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ABSTRACT The previous scheme used imitation learning by classification of branching or pruning,
combined with Branch and Bound (B&B) algorithm to solve physical-layer-only joint optimal subcarrier
and power allocation problem in the device-to-device communications. In this paper, we propose joint source
encoding rate control and machine learning assisted cross-layer joint optimal subcarrier/ power allocation.
The proposed scheme has source encoder rate control and can adaptively adjust video rate to increase the
video quality, peak signal to noise ratio (PSNR). The previous physical-layer-only scheme did not use
the content-based video rate adaption. Furthermore, the proposed scheme uses the objective function of
PSNR directly and allocates the subcarrier and power considering the different rate-distortion function of
users’ videos. The previous physical-layer-only scheme could only treat the users’ video equally. Under
the new minimum PSNR constraint of the cellular user (CU), we derive a new objective function that is
independent of the transmission power of the CU to simplify the optimization problem formulation. The
previous scheme considered the physical-layer-only objective function and constraints. Finally, in addition
to imitation learning, the proposed scheme adopts ensemble learning with downsampling the majority set
{prune} to alleviate the class imbalance problem and improves performance. The simulation results show
that in the scenario where the number of CUs is 5, the number of subcarriers is equal to the number of CUs,
the bandwidth is 15k Hz, and the number of D2D pairs is 2, the PSNR of the previous physical-layer-only
scheme is 31.03 dB, while our proposed cross-layer allocation scheme is 35.67 dB, a 4.64 dB gain. The
trained model trained at 5 CUs can generalize without re-training to 10 CUs with only 5.91% gap to the
optimal PSNR and 20.43 times speed (95% execution time reduction) when compared to the globally joint
optimal subcarrier/power allocation B&B algorithm.

INDEX TERMS Video communications, machine learning, resource management, Internet of Things, data
imbalance, cross layer design.

I. INTRODUCTION
With the advancement of internet technology and the pop-
ularization of communication devices, a large number of
devices are interconnected. In order to meet the needs of
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approving it for publication was Renato Ferrero .

a large number of growing mobile users and improve the
efficiency of spectrum use, device-to-device (D2D) commu-
nication in the future Internet of Things (IoT) network will
be one of the indispensable and important technologies [1].
D2D technology communicates directly through neighboring
user equipment without relying on the base station (BS),
and improves the network spectrum efficiency by reusing
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the spectrum resources of the cellular user (CU) [2]. Thus,
D2D communication has been incorporated into the Long
Term Evolution- Advanced (LTE-Advanced). In recent years,
D2D communication based on cellular networks has aroused
extensive discussions in academia due to its potential to
improve spectral efficiency and cell throughput. However,
D2D communication may cause serious interference to exist-
ing CUs due to spectrum reuse. Therefore, the performance
of the system is improved by power control and subcarrier
allocation, thereby reducing the channel interference between
the D2D pair and the CU [3], [4], [5].

In wireless communication, resource allocation such as
channel and power is critical for performance improvement.
The resource allocation problem is viewed as a mixed integer
nonlinear programming (MINLP) problem. Most of these
MINLP problems are NP-hard problems. Therefore, some
studies had turned to suboptimal scheme to reduce com-
plexity, such as [6] based on game theory to solve power
allocation in cellular network-assisted D2D communication
systems, [7] solved the channel and power assignment prob-
lem. in D2D -based IoT networks. Reference [8] proposed
separate channel allocation, power allocation, and match-
ing in D2D-based IoT systems. Reference [9] proposed
a resource allocation scheme which is robust with chan-
nel uncertainties in underlaid D2D communication network.
However, the above papers [6], [7], [8], [9] dealt with the
physical layer only and did not consider joint source rate
encoder rate and resource management optimization in D2D
video communications.

Cross layer resource allocation in cellular [10], [11], [12]
and D2D [5], [13], [14] video communications considers
more than one layer in TCP/IP layers and gets better per-
formance and user experience in video communications, the
majority of today’s data traffic [15]. Reference [10] consid-
ered adaptive modulation and coding and cross PHY/APP
resource allocation with fixed source encoding rate in cellular
systems. The fixed data size cannot adapt to time varying
channels. Reference [11] proposed a content-based adaptive
source encoding rate and cross PHY/APP layer resource
allocation scheme in cellular systems. Reference [12] updated
rate distortion parameters in higher rate and compensated
nonperfect source encoder rate control in cellular systems.
Reference [5] proposed a separately suboptimal approach-
subcarrier allocation in outer loop and power allocation in
the inner loop with objective of minimizing sum video MSE
distortion in D2D video communications. It considered the
channel status information (CSI) in the physical (PHY) layer
and the video rate distortion function in the application
(APP) layer. Reference [13] proposed resource block (RB)
allocation and D2D pairing in D2D video communications.
Reference [14] proposed power allocation with the objective
to maximized the data rate weighted by video popularity in
video caching of D2D video delivery. However, the adaptive
video source encoder rate and joint optimal subcarrier (or
RB) and power allocation for D2D video communications

has not been addressed in previous D2D cross layer resource
allocation studies [5], [13], [14].

In recent years, machine learning has become a break-
through technology and has been widely used in resource
allocation problems in wireless communications, because the
resource allocation scheme based on machine learning can
effectively reduce the computational complexity and pro-
gram execution time [16], [17], [18], [19], [20], [21], [22],
thus causing huge research attention. In [16], the SCMA
codebook assignment problem in wireless communication
was solved through deep neural networks. In [17], a deep
reinforcement learning based approach was used to solve
the sum rate maximization problem of D2D communication.
The machine learning methods mentioned above follow an
end-to-end model, and learn the relationship between input
and output through various machine learning methods. This
method was more suitable for a single kind of optimization
problem such as power allocation without channel allocation
in [18] because the end-to-end learning model was difficult to
effectively solve the complex MINLP problem [19]. In [18],
a DNN approximate weighted minimum mean squared error
(WMMSE) algorithm was proposed to lower the complex-
ity. Reference [20] proposed the power allocation based on
homogeneous graph neural network (GNN) for D2D com-
munications. Reference [21] proposed the power allocation
based on heterogeneous GNN) for D2D communications
where the number of antennas is different in D2D device
groups. however, there is significant performance gap com-
pared to the optimal solution because the training samples are
obtained through a sub-optimal algorithm, plus the error of
prediction using deep learning [22]. Furthermore, the disad-
vantage of using the deep learning method is the requirement
of big training data. As a result, the cost of collecting training
data will be very expensive, which is not feasible in reality.
However, more complex MINLP problems are difficult to
solve through this end-to-end approach, so it is better to com-
bine mathematical optimization techniques and with machine
learning to solve the MINLP problem [19], [22].

Branch and Bound (B&B) algorithm is a mathematical
optimization technique which can obtain the optimal solution
to theMINLP problem. Its time complexity is high. A number
of literatures [19], [22], [23] show that imitation learning
can accelerate the branching process of B&B algorithm to
reduce the computational complexity. In [23], the concept of
applying imitation learning to solve the MINLP problem was
first proposed. Reference [22] used the B&B algorithm and
deep neural network (DNN) classifier by imitation learning in
wireless communication to solve the power allocation prob-
lem of Cloud-RANs. Reference [19] usedB&B algorithm and
support vector (SVM) classifier by imitation learning to solve
the problem of jointly subcarrier and power allocation in D2D
communications. However, previous machine-learning based
D2D resource allocation studies [18], [20], [21] considered
only power allocation and not channel allocation; previous
jointly optimal power and subcarrier allocation D2D resource
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allocation study [19] considered the physical layer only but
did not take source encoding rate control and application layer
metric into consideration.

A. CONTRIBUTION
In this paper, we propose joint source encoding rate and imita-
tion/ensemble learning based cross-layer resource allocation
optimization for uplink D2D video transmission systems.
The proposed imitation learning of B&B (jointly optimal
channel/power allocation) in a cross layer fashion allows
the proposed scheme to i) outperforms classical suboptimal
and separate channel/power allocation schemes such as [13]
ii) scale/generalize well without re-training while typical
deep learning based approaches do not scale/generalize to
larger number of users Combined with the proposed down-
sampling training and ensemble learning (Sec. IV-E), the
proposed imitation learning of B&B scheme solves the class
unbalance problem and is expected to improve the perfor-
mance further [25].

When compared with aforementioned previous studies [5],
[6], [7], [8], [9], [13], [14], [18], [19], [20], [21], this paper
has following contributions:

1) We propose joint video source encoder rate adaption
and cross layer joint channel/power allocation scheme
in D2D video communications by B&B algorithm and
imitation learning. For comparison, [6], [7], [8], [9]
considered the physical layer only resource alloca-
tion in D2D communications and did not take source
encoding rate control and application layer metric into
consideration. References [5], [13], and [14] consid-
ered cross layer resource allocation in D2D video
communications, but did not consider both chan-
nel and power allocation or allocated the channel
and power allocation in a separately suboptimal way.
References [18], [20], and [21] considered deep-
learning based power allocation and not channel allo-
cation in D2D networks. Reference [19] considered
the physical layer only machine learning-based joint
channel and power allocation in D2D communications,
but did not take source encoding rate control and
application layer metric into consideration.

2) We take source encoding rate control and applica-
tion layer metric into consideration. The video rate
control is employed, according to radio resource con-
straints. The objective function is changed to maximize
the minimum PSNR (peak signal-to-noise ratio), the
video quality, instead of data rate in the physical
layer, of the D2D pair. The minimum CU performance
constraint is changed to minimum PSNR instead of
data rate, of CUs. When training the SVM classi-
fier, we change the original training feature data rate
in [19] to the video mean-square-error (MSE) distor-
tion. We improve the performance of the classifier by
changing the problem-depend features. Based on the
minimum PSNR constraint, we derive a novel expres-
sion of CU power allocation. We then simplify the

resource allocation problem by removing the CU power
allocation variable, thereby reducing the computational
complexity.

3) We propose ensemble learning similar to [24] to
improve performance. The difference is that the train-
ing datasets are obtained to downsample the majority
class {prune} such that {prune} class has the same size
as the minority class {branch} in a way similar to [25].
Thus the class-imbalance problem is compensated and
the precision is expected to be improved [25]. For com-
parison, physical layer baseline [19] does not deal with
class imbalance in the dataset and thus the precision
still has room to improve.

4) The proposed scheme with the above contribu-
tions 1)-3) outperforms the state-of-the-arts (SOTAs)
physical layer baseline scheme [19], and cross layer
baseline scheme [13] by 4.64 dB, and 3.66 dB, respec-
tively, in PSNR in the simulation results. This is
because the proposed scheme is imitation learning
based approach on the globally joint optimal B&B
algorithm; the cross layer baseline scheme [13] is sub-
optimal and does not jointly allocation channel and
power, and physical layer baseline scheme [19] bases
on the globally joint optimal B&B algorithm but phys-
ical layer only and does not have ensemble learning to
deal with class imbalance and improve accuracy.

5) The trainedmodel trained at 5 CUs can generalize with-
out re-training to 10 CUs with only 5.91% gap to the
optimal PSNR and 20.43 times speed (95% execution
time reduction) when compared to the conventional
B&B algorithm. Therefore, the proposed scheme is
near globally joint optimal B&B with only 5% of its
time complexity.

II. SYSTEM MODEL
In this paper, we propose joint video source encoder
rate control and imitation learning based cross-layer
resource allocation for uplink D2D video transmission
systems. In subsection A, we give the system overview.
In subsection B, we describe the PHY model of uplink D2D
communications system. In subsection C, we describe the
APP layer model of video rate distortion model and video
quality PSNR.

A. VIDEO TRANSMISSION SYSTEM OVERALL
ARCHITECTURE
Fig. 1 is the uplink D2D video transmission system, the sys-
tem architecture is based on [5], [11], and [12]. The resource
allocation block not only assign the channel and power, but
also control the source encoder rate, as indicated by the arrow
to H.264 encoder block. H.264 rate control is applied to each
group of pictures (GOP) at discrete rates. The difference is
that we add D2D communication to the cellular wireless
OFDMA video transmission system, allowing the D2D pair
to reuse the CU’s uplink channel to transmit data.

93570 VOLUME 12, 2024



S.-M. Tseng et al.: Machine Learning Assisted Cross-Layer Joint Optimal Subcarrier and Power Allocation

FIGURE 1. The overall architecture of the proposed video source encoder
rate control and imitation learning based cross-layer resource allocation
for uplink D2D video transmission systems.

B. UNDERLAY D2D COMMUNICATION SYSTEM MODEL IN
PHY LAYER
As shown in Figure 2, we consider an uplink single-cell
LTE-Advanced (LTE-A) cellular network-assisted D2D com-
munication system, which consists of a base station (BS),
K cellular users (CU), and M D2D pairs. Each CU uses an
OFDMA subcarrier channel, so the number of subcarriers
and CUs is equal. A D2D pair can occupy the CU’s uplink
channel. CU index k = {1,2,. . . ,K} is equal to the subcar-
rier index without loss of generality. D2D pair index m =

{1,2,. . . ,M}. Subcarrier allocation vector αK×M = [αkm]
denotes the subcarrier allocation results. If D2D pair m reuse
the channel of CU k, then αkm = 1, otherwise αkm = 0.

FIGURE 2. D2D communication system scenario underlay LTE-A network.

In the uplink D2D communication system model of Fig. 2,
hCBk is the channel gain from CU k to BS, hDm is the channel
gain of D2D pair m, and hCDkm is the interference channel

gain from CU k to the receiver of D2D pair m, hDBm is the
interference channel gain from the transmitter of D2D pair
m to the base station. pCk is the transmit power of CU k, and
pDkm is the transmit power of the D2D pair reusing the CU k
channel.

Because each CU channel can be reused by no more
than one D2D pair, the signal-to-interference-plus-noise ratio
(SINR) of the D2D pair m reused CU k channel is

SINRDkm(p
C , pD, α) =

αkmhDmp
D
km

hCDkm p
C
k + σ 2

(1)

where σ 2 is the power of additive white Gaussian noise
(AWGN).

The SINR of CU k is

SINRCk (p
C , pD, α) =

hCBk pCk
6mαkmhDBm pDkm + σ 2

(2)

According to [11], BW is the bandwidth of each subcarrier,

η = 3
[
Q−1

(
SERt
4

)]−2
is the difference between theoretical

and actual channel capacity.
The data rate of CU k is

RCk (p
C , pD, α) = BWlog2(1 + ηSINRCk ) (3)

The data rate of D2D pair m can be expressed as

RDm(p
C , pD, α) =

∑
k
αkmRDkm(p

C , pD, α)

=

∑
k

αkmBWlog2(1+ηSINRDkm) (4)

where RDkm is the data rate for D2D pair m occupying CU k’s
channel.

C. VIDEO RATE-DISTORTION MODEL FOR RESOURCE
ALLOCATION
According to the video rate distortion model of [5], [11], [12],
[13], [16], [29], [30], and [31], the video MSE distortion of
the m-th D2D pair can be expressed as

MSEDm(p
C , pD, α) = am +

bm
RDm + cm

(5)

where am, bm, cm are constants that depend on the video
content. As indicated in subsection A, the source encoder
H.264 rate control is applied to the frames inside one group
of pictures (GOP) at discrete rates. The operational points
are nonlinearly fit the video MSE distortion in (5) to obtain
am, bm, cm.
The PSNR of the m-th D2D pair can be expressed as

PSNRDm(p
C , pD, α) = 10log10

255 ∗ 255

MSEDm
(6)

This PSNR in (6) using video rate distortion model
in (5), also called error free PSNR [11], is widely used
for cross layer resource allocation [5], [11], [12], [13],
[16], [29], [30], [31]. There are no comparing two video
frames in a pixel-by-pixel way, and no associated processing
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delay/latency. This PSNR in (6) using video rate distortion
model in (5), also called error free PSNR [11] does not
include channel error, RD curve fitting error, and imperfect
encoder rate control, but the differences from the PSNR
comparing two video frames, also called PSNR decoder [11],
is small [5], [11], [12], [13], [16].

Because there is no video frame comparison to obtain
PSNR and no associated latency, obtaining PSNR is not a
bottleneck to conduct resource allocation [5], [11], [12], [13],
[16], [29], [30], [31].

III. BASELINE SCHEME—PHYSICAL LAYER RESOURCE
ALLOCATION [19]
The baseline scheme is slightly modified version of [19]. The
difference is 1) we add a video source encoder to [19] so
video communications is considered in the baseline scheme.
2) [19] considered data rate per unit bandwidth but the data
rate here includes subcarrier bandwidth, and the gap between
theoretical and actual channel capacity η is considered here
but [19] did not.

A. VIDEO SOURCE ENCODER
The video-content-based video rate adaption is not applied
because the baseline scheme is a physical layer only one.

B. PHYSICAL LAYER PROBLEM FORMULATION
The goal ismaximizing theminimumdata rate of D2Dpairm.
The physical layer resource allocation (channel, CU power,
D2D pair power) problem of D2D communications is
formulated as follows:

max
{pC ,pD,α}

max
m∈M

RDm(p
C , pD, α) (7)

subject to αkm ∈ {0, 1} , ∀k ∈ K , ∀m ∈ M (7a)∑
m∈M

αkm ≤ 1, ∀k ∈ K (7b)∑
k∈K

αkmpDkm ≤ PDmax , ∀m ∈ M (7c)

RCk (p
C , pD, α) ≥RCmin, ∀k ∈ K (7d)

pCk ≤ PCmax , ∀k ∈ K (7e)

where, RCmin is the minimum data rate constraint for the CU,
PDmax is the maximum transmit power limit of the D2D pair,
PCmax is the maximum allowable transmit power of the CU.

C. BRANCH AND BOUND (B&B) ALGORITHM
n the problem formulation in the previous subsection, the
integer variables are binary, so B&B could obtain the global
optimal solution by iteratively searching the tree [22]. The
problem is solved by branching the binary tree, and each
node that branches off is a sub-problem. In the calculation,
the uncertain branch variables are relaxed into continuous
variables in [0,1], and local solutions are obtained by solving
the corresponding sub-problems.

The search process of the B&B algorithm consists of the
following steps.

• Selecting node: select a node from the tree’s list of
unvisited nodes.

• Computation: solve the nonlinear sub-problems corre-
sponding to the nodes and obtain their local solutions.

• Fathom decision: use the local solution and the global
solution (the current optimal solution to the objective
function) to decide if we remove this node from the node
list.

An illustrating example of B&B algorithm is shown in
Fig. 3. We first set the global solution to +∞ and obtain
x = 5/2, y = 3/2 by solving the constraints. Then select the
branch variable y to branch to get the sub-problem, and get
the local solution −13/3 by solving the sub-problem. Then
continue to branch downwards. In step 3, we get the integer
solution x= 1, y= 1, and the local solution is−3. According
to the B&B pruning policy, we delete this node and update the
global solution to −3. And so on until all nodes complete the
visit.

FIGURE 3. An example of B&B algorithm.

The original B&B pruning policy includes the following
three cases:

• Infeasible sub-problems: if the sub-problems generated
by relaxing the constraints cannot meet other con-
straints, then the node will be pruned (step 4 in Fig. 3).

• Find a feasible solution: as shown in Figure 3.1. If x and
y are integer vectors whose sub-problems satisfy other
constraints and are also feasible solutions, the node will
also be pruned (step 3 in Fig. 3).

• The local solution is worse than the current global solu-
tion: since the objective function of Fig. 3 is to find the
minimum value, if the local solution of the node > the
current global solution, the node will continue to branch
downward and will not find a better solution, so the node
is pruned (Step 8 in Fig. 3).

However, the exponential computational complexity of this
algorithm is impractical, prompting us to speed it up through
imitation learning techniques.
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D. IMITATION LEARNING OF PRUNING POLICY BY SVM
CLASSIFIER
We can greatly improve the efficiency of B&B algorithms by
learning optimal pruning policy to prune more nodes during
the search process.

The B&B algorithm in Fig. 3 is a sequential decision
process containing a state space S, an action space A, and
a policy space 5. S is the set of all visited nodes, with
the corresponding global solution and the current optimal
solution. A is {prune, branch}. π ∈ 5 represents the mapping
relationship between states and actions, that is, π (s) = a.
Best pruning policy π∗, supplies the best action a∗ for any
state s ∈ S. In theory, we can use supervised learning
to learn a policy in this sequential decision problem if we
have the features and labels of all nodes. The architecture of
imitation learning is similar to reinforcement learning [19],
and the goal of both is to train the policy. The difference
is that reinforcement learning learns through reward without
knowing the best policy, while the best policy for imitation
learning is known (B&B algorithm result), so it can be trained
through supervised learning [19], [22].

The imitation learning problem we discuss here can be
transformed into a classifying problem with feature maps
through appropriate design, and then we use SVM to train
the classifier and think about how to design appropriate
feature maps. Designing feature is important for training
classifiers, especially features that are closely related to
states s ∈ S. In [22], problem-independent features and
problem-dependent features are used to further improve the
performance of the classifier. The following eight features are
used in [19] to train the classifier.

i. Problem-independent Features:
Such features are obtained from the binary tree con-

structed by B&B and applicable to all MINLP problems [23].
Independent features include the following three categories.

• Node features: the depth of the node, the search depth
of the node, and the local solution of the node.

• Branch feature: the branch variable of the binary tree.
• Tree features: the current global solution, the number

of solutions currently obtained.
ii. Problem-dependent Features:
To choose appropriate problem-dependent features,

we know from the objective function that channel and power
constraints are two key factors.

• Data rate
• Power features

IV. PROPOSED RESOURCE ALLOCATION ACROSS
PHYSICAL/APPLICATION LAYERS
In this paper, we propose joint source encoding rate and imi-
tation/ensemble learning based cross-PHY-and-APP-layer
resource allocation optimization for cellular network-assisted
D2D video communications. The differences from the base-
line scheme in Sec, III are 1) content-based source encoder
rate adaption 2) the objective function in the problem

formulation is PSNR of the application layer (eq. (8)) instead
of the sum data rate in the physical layer. The constraint
of minimum data rate in the physical layers is replaced by
minimum PSNR constraint in the application layer (eq. (8d))
3) one of the problem-dependent feature of SVM classifica-
tion (branching or pruning in imitation learning of optimal
pruning policy) is changed from data rate to video MSE
distortion (eq.(19)) 4) we derive novel power allocation of
CU based on the minimum PSNR limit of CU (Proposi-
tion 1) and then reduce the problem formulation in (8) to
simplified problem formulation in (18) 5) we apply ensemble
learning-based testing with downsampling based training to
deal with class-imbalance and improve performance.

A. VIDEO SOURCE ENCODER
As shown in Fig. 1 (arrow for the resource allocation block
to the H.264 encoder block), the proposed scheme adopts
standard H.264 rate control [11], [12] to adaptively adjust the
video bit rate in order to improve the video quality (PSNR).
This can enhance the video transmission performance com-
pared to schemes that only optimize physical layer resources.

B. CROSS LAYER PROBLEM FORMULATION
Wedesign a resourcemanagement problem according to [19],
changing the objective function to maximizing the minimum
PSNR of D2D pairs with the following constraints. Each CU
channel can only be used by one D2D pair at most, the PSNR
of each CU cannot be less than a given threshold, and the
transmission power has an upper limit. Thus, the resource
management problem could be expressed as:

max
{pC ,pD,α}

max
m∈M

PSNRDm(p
C , pD, α) (8)

subject to αkm ∈ {0, 1} , ∀k ∈ K , ∀m ∈ M (8a)∑
m∈M

αkm ≤ 1, ∀k ∈ K (8b)∑
k∈K

αkmpDkm ≤ PDmax , ∀m ∈ M (8c)

PSNRCk ≥PSNRCmin, ∀k ∈ K (8d)

pCk ≤ PCmax , ∀k ∈ K (8e)

where αkm in (8a) is the channel allocation indicator for
allocating channel k (CU k occupies) to D2D pair m. (8b)
states that each channel k can be reused by at most one D2D
pair only. (8c) states the maximum transmit power constraint
PDmax for each D2D pair which can occupy more than one
channel. PSNRCmin in (8d) is the minimum PSNR limit for
the CU, PCmax in (8e) is the maximum transmit power limit of
the CU.

C. SIMPLIFIED CROSS LAYER PROBLEM FORMULATION
In order to simplify the resource allocation problem and
reduce the complexity, we derive a new expression of the
CU power pC in terms of pD and the minimum PSNR limit
parameter Vk (ak , bk , ck ) in the following Proposition 1.
This leads to the problem of cross-layer resource allocation
without CU power pC , a simpler problem formulation.
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Proposition 1: If D2D pair m occupies the channels of
CU k, the CU k’s optimal power of could be expressed as

pCk =

(
2
Vk
BW − 1

) hDBm pDkm + σ 2

ηhCBk
(9)

where Vk (ak , bk , ck ) is the minimum PSNR limit parameter
containing the CU, ak , bk , ck are constant that depends on the
video content, the value of each CU k is different.

Vk (ak , bk , ck ) ≜
bk

255∗255

10
PSNRCmin

/
10

− ak
− ck (10)

Proof: Appendix
According to the constraints (c)(e), we can get the new

upper bound of pDkm as PDkm ≤ Pmaxkm , where

pmaxkm = min

{
PDmax ,

(
1
hDBm

)(
ηhCBk pCmax

2
Vk
BW −1

− σ 2

)}
(11)

D2D pair m reusing the CU k channel has the following data
rate:

RDkm
(
pC , pD, α

)
= BWlog2

(
1 + η

αkmhDmp
D
km

hCDkm p
C
k + σ 2

)

= BWlog2

1 + η
αkmhDmp

D
km(

2
Vk
BW −1

)(
hDBm pDkm+σ 2

)
hCDkm

ηhCBk
+ σ 2


≜ R̂Dkm

(
pD, α

)
(12)

For the convenience of writing, we define two variables ykm
and zkm

ykm ≜
σ 2

hDm
+

(
2
Vk
BW − 1

)
hCDkm σ 2

ηhCBk hDm
(13)

zkm ≜

(
2
Vk
BW − 1

)
hCDkm h

DB
m

ηhCBk hDm
(14)

We rewrite

RDm(p
C , pD, α) =

∑
k
αkmRDkm(p

C , pD, α)

=

∑
k

αkmBWlog2(1+η
αkmhDmp

D
km

hCDkm p
C
k + σ 2

)

=

∑
k

BWlog2(1+η
αkmhDmp

D
km

hCDkm p
C
k + σ 2

)

=

∑
k

BWlog2(1+η
αkmpDkm

ykm + zkmpDkm
)

≜ R̂Dm
(
pD, α

)
(15)

Then the MSE of D2D pair m can be rewritten as:

MSEDm
(
pC , pD, α

)
= am +

bm
RDm + cm

= am +
bm

R̂Dm + cm

≜ M̂SE
D
m

(
pD, α

)
(16)

Then the PSNR of (3.2) D2D pair m can be rewritten as:

PSNRm
(
pC , pD, α

)
= 10log10

255 ∗ 255

MSEDm

= 10log10
255 ∗ 255

M̂SE
D
m

≜ P̂SNR
D
m

(
pD, α

)
(17)

Finally, we reduce the original resource allocation prob-
lem (8) to the following simplified problem

max
{pD,α}

min
m∈M

P̂SNR
D
m

(
pD, α

)
(18)

subject to αkm ∈ {0, 1} , ∀k ∈ K , ∀m ∈ M (18a)∑
m∈M

αkm ≤ 1, ∀k ∈ K (18b)∑
k∈K

αkmpDkm ≤ PDmax , ∀m ∈ M (18c)

PDkm ≤ Pmaxkm , ∀k ∈ K , ∀m ∈ M (18d)

D. ACCELERATING METHOD THROUGH IMITATION
LEARNING
The baseline scheme [19] designed the data rate as a
problem-dependent feature according to the channel param-
eters of D2D communication. This method only considered
the physical layer. Here we change the problem-dependent
feature to consider the MSE of the application layer.

The problem-dependent features now include
• Video MSE distortion features (proposed) (19)
• Power features
The problem-independent features are:
• the depth of the node
• the search depth of the node
• the local solution of the node.
• the branch variable of the binary tree.
• the current global solution
• the number of solutions currently obtained.
SVM binary classifiers are trained with supervised

learning methods. The training dataset contains all searched
nodes by B&B. But as the number of nodes grows exponen-
tially, this approach consumes a lot of memory. An iterative
training method is commonly used in imitation learning,
named ‘‘Dataset Aggregation’’ (DAgger) [26], to solve the
problem of massive memory consumption. The main concept
of Dagger is to do this by collecting a dataset with the current
policy at each iteration, and then using the aggregation of all
the collected datasets to train a new policy.
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The biggest difference between imitation learning and tra-
ditional supervised learning is the way of collecting features
and labels of classifiers. For supervised learning, all features
and labels must be available before the training process.
In contrast, imitation learning uses DAgger to iteratively
collect data to update the learned policy. Most papers show
that DAgger has been widely used for imitation learning and
provides strong performance guarantees [23], [26].

The pseudocode of training processing with Dagger is
shown in Algorithm 1.

Algorithm 1 Training process for imitation learning
Initialization:
In the first iteration we take π∗ as the initial strategy and
denote it as π (1) and the initial training dataset D is empty.

The number of iterations is n. Then we use π (1) to search
the problem set Q and collect the data into the training data
set D.
We stack the six problem independent features and two

problem dependent features (one feature in (19) is different
from baseline scheme [19]) in an eight-dimensional vector
for n = 1 to N do

for problem Q in D do
D(Q)

≤ ftarrow DataCollection(Q, πn)
D ≤ ftarrow D ∪D(Q)

end for
π (n+1)

≤ ftarrow train SVM using D
end for

After n iterations, we choose the best performing policy as
π∗

return π∗

E. DOWNSAMPLING TRAINING AND ENSEMBLE
LEARNING TESTING
The class imbalance in the datasets impact negatively the
accuracy of the classification task. In the problem of prune
policy learning in previous subsection, the {prune} class is
significantly larger than {branch} class.We can either upsam-
ple the minority class {branch} or downsample the majority
class{prune}. However, downsampling performs better in
general [25].

We are motivated to propose ensemble learning similar
to [24] to improve performance. The difference is that the
training datasets are obtained by downsampling the {prune}
class such that {prune} class has the same size as the
{branch} class (data is balance), in a way similar to [25].
Specifically, the set of {prune} is downsampled such that
M disjoint subset Sprune,1, Sprune,M, is formed. The set of
branch, Sbranch, is paired with Sprune,1, Sprune,M, respectively,
to trained M classified. In the testing stage, Ensemble learn-
ing is applied to pick the best one to increase classification
accuracy.

V. SIMULATION RESULTS
As shown in Fig 2, we consider a single-cell cellular
network-assisted D2D communication system with a radius
of 500 meters. The BS is located in the center of the cell,
and the CUs are uniformly distributed in the cell, and the
D2D pairs are also uniformly distributed in the cell. Table 1
summarizes our simulation parameters. According to [27]
and [28], we set the bandwidth of each subcarrier to 15 kHz.

TABLE 1. Simulation parameters.

We compare the PSNR performance, the video quality,
of the proposed cross layer scheme in Sec. IV, the physical-
layer-only baseline scheme in Sec. III [19], and the cross layer
baseline scheme in [13].

As shown in Fig. 4, our proposed joint source encoding rate
control and imitation/ensemble learning based cross-layer
resource allocation scheme is 4.03∼5.37 dB higher than
the physical layer baseline scheme that only considered the
physical layer in different scenarios. The reasons are three-
folded: 1) The proposed scheme has source encoder rate
control and can adaptively adjust video rate to increase PSNR.
The baseline scheme does not. 2) The proposed scheme uses
the objective function of PSNR directly and allocates the
subcarrier and power considering the different rate-distortion
function of users’ videos. The baseline scheme disregards
the different rate-distortion function of users’ videos. 3) The
proposed scheme uses imitation learning with downsampling
the majority set to compensate the class imbalance problem
and improve classification accuracy. The proposed cross layer
scheme also outperforms the cross layer baseline scheme [13]
because the proposed scheme is imitation learning based on
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FIGURE 4. Average PSNR of the proposed cross layer scheme, the
physical layer baseline scheme [19], and cross layer baseline scheme [13]
in different scenarios.

the globally joint optimal B&B algorithm, and the cross layer
baseline scheme [13] is suboptimal. The cross layer baseline
scheme [13] is slightly better than the physical layer baseline
scheme [19].

The main purpose of using imitation learning is learning
the pruning policy to speed up the branching process of
B&B. In addition, it is very difficult and expensive to obtain
a large number of training samples in wireless networks.
The algorithm of imitation learning combined with B&B can
complete the training process with only a small amount of
training data [22]. We set the number of training samples and
test data samples to 100 and 20, respectively. We can take
advantage of the exponentially increasing number of nodes
in a B&B tree, only 100 training samples are sufficient [19].
Because the 100 training samples already contain tens of
thousands of nodes [19], [22].

To compare the cross-layer resource allocation perfor-
mance of accelerated B&B using imitation learning, three
parameters are used here to measure the simulation results.
Gap is the objective function gap between the traditional
B&B algorithm and accelerating method through imitation
learning. Speed is the ratio of the number of search nodes
between the traditional B&B algorithm (as 1x) and accelerat-
ing method through imitation/ensemble learning. The higher
the ratio, the less computing time and the better the accel-
eration result of imitation learning. Pruning accuracy is the
accuracy of pruning non-optimal nodes using the pruning
policy via imitation/ensemble learning.

The three results for different number of CUs (K) and
D2D pairs (M) are compared in Table 2. In the scenario of K
= 5, M = 2, the imitation/ensemble learning-based pruning
policy makes the B&B search process 2.25 times faster, while
the gap to the optimal B&B bound is only 2.05%. As the
number of users and subcarriers increases, in a more complex
scenario K = 5, M = 3, this method is 13.99 times speed as

TABLE 2. The effectiveness of imitation/ensemble learning in different
user scenarios.

B&B, while the gap with respect to B&B bound is 5.13%.
The method we use can achieve a small objective function
gap with a very small amount of training data (about 100),
while also reducing the computational complexity of B&B.
Compared with the one million training samples in [18] and
tens of thousands of training samples in [29], imitation learn-
ing combined with B&B is more likely to be implemented in
real life [22].

Good generalization ability allows the model training in a
small network to be used in a larger network without retrain-
ing. In Table 3, the trained K= 5, M= 2 model is used to test
the performance in different scenarios. The simulation results
show that using the smaller scenario (K= 5,M= 2) to predict
the larger scenario (K = 7, M = 2) has only 0.45% more in
gap, and at comparable speed. It can be seen from this that if

TABLE 3. The generalization ability of imitation/ensemble learning in
different user scenarios.
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the training data is insufficient in the larger scenario (training
sample is more difficult to obtain), the model already trained
in smaller scenario can be used to assist.

The generalization capability is further studied in Table 4.
The policy (K = 5, M = 2) perform acceptably well
even for Scenario (K = 10, M = 2), whose complexity is
210∗2/25∗2 = 210 times Scenario (K = 5, M = 2) and its
training samples are extremely difficult to obtain. It shows
the proposed scheme has good generalization capabilities
and can learn the policy from the small scale (small K∗M)
scenario and apply the policy to large scale (larger K∗M)
scenario even for 210 times bigger scenario.

TABLE 4. The generalization ability of imitation learning of policy (K = 5,
M = 2) in different user scenarios.

A. TIME COMPLEXITY COMPARISON OF PROPOSED
SCHEME AND PHYSICAL LAYER BASELINE SCHEME
We explore the time complexity of the proposed cross layer
scheme and baseline physical-layer-only scheme. The com-
puting platform we use is a desktop PC with CPU i7-12700,
without GPU, and with python version 3.6.

We follow the physical layer baseline scheme [19] and
use execution time as the time complexity. At each testing
sample, the network realization (channel state information
etc.) is randomly generated. The B&B tree and execution
time of different testing samples would be different. The
execution time averaged over 20 testing samples is shown
in Table 5 for scenario K = 7, M = 2. It indicates the
computational complexity/ latency of the proposed scheme
is only slightly larger than that of physical layer baseline
scheme.

TABLE 5. Execution time for physical-layer baseline scheme and
proposed scheme.

The explanation is as follows. By replacing PHY data rate
feature by APP layer video MSE distortion feature in (19)
in the SVM binary classifier, the number of features is kept
the same as that of physical layer baseline scheme, and thus

the complexity of SVM binary classifier is about the same.
Furthermore, B&B algorithm objective is changed to PSNR
from data rate, so there is additional mapping from data
rate to PSNR by (5) and (6). Therefore, the execution time/
computational complexity of the proposed scheme is just a
little more than that of the physical layer baseline scheme.

VI. CONCLUSION
In this paper, we proposed joint content-based video encoder
rate adaption and optimal cross layer subcarrier/power allo-
cation based on imitation /ensemble learning for video
transmission in cellular networks assisted uplink D2D com-
munications. The proposed scheme has source encoder rate
control and can adaptively adjust video rate to increase
PSNR. For comparison, the baseline scheme does not use the
content-based video rate adaption. Furthermore, the proposed
scheme uses the objective function of PSNR directly and
allocate the subcarrier and power considering the different
rate-distortion function of users’ videos. Using the minimum
PSNR limit of the cellular user, we derive an objective func-
tion that is independent of the transmission power of the
cellular user to simplify the optimization problem formu-
lation. For comparison, the baseline scheme uses physical
layer only objective function and constraints. Finally, the pro-
posed scheme adopt ensemble learning with downsampling
the majority set {prune} to alleviate the class imbalance prob-
lem and improve performance. The simulation results show
the proposed scheme outperforms the baseline scheme by
4∼5 dB in PSNR. Compared with the traditional B&B,
the speed the proposed scheme is increased by 2.05 to
20.43 times (execution time is 50%-5%), depending on the
scale of the scenario. In addition, the practice of accelerating
the B&B branch through imitation/ensemble learning has
a certain degree of generalization ability, and only needs
one hundred training data. The proposed scheme has good
generalization capabilities and can learn the policy from the
small scale scenario and apply the policy to even 210 times
larger scenario.

APPENDIX
PROOF OF PROPOSITION 1
If D2D pair m reuses the channels of CU k, the following
equations must be satisfied to guarantee the minimum PSNR
limit of CU k.

RCmin = BWlog2

(
1 + η

hCBk pCk
hDBm pDkm + σ 2

)
(A-1)

Then, we can calculate the maximum MSE and minimum
PSNR of CU K as:

MSECmax = ak +
bk

BWlog2

(
1 + η

hCBk pCk
hDBm pDkm+σ 2

)
+ ck

(A-2)
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PSNRCmin = 10log10

 255 ∗ 255

ak +
bk

BWlog2

(
1+η

hCBk pCk
hDBm pDkm+σ2

)
+ck


(A-3)

where ak , bk , ck are constant that depends on the video
content and is different for each CU.

After that, we can get

pCk =

2

bk
255∗255

10
PSNRCmin

/
10

−ak

−ck

BW − 1

 hDBm pDkm + σ 2

ηhCBk
(A-4)

For the convenience of writing, we define a variable here Vk

Vk (ak , bk , ck )
bk

255∗255

10
PSNRCmin

/
10

− ak
− ck (A-5)

Finally, get

pCk =

(
2
Vk
BW − 1

) hDBm pDkm + σ 2

ηhCBk
. (A-6)
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