, ViT for global information processing,
and employing self-attention mechanism to enhance the
recognition of critical regions. This makes the model more
suitable for clinical applications, especially in cases where
tumor features are not obvious or similar to surrounding
tissues, and enhances its robustness and generalization ability
when facing practical issues such as differences in image
quality and data imbalance.

III. METHOD
Figure 1 shows the overall algorithm for tumor image
processing used in this article.
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FIGURE 1. Overall Algorithm Flowchart. First, we divide the medical
images into patches and apply a linear projection operation to each
patch. Through Patch Embedding and Position Embedding, we extract and
combine image features and positional information. Next, these features
are fed into the ViT model, where the self-attention mechanism captures
global features. Then, the extracted multi-scale features are processed
through the FPN, generating high-resolution feature maps to improve
detection and classification accuracy. This entire process is completed in
an end-to-end architecture, simplifying data processing and model
training, and ensuring the model’s efficiency and consistency.

FIGURE 2. Structure diagram of FPN.

A. FPN ARCHITECTURE
FPN: a deep learning architecture used for effectively extract-
ing image features at multiple scales. This is particularly
important when dealing with medical images, as subtle
anatomical structures and pathological features may only
be prominent at specific scales. FPN integrates the details
and overall semantic information in the image, enabling
the model to obtain local features and global background
at the same time, thereby improving the ability of image
understanding [20]. The FPN architecture is depicted in
Figure 2.

Bottom-up Pathway: In this pathway, the network extracts
features from the input image through a series of convolution
operations. These features are typically generated at different
convolutional layers, each containing varying degrees of
semantic information. Let the input image be denoted
as I , and the feature maps obtained after convolution and
activation functions as Ci, where i represents the level of
the feature map. The output of the bottom-up pathway is a
pyramid consisting of a series of feature maps, represented
as P1, P2, . . . , Pn.

Ci = Conv(I ), Pi = Conv(Ci), i = 1, 2, . . . , n (1)

Top-down Pathway: In this pathway, feature maps are
propagated from higher levels to lower levels to enhance
the semantic expression capability of lower-level feature
maps using semantic information from higher levels. This
is achieved through upsampling operations, such as bilinear
interpolation or transpose convolution. Let Pi represent the
feature map at the i-th level of the bottom-up pathway, and
U (·) denote the upsampling operation. Then, the output of
the top-down pathway is denoted as Fi.

Fi = U (Pi+1) + Pi (2)

FIGURE 3. Structure diagram of ViT.

Among them, the range of i is 1≤i≤n. The top-level feature
map Pn usually does not require upsampling and is output
directly.

Lateral Connection: In order to fuse the feature maps of
bottom-up and top-down paths, lateral connection operations
need to be performed at each level to combine high-level
semantic information with low-level feature maps. This
is achieved through a series of convolution operations to
generate the final feature map F ′

i for each level:

F ′
i = Conv(Fi) (3)

Finally, the FPN module converts the input image into
a multi-scale feature pyramid to provide rich semantic
information for subsequent tasks.

B. VIT ARCHITECTURE
Vision Transformer (ViT) is a novel image processing
model that employs self-attention mechanisms to handle
image data. Compared to traditional convolutional neural
networks (CNNs), ViT views images as sequential data and
processes them through Transformer structures, enabling it
to capture global information and long-range dependencies
within images [21]. The architecture diagram of ViT is shown
in Figure 3.
Input Representation: ViT divides the input image into

a series of fixed-size image blocks, and then flattens each
image block into a one-dimensional vector. Let xi represent
the i-th image block and n represent the total number of image
blocks, then the input sequence X = x1, x2, . . . , xn.

xi ∈ Rd , i = 1, 2, . . . , n (4)

Positional Encoding: Since Transformer does not contain
convolution operations, it cannot automatically capture
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positional information in the sequence. In order to introduce
positional information, ViT introduces Positional Encoding
to embed positional information into the input vector.
Position encoding vectors are generated from sine and cosine
functions:

PE(pos,2i) = sin
(
pos
ωi

)
PE(pos,2i+1) = cos

(
pos
ωi

)
(5)

Among them, ωi = 100002i/dmodel , pos represents the
position, i represents the dimension in the position encoding
vector, and dmodel represents the dimension of the input
vector.

Embedding Layer: The input sequence X is added with
positional encoding to obtain the embedded sequence Xemb.
This embedded sequence contains both the image features of
image patches and positional information, which serves as the
input to the Transformer model.

Xemb = X + PE (6)

Transformer Encoder: The ViT model adopts a Trans-
former encoder structure, which includes multiple Trans-
former Encoder layers. Each Transformer Encoder layer
consists of multiple self-attention mechanisms and feedfor-
ward neural network layers. The self-attention mechanism
is used to capture dependencies between elements in the
sequence, as well as the contextual information at each
position. The feedforward neural network is used to perform
nonlinear transformations on the features at each position.

H = TransformerEncoder(Xemb) (7)

where H represents the output feature representation of the
ViT model.

C. SELF-ATTENTION ARCHITECTURE
This architecture analyzes and processes images by capturing
the dependencies between different positions in sequential
data, enabling the model to better understand the global
structure and local correlations in the image, thus achieving
more accurate feature extraction and task execution [22]. The
algorithm architecture diagram is shown in Figure 4.
First, a weight vector wi is calculated for each position

i, which is used to weight and sum the elements at other
positions in the sequence. For each position i, compute the
similarity score between it and the other positions in the
sequence. This can be achieved by taking the dot product of
the feature vectors at each position with the feature vectors at
the other positions in the sequence:

Score(xi, xj) = xTi xj (8)

where xTi represents the transpose of xi, and xj represents the
feature vector at the other positions in the sequence.

Next, the scores are normalized using the softmax function
to obtain the weight of each position i relative to other

FIGURE 4. Structure diagram of self-attention mechanism.

FIGURE 5. Experimental flowchart.

positions.

Attention(xi, xj) =
exp(Score(xi, xj))∑N
k=1 exp(Score(xi, xk ))

(9)

Here, Attention(xi, xj) represents the attention weight of
position i towards position j. The purpose of normalization
is to ensure that the sum of all weights is 1.

Finally, the feature vector at each position in the sequence
is multiplied by the corresponding attention weight at that
position, and then all positions are weighted summed to
obtain the self-attention vector zi for position i:

zi =

N∑
j=1

Attention(xi, xj) · xj (10)

The self-attention mechanism can generate a new feature
representation zi for each position, which not only considers
the position information of the position itself, but also
considers the information of other positions in the sequence.
This helps capture the global dependencies within the
sequence.

IV. EXPERIMENT
Figure 5 shows the experimental method used in this article.
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A. LAB ENVIRONMENT
This study uses a computing server to facilitate the research
of image detection models. The server uses Intel Xeon E5-
2690 v4@ 2.60GHz CPU, whose powerful computing power
suitable for handling the complex requirements of deep
learning tasks. The server is equipped with 512GB large
memory to ensure sufficient memory resources for model
training and data processing. The server is also equipped
with eight Nvidia Tesla P100 16GB GPUs, which accelerates
the training and inference stages of the model and improves
experimental efficiency.

We chose the Adam optimizer to optimize the parameters,
with an initial learning rate set to 0.0001, which gradually
decays in the later stages of training to improve model
performance and stability. The batch size is set to 16, and the
total number of epochs is 20,000, ensuring sufficient training
time for the model. The model is saved every 2,000 iterations,
and the best-performing model is selected for validation.
We use Python as our primary programming language,
combined with PyTorch as the deep learning framework
for our research implementation. Python, known for its
simplicity and power, offers a rich ecosystem of third-party
libraries and tools, providing flexibility and convenience.
PyTorch, an open-source deep learning framework, offers
rich APIs and efficient computational capabilities, enabling
easy construction, training, and deployment of deep learning
models. Such a software environment provides a robust
foundation for our research, allowing us to focus on model
design and experimental exploration.

B. EXPERIMENTAL DATA
• TCIA Dataset
The Cancer Imaging Archive (TCIA) is a publicly
available medical imaging database supported by the
National Cancer Institute (NCI), specifically designed
for the cancer research community. The primary goal
of TCIA is to advance cancer-related imaging research
by providing researchers with a rich and diverse data
source, including medical imaging data from thousands
of cancer patients covering various types of cancer and
imaging modalities. This archive includes data from
422 non-small cell lung cancer patients collected by
the Tumor Radiology section, comprising 290 male and
132 female patients with an average age of 68 years. All
patients underwent lung scans using Siemens Biograph
scanners, with CT image slice thickness of 3mm and
spatial resolution of 0.997mm. Additionally, it includes
data from 211 non-small cell lung cancer patients,
mainly consisting of two clinical cohorts, R01 and
AMC. The R01 clinical cohort comprises 124 male
and 38 female patients, while the AMC clinical cohort
includes 16 male and 33 female patients. Due to the use
of different scanners for lung scans, there are variations
in CT image slice thickness, ranging from 0.625 to
3.0mm. The core of the dataset includes various imaging

types such as CT, PET, and MRI, along with clinical
information related to the imaging data. These high-
quality imaging data cover all stages of cancer from
early to late stages, including some rare and common
cancer types. There are over 130 cancer imaging datasets
covering more than 40,000 patients and over one million
images. These images are provided in various formats,
including DICOM, NIfTI, and JPEG. Additionally,
TCIA ensures comprehensive patient privacy protection
measures, respecting patient privacy when using the
data.

• BraTS Dataset
The Brain Tumor Segmentation (BraTS) challenge
is an important medical imaging dataset focused on
brain tumor segmentation, providing researchers with
a valuable platform. The dataset primarily consists of
multi-parameter magnetic resonance imaging (MRI)
scans from different brain regions of various patients.
These images encompass different types of brain tumors,
including 369 training cases and 125 validation cases.
Each sample is composed of four brain tumor MRIs:
T1, T1CE, T2, and FLAIR. The volume of each
modality image is 240×240×155, and they are aligned
to the same spatial coordinate system. The image
labels include four categories: background (label 0),
necrotic and non-enhancing tumor (label 1), peritumoral
edema (label 2), and enhancing tumor (label 4). These
labels are used for segmenting the enhancing tumor
region (ET, label 4), the tumor core region (TC, labels
1 and 4), and the whole tumor region (WT, labels 1,
2, and 4). The dataset includes gliomas of different
types and stages, featuring multi-grade tumors. A key
characteristic of BraTS is its high-quality annotated
data. The imaging data for each case is manually
annotated by experts, accurately delineating tumor
boundaries and different sub-regions such as the tumor
core and peritumoral edema. This provides researchers
with a precise benchmark for training and evaluating
automatic segmentation models.

• LUNA16 Dataset
The Lung Nodule Analysis (LUNA) dataset is designed
specifically for the detection and analysis of lung
nodules, aiming to promote research and development
in early lung cancer detection technologies. Lung cancer
often manifests as lung nodules in its early stages.
LUNA16 is based on another widely used public dataset,
LIDC-IDRI, which includes 1,018 low-dose lung CT
images. LUNA16 removes CT images with a slice thick-
ness greater than 3mm and lung nodules smaller than
3mm, resulting in a collection of approximately 1,000
lung CT scan samples from LIDC-IDRI. These high-
resolution samples include lung nodules of various sizes
and shapes, some of which are benign while others may
indicate early-stage lung cancer. The original images
are three-dimensional, with each image consisting of
a series of axial slices of the thorax. Each sample in
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the LUNA16 dataset has been meticulously reviewed
and annotated by multiple radiologists, ensuring data
quality and reliability. These experts provide detailed
annotations regarding the presence, location, size, and
other characteristics of the nodules, serving as a valuable
‘‘ground truth’’ benchmark for automatic detection
algorithms.

• Camelyon17 Dataset
Camelyon17, following Camelyon16, is a significant
medical dataset focused on the analysis of breast cancer
pathology images. It aims to challenge and advance
automated techniques in pathology image analysis,
particularly in the context of breast cancer. Camelyon17
provides a large collection of whole-slide images (WSI)
from breast cancer patients across multiple medical
centers. It includes 1,399 annotated whole-slide images
of lymph nodes, encompassing both metastatic and non-
metastatic lymph nodes, with a total data volume of
3TB. The data were collected from five different med-
ical centers, covering various image appearances and
staining variations. Each complete slide image is labeled
to indicate whether it contains metastases (including
macro-metastases, micro-metastases) or isolated tumor
cells. The dataset includes detailed hand-drawn contours
of metastatic lesions for 209 whole-slide images.
Camelyon17 is larger in scale and involves multiple
centers, providing researchers with a more challenging
and diverse testing environment. This dataset features
detailed annotations of lymph node metastases carefully
examined and confirmed by pathology experts. These
high-resolution WSIs contain rich information about
tumor cells and surrounding tissue structures.

C. EVALUATION INDICATORS
• Accuracy: Accuracy is one of the most basic and
intuitive indicators to evaluate the performance of a
classification model. It measures the proportion of
instances correctly classified by the model to the total
number of instances. In the problem of tumor detection,
accuracy is the proportion of cases in which the model
correctly identifies tumors and non-tumors among all
cases. The formula of accuracy can be expressed as:

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

where TP is the number of cases in which the presence
of tumor was correctly identified. TN is the number of
cases in which the model correctly identified no tumors.
FP is the number of cases where the model incorrectly
identifies healthy tissue as a tumor. FN is the number of
cases in which the model failed to detect actual tumors.

• Sensitivity: Sensitivity is a measure of a classification
model’s ability to identify positive instances. In the
context of tumor detection, sensitivity refers specifically
to the model’s ability to correctly identify the pres-
ence of a tumor. The formula for sensitivity can be

expressed as:

Sensitivity =
TP

TP + FN
(12)

In tumor detection, high-sensitivity representative mod-
els canmore accurately identify patients with tumors and
reduce the risk of missed diagnosis, thus improving the
reliability and effectiveness of detection.

• Specificity: Specificity is a measure of the ability to
identify negative instances in a classification model
task. In fields such as medical diagnostics or tumor
detection, specificity refers to a model’s ability to
correctly identify tumors or the absence of disease. The
calculation formula is as follows:

Specificity =
TN

TN + FP
(13)

High specificity means that the model performs well in
identifying negative cases, i.e., it does not incorrectly
diagnose healthy individuals as having the disease too
often.

• F1 Score: The F1 score is a statistical metric that
measures the balance of accuracy and sensitivity of a
classification model. This metric is especially suitable
for those cases where the class distribution is unbal-
anced. The formula of F1 score is the harmonic mean
of precision and sensitivity:

F1 Score=
2 · Pr ecision · Sensitivity
Pr ecision + Sensitivity

(14)

The F1 score takes Precision and Sensitivity into
consideration, providing a more comprehensive and
balanced performance evaluation indicator.

D. EXPERIMENTAL DATA ANALYSIS
In the experimental part, we will conduct a multi-faceted
evaluation of the tumor detection and classification models.
To ensure the breadth and depth of the evaluation, we have
selected four different public medical imaging datasets:
TCIA, BraTS, LUNA, and Camelyon17. These datasets cover
a variety of cancer types and imaging modalities, providing
our model with diverse testing scenarios. To evaluate the
overall performance of themodel acrossmultiple dimensions,
we will use several metrics: accuracy, sensitivity, specificity,
and F1 score. These metrics not only assess the model’s
overall accuracy but also reveal its ability to identify
true tumors (sensitivity), reduce misdiagnosis (specificity),
and consider both accuracy and coverage comprehensively
(F1 score).

As can be seen from Table 1, on the TCIA dataset,
our method achieved an accuracy of 93.27%, which is
significantly higher than the highest value of 91.73%
among other methods. This suggests that our model is
overall more accurate in identifying tumor and non-tumor
cases. Furthermore, for the two indicators of sensitivity
and specificity, our method achieved 95.35% and 94.42%,
respectively, which were 2.89% and 2.21% higher than
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TABLE 1. Comparison of indicators of various models under TCIA Dataset and BraTS dataset.

FIGURE 6. Comparative visualization of each model indicator under the
TCIA dataset and the BraTS dataset.

the highest values among other methods. This suggests
that our model can more effectively detect true tumors
while reducing the misdiagnosis of healthy individuals.
On the BraTS dataset, our method achieved an accuracy
of 94.65%, also surpassing the highest value among other
methods, which was 91.94%. This indicates that our model
demonstrates similar advantages on another dataset. In terms
of sensitivity and specificity, our method achieved 96.64%
and 95.68%, respectively, exceeding the highest values
among other methods by 3.97% and 3.42%. This indicates
that our model’s performance in identifying true tumors and
reducing misdiagnosis is also superior. Our method exhibited
higher accuracy, sensitivity, specificity, and F1 score on
both datasets, further validating the superiority of the model.
Figure 6 shows the comparison of various indicators, which
can more intuitively see the differences in the models.

From Table 2 it is obvious that our method outperforms
other models on both LUNA and Camelyon17 datasets.
On the LUNA dataset, the accuracy of this method is 92.64%,
significantly higher than the highest value among other
methods, which was 90.72%. In terms of sensitivity and
specificity, our method achieved 94.97% and 93.64%, respec-
tively, surpassing the highest values among other methods by
4.08% and 2.79%. The results show that the model can more
accurately identify true tumors while reducing the likelihood
of misdiagnosis. On the Camelyon17 dataset, our method
achieved an accuracy of 93.86%, also surpassing the highest
value among other methods, which was 91.95%. In terms of
sensitivity and specificity, our method achieved 92.58% and
94.73%, respectively, exceeding the highest values among
other methods by 0.93% and 2.01%.The model showed
similar advantages on another dataset, better identifying
tumors and reducing misdiagnoses. Figure 7 shows the

FIGURE 7. Comparative visualization of each model indicator under the
LUNA dataset and camelyon17 dataset.

comparison of various indicators, which can more intuitively
see the differences in the models.

From Table 3, it can be seen that our approach demon-
strates advantages in multiple indicators such as the number
of parameters in the four datasets. On the TCIA dataset, our
method possesses fewer parameters, totaling 336.58M, com-
pared to other approaches. Additionally, our model exhibits
higher efficiency in both inference and training times,
with values of 236.57 milliseconds and 174.36 seconds,
respectively. Compared to other methods, our model achieves
faster inference speeds and shorter training times. Similarly,
our approach demonstrates comparable advantages on the
LUNA and Camelyon17 datasets. On the LUNA dataset,
our model has 326.45M parameters, with inference and
training times of 225.41 milliseconds and 171.57 seconds,
respectively. On the Camelyon17 dataset, our model has
344.27M parameters, with inference and training times of
214.63 milliseconds and 144.35 seconds, respectively. The
model performs excellently across all four datasets. Figure 8
shows the comparison of various indicators, which can more
intuitively see the differences in the models.

Table 4 presents the comparative analysis of ablation
experiments conducted on the TCIA and BraTS datasets.
On the TCIA dataset, We evaluate the performance of the
model by gradually adding different modules, including
the baseline model, addition of FPN, incorporation of ViT,
and simultaneous inclusion of FPN and ViT. The results
demonstrate a gradual improvement in accuracy, sensitivity,
and F1-score as the components are added. Specifically, after
incorporating FPN and ViT, the model achieved the highest
values for accuracy, sensitivity, and F1-score, reaching
93.27%, 95.35%, and 94.97%, respectively. Similar experi-
ments conducted on the BraTS dataset yielded comparable
results. With the stepwise addition of components, there
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TABLE 2. Comparison of indicators of various models under LUNA Dataset and Camelyon17 dataset.

TABLE 3. Metrics of multiple models on four datasets.

FIGURE 8. Visual comparison of indicators of multiple models on four datasets.

TABLE 4. Ablation experiments of this model on the TCIA dataset and BraTS dataset.

was an improvement in accuracy, sensitivity, and F1-score.
Notably, after integrating FPN and ViT, the model exhibited
the best performance, with accuracy, sensitivity, and F1-
score reaching 94.65%, 96.64%, and 94.21%, respectively.
These experimental findings underscore the significant
enhancement in model performance with the introduction of
FPN and ViT. They demonstrate the superior performance
achieved on both datasets by incorporating these components.
In figure 9 we can intuitively see the indicator trend of the
ablation experiment.

Table 5 shows the comparison of various indicators in
the ablation experiments performed on the two datasets.
On the LUNA dataset, we systematically added different
components to assess the model’s performance, including
the baseline model, addition of FPN, integration of ViT,
and simultaneous incorporation of both FPN and ViT. The
findings indicate a progressive improvement in accuracy,
sensitivity, and F1-score with the addition of these com-
ponents. Specifically, after incorporating FPN and ViT, the
model achieved its highest values for accuracy, sensitivity,

106104 VOLUME 12, 2024



N.-Y. Huang, C.-X. Liu: Efficient Tumor Detection and Classification Model

TABLE 5. Ablation experiments of this model on the LUNA Dataset and Camelyon17 dataset.

FIGURE 9. Comparative visualization of ablation experiments on TCIA
Dataset and BraTS dataset.

FIGURE 10. Comparative visualization of ablation experiments on LUNA
dataset and Camelyon17 dataset.

and F1-score, reaching 92.64%, 94.97%, and 95.24%, respec-
tively. Similarly, the indicators on the Camelyon17 dataset
also show this trend. As we incrementally added components,
there was an enhancement in accuracy, sensitivity, and F1-
score. Notably, after integrating FPN andViT, all indicators of
this model reach the optimal level, with accuracy, sensitivity,
and F1-score reaching 93.86%, 92.58%, and 93.46%, respec-
tively. These experimental results underscore the significant
performance improvement achieved with the introduction
of FPN and ViT. They illustrate the superior performance
attained on both datasets through the incorporation of these
components. In figure 10 we can intuitively see the indicator
trend of the ablation experiment.

V. DISCUSSION
The performance of our model was thoroughly examined
across four distinct public medical imaging datasets: TCIA,
BraTS, LUNA, andCamelyon17. These datasets, encompass-
ing a variety of cancer types and imagingmodalities, provided
robust testing environments for our model. Compared with
other methods in the field, our model shows excellent
performance on multiple key metrics. For instance, on the
TCIA dataset, our model achieved an outstanding accuracy
of 93.27%, outperforming other methods by a significant
margin. Similarly, on the BraTS dataset, the model’s accuracy
rose to 94.65%, showcasing its effectiveness in different
scenarios. This trend was consistently observed across the

LUNA and Camelyon17 datasets as well. Furthermore, the
ablation studies conducted added valuable insights. These
studies revealed the individual contributions of the FPN and
ViT to the overall performance. By incrementally adding
these components, we observed a marked improvement in
model performance. This was particularly evident in the
accuracy, sensitivity, and F1-score improvements seen on all
datasets when both FPN and ViT were integrated into the
model. This model has fewer parameters than other models,
which improves the calculation speed. These technologies
have shown significant advantages in improving the perfor-
mance of medical image detection and classification, but
they still have some limitations. The FPN excels at multi-
scale feature extraction but performs less effectively when
dealing with tumors of extreme size differences and has
high computational complexity. The ViT, while enhancing
global feature capturing capabilities, has high computational
costs and relies on large-scale datasets, which may affect its
performance given the limited data in the medical imaging
field. Furthermore, the end-to-end architecture improves
system efficiency and consistency but increases system
complexity, requiring extensive parameter tuning and model
adjustments to ensure stability and reliability across different
application scenarios.

VI. CONCLUSION
The paper presents the development and testing of a novel
tumor detection and classification model. Through FPN, our
model is able to extract rich features at different scales,
allowing for a more comprehensive understanding of tumor
morphology and structure. This multiscale approach aids in
capturing the microscopic details of tumors as well as their
context within larger tissue structures, thereby enhancing
detection accuracy. The introduction of ViT enables the
model to leverage self-attention mechanisms to process
global information. This global perspective is crucial for
understanding complex patterns and relationships in the
images, particularly in cases where tumor features are atypi-
cal or ambiguous. The additional self-attention layer enables
the model to focus more on key regions within the image,
further enhancing the sensitivity and identification capability
of tumor features, particularly in noisy backgrounds. Experi-
mental results demonstrate that the model outperforms other
detection methods in terms of accuracy, sensitivity, speci-
ficity, and F1 score. It requires fewer parameters compared to
other methods, and it achieves faster inference and training
times. This efficiency is particularly valuable in clinical
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settings, where rapid and accurate diagnosis can significantly
impact patient outcomes. In future research directions, we can
consider the following aspects. First, optimizing multi-scale
feature extraction by introducing more complex multi-scale
feature fusion techniques or combining pyramid attention
mechanisms to enhance FPN’s ability to extract features from
very small or very large tumors. Second, in terms of data
augmentation and generation techniques, using data aug-
mentation techniques and Generative Adversarial Networks
(GANs) to expand medical image datasets to improve ViT’s
feature learning capabilities, and exploring lightweight self-
attention mechanisms to reduce computational complexity.
Additionally, modular architecture design is also an important
direction. By introducing a modular design in the end-to-end
architecture, each part of the model can be independently
optimized and adjusted, thereby reducing system complexity
and enhancing flexibility and robustness. Meanwhile, cross-
domain learning can utilize large-scale datasets from other
fields for feature transfer, enhancing the model’s general-
ization and feature learning capabilities to compensate for
the scarcity of medical image data. Finally, in the area of
real-time processing and resource optimization, researching
techniques such as model compression, quantization, and
acceleration algorithms can reduce computational resource
consumption and improve the efficiency and feasibility of the
model in practical applications.
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