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ABSTRACT Recently, the world has been dealing with a severe outbreak of COVID-19. The rapid
transmission of the virus causes mild to severe cases of cough, fever, body aches, organ failures, and death.
An increasing number of patients, fewer diagnostic options, and extended waiting periods for test results all
put pressure on healthcare systems, increasing the virus’s spread. A concise and accurate automatic diagnosis
is crucial to identify infected patients in the early stage. This paper proposes a machine learning-based
predictive framework to identify COVID-19 cases from clinical data using an optimized union ensemble
feature selection (OUEFS) approach. The OUEFS is based on the union ensemble of the feature subsets
obtained through a rigorous feature selection (FS) process. It also involves a performance optimization
of the ML classifiers. Initially the OUEFS identified key features from the publicly accessible COVID-19
dataset using FS methods such as Mutual Information Feature Selection (MIFS), Recursive Feature Elim-
ination (RFE), and the RidgeCV. The most important features were selected using Top-k thresholding
technique. Then selected subsets of features were integrated using a union ensemble approach where an
optimal combination of features with enhanced predictive power is derived. This composite feature set was
subsequently utilized for model training and evaluation. The classification was conducted using machine
learning algorithms such as linear SVM, gradient boosting (GB), logistic regression (LR), and Adaboost
to compare their effectiveness on individual and combined feature subsets. We also conducted a Genetic
Algorithm (GA) based hyperparameter optimization (HPO) which further refined our training process and
enhanced the accuracy of our proposed approach. Experimental results show that the union ensemble of
MIFS and RidgeCV FS techniques and the Adaboost classifier and GA HPO achieved 96.30% accuracy.
Our optimized union ensemble approach demonstrated superior performance over previous ensemble-based
approaches to predict COVID-19 disease, thus offering a robust tool for early and efficient diagnosis without
requiring hospital visits.

INDEX TERMS Machine learning, feature selection, COVID-19 classification, ensemble learning, hyper-
parameter optimization.

I. INTRODUCTION
In late 2019, a severe acute upper respiratory disease named
coronavirus (COVID-19) emerged and spread rapidly world-
wide quickly. In March 2020, the World Health Organization
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(WHO) declared COVID-19 a pandemic disease [1]. As of
March 21, 2023, approximately 761million people have been
affected globally, with around 7 million deaths reported [2].
The most common clinical symptoms of COVID-19 include
cough, tiredness, fever, headache, sore throat, shortness of
breath, and chest pain [3]. The primary cause of the virus’s
rapid spread is through contaminated air with coronavirus
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droplets exhaled by COVID-19 patients [4]. In mild cases,
patients with other diseases can be easily affected, which
increases the mortality rate. Stopping the spread of the virus
and controlling its mortality rate is a vital medical challenge.

At present, diverse COVID-19 detection methodologies
are under scrutiny, including blood tests, imaging modali-
ties (such as X-ray and CT scans), and Polymerase Chain
Reaction (PCR) tests [5], [6]. Although blood tests and imag-
ing studies have been successful, they take a long time to
generate results. They also have high resource requirements.
Thus, they need to be more comprehensive in addressing
the problem’s urgency. PCR, a widely employed diagnostic
method, has limitations such as a scarcity of PCR laborato-
ries, insufficient PCR kit supplies [6], and prolonged result
waiting times [7]. To tackle these challenges, the prioritized
identification of infected individuals emerges as extremely
important. In response, a concise and accurate automatic
diagnosis method is crucial for healthcare practitioners in the
early stages of identifying infected patients.

Recently, automated studies have been conducted to iden-
tify COVID-19 disease [8], [9], [10], [11], [12]. These studies
classify the disease with a high prediction score but have
limitations. The majority of them use datasets with fewer
features and smaller sizes. Smaller training sets are more
likely to overfit and have non-Gaussian noise, lessening the
generalizability of ML models [13], [14]. In [18] and [19],
individual feature selection techniques were used to extract
valuable features, however, they needed to create a useful
framework that considered the simultaneous optimization of
the data and the model. Recently, ensemble feature selection
(EFS) approaches have been developed, inspired by ensemble
learning techniques in ML [15]. EFS approaches outperform
the individual FS techniques [13], [15], [16], [17], [18]. Thus,
they generate a diversified feature subset that can yield an
optimal combination of features.

In this paper, we developed an optimized union ensemble
feature selection (OUEFS) approach for enhancing the pre-
diction accuracy of COVID-19. The OUEFS is based on the
union ensemble of the feature subsets obtained through a rig-
orous feature selection process. It also involves a performance
optimization of the ML classifiers. Our approach began
with the precise data preprocessing for the raw COVID-
19 clinical symptoms dataset including addressing missing
values, data imbalance, and normalization. For the prepro-
cessed data, feature selection strategies such as MIFS, RFE,
and RidgeCV were applied to identify key features. The
most important feature subset was selected using Top-k
thresholding technique. These selected feature subsets are
combined through various union combinations to create an
optimal ensemble feature subset. Then, we conducted clas-
sification using four ML classifiers: LSVM, LR, GB, and
Adaboost. Our goal at the classification stage is to predict
whether a patient has COVID-19 (yes or no) and identify the
best-performing classifier based on the ensemble feature sub-
set. To optimize the selected classifier’s performance further,
we used a GA to fine-tune the hyperparameters. Finally, we

evaluate the model’s performance using accuracy, precision,
recall, F1-score, and AUC metrics. We name this entire pro-
cess as the Optimized Union Ensemble Feature Selection
(OUEFS) as illustrated in Fig. 1. Experimental results showed
that the union ensemble of MIFS and RidgeCV FS tech-
niques, together with the Adaboost classifier and GA-HPO,
achieved 96.30% accuracy. This accuracy outperforms all
previous ensemble-based methods for COVID-19 prediction.
Our paper is the first medical disease detection study using
the union of EFS methodology with the meta-heuristic opti-
mization algorithm. Our OUEFS approach has the potential
for rapid identification of the virus at an early stage, thus
applicable to the healthcare system during a pandemic.

The rest of this paper is organized as follows: Section II
summarizes the previous research on the COVID-19 disease
diagnosis. Section III provides the background information
for developing our proposed OUEFS approach. Section IV
presents the OUEFS system with extensive explanations.
Section V conducts experiments and offers in-depth analyses
of the results. Section VI concludes the paper.

II. PREVIOUS RESEARCH
A number of machine learning-based solutions have been
recently proposed for predicting and detecting COVID-19
patients. We first review previous research using ensemble
approaches:

• Kumar [19] developed a COVID-19 prediction model
for the mortality risk of coronavirus patients based on
their symptoms. A dataset of 75,000 cases with 10 fea-
tures was collected from the Kaggle public source.
Different ML classifiers were used, such as Naïve Bayes
(NB), RF, and SVM. They used an ensemble fea-
ture selection method to identify the key features and
enhance the performance. Bagging and boosting ensem-
ble learning methods were utilized to predict COVID-19
cases accurately.

• Koushik et al. [20] proposed a supervised ML approach
to predict COVID-19 infection. The dataset was
extracted from the Israel Ministry of Health, consisting
of 112,345 samples, with 102,233 COVID-19 negative
cases and 10,112 positive cases. They predicted the dis-
ease using LR, RF, and KNN classifiers. Furthermore,
they applied the MaxVoting ensemble approach to the
ML classifiers to boost the final prediction.

• Debjit et al. [17] proposed an optimized approach
using the Harris Hawks optimization (HHO) algorithm
to detect COVID-19. ML algorithms such as XGB,
LightGB, categorical boosting, RF, and SVM were
optimized and applied to the publicly available
COVID-19 dataset of 1,023,426 samples with a 1.20%
positive ratio. They extracted the essential features
and calculated their feature importance score using
SHAP values. Moreover, ensemble learning com-
bined various optimized ML classifiers to predict the
COVID-19 positive cases. Themajority voting ensemble
approach was used to determine the class label and
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FIGURE 1. Overview of proposed OUEFS approach to predict COVID-19 patients.

enhance the final prediction by leveraging multiple
classifiers.

There have also been other approaches to predict and detect
COVID-19 patients:

• Aljameel et al. [21] proposed an early prediction
methodology for coronavirus to increase the survival
rate. The dataset, containing 287 COVID-19 patient
samples with a 100% positive ratio, was collected from
the KFU Hospital in Saudi Arabia and analyzed using
LR, RF, and XGB algorithms.

• Awal et al. [24] developed a framework to predict
COVID-19 patients using inpatient facility data. Multi-
ple algorithms were used, such as RF, DT, NB, GBC,
XGB, and KNN. They extracted the relevant features
from the dataset consisting of 11,169 samples with a
2.82% positive ratio using shapely additive explanations
analysis.

• Pourhomayoun and Shakibi [22] proposed a predictive
system to determine the health and mortality risk of
COVID-19 patients. The authors utilized documented
data from 2,670,000 patients (all positive cases) world-
wide with laboratory-confirmed cases. Various classi-
fiers such as SVM, ANN, RF, DT, LR, and KNN were
used. They also employed univariate and multivariate
filter and wrapper methods to extract the key features.

• Danacı and Tuncer [23] utilized multiple FS methods to
select the most relevant features from COVID-19 data.
They used a dataset of 221 patients, including 121 pos-
itive and 100 negative patients. They applied various
algorithms, including SVM,KNN,DT, andANN, to pre-
dict the disease.

Table 1 summarizes the previous research explained above.

III. BACKGROUND
This section provides the background information used to
develop the OUEFS system. It includes a detailed discussion
of the FS approaches, ML classifiers, the GA optimization

approach, and performance evaluation metrics. These com-
ponents ensure the advancement and effectiveness of the
automatic diagnosis system.

A. INDIVIDUAL FEATURE SELECTION APPROACHES
Feature selection (FS) is a pivotal data processing element
that extracts key features. It is a process to minimize comput-
ing costs with its capability to prevent overfitting and preserve
the models’ predictive abilities [25]. There are three distinct
types of FS strategies: filter, wrapper, and embedded. The
choice of the FS method relies on the problem being solved.

Filter feature selection (FFS) methods rank features
according to their unique characteristics. They are more com-
putationally efficient than wrapper methods to minimize the
error rate [26]. The filter method has one major drawback of
suboptimal performance; it may retain redundant feature in
its set. Standard filter methods are Fisher’s score, information
gain, andmutual information [9], [27].Wrapper feature selec-
tion (WFS) methods are more effective than filter methods in
selecting the most relevant features [28]. However, they can
be computationally expensive and more prone to overfitting
because the search strategy in the wrapper evaluates each
candidate feature set. Well-known wrapper methods include
forward, backward, exhaustive search selection, and recursive
feature elimination [9], [27]. Embedded feature selection
(EFS) methods integrate FS into the learning algorithm and
perform FS as a separate step [29]. They are typically more
efficient than filter and wrapper methods because they do
not require the repeated execution of the learning algorithm.
Tree-based and RidgeCV algorithms are examples of embed-
ded methods [9], [27].

FS aims to improve classification performance by elim-
inating irrelevant and redundant features. However, there
are also limitations. First, many methods must account for
redundancy among selected features, potentially retaining
correlated features that provide little additional information.
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TABLE 1. Summary of previous research to predict COVID-19 disease.

Second, individual filter-based approaches can introduce a
bias towards a specific subset, overlooking potentially valu-
able features. Finally, inconsistent prediction accuracy can
occur during classification depending on the chosen feature
subset. Different algorithms can select varying sets of fea-
tures from the same data. This inconsistency necessitates
further exploration of integration-based methods that prior-
itize diversity and accuracy in the chosen feature set. Table 2
summarizes the kinds of FS strategies, methods, and their
advantages and limitations.

TABLE 2. FS strategies with their advantages and limitations.

To address these issues with FS methods, integrated FS
approach was developed to select multiple FS methods to
achieve high accuracy. Table 2 shows that each FS strat-
egy has several specific feature selection methods, amongst
which we select mutual information (MI), recursive feature
elimination (RFE), and RidgeCV techniques to extract the
essential features. MI was chosen for filter-based selection

because it handles high-dimensional data well. It identi-
fies informative features by measuring their dependency on
the target variable [29], [30], [31]. RFE was selected for
wrapper-based selection because it successfully finds rele-
vant features through a recursive process of FS and model
building [32], [33]. RidgeCV was chosen for embedded
selection because it incorporates FS within model training,
reduces overfitting by adding a penalty against complexity,
and enhances generalizability [34]. Combining these meth-
ods, we aim to create an optimal feature subset that improves
computational efficiency and predictive accuracy.

1) MUTUAL INFORMATION FEATURE SELECTION
François et al. [35] first proposed the idea of mutual informa-
tion (MI) as a metric for measuring the degree to which two
variables are interdependent. Mutual information measures
how much one variable’s uncertainty is reduced when knowl-
edge of the other variable is obtained. This mathematical
measurement can be expresses as Equation 1 below:

I (X ,M) = H (X) − H (X |M )

=

∑
xi ∈ X
Mj ∈ Y

P
(
xi,mj

)
log

P(xi,mj)
P (xi) × P(mj)

(1)

Here, I (X ,M) is the MI between feature subset X and
classM , H (X) is the entropy of X subset, and H (X |M ) is the
conditional entropy of X subset given M class. Furthermore,
P

(
xi,mj

)
is the joint probability with a xi value and mj class,

whereas P(xi) represents the probability of a feature having
ax i value, and P(mj) is the probability of a class being mj.

2) RECURSIVE FEATURE ELIMINATION
Recursive feature elimination (RFE) is a proper FS method
for eliminating irrelevant features from the input feature set
and finding the important features that differentiate between
classes. This process aims to reduce the feature set’s com-
plexity while maintaining high precision.
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The RFE technique leverages the capabilities of Random
Forest (RF) classifiers to perform an iterative evaluation of
the variable significance, requiring the execution of multi-
ple classification iterations. The iterative process consists of
several key stages: the generation of a novel RF classifier,
the assessment using cross-validation techniques, the anal-
ysis of feature importance metrics, and the modification of
the feature set for subsequent iterations. Every feature in
the subset is used in the initial classification round. The
worst-performing features are then identified and deleted
from the feature set, preparing for the next steps. Addition-
ally, RFE repeats this process to reduce the possibility of
dependencies and convergence among the input features.

3) RIDGECV
Ridge regression is a type of regression that can be used to
address multicollinearity-induced variation. Multicollinear-
ity occurs when two or more independent variables are
significantly correlated. This can cause inflated standard
errors and inaccurate estimations of the regression coeffi-
cients [28]. To solve this problem, ridge regression penalizes
the squared sum of the coefficients. Significant coefficients
are punished by this penalty, which helps lower the esti-
mates’ variance. In other words, ridge regression decreases
the coefficients to zero, which can help increase the stability
of the estimates [29]. Equation (2) below shows the ridge
regression’s objective function:

argminw = (kXw− yk)2 + (kw− kw)2 (2)

where α is a positive fixed constant, the coefficients’ shrink-
age can be adjusted by changing the α value [36].

B. MACHINE LEARNING CLASSIFIERS
Machine learning classifiers are supervised learning algo-
rithms that can predict the outcome of a data point based on
its features. In this paper, we use classifiers to predict the
COVID-19 disease. The selected classifiers include LSVM,
LR, GB, and Adaboost.

LSVM addresses both classification and regression tasks.
It can efficiently solve binary classification tasks, wherein
the primary goal is to categorize data points into two distinct
classes based on their exhibited characteristics. Key parame-
ters for the LSVM during the training are C, regularization,
kernel, hinge_loss, gamma, class weight, and max_iteration.

LR is a probabilistic statistical model to tackle classi-
fication tasks. The logistic function is a sigmoid function
that estimates probabilities. It performs exceptionally well
when the dataset is dimensional and overcomes the overfit-
ting. It performs well on binary output and directly connects
the dependent and independent variables using the sig-
moid logistic regression. The parameters which make it
more efficient are penalty, C, fit_intercept, class_weight, and
max_iterations.

GB has gained popularity for its exceptional performance
in tackling complex and challenging problems. The technique

runs sequentially, improving models iteratively by reduc-
ing errors. It aims to minimize the overall loss by utilizing
negative gradients.With its characteristics, this classifier han-
dles the missing values in data effectively. The controlling
parameters of GB classifiers are n_estimator, learning_rate,
max_depth, loss, and max_feature.

Adaptive boosting (Adaboost) is a robust ensem-
ble learning algorithm. It enhances the performance of
low-performing classifiers by leveraging the knowledge
gained from its errors, which is based on the boosting
method. Each tree in the Adaboost depends on the last tree’s
error. The Adaboost utilizes a sequential ensembling and
potentially induces overfitting. Key parameters of Adaboost
during the training are n_estimator, n_jobs, learning_rate,
base_estimator_param, and verbose.

C. GA-BASED HYPERPARAMETER OPTIMIZATION
Genetic algorithms (GA) are meta-heuristic optimization
techniques inspired by principles of natural selection, specif-
ically tailored to identify high-quality solutions to complex
optimization problems [37]. GA has demonstrated its effi-
cacy in addressing a wide range of research challenges.
It has played a crucial role in addressing complex challenges,
including feature selection, optimization, hyperparameter
tuning, neural network searches, clustering, classification,
and anomaly detection problems. In this paper, we use GA
to optimize the hyperparameters of ML classifiers to improve
the overall performance.

The algorithms initiate their exploration by establishing an
initial population of solutions randomly generated within the
search space. The population under consideration comprises
various solutions, each represented by a chromosome. These
chromosomes serve as genetic instructions, encoding essen-
tial characteristics of the respective solutions. GA utilizes
three bio-inspired operators: selection, crossover, and muta-
tion [46]. The process for selection involves the intentional
selection of a subset from a population, often showing a pref-
erence for individuals with superior fitness levels. Crossover,
an essential genetic operator, allows the recombination of
chromosomes from two-parent solutions, creating an off-
spring that inherits characteristics from both progenitors.
Mutation serves to introduce variability by modifying one or
more values within a chromosome. This diversity helps the
program explore different search space populations [38].
GA is robust and effective across various optimization

problems, driven by two main advantages. First, GA navi-
gates search spaces using independent individuals, enabling
parallel processing and minimizing the risk of getting stuck
in local optima encountered by other optimization methods.
Second, its implementation is straightforward and adaptable.

D. PERFORMANCE EVALUATION METRICS
In machine learning, several performance evaluation metrics
can be used to assess the performance and effectiveness of
a model. This work calculates the evaluation metrics such
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as accuracy, precision, recall, F-score, and AUC-ROC. The
considered metrics are dependent on the four factors: true
positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN). The accuracy of the ML classification
model is obtained by calculating the proportion of correctly
classified samples using a testing set. The precision mea-
sures the correctness, which is obtained by calculating the
proportion of positive samples that are correctly classified.
The recall is obtained by calculating the proportion of positive
samples classified as positive. The F-score is obtained by
calculating the weighted harmonic mean of precision and
recall. AUC-ROC metric integrates the true positive rate
(TPR) with the false positive rate (FPR) over the entire range
of thresholds. The formulas of metrics are shown below:

Accuracy =
TP+ TN

TP+ TN + FP+ FN

Precission =
TP

TP+ FP

Recall =
TP

TP+ FN

F1 − score = 2(
P ∗ R
P+ R

)

AUC = ∫(TPR) d(FPR)

IV. METHODOLOGY
A. OVERVIEW
This section presents the methodology of our proposed
OUEFS approach to predict COVID-19. Our approach
comprises five key stages: data preprocessing, FS, union
ensemble, classification, and HPO. Initially, a clinical
symptoms-based COVID-19 dataset was selected and prepro-
cessed. The data preprocessing stage involved cleaning the
COVID-19 clinical dataset, normalizing it, and balancing it
to mitigate the effects of class imbalance. This preparation is
crucial for ensuring the data is suitable for effective feature
selection and model training. Then, we employed three dis-
tinctMIFS, RFE, and RidgeCV FSmethods to select the most
relevant features [39] using the Top-k feature thresholding
approach. The selected features from each FS method were
then integrated using the Union Ensemble Feature Selection
(UEFS) approach. This integration is critical as it amalga-
mates the strengths of individual FS techniques, formulating a
robust feature set for subsequent modeling. Various ML clas-
sifiers were trained and tested on the union ensemble subsets
to evaluate the performance in the classification stage. Each
classifier was validated using different evaluation metrics to
analyze its performance. This comparative analysis assists in
selecting the classifier that best fits our prediction model. The
best-performing classifier on the ensemble feature subset was
later optimized using the GA hyperparameter optimization
technique to enhance the classifier’s final prediction. This
whole process is named Optimized Union Ensemble Feature
Selection (OUEFS). Fig. 2 shows the schematic diagram of
our OUEFS methodology. The subsections below explain the
details of the five key stages.

B. DATASET
The dataset utilized in this study is sourced from the publicly
available COVID-19 survival calculator, comprising data
from 1,023,426 individuals, with a distribution of 98.80%
COVID-19 negative and 1.20% COVID-19 positive patients,
revealing a significant class imbalance. This dataset includes
59 columns, of which 40 are categorical and 19 are numeric,
with approximately 13.8% of the data entries exhibit-
ing missing values. (Detailed metadata can be accessed
at https://www.covid19survivalcalculator.com/en/download,
accessed on August 24, 2023).

C. DATA PREPROCESSING
Several data preprocessing steps were undertaken to prepare
the data for machine learning analysis. Initially, we cleaned
the dataset based on the criteria in [20]. Metadata fea-
tures such as region, immigrant, insurance, prescription,
income, etc., that exhibited a high rate of missing values
and geographical features irrelevant to the study’s objec-
tives were removed. Furthermore, missing values were
addressed through an iterative imputation technique: con-
tinuous variables were imputed using the mean value,
while categorical variables were imputed using the most
frequent value. Table 3 shows the final COVID-19 clini-
cal data with all compulsory selected features, which we
use for further preprocessing. However, complete metadata,
including feature name, description, type, and informa-
tion on missing values for all 59 features, is provided in
Appendix 1.

FIGURE 2. Schematic diagram of our proposed OUEFS approach.
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Normalization was applied to ensure uniformity across
the features, using Min-Max scaling to rescale categorical
and continuous variables. This step helps mitigate any bias
arising from differences in measurement scales and distribu-
tion ranges, facilitating a more accurate interpretation of the
machine learning models’ results. Min-Max normalization
can be performed using the formula in Equation 3:

y′ =
y− min (Y )

max (Y ) − min (Y )
, (3)

where y is a feature in dataset Y . y is transformed by the
Min-Max scaler into a normalized y′ within a specified range
defined by the minimum (min (Y )) and maximum (max (Y ))
values of Y .

To address the class imbalance, the Synthetic Minority
Over-sampling Technique (SMOTE) was employed to aug-
ment the minority class synthetically, achieving a 1:3 ratio
between the COVID-19 positive and negative classes. This
balancing technique is essential for enhancing the predictive
accuracy of the models across different class labels, ensuring
that the model does not favor the majority class. Upon exam-
ination of the original instances belonging to the minority
class, the SMOTE algorithm is employed to synthesize new
instances by leveraging the k-nearest neighbors’ concept. The
algorithm first consolidates all minority class instances into
a set Y. For each instance Yinst within Y , a synthetic instance
Ynew is produced according to the following Equation 4 [40]:

Ynew = Yinst + rand (0, 1) × (Yj − Yinst ), (4)

where rand(0,1) represents a randomly generated value
within the range [0, 1], and Yj is a randomly selected sample
from the set {Y1 , Y2 , . . . , Yk }, which comprises the k nearest
neighbors of Yinst . It is worth noting that, unlike other over-
sampling methods that duplicate minority class instances, the
SMOTE algorithm generates novel, high-quality instances
that closely resemble samples from the minority class [40],
[41]. This process contributes to enhancing dataset balance
andmitigating class imbalance issues commonly encountered
in machine learning tasks. The dataset was refined through
rigorous data cleaning, normalization, and balancing proce-
dures to support robust machine learning analysis.

D. FEATURE SELECTION METHODS
For our binary classification for predicting COVID-19,
we explored the characteristics of the data to improve its
usability. One technique in this area is feature extraction
(FE), which focuses on reducing the data dimensionality by
creating entirely new features from existing ones. The most
used FE methods are principal component analysis (PCA),
linear discriminant analysis (LDA), and kernel PCA, among
many others. FE is often beneficial for datasets containing
continuous numerical data. However, our study primarily
focuses on FS, as our data consists mainly of categorical
features, as shown in Table 3. In contrast to FE, FS aims
to identify and retain the most informative existing features
from the dataset for further analysis and classification.

TABLE 3. Description of the COVID-19 clinical dataset.

Our approach uses three FS methods (MIFS, RFE, and
RidgeCV) and combines the results to create an ensemble
feature subset. These methods are included to diversify the
FS process while improving our approach’s regularity. The
strategic use of diverse methodologies can yield significant
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advantages in boosting performance. Using multiple methods
increases the computing cost. Thus, selecting individual FS
methods and combining them to get an optimal ensemble
feature subset presents notable advantages regarding compu-
tational efficiency and predictive accuracy.

Each FS method chooses relevant features and ranks them
according to their importance scores. All three FS methods
are known as rankers. They do not simply select a few
features to concentrate on; instead, they give equal weight
to all of them. We decided to employ these rankers for the
following reasons: (i) each has its selection evaluation criteria
and exhibits a substantial level of heterogeneity within the
final ensemble; (ii) all the methods (or rankers) assume a
dataset with a balanced class distribution and do not explicitly
account for class imbalance; (iii) none of the methods can
individually recognize redundant features [30].
To use the ranking-based FS techniques, we first need

to sort the features that can be used. A threshold needs to
be defined to obtain a subset of important features. In this
paper, we used the Top-k features thresholding method [42],
referring to the prior studies [43], [44]. In the Top-k threshold,
k is the total number of most significant features in the
dataset based on their importance scores, typically derived
from feature selection methods. The input consists of a set
of features F with corresponding importance scores, along
with an integer k representing the desired number of top
features to select. The algorithm sorts the features in descend-
ing order of their scores, creating a ranked list R. It then
selects the top k features from this list to form a subset Rk ,
which is subsequently used for building predictive models
(see Algorithm 1). Our method focused on choosing the top
k = 15 features according to their importance scores for the
COVID-19 disease prediction.

E. UNION ENSEMBLE FEATURE SELECTION APPROACH
As explained earlier, we combined individual FS methods
(MIFS, RFE, and RidgeCV) and selected a distinct feature
subset. We used union ensemble feature selection (UEFS)
to combine the feature subsets produced by individual FS
methods. The union ensemble technique with all possible
union combinations of individual FS methods used for this
study is shown in Fig. 2. The process of combining feature
subsets guarantees the retention of important features and
greatly contributes to improving predictive performance.

Applying the individual FS technique results in reduced
feature subsets, Mi and Mj, when using a training dataset
with f features. The union operation takes into account all
of the features that are current in either Mi or Mj or in both
at the same time. The union of feature subsets can be defined
mathematically as shown in Equation (5):

f ϵ
(
Mi ∪Mj

)
↔ f εMi V f εMj (5)

The union of two or N feature subsets can be defined in
Equation (6) and (7):

∪
{
Mi,Mj

}
= Mi ∪Mj (6)

Algorithm 1 Top-k Feature Thresholding
Input:

- Set of features F = {f1, f2, . . . , fn}
- Corresponding set of scores S = {s1, s2, . . . , sn} where si
represents the importance score of features fi
- Integer k representing the desired number of top
features to select (k ≤ n )

Output:
Subset RK = {r1, r2, . . . , rk } containing the top k features
based on scores S

1: Step 1: Sort Features by Scores
2: Create a list R by ordering features F based on their

scores S in descending order.
3: R = sort_features_by_scores (F, S), where s(ri) ≥

s(ri+1) for all i
4: Step 2: Select Top-k Features
5: Select the top k features from the sorted list R to form

RK .
6: RK = R[0 : k]
7: Step 3: Model Building
8: Use the subset Rk to build the predictive model.
9: Step 4: sort_features_by_score(F, S)
10: Initialize R as an empty list.
11: Sort features F based on their corresponding scores S in

descending order.
12: Return the sorted list R.

and

∪{Mi,Mj, , . . . ,Mn} = Mi ∪Mj ∪ . . . ∪Mn (7)

Therefore, the ensemble feature subset using union operation
can be obtained by the Equation (8) below:

E = Mi ∪Mj ∪ . . . ∪Mn (8)

Other ensemble FS approaches, such as intersection or
multi-intersection, were also considered. However, they lead
to fewer features and fail to retain important features. Initial
evaluation showed much lower performance than the UEFS,
thus we did not pursue them further.

F. GA-HPO
Genetic algorithm is meta-heuristic optimization technique
inspired by principles of natural selection, specifically tai-
lored to identify high-quality solutions to complex optimiza-
tion problems [37]. These algorithms leverage biologically
inspired operations, including mutation, crossover, and selec-
tion, to explore solution spaces [38] efficiently. Fig. 3 depicts
the basic structure of a GA in the context of machine learning
HPO. It operates in the steps below:

1. Beginning with a diverse population of potential solu-
tions represented as chromosomes (each coding a set
of hyperparameter combinations), each individual’s fit-
ness (chromosome) is evaluated using an objective
function.

2. If the best individual (chromosome) satisfies the opti-
mization criteria, the process terminates, assuming that
this individual represents the solution to the problem.

3. If the optimization criteria are not met, a new gen-
eration is created. Pairs or individuals are randomly
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selected and subjected to crossover and mutation
operations.

4. The resulting individuals are selected based on their
fitness to produce new offspring.

The performance of a GA hinges on a set of control
parameters such as population size, crossover and mutation
rates, and selection strategy. We determine the population
size through experiments with various systems, which appear
less sensitive to system size when confined within a small
bounded network. Based on statistical evaluations of simula-
tion outcomes, it was observed that a moderate population
size ranging from 10 to 30 yields satisfactory results. The
crossover rate (‘Cr‘) dictates how frequently the crossover
operator is applied, with higher rates (‘Cr‘) facilitating
quicker generation of new individuals. The mutation is cru-
cial for maintaining population diversity and escaping local
optima. Experiments have shown that crossover rates ranging
from 0.6 to 0.9 and mutation rates between 10% to 60% offer
effective computational performance, with lower crossover
rates and higher mutation rates enhancing computational
efficiency.

GA is robust and effective across various optimization
problems driven by twomain advantages. First, GA navigates
search spaces using independent individuals, enabling paral-
lel processing andminimizing the risk of getting stuck in local
optima encountered by other optimization methods. Second,
GA’s implementation is straightforward and adaptable.

FIGURE 3. GA-HPO for Adaboost classifier.

G. CLASSIFICATION
In classification, we evaluated the UEFS method using
LSVM, LR, GB, and Adaboost classifiers. The experimental
results will be shown later in Section V. Ensemble methods
were used to choose the subset of features with the highest
prediction performance. The Adaboost classifier was the best
performing and was used for later experiments to predict
COVID-19 patients.

Adaboost is an ensemble approach that combines the
strengths of various ‘T’ weak classifiers to improve clas-
sification performance. Depending on how well each weak
classifier performed during each iteration, the weight that the

Adaboost assigns varies. The final prediction function ‘f(x)’
in Adaboost is formed as a weighted combination of the weak
classifiers, as shown in Equation (9) below, where α_t is the
weight given to the h_t(x) weak classifier.

f (x) = sign(6[α_t ∗ h_t(x)]) (9)

We carefully examined the performance of the Adaboost
algorithm in making predictions for the COVID-19 disease
using the ensemble feature subsets. We implemented a strate-
gic plan to optimize its Adaboost hyperparameters using
GA to achieve higher performance (see Fig. 3). We pre-
processed the dataset as discussed above in subsection C
and applied SMOTE algorithms to balance the target class
(covid19_postive). For GA-HPO, this dataset was split into
training, validation, and testing sets using a 70:15:15 ratio.
The training set, comprising 975,727 instances, was used to
train the machine learning classifier and validate its perfor-
mance using the validation set. The validation set of 209,084
instances allowed us to fine-tune model hyperparameters and
monitor for overfitting during training.

The key parameters tuned for Adaboost include
n_estimators, n_jobs, learning_rate, base_estimator_param,
verbose, and random_state. Finally, we performed testing
using the test set containing 209,085 instances. Table 4
includes the number of instances for each class in each subset.

Our integration of GA-based HPO led to the fine-tuning
of the Adaboost model. It was marked by notably higher
accuracy and a robust solution to the challenge of COVID-19
patient prediction using clinical data. The detailed proce-
dure of our OUEFS classification methodology is shown in
Algorithm 2.

TABLE 4. Number of instances for each subset.

V. EXPERIMENTAL RESULTS
We conducted in-depth evaluations of the OUEFS approach
using the COVID-19 dataset explained in Section IV. In this
section, we show the experimental results of ML classifiers
using a full feature dataset, individual FS approaches, UEFS,
OUEFS (UEFS + GA-HPO), and a comparison of the above
results. In particular, UEFS experiments are designed to
compare the performance of various union combinations and
select the optimal one to optimize hyperparameters further.
Moreover, we compare the results of our proposed OUEFS
approachwith those of the previous research.We used various
ML libraries within the Python programming language. All
the experiments were conducted on a system equipped with
an Intel (R) Core i7-2600 CPU operating at a frequency of
3.40 GHz.
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Algorithm 2 Optimized Union Ensemble Feature
Selection(OUEFS)

Require:
Dataset D, partitioned as {D_train, D_test}, Total number
of features, number of top features to select K, Ensemble
methods specified as ε ∈ {U, I, M}, Machine learning
classifier denoted as Cls

Ensure:
- Classification prediction represented as P
- Optimizedmachine learning classifier denoted as Opt_Cls

1: Step 1: Apply Multiple FS Methods
2: for each FSMethod in {α, β, γ } do
3: apply FSMethod on D_train to obtain the respective

feature set (FS_i)
4: end for
5: Step 2: Apply K-top Feature Thresholding
6: for each FS_i, do
7: FS_i’ = SelectTopKFeatures (FS_i, K)
8: end for
9: Step 3: Ensemble the Selected Feature Subsets using

Union
10: if ε = U then
11: E = Union of all FS_i’
12: else if ε = I then
13: end if
14: Step 4: Apply Machine Learning Classifier
15: Partition D_train into {D_train_t, D_train_val}
16: Cls = Train (Cls, D_train_t, E)
17: 8 = Evaluate (Cls, D_train_val)
18: Step 5: Optimize Hyperparameters using GA
19: if θ is true, then
20: Opt_Cls = Optimize (ζ , Cls, 8 )
21: else
22: Opt_Cls = Cls
23: end if
24: Step 6: Output Classification Prediction and Optimized

ML Classifier
25: P = Predict (Opt_Cls, D_test)
26: return P, Opt_Cls

A. RESULTS WITH FULL FEATURES
We first compared ML classifiers (LSVM, GB, LR,
Adaboost) on the entire set of features (27 features shown in
Table 3 ). Table 5 shows that the AdaBoost and GB classifiers
achieved high accuracies (93.24% and 91.93% respectively).
The Adaboost performs better than others by obtaining a pre-
cision of 96.95% and a recall rate of 94.33%. These metrics
collectively contribute to an impressive F1-score of 95.62%.
With accuracy values of 78.87 and 78.97, the LSVM and LR
were the least accurate classifiers.

TABLE 5. Experimental results using full features.

B. RESULTS OF INDIVIDUAL FS METHODS
In this subsection, we show the experimental results using the
feature subsets selected by the individual FS approaches. The
list of features chosen using individual FS techniques (MIFS,
RFE, RidgeCV) is shown in Table 6. It also shows a ranking
of the selected features, arranged in descending order of their
importance scores. These selected feature subsets are used
for the experiments later in this subsection and the follow-
ing subsections. Each selector independently determines the
top 15 relevant features by the Top-k features thresholding.
As explained above, the most crucial features were chosen
using MIFS, RFE, and RidgeCV FS methods.

TABLE 6. Ranks and importance scores of selected features using
different FS methods (Code: Feature Code, Score: Importance Score.)

In the first experiment, we used the selected subset of
15 features of MIFS from Table 6. These features influence
themajority of the final COVID-19 patient prediction. Table 7
shows that the Adaboost classifier had the best classification
performance: 94.31% accuracy, 95.29% precision, 93.22%
recall, 94.24% F1-score, and 98.61% AUC-ROC. The GB
classifier also performed well, with an accuracy of 91.16%.
In addition, when compared with full features, Adaboost
improved the accuracy by 1.07% (94.31% - 93.24%), while
LSVMand LR had balanced performance and attained almost
the same level of accuracy.

Table 7 also shows the results of ML classifiers using a
subset of RFE-based 15 most important features. The accura-
cies achieved by the LSVM, GB, LR, and Adaboost models
are 79.04%, 79.71%, 79.03%, and 79.63%, respectively.
Adaboost performed highly in the other evaluation measures
(precision and recall, among others). Compared with the
MIFS, all classifiers perform low on the RFE-based feature
subset. However, the final prediction depends entirely on the
number of features the individual FS method selects.

Experimental results using a subset of RidgeCV-based
15 most important features in Table 7 indicate that most
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TABLE 7. Experimental results of classifiers using a selected subset of
individual FS methods.

classifiers showed comparable performance. However, the
Adaboost had an advantage in other crucial evaluationmetrics
such as AUC and recall. The Adaboost obtained 78.86%
accuracy, 77.26% precision, 81.84% recall, 79.48% F1-score,
and 88.22% AUC. GB showed slight improvements. Com-
pared with RFE, the performance of classifiers was almost at
the same level. However, their performance is lowwhen com-
pared with the MIFS. This is because the RFE and RidgeCV
selected nearly similar types of features.

Although we did not use PCA in our study as a first
choice since it is not well suited for the categorical data type,
we also conducted experiments by applying PCA for fea-
ture extraction. PCA derives a new set of features, principal
components (PCs), from linear combinations of the original
variables. These PCs are structured to be orthogonal and are
formulated sequentially based on the amount of variance they
capture from the original dataset. Our study employed PCA
to identify and extract the top 15 features based on their
variance from the data. This refined feature subset was split
into training and testing sets to evaluate four different ML
classifiers: LSVM, GB, LR, and AdaBoost. Among these,
GB exhibited the highest overall accuracy at 77.64% and a
robust balance between precision and recall, as reflected in
its F1 score of 75.23%. All models demonstrated competent
performancemetrics, as shown in Table 8. This highlights that
while PCA effectively reduces dimensionality, alternative
feature selectionmethods such asMIFS capture the predictive
nuances of the dataset better.

The above results show that the FS approaches
heavily influence classifiers’ performance. The MIFS
method achieved better performance across all classi-
fiers. Adaboost was identified as the most effective

TABLE 8. Experimental results of classifiers using a selected subset of
the PCA feature extraction method.

classifier, particularly when combined with the MIFS FS
approach.

C. RESULTS OF UNION ENSEMBLE METHOD
This section presents the experimental results using the union
ensemble FS approach. The approach provides a comprehen-
sive comparison among different combinations of individual
FSmethods. It also identifies an optimal subset encompassing
all potential key features from the database, which can yield
high classification performance using ML classifiers. Table 9
shows the ensemble feature subsets obtained using the union
method. Union combinations such as (F∪W), (F∪E), (W∪E),
and (F∪W∪E)1 provide a set of up to 22, 23, 19, and 24 can-
didate features, respectively. Using these combinations, the
performance of each ML classifier was then evaluated.

Table 10 shows that Adaboost surpasses all other clas-
sifiers and achieves the highest accuracy rates of 94.55%,
94.66%, 81.79%, and 94.51% in the context of the F∪W,
F∪E, W∪E, and F∪W∪E combinations, respectively. It indi-
cates the Adaboost’s superiority over the subsets selected by
the individual FS methods (Table 7 ) and the complete set of
features (Table 5 ). The methods F∪W, F∪E, and F∪W∪E
exhibited comparable results when applied to the union of
selected features. This same performance level results from
the MIFS-based selected features combined with other meth-
ods. In contrast, the W∪E combination shows the lowest
performance, resulting in an accuracy of 81.79%. However,
compared with RFE and RidgeCV individual FS methods,
Adaboost using W∪E combinations improved the accuracy
by 2.16% and 2.93% over RFE and RidgeCV, respectively.
These results show that the union ensemble strategy is effec-
tive, especially when used with the MIFS method.

The performance results highlight that the UEFS approach
is useful for disease classification. Adaboost, among other
ML classifiers, yields the highest performance. Furthermore,
the performance is mainly influenced by the choice of indi-
vidual FS methods to extract the key features. Notably,
the MIFS method adeptly extracted key features from the
database, substantially contributing to the final predictions.
The results in Tables 7 and 10 show that evaluating ML
classifiers on the MIFS feature subset and exploring all
possible UEFS combinations of MIFS features with other
individual FS methods yields superior performance. For the
rest of the experiments, we utilized the best-performing union

1F = filter (MIFS); W = wrapper (RFE); E = embedded (RidgeCV).
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TABLE 9. List of important selected features by the UEFS methods.

subset (F∪E) that yields accurate results with an accuracy of
94.66%.

TABLE 10. Experimental results using union ensemble feature subsets.

We also evaluated the efficacy of intersection and multi-
intersection methods. However, the performance was lower
than that of the union method. The low performance stemmed
from the minimal number of features and the selected subsets
derived from individual FS methods. For example, the inter-
section approach discarded features based on overlapping FS
methods. It led to the loss of valuable information related
to the target variable. With fewer features, classifiers might
memorize the training data but need to generalize the new
cases, which affects the performance.

D. RESULTS OF OUEFS METHOD USING GA-HPO AND
COMPARISON WITH OTHER METHODS
Experimental results in the previous subsections showed that
the Adaboost using the (F∪E) combination outperformed
all the other experiments. To further boost the performance
of the Adaboost, we used the GA-HPO method to pro-
vide the best possible combinations of hyperparameters for
the model. The acquired configured set of hyperparame-
ters improves the performance during the model training
on the (F∪E) subset. The hyperparameters of the Adaboost
model with the range and optimal values obtained by GA
are explained earlier in Section IV-F. Experimental results
show that the Adaboost classifier and tuned hyperparameters
obtained using GA outperformed all the previous research
in predicting COVID-19 disease and achieved the highest
accuracy of 96.30%. As mentioned, we named this whole
process OUEFS (UEFS + GA-HPO).
Fig. 4 and Fig. 5 show performance comparisons of

all methods, including the OUEFS approach, in terms of
accuracy and AUC, respectively. Compared with the other
studies, the OUEFS technique performed better and cor-
rectly predicted the COVID-19 patients. Fig. 4 shows that the
OUEFS approach achieved the highest accuracy of 96.30%,
an improvement of 1.64% above the previous best union
ensemble (F∪E) method as shown in Fig. 6. Compared with
the full feature, the OUEFS technique improves the accuracy
by 3.06%. Similarly, compared with the average accuracy
of the previous 13 studies (82.28%), our proposed OUEFS
obtained an accuracy of 96.30%, showing a 14.02% perfor-
mance improvement. The OUEFS technique also improved
performance for the other evaluation metrics and accurately
recognized the positive samples.

We further show an AUC-based comparison of all studies
in Fig. 5. The OUEFS achieved a superior AUC score of
98.99%. It also outperformed well for the other evaluation
metrics, including precision of 98.02%, recall of 97.56%,
F1-score of 97.01%, and Gini coefficient of 94.05%. The
higher results indicate that our approach accurately observed
COVID-19-positive cases and significantly enhanced the per-
formance of the Adaboost algorithm.

The computing time associated with the above experiments
is further shown in Fig. 7. The Full Feature method, which
uses all available features without any selection, recorded a
computing time of 3.69 seconds, serving as a baseline for
comparison. Among individual FS methods, MIFS showed
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FIGURE 4. Accuracy comparison of all approaches.

FIGURE 5. AUC comparison of all approaches.

FIGURE 6. Accuracy comparison of FUE and OUEFS experiments.

a computing time close to the Full Feature method, while
RFE exhibited a slightly lower time of 3.64 seconds. For
ensemble feature selection methods, FUW recorded a com-
puting time of 3.67 seconds, and FUE improved the time
with 3.43 seconds. TheWUEmethod had a higher computing
time of 4.29 seconds, suggesting that combining wrapper
and embedded methods increases the computing time due to
algorithmic complexity. Finally, the FUWUE (Filter-Union-
Wrapper-Embedded) method showed a computing time of
3.31 seconds. This indicates that while it integrates multiple
feature selection strategies, it maintains a reasonable com-
puting time. Our OUEFS approach provides a balanced and
efficient solution, showing a computing time of 3.43 seconds

while significantly improving the Adaboost classifier’s accu-
racy for COVID-19 prediction. Thus, OUEFS is not only
effective in enhancing model performance but also efficient
in computing time.

FIGURE 7. Computation time (seconds) comparison of all the
experiments.

E. PERFORMANCE COMPARISON WITH EXISTING
ENSEMBLE-BASED MODELS
Table 11 compares our proposed OUEFS technique with the
previous state-of-the-art ensemble-based optimization meth-
ods focusing on classification accuracy. OUEFS approach
consistently outperforms other approaches. Debjit et al.
[17] is the previous best (92.23% accuracy) ensemble
technique for COVID-19 identification. Using the same
clinical dataset consisting of 1,023,426 samples with a
1.20% positive ratio, our approach achieved 4.07% better
accuracy (96.30%).

TABLE 11. Performance comparison of our proposed OUEFS with
ensemble-based optimization approaches.

F. MODEL INTERPRETATION USING EXPLAINABLE SHAP
ANALYSIS
Understanding the global interpretability of predictive mod-
els is essential, particularly in classification frameworks
where the contribution of predictor attributes significantly
impacts model performance. SHAP (Shapley Additive exPla-
nations) plot, specifically the SHAP summary plot, effec-
tively merges feature importance with the detailed effects of
each feature. This method assigns scores to each input feature
based on the mean absolute Shapley values, illustrating their
utility in predicting a target variable. This visualization pri-
oritizes features and ranks them on the y-axis by importance.
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At the same time, the x-axis displays SHAP values that high-
light the correlation of each feature with the target outcome:
positive values indicate a positive correlation, and vice versa.
The color gradient, transitioning from blue (low values) to red
(high values), further distinguishes feature values, enhancing
interpretability and providing insights into data dispersion.
This concise and comprehensive approach augments the
efficacy and efficiency of predictive models. It provides a
nuanced understanding of how individual features influence
predictions, as demonstrated in previous COVID-19 disease
prediction studies [46], [47], [48].

In our analysis, SHAP plots, particularly the summary
and beeswarm plots, demonstrate their efficacy by delin-
eating the influence and significance of features within
our predictive model. For example, in our dataset (Fig. 8),
‘sex’ and ‘rate_reducing_mask’ are identified as the most
influential predictors, with higher values (represented in
red) associated with positive Shapley values indicative of
a COVID-Positive outcome. In comparison, lower values
(shown in blue) suggest a no-COVID outcome. Conversely,
features like ‘kidney_disease,’ ’asthma,’ and other similar
conditions show minimal impact. The plot arranges features
in descending order of influence, providing a global interpre-
tation that aligns with model-specific explainable AI results
and enhances model transparency and validation against
established medical knowledge. This integration of SHAP
visualizations ensures that interpretations are scientifically
robust and practically relevant, fostering a deeper understand-
ing of the model’s predictive dynamics.

G. EXPERIMENTS ON ISRAEL COVID-19 CLINICAL
DATASET
We evaluated our approach using another Israel COVID-19
dataset from the open-source GitHub repository extracted
from the Israeli Ministry of Health website [49]. The dataset
includes ten features representing clinical symptoms, detailed
in Appendix 2.

First, we processed the data by removing missing values
and excluding features that did not contribute to the final
prediction. We then applied the Min-Max scaler to rescale
categorical and continuous variables. We used the SMOTE
data balancing approach to enhance predictive performance
and balance the target class. The dataset was split into training
(80%) and testing (20%) sets.

Our FS process was rigorous, employing MIFS, RFE, and
RidgeCV algorithms. These algorithms ranked features by
their importance scores, as shown in Table 12. We used a
Top-k threshold method to select the most significant fea-
tures, with the top 5 features considered. The selected feature
subsets were then combined using the union ensemble FS
approach. Appendix 3 showcases the ensemble feature sub-
sets obtained through union combinations such as (F∪W),
(F∪E), (W∪E), and (F∪W∪E), yielding up to 7, 7, 6, and
7 candidate features, respectively.

FIGURE 8. SHAP analysis.

We conducted a series of experiments similar to those for
the COVID-19 dataset. The experimental results in Table 13
show that the GB and Adaboost classifiers performed well in
all experiments. The GB classifier achieved 80.30% accuracy
using the full feature set, achieving up to 91.85% accuracy
with the MIFS feature subset. All ML classifiers performed
well for union combinations, with GB achieving 92.27%
accuracy for the FUWUE combination. TheGB classifier was
also optimized using GA-HPO, improving its performance by
2.05% compared with the previous best during the FUWUE
experiment. Fig. 9 shows the accuracy comparison of the GB
classifier across all experiments.

TABLE 12. Ranks and importance scores of selected features using
different FS methods (Code: Feature Code, Score: Importance Score.)
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FIGURE 9. Accuracy comparison of GB classifier for various experiments.

TABLE 13. Experimental results for full features, individual FS methods,
union combinations, and GA-HPO.

Table 14 compares the result of our proposed approach,
utilizing Israeli COVID-19 data, with those of previ-
ous state-of-the-art studies. The comparison focuses on
two key performance metrics: classification accuracy and
AUC. Our ensemble approach demonstrates consistent

outperformance over existing methods. The previous best-
performing approach, reported by Hossen et al. [50], is an FS
ensemble technique for COVID-19 identification, achieving
an accuracy of 88.0%. When applied to the same clinical
dataset, our method achieves a significantly higher accuracy
of 94.32%, representing a 6.32% improvement. Additionally,
a study by Zoabi et al. [51] employed a LightGBM classifier
for COVID-19 patient classification and attained a best AUC
score of 90%. Our approach surpasses this result, achieving a
superior AUC of 92.30%, reflecting a 2.30% increase.

TABLE 14. Performance comparison of the proposed approach with
previous studies.

VI. CONCLUSION
In this paper, we propose an automated COVID-19 predic-
tion system using ML methods on the clinical dataset. The
proposed method is intended to function in real-time, identi-
fying COVID-19 patients as early as possible. The proposed
OUEFS methodology combines feature selection with the
ensemble technique. It combines subsets of features obtained
through individual feature selection procedures using the
union method. The machine learning classifiers were evalu-
ated using various performance metrics, including accuracy,
precision, and AUC.

Additionally, the top classifier, Adaboost, was optimized
using the GA-HPO technique, which increased the overall
performance by a significant margin and led to the highest
accuracy (96.30%) compared with the previous ensemble-
based approaches. These results highlight the efficacy of
the proposed OUEFS strategy, which has the potential to be
implemented in the healthcare systems for the early diag-
nosis of COVID-19 patients. In addition, our approach can
be adaptively suited for predicting other diseases, such as
cardiovascular conditions, diabetes, and hypertension.
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