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ABSTRACT To solve the problem of insufficient melt pool width feature extraction accuracy caused by
splash, arc light, and other interferences in the metal deposition process, a melt pool width extraction
method based on the variable step size erosion model is proposed according to the characteristics of the
spatial distribution of the melt pool size features. To achieve accurate measurement of the melt pool width,
the melt pool image is first denoised using mathematical morphology and then segmented roughly using
manual thresholding. Subsequently, the melt pool contour is iterated using an erosion model to obtain
precise point localization information after fine segmentation, followed by the calculation of the melt pool
width. Comparison experiments demonstrate that the method exhibits excellent accuracy and robustness in
extracting melt pool width, while also showcasing high efficiency in fulfilling the requirements for closed-
loop control. These findings lay the groundwork for the closed-loop control of the melt pool size.

INDEX TERMS Laser metal deposition, melt pool width, erosion modeling, feature extraction.

I. INTRODUCTION
Laser cladding is commonly employed in surface repair and
strengthening applications owing to its high precision and
efficiency [1], [2], [3]. However, the quality of cladding
can be compromised by variations in environmental con-
ditions [4], [5]. The melt pool, the smallest unit formed
during the laser cladding process, plays a crucial role in
determining the stability of the deposition process. Real-time,
high-precision detection and control of melt pool character-
istics serve as an effective method for enhancing the quality
of cladding.

Compared with traditional laser cladding quality predic-
tion methods [6], [7], [8], machine vision technology, as a
non-contact and high-precision image processing technology,
can detect the molten pool state in real time [9], [10]. Numer-
ous researchers globally have begun to study the melt pool
based on machine vision technology [11], [12]. Sun et al. [13]
delved into the intricacies of the melt pool image processing
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procedure and employed ellipse fitting to forecast the width
and length characteristics of the melt pool. They achieved a
prediction accuracy of 95% for width and 90% for length.
Liu et al. [14] designed a coaxial CCD vision acquisition
system. Aiming to solve the problem of the melt pool edge
being difficult to extract due to the interference of liquid
droplets and splashes, an edge extraction method based on
phase consistency is proposed. Moreover, a multi-camera
vision inspection approach was implemented to enhance the
richness of deposition information. Huang et al. [15] estab-
lished a binocular vision system utilizing GMAW to extract
melt pool width using the minimum outer rectangle method.
Yang et al. [16] devised a feedback controller based on
this width measurement, significantly enhancing dimensional
accuracy for curved, thin-walled components post-control
implementation. Gu et al. [17] introduced an image-matching
algorithm based on binocular vision technology, leveraging
extracted feature point coordinates, colors, and other cues to
enhance the precision of the 3D reconstruction of the melt
pool. However, the reconstruction accuracy fell short of the
requirements for practical application in production settings.

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 93363

https://orcid.org/0009-0009-6173-6824
https://orcid.org/0000-0001-9073-614X
https://orcid.org/0000-0003-0491-9236


Y. Chai et al.: Melt Pool Width Extraction Method in Laser Directed Energy Deposition

FIGURE 1. Experimental system: (a) Metal deposition equipment; (b) Detection principle.

In contrast to conventional approaches, machine vision-
driven feature detection techniques offer enhanced detection
consistency and are well-suited for real-time evaluation and
feedback control of laser cladding quality [18], [19]. Never-
theless, the quality of image acquisition is highly susceptible
to the complexity of the laser cladding environment [20],
[21].

Hence, it is imperative to investigate feature extraction
methods for laser cladding melt pools with anti-interference
capabilities. Key melt pool features encompass morpholog-
ical and thermal characteristics, ranking the width feature
among the most crucial aspects of melt pool morphology.
To align with industrial requisites, this study meticulously
considers the spatial distribution pattern of melt pool width
features and the computational efficacy of image algorithms.
Drawing on image morphological erosion, an online method
for extracting melt pool width features is suggested, offering
ideas for achieving precise, efficient, and resilient extraction
of these critical features.

II. EXPERIMENTAL METHODS
The experimental setup is depicted in Figure 1, showcas-
ing the implementation of a coaxial melt pool inspection
system constructed around the Nanjing Zhongke Raycham
LDM-4030 metal deposition equipment. In Figure 1(a), the
LDM-4030 metal deposition equipment is featured, compris-
ing a Siemens-420D numerical control system, an IPG laser,
an annular powder feeding head, and a water-cooling system.
Figure 1(b) shows the coaxial vision melt pool detection
principle. When operating, the laser emits a beam with a
wavelength of 1070 nm through the forward optical path of
the deposition head, focusing on the upper surface of the
substrate. The spot diameter of the substrate surface is about
1.2 mm. The powder is melted at high temperature to form a
melt pool, which emits ‘‘reflected light’’, which is incident on
the CMOS camera through a beam splitter and a reflector. The
front of the camera is equippedwith a filter module, including
a 540 nm bandpass filter and a 5% attenuator, which are used

TABLE 1. Chemical composition of Fe101 powder (weight percent).

FIGURE 2. Melt pool feature extraction process.

to improve the clarity of the melt pool image and to prevent
the incident light from exceeding the dynamic acquisition
range of the camera, respectively.

In the course of the experiment, we observed that the melt
pool section within the entire image was relatively minor.
Employing ROI region segmentation aided in enhancing
image detection accuracy and processing efficiency. Follow-
ing segmentation, the image resolution was downscaled from
1024 × 768 to 200 × 192. Fe101 powder, characterized by
a particle size range of 20 µm - 53 µm and chemical com-
position outlined in Table 1, was utilized for the experiment.
The substrate material utilized was 316L, with dimensions of
100 mm × 100 mm × 20 mm, and the substrate surface was
polished to remove burrs.

III. MODELING AND ANALYSIS
The extraction of melt pool width information necessitates a
series of image processing steps, with the proposed melt pool
width feature extraction process outlined in Figure 2.
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FIGURE 3. Image preprocessing: (a) Original image; (b) Preprocessed
melt pool image.

A. IMAGE PREPROCESSING
Figure 3(a) depicts the initial melt pool image captured with
the mentioned hardware setup. First, the melt pool image is
processed morphologically, including converting the image
to grayscale and applying median filtering. Graying dimin-
ishes the data channel, enhancing computational efficiency,
while median filtering minimizes random noise interference
in data transmission. Subsequently, the image is subjected
to thresholding for segmentation purposes, with the adap-
tive and artificial thresholding methods being commonly
employed techniques. In this study, artificial thresholding is
employed to ascertain the threshold value, as this method
is more effective in mitigating the impact of arc light. The
first step is to conduct a single-track deposition experiment
and simultaneously record the deposition track image. Then,
microscopic data on the deposition track width section are
extracted, and the average width from multiple data points
is determined as the average deposition track width. This
average width is then compared with the melt pool image
width at various thresholds, and the threshold value is noted
when the extracted image value aligns with the physical data.
The threshold value of 90 was determined through repeated
experiments, as illustrated in Figure 3(b). It is evident that the
preprocessed melt pool image closely matches the original
image, indicating the effectiveness of the threshold value
selection process.

B. MODELING AND FEATURE EXTRACTION
1) MELT POOL WIDTH EXTRACTION
In the deposition process, the shape of the melt pool is
primarily influenced by the laser spot, with the ideal shape
being circular. However, variations in cooling rates between
the front and end of the melt pool often result in a trailing
tail at the end, causing the theoretical circle to transform into
an ellipse. Analyzing the melt pool size characteristics and
spatial distribution, we observed that the trailing tail enhances
the melt pool length and area without considerable impact
on the width. Moreover, considering the temperature analysis
of the melted powder section, the highest temperature corre-
sponds to the theoretical maximum diameter position of the
melt pool. Given these physical laws, the study proposes a
novel approach for feature extraction using the largest tangent
circle diameter of the melt pool boundary as the melt pool
width. This strategy ensures a comprehensive representation

FIGURE 4. Melt pool width extraction process: (a) Preprocessed melt pool
image; (b) Canny edge extraction; (c) Iterative process of the algorithm;
(d) Extracted melt width.

of the melt pool geometry while accounting for variations
caused by cooling rates and trailing tails.

In the melt pool width feature extraction process, the melt
pool contour is an irregular convex packet. At this point, the
problem of extractingmelt pool width can be transformed into
the traditional problem of extracting the maximum inscribed
circle from an irregular convex packet. Figure 4 illustrates the
results of applying the traditional tangent circle algorithm to
extract the melt width from the melt pool image. The unit of
measurement is in pixels, and the actual width of the melt
pool can be obtained by multiplying the number of pixels
by the calibration value. Traditional computational methods
require contour extraction based on the pre-processed melt
pool image. This paper uses the Canny algorithm, and the
results are shown in Figure 4(b). Given a point m(x, y) in the
melt pool image and a set of contour points q[q1, q2, . . . , qn]
as shown in Figure 4(c), the computational model is then
calculated as:

Step 1: Point m(x, y) traverses the image from left to right
and from top to bottom. Judge whether point m(x,
y) is within the contour boundary according to the
coordinates of the contour points. If it is, keep it;
otherwise, continue traversing.

Step 2: Calculate the minimum distance fromm(x, y) to the
edge point q[q1, q2, . . . , qn], denoted as l[l1, l2, . . . ,
ln], find the minimum value l(x, y) in the l as in (1).

l(x, y) = min(l1, l2, l3, . . . , ln) (1)

Step 3: Using point m(x, y) as the circle center, and l(x, y)
as the radius, calculate area of the circle, denoted
as S. Repeat steps 1 and 2, calculate all Sx,y values
as (2).

Smax =

{
Sx,y (Smax < Sx,y)
Smax (Smax ≥ Sx,y)

(2)
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FIGURE 5. Algorithm runtime.

FIGURE 6. Image erosion process: (a) Quadrilateral; (b) Pentagon.

where Smax is the historical maximum value and
Sx,y is the current value.

Step 4: Find the distance lxy corresponding to the area Smax,
lxy is the radius of the tangent circle, and the diam-
eter of the tangent circle D is the width of the melt
pool.

D = 2lxy (3)

Figure 5 illustrates the algorithm cycle time. The cycle is
repeated 5 times for each image to prevent systematic errors,
with an average time consumption of 420.5 ms. From the
calculation process outlined in steps 1 to 4, it is evident that
the traditional method requires iterating through all the pixel
points in the image within the loop process and comparing
the calculated results. The high number of iterations results
in a time-consuming and redundant algorithm, falling short
of meeting real-time feedback requirements. In response to
this issue, this study introduces a variable step size erosion
model.

2) VARIABLE STEP SIZE EROSION MODELING
The concept of erosion in imaging inspires the variable step
size erosion model, as shown in Figure 6. The image is
discretized into pixel points in image processing, and the
contour can be approximated as a convex polygon. This
polygon shrinks inward equidistantly in the direction normal
to the edge of the polygon, eventually forming a triangle. The
center of the inscribed circle of this triangle coincides with
the center of the largest tangent circle of the polygon, and
the minimum distance from this center to the contour of the
melt pool represents the radius of the largest tangent circle of
the melt pool. Each side of the polygon contracts by an equal
distance, with the contraction endpoint becoming the center
of the circle.

FIGURE 7. Erosion principle: (a) Binary image; (b) 3 × 3 convolution
kernel; (c) Iteration result.

The contour contraction procedure is the convolution pro-
cess in image processing. First, set the convolution kernel
and set the target pixel coordinates as f (x, y), with a 3 × 3
convolution kernel as (4): x − 1, y− 1 x, y− 1 x + 1, y− 1

x − 1, y x,y x + 1, y
x − 1, y+ 1 x, y+ 1 x + 1, y+ 1

 (4)

After that, the convolution operation is performed on the
binary-valued melt pool image using a convolution kernel,
where the target pixel is equal to the sum of the target region
and the numerical multiplier of the convolution kernel, and
the convolution law is given in (5):

f (x, y) =


0(f (x, y) > 0)
255(f (x, y) = 0)
0(f (x, y) < 0)

(5)

Figure 7 shows the schematic diagram of the convolution
principle. The binary map in Figure 7(a) is convolved accord-
ing to the convolution law (5), iterating from left to right
and top to bottom. The result of one convolution iteration is
displayed in Figure 7(c).

Figure 8 shows the melt pool width feature extraction
results with the erosion model applied to the case image.
The preprocessed melt pool image can calculate the width
after convolutional iteration, and the case image is iterated
nine times. The result of running time consumption six times
is shown in Figure 9, and the average time consumption
is 14.7 ms, which is about 1/29 of the traditional detec-
tion algorithm and dramatically reduces the computation
time consumption. As can be seen from the principle of
the algorithm, each iteration of the convolution kernel will
traverse the entire image. Hence, the size of the convolution
kernel and the initial convolution position are two key factors
that affect the speed of image feature extraction. In order to
further improve the detection efficiency, an improved variable
step size erosion method is proposed. The calculation steps
are as follows:

Step 1: A point is randomly selected within the melt pool
contour, and the shortest distance d from this point
to each edge of the polygon is calculated.

Step 2: Parallel inward contraction of each side of the poly-
gon, the distance between the parallel lines is d .
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FIGURE 8. 3 × 3 Convolutional kernel convolutional process and results:
(a) Original image; (b) 1st iteration; (c) 2nd iteration; (d) 9th iteration;
(e) 9 iterations local enlarged image; (f) Schematic of edges for multiple
iterations; (g) Melt pool width extraction results.

FIGURE 9. Algorithm runtime.

Step 3: Taking the focal point of the connecting line in
step 2, a contour can be formed after shrinking one
turn based on the original polygon.

Step 4: If the polygon generated in step 3 is a triangle,
then calculate the tangent circle of the triangle;
otherwise, repeat steps 1, 2, and 3 for the newly
generated polygon.

FIGURE 10. Variable step size convolution results: (a) Preprocessed melt
pool image; (b) 1st iteration result; (c) 2nd iteration result; (d) Final
convolution result; (e) Iteration process with tolerance width extraction.

The computational performance of the proposed algorithm is
further optimized by introducing the variable step size model.
The results are shown in Figures 10 and 11, Figure 10(a), (b),
and (c) correspond to the generated convolution kernels of 5
× 5, 3 × 3, and 3 × 3. After the improvement, the number
of algorithmic iterations is reduced from 9 to 3, and the
average value of algorithmic time consumed is reduced from
14.7 ms to 3.2 ms. Commonly used digital communication
methods in the industry, such as Modbus TCP, RS-232, and
others, typically have a single communication time rang-
ing from 10 ms to 20 ms. To ensure the software achieves
the maximum communication frequency, it is essential to
control the time consumption of the image data process-
ing component within the single communication length as
much as possible. Due to the variability in the convolutional
kernel’s size, the optimized algorithm’s time-consuming sta-
bility decreases slightly but remains below 6 ms. This meets
industrial requirements while also allowing for a particular
execution space for data processing and transmission in other
parts of the software.

C. COMPARISON OF EXTRACTION EFFECT OF MELT POOL
WIDTH BY DIFFERENT METHODS
Its accuracy, efficiency, and anti-interference ability were
tested to demonstrate the algorithm’s advantages. Compara-
tive experiments were conducted on several melt pool width
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FIGURE 11. Algorithm runtime.

extraction algorithms. The melt pool coaxial vision acqui-
sition software was jointly developed based on C++ and
QT platforms. The software runs on a Windows 10 system
with GPU model i5-1135, 16GB of RAM, and a central
frequency of 2.4GHz.

The sampling method is illustrated in Figure 12, and
the single-track deposition experiment is conducted initially.
In the single-track deposition of laser cladding, overlap rate,
and interlayer lift height are not involved, making it more
convenient for metallographic observation. The experimental
parameters included a power of 600 W, scanning speed of
10 mm/s, and powder feeding rate of 1.6 g/s. Figure 12(a)
displays the morphology of the deposited single track, and
Figure 12(b) presents the 2Dmelt pool image captured by the
coaxial vision system. Interferences such as powder splash,
melt droplets, and arc light during the deposition process
significantly impact the robustness of melt pool feature detec-
tion. Hence, three interferences with low, medium, and high
levels were manually chosen to test the algorithm’s robust-
ness. Following the selection of interference groups of melt
pool images, the deposition locations of the melt pool images
can be determined by calculating based on the correspond-
ing timestamps of each image in the video captured by the
system, as indicated by the labeling in Figure 12(a). The
actual melt pool width value can be obtained through sec-
tional microscopic measurements at the labeled positions.
A schematic diagram of the metallographic measurement of
the melt pool width is shown in Figure 12(c).

Melt pool feature prediction methods can be divided
into traditional image processing algorithms and machine
learning-based methods that have been gradually devel-
oped in recent years [22], [23], [24]. The machine learning
method requires high labeling accuracy and a large volume
of data, leading to poor real-time performance. It is mainly
in the experimental stage, and no commercial applications
have been identified yet. Therefore, traditional image detec-
tion algorithms remain the preferred technical approach.
In this paper, three algorithms - the minimum external
rectangle (MER) algorithm [15], [16], the ellipse fitting
(EF) algorithm [13], and the boundary intersection (BI)
algorithm [25] - are selected for comparison. The MER
algorithm utilizes the short side of the minimum external
rectangle of the melt pool contour as the width of the melt
pool. The EF algorithm considers the short axis dimension
of the smallest external ellipse of the contour as the width

FIGURE 12. The process of sampling the melt pool width: (a) Single-track
deposition morphology; (b) Melt pool two-dimensional image; (c) Melt
pool metallographic image.

TABLE 2. Actual and predicted values (unit: pixel).

of the melt pool. In the BI algorithm, the average vector in
the direction of scanning speed is first calculated. Then, the
distance between the average vector and the two intersec-
tions of the melt pool contour is calculated as the width of
the melt pool. Figures 13 to 15 display the results of melt
pool width extraction under various interference conditions.
Table 2 presents the corresponding detection data. Figure 16
illustrates the four algorithms’ melt width extraction error
and running time consumption results. It is evident that under
low interference, all four algorithms demonstrate high accu-
racy with an error of less than 3 pixels. As the interference
increases, the recognition errors of the three algorithms in
the comparison group appear to increase to varying degrees.
Among them, the BI algorithm exhibits the most significant
error, particularly under high interference conditions, with a
maximum error value of 5.2 pixels. This is because when
random disturbances, such as powder splash, arc light, etc.,
appear near the normal vector and the boundary point, the
interferences will be directly introduced into the calculation
results, causing the error to increase. This also indicates that
the robustness of the algorithm is poor.

Figure 16(b) shows that the accuracy of theMER algorithm
and the EF algorithm is moderate. However, in conjunction
with Figures 13 to 15, we observed that using the short side
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FIGURE 13. Comparison results of algorithms under low perturbation: (a) Original image; (b) MER algorithm;
(c) EF algorithm; (d) BI algorithm; (e) Algorithm in this paper.

FIGURE 14. Comparison results of algorithms under medium perturbation: (a) Original image; (b) MER
algorithm; (c) EF algorithm; (d) BI algorithm; (e) Algorithm in this paper.

FIGURE 15. Comparison results of algorithms under higher perturbation: (a) Original image; (b) MER algorithm;
(c) EF algorithm; (d) BI algorithm; (e) Algorithm in this paper.

of the melt pool contour’s minimum external rectangle as the
melt pool width will lead to a situation where the short side
does not coincide with the direction of the melt pool width.
Similarly, this problem also arises in the EF algorithm. The
direction of the melt pool width is theoretically perpendicular

to the direction of the scanning speed of the deposition head.
When the directions do not match, the detection results are
not accurate. Although the BI algorithm guarantees direction
consistency, the robustness is insufficient. At the same time,
the algorithm proposed in this study exhibits the optimal
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FIGURE 16. Comparison of the results of the four algorithms: (a) Error;
(b) Time consuming.

detection accuracy under various interference levels, with an
average detection error of less than 1 pixel. The algorithm
thoroughly considers the spatial location characteristics of
the melt pool width features, enhancing robustness and effec-
tively bypassing the problem of directional inconsistency
between the detected and actual features. In terms of compu-
tational efficiency, all four algorithms meet the requirements
of industrial applications. The MER and EF algorithms have
similar computational ideas and need to conduct iterative
computations based on the melt pool contour point informa-
tion, taking around 3 ms to 4 ms. The BI algorithm requires
the judgment and calculation of direction vectors and contour
calculation, making it the most time-consuming, at approxi-
mately 6 ms. The variable step-size erosion model proposed
in this study significantly enhances computational efficiency,
enabling the algorithm to be industrially deployed with a
runtime of 1 ms to 4 ms. The computational time-consuming
fluctuation of this algorithm is slightly insufficient compared
to the other three algorithms, which can serve as a direction
for optimizing subsequent algorithms.

In addition to the points mentioned above, during testing
in an industrial application environment, we discovered that
camera exposure significantly affects the detection of the
melt pool width. In the initial stages of this work, Fe101
powder was used for targeted testing, and manual exposure
control led to high detection accuracy. However, in industrial
applications, the reflective properties of various powders vary
significantly. Therefore, developing adaptive exposure tech-
nology or establishing a process-matching library is another
focus area that the algorithm will address in the future.

IV. CONCLUSION
1) Interferences such as powder splashing and arc light

generated during the laser deposition process can sig-

nificantly affect the accuracy of extracting melt pool
width features.

2) The variable step-size erosion model proposed in this
study fully considers the spatial distribution charac-
teristics of melt pool width features. Experimental
results demonstrate that the method has good extrac-
tion accuracy, efficiency, and robustness, meeting the
requirements for industrial applications.
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