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ABSTRACT Despite the decreasing costs of stereo vision technologies, traditional 3D reconstruction
methods still face challenges related to operational complexity and high costs, which somewhat limit their
widespread adoption in various technical applications. Addressing these challenges, this paper presents an
improved 3D reconstruction method combining COLMAP and OpenMVS, particularly suited for use with
standard consumer-grade imaging devices such as smartphones and drones. By employing Structure from
Motion (SFM) andMulti-View Stereo (MVS) techniques, this study significantly enhances image processing
speed and achieves substantial improvements in model accuracy and detail reproduction. Systematic exper-
imental validation has demonstrated that the combination of COLMAP and OpenMVS outperforms other
open-source tools and combinations in terms of reconstruction speed and precision. This finding highlights
the extensive potential and applicability of this combined approach in applications such as virtual reality,
robotic navigation, and the digitization of cultural heritage.

INDEX TERMS Structure from motion, multi view stereo, 3D reconstruction, model refinement.

I. INTRODUCTION
With the popularity of portable camera devices such as
smartphones, digital cameras, and motion cameras and the
development of image-based multi-view stereo vision tech-
nology, it is easier and more accessible for people to take
photos. The demand for 3D application technology increases
sharply, such as virtual reality [1], augmented reality [2],
robot navigation [3], cultural heritage protection and digi-
tization [4], etc. 3D reconstruction technology has received
extensive attention. It has shown bright application prospects
in many fields and provides a solid foundation for better
environmental perception and scene understanding. The rapid
progress of computer hardware and algorithms provides more
computational support for 3D reconstruction technology.
Sensor technology is also constantly improving and reducing
costs (such as lidar, depth cameras, etc.). Its development
provides more data sources for 3D reconstruction technology,
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which significantly improves the ability to obtain 3D data [5].
According to different requirements, the acquisition of 3D
data can be divided into two ways: active (such as lidar) and
passive (camera). Hu et al. used the multi-stage Terrestrial
Laser Scanner (TLS) integration method to conduct fine
measurements and 3D modelling of ancient buildings [6].
Although active methods such as lidar scanning can obtain
high-precision 3D data, the cost of the scanning equipment
is relatively expensive for ordinary users and small-scale
applications.

Moreover, the performance of lidar scanning could be
improved in better lighting conditions, and it is easy to be
interfered with by strong light, which leads to increased mea-
surement errors. More importantly, lidar scanning does not
contain any semantic information [7], and the passive acqui-
sition method of data acquisition through cameras because
of its relatively low cost, high flexibility, and the advantages
of obtaining geometric and semantic information at the same
time, can improve the accuracy of lidar scanning. It has
been widely used in recent years. For example, using 3D
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reconstruction technology based on UAV photography, Yu et
al. designed a low-cost, simple, efficient, and high-precision
technical process for obtaining and 3D reconstruction of fine
geometric texture on the surface of significant immovable
cultural relics, which can be presented to the public in an
all-round and close range. They can be used as a new data
collection method and data source for 3D GIS platforms [8].

Structure from Motion (SFM) is a 3D reconstruction
method based on image sequence, which infers the geometric
structure of a 3D scene by analyzing camera motion and
the structure of objects in ordered or unordered images [9].
The strength of SFM lies in its ability to process image data
from a variety of sources, be it professional photogrammetry
or photos taken with common consumer-grade cameras or
even video clips. Compared with traditional 3D modelling
techniques such as laser scanning or manual modelling, SFM
does not need to obtain detailed scene information or cam-
era parameters in advance, which significantly reduces the
complexity and cost of 3D reconstruction. In addition, SFM
greatly reduces the need for human intervention. Traditional
methods usually rely on professional operations and complex
parameter configuration, while SFM effectively improves
work efficiency and scalability by automating the process of
feature extraction and matching. This automation not only
accelerates the speed of data processing but also makes 3D
modelling techniques more popular, bringing revolutionary
impact to academic research, industrial applications, and
consumer markets. Therefore, this paper aims to use the
SFM algorithm to reconstruct the model of the test object
quickly and efficiently. Firstly, the feature points of each input
image were extracted, and the feature point descriptor was
calculated.

Then, the feature points are matched and adjusted one
by one to obtain the last suitable image. In this pro-
cess, the camera’s internal and external parameters and
the 3D information of the actual scene can be obtained
so as to obtain the 3D model of the sparse point cloud.
Then, the model was constructed and optimized based on
multi-view photometric consistency and Multi-view Stereo
(MVS). Tang et al. [10] respectively used COLMAP, Open-
MVG and OpenMVS for 3D modelling of the same build-
ing. Although OpenMVS was added in the MVS stage,
OpenMVG+OpenMVS finally obtained a higher accu-
racy 3D model than COLMAP, but in the SFM process,
COLMAP outperforms COLMAP+OpenMVG. Therefore,
in this paper, COLMAP is combined with OpenMVS to
ensure that the SFM stage can obtain a more accurate
coefficient point cloud model while ensuring that the sub-
sequent MVS can output a more complete and accurate
dense point cloud model and grid model. In order to
verify that COLMAP+OpenMVS is a modelling method
that can achieve high-precision modelling in a short time,
OpenMVG+OpenMVS and COLMAP+CMVS-PMVS are
compared. In the field of medical imaging, Wang et al.
[11] developed an innovative method called IDEAS for
multi-energy computed tomography (CT) reconstruction,

which leverages sparsity to enhance image quality. Their
method integrates local sparsity, nonlocal self-similarity,
and spectral correlation through nonlocal low-rank Tucker
decomposition and multi-task tensor dictionary learning.
This approach significantly improved reconstruction qual-
ity across numerical simulations and physical experiments,
showcasing substantial advancements over existing methods.
Wang et al. [12] developed the Hybrid-Domain Integra-
tive Transformer Iterative Network (HITI-Net) for enhancing
image reconstruction. This method effectively combines
model-based and deep learning approaches to improve image
quality and accuracy in sparse-view CT imaging, showing
superior performance over existing techniques.

In this paper, we focus on using information from dense
point clouds to improve the detail and accuracy of 3Dmodels.
For the use of dense point clouds, In the realm of document
image binarization, there are also fruitful results. Nguyen [13]
effectively combined the advantages of 2D image processing
and 3D point cloud data, we provide a more robust solution
to the challenge of severely degraded text binarization.

II. RELEVANT THEORIES
SFM is to extract features from a series of ordered or
unordered images, estimate camera pose and 3D point posi-
tion, and then reconstruct the 3D structure of an object or
scene using Multi View Stereo (MVS). This section will
conduct research and analysis based on the relevant principles
of SFM and MVS.

A. STRUCTURE FROM MOTION
SFM (Structure from Motion) is one of the core technologies
of 3D reconstruction based on UAV mapping [14]. It mainly
includes three stages:(1) extracting frames and matching
frames according to the common features of two adjacent
frames; (2) camera trajectory and pose estimation; (3) Recov-
ering the 3D structure of the target scene based on the
information obtained in the previous two steps. Incremental
SFM is often used as a benchmark for comparison between
different algorithms due to its robustness and high accuracy
in 3D model reconstruction. Since this paper focuses on the
accuracy of 3D models, incremental SFM is selected for the
research work.

B. MULTI VIEW STEREO
After SFM has completed the sparse reconstruction of a
specific object or scene, it can obtain the internal and external
parameters of the camera, the sparse 3D points, and the corre-
sponding 2D points of the image. However, this information
is only represented in the 3D space by the sparse discrete
point cloud, and the result can not represent the object or
scene completely and continuously. Hence, it needs to be
converted into a dense representation of the object or scene.
Then, the fine 3D reconstruction is completed. However,
MVS is a process of stereo-matching the scene by using the
internal and external parameters of the camera estimated by
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SFM to find the points with photometric consistency in the
space [15].

MVS algorithms are usually classified into voxel-based
algorithms, point cloud diffusion-based algorithms, and depth
map fusion-based algorithms according to the representation
of the scene. We employ COLMAP (a generic motion recov-
ery architecture andmulti-view stereo pipeline.) OpenMVS is
an open-source multi-view geometric reconstruction tool that
combines information from multiple image views to produce
a 3Dmodel. Both use theMVS algorithm based on depth map
fusion. Firstly, the domain image is selected for each image to
construct a stereo image pair, and then the depth map of each
image is estimated, and then the depth map of each image is
fused to extract the object surface [16]. The threemethods dif-
fer in the details of their implementation. COLMAP employs
a block-matching approach [17], where the image is divided
into small blocks (usually rectangular areas of fixed size),
and then stereo matching is performed on these blocks. This
block-matching method can capture the smaller scale depth
variation so that the depth map can capture the details of the
object more accurately. When selecting domain image pairs,
OpenMVS should consider that the images have sufficient
similarity, and match feature points as much as possible.
The angle should be significant to ensure the accuracy of
the reconstruction of the 3D model. The region growing
method is used to establish a priority queue according to the
confidence of the reconstruction. Then, the depth is estimated
from the initial sparse feature points, and the beam adjustment
optimization is carried out for each seed point. After the
optimization, each point is judged. If there is no depth value
in the field and the confidence of the current pixel is higher
than a specific range of the field pixel, its field pixel is added
to the queue as a seed point. Finally, a complete dense 3D
point cloud model was obtained by fusing all point cloud
data [18]. CMVS (Cluster Multi-View-Stereo) -patch-based
method PMVS (Patch Multi-View-Stereo) is a point cloud
diffusion-based method. Firstly, the CMVS algorithm is used
to group camera views into multiple groups. Each group
contains camera views with overlapping regions. The goal is
to decompose large-scale multi-view scenarios into smaller
subproblems to reduce computational complexity and mem-
ory requirements. Subsequently, the PMVS algorithm was
used for each group. The local patch information in the image
was used to calculate the depth relationship between the
patches through feature matching and geometric consistency
verification. The local dense point cloud was generated [19].

C. SURFACE MODELING
The basic principle of surface modelling is to approximate
and reconstruct continuous geometric surfaces through math-
ematical algorithms and numerical methods according to the
geometric relationship of discrete data points or grids [20].
Depending on the different forms and characteristics of the
data, a variety of surface modelling methods can be used,
including triangulation and implicit functions. Among them,

triangulation is based on the spatial distribution of discrete
data points, and a continuous triangular mesh is formed by
connecting the points into triangles. The implicit function
method uses the implicit function to represent the surface,
in which the zero value face of the function corresponds to the
surface, and the implicit function method can reconstruct the
surface through interpolation, statistical learning, and other
techniques [21].

III. METHODOLOGY
A. EXPERIMENTAL PROCEDURE
In our research, an image acquisition strategy combining
a ground-based handheld device with a UAV was used to
achieve a comprehensive 3D reconstruction of the study
object. Ground data were collected using an iPhone 8 with a
built-in Sony IMX315 CMOS sensor. The acquisition of each
image is strictly controlled at 1 meter from each other, and the
operator maintains the camera at a stable horizontal height
to reduce the potential impact of perspective differences on
the accuracy of the 3D model. Aerial image acquisition was
performed by a DJIM300 RTK drone equipped with a Chansi
P1 sensor. The sensor has a high resolution of 45 million
pixels and a large full-frame size of 35.9×24 mm, which sig-
nificantly improves the detail capture ability of aerial images.
To ensure adequate image data acquisition, the flight path of
the UAV is set by accurate pre-planning software, where the
heading overlap rate is set to 80% and the side overlap rate
is set to 55%. This high overlap rate configuration ensures
that sufficient image data is obtained from multiple angles to
support efficient matching and 3D processing of subsequent
images.

In the image processing stage, the SIFT algorithm [22]
automatically identifies matching feature points from multi-
view images. The algorithm extracts features based on local
interest points, which can extract local features invariant to
rotation, scale scaling, and brightness change from images.
In addition, these features exhibit a certain degree of stability
to viewpoint changes, affine transformations, and noise.

In the actual data acquisition process, the size of the objects
in the image may be different due to the camera distance,
shooting angle, and other factors. To deal with the different
scales of features that may be present in an image, such as
large and small objects, feature points need to be detected at
multiple scales. The Gaussian pyramid generates a series of
images of different scales by applying Gaussian blur to the
image layer by layer, which facilitates the detection of fea-
tures at various scales and ensures the scale invariance of the
detected feature points. The image scale space is represented
by L(x,y,σ ), as in Equation (1):

L (x, y, σ ) = G (x, y, σ ) ∗ I (x, y) (1)

where σ denotes the spatial scaling factor and represents the
degree of continuity of the image, its value is proportional to
the degree of continuity of the image function. Here, I(x,y)
denotes the input image. G(x,y,σ ) represents the Gaussian

VOLUME 12, 2024 93489



H. Ming et al.: Refined 3D Modeling of Complex Models Based on Stereo Vision

kernel, and the equation is given in (2):

G (x, y, σ ) =
1

2πσ 2 e
−
x2+y2

2σ2 (2)

Furthermore, all the extreme points in the image are calcu-
lated. This process needs to focus on the edges and corners of
the image, which are the locations where the important fea-
ture points often appear. The Difference of Gaussians (DoG)
operation [23] can effectively highlight edges and corners in
an image, and DoG is approximately Laplacian of Gaussian
(LoG). By detecting each pixel in the scale space of the DoG
and comparing it with 26 neighboring points, the algorithm
can effectively improve its accuracy. Thus, the detection of
extreme points is realized. This ensures that extreme values
are detected in both scale space and 3D space, simplifying
computations while preserving feature points. The calcula-
tion equation is as follows:

D (x, y, σ ) = [G (x, y, kσ) − G (x, y, σ )] ∗ I (x, y) (3)

where k is the scaling factor.
The feature points with strong edge response change

sharply on an edge but change less in the vertical direction,
which is not conducive to stable feature matching. If these
unstable feature points are retained, they will lead to an
increased probability of subsequent mismatching, inaccurate
positioning, and poor robustness of the model. Therefore,
it is necessary to eliminate such points to obtain more stable
feature points, and curve fitting of the DoG function in scale
space (Equation (4)) is needed.

trace (H)

Det (H)
<

(r + 1)2

r
, r = 10 (4)

where H is the Hessian matrix and r is the threshold parame-
ter.

In order to determine the position L(x,y,σ ) of a feature
point in scale space, a keypoint descriptor must be generated.
In addition, the magnitude direction m(x,y) and Angle θ (x,y)
of the influence caused by an area of radius 3×1.5σ centered
at the feature point need to be calculated to ensure rotation
invariance of the feature point:

m (x, y)

=

√
[L(x+1,y)−L(x−1,y)]2+[L(x, y+1)−L(x, y−1)]2

(5)

θ (x, y) = α· arctan
L (x, y+ 1) − L (x, y− 1)
L (x+1,y) − L (x−1,y)

(6)

Feature descriptors are extracted in the neighborhood of
keypoints for image matching. The descriptor captures the
texture information around the key points, which gives the
feature points strong discrimination ability and ensures that
they still have robust discrimination even in the presence of
illumination changes and perspective changes. A 16×16win-
dow is extracted centered on the main direction. The gradient
magnitude and gradient direction are calculated for each pixel
within the window. Subsequently, eight orientation gradient

FIGURE 1. Schematic diagram of the Epipolar geometry model.

histograms are generated for each 4 × 4 subwindow. Each
feature point consists of 16 seed points to form a keypoint.
Finally, 4×4×8=128 dimensional SIFT feature vectors were
generated. Through Euclidean distance calculation, all the
extracted feature points are matched exactly, as shown in
Equation (7):

dist (d1,d2) =

√∑128

i=1
(d1,i − d2,i)2 (7)

where dist (d1,d2) is the distance between descriptors d1 and
d2, and d1,i and d2,i represent the ith component of descrip-
tors d1 and d2, respectively. For each feature point descriptor,
find the two closest descriptors: the nearest neighbor d2,nearest
and the second nearest d2,secondnearest. The distance ratio
of the nearest neighbor and the second nearest neighbor
is calculated by equation (8), and the distance of the two
closest feature descriptors is compared to screen out reliable
matches.

dist
(
d1,d2,nearest

)
dist

(
d1,d2,secondnearest

) (8)

RANSAC [24] geometric verification is performed on the
feature points. Firstly, k sample points are randomly selected
from the sample set, and the current model parameters are
estimated according to the mathematical model of sample
mapping. The error threshold t is set, and the matching error
of all sample points is calculated according to the current
model estimate value. The sample points whose error is
less than the threshold t is judged as interior points. Other-
wise, they are exterior points, and the interior and interior
points under the current model estimate value are recorded.
Then, the maximum number of inner points is updated, and
the above steps are repeated until the number of iterations
exceeds M, or the maximum number of inner points exceeds
the specified threshold of the number of inner points, and
the loop is terminated. Finally, the model parameters were
re-estimated for the interior point set corresponding to the
most significant interior point, and the optimal model esti-
mation value was obtained.

The test object’s sparse point cloud is obtained by sparse
reconstruction using the results obtained after feature match-
ing and geometric verification. The Epipolar geometry model
is used to estimate the camera pose andmotion trajectory [25]
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(Figure 1). Assuming that π and π ’ are two images captured
by the camera, the point P in space is imaged in both captured
images, p and p’ are the projections of P on π and π ’,
respectively, and the camera optical center of the two images
are o and o’. Connecting the camera optical center o, o’, the
resulting concatenation is the baseline. Between the baseline
and the space point P forms the Epipolar plane, and the
Epipolar line l, l’ between the Epipolar plane and the image
plane of the image π , π ’ becomes the Epipolar line.
The homonym of a point P in 3D space that matches in two

images must fall on a certain pole line, so the search for the
correspondence between two images is narrowed from 2D to
1D under the pair of Epipolar constraint, making it much less
difficult.

To remove the bias in this process and optimize the estima-
tion of camera pose and 3D point cloud with higher accuracy
and precision, the Motion Recovery Structure (SFM) incor-
porates bundle adjustment (BA) for each image [26]. The
objective equation of BA is as follows.

min Pj,Mi

∑n

i

∑m

j
∥mij − f

(
pj,Mi

)
∥ (9)

where mij denotes the ith observation on the jth image of
an image point observation in the 2D phase plane, which
is associated with the camera matrix pj of the jth image,
pj =K[Rj | tj].

In order to improve the details and accuracy of the
3D model, the sparse point cloud is transformed into a
dense point cloud by the processing of CMVS-PMVS and
OpenMVS. The CMVS-PMVS algorithm [27] optimizes
the density and quality of point clouds by segmenting a
large-scale image set and applying stereo-matching tech-
niques in each subset. The algorithm generates dense point
clouds using a point cloud diffusion method without using
depth maps. In contrast, COLMAP and OpenMVS obtain
high-resolution dense point clouds by finding photometric
consistency depth map estimation algorithm [28] to generate
depth maps based on disparity information.

The dense point cloud is finely meshed using the Poisson
reconstruction method and Delaunay triangulation. Poisson
modelling [29] uses the normal vector information in the
point cloud to construct the Poisson equation and then solves
the equation to obtain the 3D surface. The gradient field is
defined for the normal vector corresponding to each input
point cloud pi as follows.

V (x) =

∑
i

δ (x−pi)ni (10)

where V(x) is the gradient field at position x; δ (x−pi) is the
Dirac delta function, which means that it has infinite value at
point pi and zero elsewhere.

The smooth implicit function f (as shown in Equation (11))
is reconstructed from the gradient field V(x), and by solving
this Poisson equation, the implicit function f can be obtained,
whose zero isosurface is the reconstructed surface.

∇ · V =∇
2f (11)

where ∇·V is the divergence of the gradient field V; ∇
2f

f is the Laplacian of the implicit function f. This method
generates a smooth 3D surface model from discrete point
cloud data.

The Delaunay criterion requires that any triangle in the
triangulation’s circumcircle not contain points from other
point clouds. Therefore, Delaunay triangulation [30] ensures
the mathematical optimality and geometric consistency of the
mesh. Finally, the parameters of 3D models generated by
different reconstruction techniques are compared to evaluate
the effect and applicability of each method.

The methodology and workflow diagram of this study
(Figure 2) details the whole process from data collection to
final model generation, showing the technical implementa-
tion and achievement presentation of each stage.

B. DATASET AND MAJOR ASSESSMENT INDEX
1) THE ETH3D DATASET
The ETH3D dataset [31] is a dataset containing image
sequences of multiple scenes and 3D reconstruction results
associated with them. These image sequences were acquired
in different environments, including scenes such as indoor,
outdoor, and urban streets. The dataset provides 3D recon-
struction results such as camera pose estimation, dense point
clouds and surface meshes for each scene. The evaluation
tools and metrics that come with the ETH3D dataset are
used to evaluate and compare the performance of different
3D reconstruction algorithms, which can help researchers
in accurate performance evaluation and facilitate algorithm
comparison and analysis.

2) THE MAJOR ASSESSMENT INDEX
(1) RMSE [32] is the root mean square error, which measures
the difference between the predicted value and the actual
value of the data, and is calculated as follows:

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
(12)

where ŷi is the predicted value; yi is the observed value; n is
the number of observations.

(2) Mean track length [33] is an evaluation metric used
in object tracking or trajectory prediction tasks to measure
the difference between the predicted trajectory and the actual
trajectory. It calculates the average distance between the pre-
dicted trajectory point and the actual trajectory point at each
time step.

The location data of the device or camera is collected
during the scanning process. This usually involves the spatial
coordinates (x, y, z) of each point in the time series and
computing the distance di between neighboring points:

di =

√
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2 (13)
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FIGURE 2. Flow chart of the complete work.

Then combining them to calculate the average:

MTL =

∑n−1
i=1 di
n− 1

(14)

where n is the number of time steps, and di is the distance
between the predicted trajectory point and the true trajectory
point at the ith time step.

(3) The reprojection error [30] is the distance between the
position of the 3D point projected onto the image plane and
the actual observed position. A smaller reprojection error
indicates a higher accuracy of 3D reconstruction.

MRE =

(
1
N

)
⋆ 6

∣∣∣∣xi − x ′
i
∣∣∣∣ (15)

where N is the total number of 3D points; xi is the actual
observed pixel coordinate of the ith point; x ′

i is the repro-
jected pixel coordinate of the ith point. ||.|| is Euclidean
distance (modular length).

(4) SSIM (Structural Similarity Index) [34] is a metric
used to measure the similarity between two images. It is
a measure based on visual perception used to compare the
similarity of two images. It takes into account three aspects:
brightness, contrast, and structure alterations, which are key
factors affecting human visual perception. In 3D modelling,
SSIM comparison between the model image generated by
rendering and the actual image (or a high-quality reference
image) can provide a visual assessment of the accuracy of the
model. SSIM values range from [0, 1] in real cases, where
closer to 1 indicates that the model is highly similar to the
original image. SSIM is calculated as follows:

SSIM (x, y) =

(
2µxµy + C1

µ2
x + µ2

y + C1

)
·

(
2σxy + C2

σ 2
x + σ 2

y + C2

)

·

(
σxy + C3

σxσy + C3

)
(16)

Among them: µx and µy are the average values of the images
x and y, respectively. σx and σy are the standard deviations of
the images x and y, respectively. σxy is the covariance between
images x and y.

(5) The F1 score [35] is the harmonic mean of accuracy
and completeness, and a higher score indicates a better perfor-
mance of the algorithm. The F1 score is calculated as follows:

F1 = 2 ·
Precision · Recall
Precision+ Recall

) (17)

where precision is the precision and Recall is the recall ratio.
(6) Mean distance from mesh to point cloud [36] measures

how accurately the reconstructed grid covers the actual point
cloud data. For each point Pi in the point cloud, the distance
to its closest point on the grid is calculated. If Q is a set of
points on a grid, then for each point Pi in the point cloud P,
the distance from the grid d(pi,Q) is calculated as follows.

d (pi,Q) = min
q∈Q

∥ pi − q ∥ (18)

Themean distance from the point cloud to themesh is defined
as follows.

AverageAccuracy =
1

|P|

∑
pi∈P

d (pi,Q) (19)

where|P| is the number of points in the point cloud.
(7) Mean distance from point cloud to mesh [37] measures

the coverage degree of the original point cloud data in the
reconstructed model, that is, the completeness. That is the
average of the distance from each point in the original point
cloud to the closest point in the point cloud is transformed by
the reconstructed model.

For each point qj in the point cloud, the distance to its
closest point on the grid is calculated. If Q is a set of points on
a grid, then for each point qj in the point cloud P, the distance
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FIGURE 3. Part of the image data.

from the grid d(qj,P) is calculated as follows.

d
(
qj,P

)
= min

pi∈P
∥ qj − pi ∥ (20)

Themean distance from themesh to the point cloud is defined
as follows.

Average Completeness =
1

|Q|

∑
qj∈Q

d
(
qj,P

)
(21)

where |Q|is the number of points on the mesh.
The average distance from the point cloud to the grid and

the average distance from the grid to the point cloud can be
obtained from Equations (19) and (20), and the accuracy and
completeness of the model can be calculated, as shown in
Equations (22) and (23). In this paper, the maximum distance
is 0.5m.

Accuracy%

=

(
1 −

Average distance from mesh to point − cloud
Max distance in dataset

)
× 100 (22)

Completeness% =(
1 −

Average distance from point − cloud to mesh
↓ Max distance in dataset

)
× 100 (23)

C. PROPOSED METHOD
In this paper, we propose a 3D reconstruction method
that combines the technologies of COLMAP and Open-
MVS, effectively addressing the limitations of traditional
reconstruction methods in maintaining model topological

FIGURE 4. Image of Gaussian pyramid.

FIGURE 5. Image of Laplacian pyramid.

consistency. This method meticulously leverages the effi-
cient capabilities of COLMAP in feature extraction and
matching, which accurately identifies and matches com-
plex features from multiple viewpoints, thereby providing
a solid data foundation for subsequent 3D reconstruction.
Simultaneously, by incorporating OpenMVS’s optimized
multi-view stereo reconstruction technology, our approach
further enhances the process from dense point clouds to fine
meshing, particularly in automatically filling and smoothing
common holes and discontinuities in point cloud data, greatly
improving the model’s integrity and reliability. Moreover,
this integration of technologies ensures a more efficient and
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FIGURE 6. The main direction for the feature points.

coherent data flow throughout the reconstruction process,
optimizes resource allocation, reduces computation time, and
significantly enhances the final model’s quality and practical-
ity. The complete process is shown in Figure 2.

IV. RESULTS
A. DATA ACQUISITION
We selected a natural stone block as the subject of our case
study. The block has an approximate area of 18m2. To capture
detailed image data of the object, we used a mobile phone
for surround photography within the study area. For the top
area, a UAV was employed. The mobile phone used in the
study is equipped with a Sony IMX315 12.2M 1/2.93 1.22um
stacked CMOS camera sensor. The UAV, on the other hand,
is equipped with a Zenith P1 sensor, which has a sensor size
of 35.9 × 24 mm and 45 megapixels of effective pixels.
To ensure comprehensive coverage, we set the heading over-
lap rate to 80% and the side overlap rate to 55%. Some of the
acquired images are depicted in Figure 3.

B. 3D RECONSTRUCTION
1) FEATURE EXTRACTION AND MATCHING
Gaussian pyramid scale Spaces of different scales are
obtained by Gaussian blurring through the Gaussian pyramid,
as shown in Figure. 4.

To extract features, the DoG (difference of Gaussian) oper-
ation is performed to highlight features at essential positions
such as edges and corners of the image data, as shown in
Figure 5.

Calculating the gradient direction and amplitude deter-
mines the main direction of the key point, so the descriptor is
consistent in the case of rotation. Figure 6. shows a schematic
diagram of the main directions of random feature points.

The neighborhood of each keypoint, it is divided into 4 ×

4 grids, and the gradient histograms of 8 directions are com-
puted for each grid to form a feature vector of 4× 4×8=128

FIGURE 7. The main direction for the feature points.

FIGURE 8. 1) Number of images processed; 2) number of point clouds; 3)
RMSE error; 4) Average reprojection error; 5) average track length; 6)
Total time (min).

FIGURE 9. 1)The depth map generated by COLMAP; 2) The depth map
generated by OpenMVG+OpenMVS.

dimensions. Figure 7 shows the diagram of the feature vector
of the keypoint descriptor.

2) SPARSE RECONSTRUCTION
In the process of sparse reconstruction, there are several
factors that can affect the results. These factors include: 1)
The reverse projection of 3D spatial points can introduce bias
to the matching reconstruction. 2) External conditions, such
as the inaccuracy of measuring instruments or human factors,
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FIGURE 10. 1)Dense point cloud scene generated by CMVS-PMVS; 2) Dense point cloud scene generated by COLMAP; 3)Dense point
cloud scene generated by OpenMVG+OpenMVS.

can lead to biased measurement results. 3) The number of
observations is often greater than the minimum required for
determining quality, resulting in redundant observations and
variations among them. After the adjustment optimization of
the beam method, the point cloud was triangulated. Finally,
the iterative global adjustment optimization of the beam
method was carried out to optimize the pose of the existing
camera and the 3D sparse point cloud coordinates. See Fig-
ures 8 for sparse reconstruction parameters for COLMAP and
OpenMVG.

In Figure 8, sparse point cloud refers to the number of 3D
points obtained by feature matching and initial triangulation,
which reflects the number of feature points identified in the
preliminary reconstruction. A higher number means more
features are captured. The number of point clouds generated
by COLMAP is 28,235, far less than the 46,746 generated
by OpenMVG. The mean reprojection error of COLMAP in
the SFM stage is 1.1441, which is significantly better than
3.9760 of OpenMVG. The mean track length of COLMAP
is 4.87487, which is much higher than that of OpenMVG of
2.0000. The RMSE of COLMAP is 0.79, while OpenMVG
is 0.90, which means that the reconstruction result of the
latter is very different from the actual data. In terms of time,
COLMAP takes much less time than OpenMVG in the SFM
process due to its powerful global optimization framework
and GPU acceleration of key steps.

3) DENSE RECONSTRUCTION
Depth maps of COLMAP and OpenMVS were generated
respectively on the basis of two coefficient point cloud data
(Figure 9).
However, CMVS-PMVS generated dense point clouds by

point cloud diffusion, so there is no depth map. COLMAP
and OpenMVG+OpenMVS visualized the estimated depth
map of each image in the MVS stage Figure 9 (1) demon-
strates that COLMAP generates a more complete depth
map with fewer noise, holes, and better continuity. This
method also produces accurate depth estimates. On the other
hand, Figure 9 (2) shows a depth map with more noise
and poor edge continuity. This can be attributed to the fact
that OpenMVS outputs redundant dense point clouds, which

FIGURE 11. Point cloud density as well as noise level plot.

increases the noise in the depth map. The various meth-
ods for densely reconstructing the scenario are depicted in
Figure 10. A careful examination of Figure 10 reveals that
the CMVS-PMVS algorithm results in numerous gaps in the
weakly textured region located at the top of the object under
study. These gaps occur due to the algorithm’s tendency to
halt expansionwhen encountering points with low confidence
intervals in weakly and repetitively textured regions. In con-
trast, both COLMAP and OpenMVG + OpenMVS exhibit
higher scene completeness, particularly in weakly textured
areas. Although the dense point cloud scene generated by
OpenMVG+OpenMVS contains more redundant points, the
most comprehensive 3D point cloud scene can be obtained by
manually eliminating the surrounding clutter.

The point cloud density is obtained by counting the number
of point clouds in a unit volume using the total number of
point clouds. At the same time, the noise level is calculated
by the distance of the point to a reference surface or fitted
model. Figure 11 illustrates the point cloud density as well as
the noise level for generating dense point clouds in different
ways. The point cloud density of CMVS-PMVS is 697.7234,
which is the lowest density among the three, indicating the
worst point cloud coverage. This is because the algorithm
splits the original image set into smaller subsets during the
clustering process. While this reduces the number of images
that need to be processed for a single PMVS instance, it also
limits the number of viewpoints that can be used for recon-
struction. Reducing the number of viewpoints may lead to
insufficient coverage of some spatial regions, which affects
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FIGURE 12. Mesh models of different method.

the density of the point cloud. Second, clustering can handle
images that are spatially adjacent but assigned to different
groups. This segmentation may lead to loss of information
in areas close to the group boundary due to lack of sufficient
view overlap during the reconstruction process, which in turn
affects the continuity and density of the point cloud.

Although the data sparsity strategy adopted by CMVS-
PMVS can significantly improve processing speed and
reduce resource requirements, the feature matching process
of this strategy is carried out independently within each
cluster and may not utilize global information across groups.
This localized approach may miss important global features,
especially those that span multiple clustering regions. This
will not only affect the point cloud density but also reduce
the matching quality and increase the error in the recon-
struction process. Therefore, its generated point cloud has a
low density. Although the density is low, the noise level is

0.0049, which indicates that the generated point cloud is of
high quality and less error.

3D reconstruction using COLMAP yielded a good point
cloud density (3443.0) and a low noise level (0.0049). That
is, COLMAP can accurately match the corresponding pixels
in the image, which not only increases the density of the
reconstructed point cloud but also ensures low error and low
noise. Even in the dense reconstruction phase, COLMAP uses
beam adjustment to optimize the overall model and reduce
errors to achieve high-quality reconstruction results.

SinceOpenMVGmainly focuses on how to extract features
from the image to the greatest extent in the SFM stage.
Although this can better generate a very dense point cloud,
this strategy will lead to the extraction of more low-quality
feature points, which will affect the subsequent OpenMVS
input feature matching errors in the MVS process. These
errors will be amplified in the depth map generation process,
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TABLE 1. Table of parameters for Poisson modelling.

FIGURE 13. F1 score on the ETH3D high-resolution test set.

resulting in a much higher noise level than the previous two
methods.

4) SURFACE MODELING
Figure 12 (1) and (2) illustrate the 3D models generated
by COLMAP and CMVS-PMVS Poisson Surface Recon-
struction, respectively. The stone surface model produced
through the Poisson surface reconstruction method exhibits a
precise fit to the model surface, resulting in a smooth recon-
structed surfacewith amore uniform distribution of triangular
mesh elements. According to Table1, the Poisson modelling
approach generates a lower number of vertices and meshes,
whichmay potentially affect the quality of subsequent texture
mapping.

Figure 12 (3) shows the 3D model generated by COLMAP
using Delaunay triangulation. Both Delaunay triangulation
and Poisson modelling can approximate the original point
cloud data and generate the whole stone mesh model. How-
ever, the details can be observed, and the mesh reconstructed

by Delaunay triangulation is not evenly distributed in the
weak texture area. Figure 12 (4) and Figure 12 (5) show the
3D models generated by OpenMVS using Delaunay trian-
gulation in the dense point clouds generated by COLMAP
and OpenMVG, respectively. Given that OpenMVS has the
surface refinement function to re-optimize the established
surface mesh, Therefore, it can better avoid the phenomenon
of over-fitting caused by Delaunay triangulation. This func-
tion iteratively adjusts the position of the point cloud and the
topology of the triangular mesh to improve the consistency
between the point cloud and the reconstructed mesh, gener-
ating more accurate and continuous results. Figure 12 shows
that whether based on COLMAP or OpenMVG, the 3D mesh
optimized by OpenMVS is smoother and more detailed and
makes great improvement in weak texture regions. The tex-
ture mapping of all white 3Dmodels was completed to obtain
the final 3D model results, and the 3D modelling parameters
of the test object between different algorithms were obtained
(Table 1). COLMAP and COLMAP+CMVS-PMVS do not
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FIGURE 14. SSIM values of 3D modelling in natural scenes by different
methods.

perform vertex and mesh optimization operations, and the
data remains unchanged after optimization. The accuracy of
the 3D model completed by the COLMAP method is 80.6%,
which indicates that the geometry of the 3D model recon-
structed by the COLMAP method is close to the geometry
of the test object. The completeness is 83.0%, and indicating
that there are many points in the point cloud that are poorly
aligned with the mesh surface, which is caused by overly
simplified or coarse meshes and perform the worst among all
methods. Although the CMVS-PMVS algorithm can reduce
the amount of computation through clustering, making it
more efficient to deal with large amounts of data, the view
data in this study only has 73 images, and the clustered model
cannot accurately match most of the details of the original
data. COLMAP+OpenMVS increases the number of vertices
andmeshes after optimization, indicating that the point cloud,
vertices, and meshes obtained by COLMAP in the early stage
of this method have high accuracy, and there is no need to
delete redundant vertices and meshes. OpenMVS generates
a large number of dense point clouds during MVS, so the
OpenMVG+OpenMVS method generates a large number of
vertices and meshes, but OpenMVS clears 87.70% of vertices
and 88.37% of meshes during mesh optimization.

It indicates that the point cloud initially generated by
the method is very dense and contains a large number of
repeated or approximately overlapping vertices. These ver-
tices contribute little to the visual quality of the final model
but also significantly increase the processing complexity and
resource consumption. At the same time, in the process of
mesh generation, in order to avoid affecting the final accuracy
and aesthetics of the model, a large number of low-quality
vertices and meshes are deleted. That is, the efficiency of
this method is extremely low. In terms of accuracy and com-
pleteness, COLMAP+OpenMVS achieves 97.6% accuracy
and 99.8% completeness, which indicates that there is a
good correspondence between the point cloud and the mesh,
and the mesh generated by this method is of high quality.
However, OpenMVG+OpenMVS performs slightly worse
than COLMAP+OpenMVS but significantly better than

FIGURE 15. Topological Consistency Score of 3D modelling in natural
scenes by different methods.

COLMAP+CMVS-PMVS. In terms of speed, COLMAP
implements parallel processing and makes efficient use of
computing resources. In terms of accuracy, COLMAP has
higher accuracy and robustness than OpenMVG. Unlike
OpenMVG’s exhaustive method, which compares all pos-
sible pairs of feature points based only on their similarity,
COLMAP also considers geometric relationships between
feature points, which leads to mismatching in repetitive or
low-texture regions. Although the number of sparse point
cloud generated by OpenMVG is larger, any small error will
be amplified in the subsequent dense reconstruction process
of OpenMVS. The research by Tang et al. [10] indicates
that the OpenMVG+OpenMVS approach, while achieving
good dense reconstruction accuracy, suffers from algorithmic
instability, warranting further optimization. Wang et al.’s [37]
study reveals that in the field of medical image 3D recon-
struction, COLMAP outperforms in the sparse reconstruction
stage, while OpenMVS excels in the MVS stage. Our exper-
imental results align with these findings, further confirming
the advantages of the COLMAP+OpenMVS combination.

V. CONCLUSION AND FORESIGHT
A. ETH3D BENCHMARK DATASET EVALUATION
The ETH3D dataset is a dataset containing image sequences
of multiple scenes and 3D reconstruction results associated
with them. These image sequences were acquired in different
environments, including scenes such as indoor, outdoor, and
urban streets. The dataset provides 3D reconstruction results
such as camera pose estimation, dense point clouds and sur-
face meshes for each scene. The evaluation tools and metrics
that come with the ETH3D dataset are used to evaluate and
compare the performance of different 3D reconstruction algo-
rithms, which can help researchers in accurate performance
evaluation and facilitate algorithm comparison and analysis.

Figure 12 illustrates the F1 scores calculated by COLMAP,
CMVS-PMVS, and OpenMVS with a threshold of 2cm and
5cm, respectively, in the test dataset. It can be seen from
Figures 12 (1) and 12 (2) that under the threshold of 2cm and
5cm, OpenMVS has the highest score in different scenarios,
followed by COLMAP, but the gap with OpenMVS is not
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obvious. However, CMVS-PMVS has the lowest score for
each scenario among the three. This is because CMVS-PMVS
lacks effective point cloud data in weak texture regions and
stops point cloud diffusion, so it is less flexible, which makes
it unable to fit complex scenes well.

B. NATURAL SCENARIO DATA EVALUATION
In this study, all models were compared with the original
image data under the same fixed viewing angle, and the
highest SSIM value was calculated. As shown in Figure 13,
the SSIM values of 3D models generated by all methods are
slightly lower than the original image data. This is because
this method requires strict control of the model viewing angle
to be consistent with the image data, even with advanced
algorithms and accurate data processing, due to the diversity
of viewpoints captured by the original images and the inher-
ent limitations of model rendering. These minor differences
in viewpoint and detail can affect the structural similarity
of the image, resulting in lower SSIM scores. Therefore,
when evaluating 3Dmodels, it is important to understand and
acknowledge that SSIM values may be lower than expected
due to viewpoint consistency issues. However, the results
demonstrate that even with such inherent limitations, the
3D model generated by OpenMVG+OpenMVS is still the
closest to the actual test object.

As previously mentioned, SSIM has limitations in eval-
uating the quality of 3D models, particularly in capturing
geometric and topological features. Therefore, this paper
introduces topological consistency as an alternative metric to
assess 3D model quality more comprehensively. This study
calculates a topological consistency score by normalizing
the number of holes, connected components, and bound-
ary edges. A score closer to 1 indicates better topological
consistency of the model. Figure 14 illustrates the vary-
ing topological consistency scores among the four different
methods. COLMAP+CMVS-PMVS has the lowest score
(0.4586), suggesting it is prone to generating more topo-
logical defects when processing 3D models, possibly due to
its limitations in handling multi-view geometric information.
COLMAP achieves a higher score (0.9646), demonstrating
better topological consistency. Methods incorporating Open-
MVS perform even better: OpenMVG+OpenMVS achieves
a near-perfect score (0.9989), while COLMAP+OpenMVS
has the highest score (0.9991). This indicates that com-
bining the efficient computation of COLMAP with the
high-precision reconstruction of OpenMVS significantly
improves the topological quality of the model.

We employ different software combinations for 3D recon-
struction and compare their performance in the SFM and
MVS phases. The analysis results show that in the SFM stage,
the number of sparse point clouds generated by OpenMVG
is 46,746, which is 1.66 times that of 28,235 generated
by COLMAP. Although OpenMVG captured features from
more subjects at this stage, its processing pipeline was more
complex, resulting in a significant increase in total pro-
cessing time of 43.57 minutes compared to 11.25 minutes

for COLMAP. In addition, the average reprojection error
of COLMAP in the SFM stage is 1.1441, which is sig-
nificantly better than that of OpenMVG+OpenMVS of
3.9760, indicating its obvious advantage in reconstruc-
tion accuracy. Meanwhile, the average track length of
COLMAP is 4.87487, which is much higher than that
of OpenMVG+OpenMVS(2.000). The experimental results
show that COLMAP has excellent advantages in capturing
more view information, which is conducive to generating 3D
models with high integrity.

In the MVS stage, the number of dense point clouds gen-
erated by OpenMVS reaches 14,514,039, which is 6.2 times
that generated by COLMAP. Although the number is enor-
mous, it also leads to the generation of much noise,
which increases the subsequent computation time and mem-
ory requirements. In contrast, CMVS-PMVS generated the
least number of dense point clouds with 1519,825 points.
Although the processing efficiency is improved, the model
details still need to be included. The 3D model obtained
by COLMAP+CMVS-PMVS is rough and cannot meet
the requirements of high-precision modelling. Although
COLMAP performs well in point cloud generation alone, the
final generated 3D model performs mediocre in visualization
due to insufficient texture computation.

In contrast, OpenMVS generated 3D models performed
the best and were able to more accurately reflect the
structure of real objects. COLMAP+OpenMVS method
has the highest accuracy, completeness, SSIM value and
topological consistency, indicating that the reconstructed
model generated by this method has the highest simi-
larity with the reference image, and retains more image
details and structural information. Secondly, although the
accuracy, completeness, SSIM value and topological con-
sistency of the OpenMVG+OpenMVS method are slightly
lower than those of the COLMAP+OpenMVS method, the
OpenMVG+OpenMVS method still shows high similarity,
indicating that the reconstructed model generated by this
method has better performance in quality. The topological
consistency values of the COLMAP method are relatively
close to those of the previous two methods. The complete-
ness, accuracy, SSIM value and topological consistency value
of COLMAP+CMVS-PMVS method are the lowest, which
indicates that the reconstructed model generated by this
method has the lowest similarity with the reference image,
and the structure preservation effect is the worst. Compared
with OpenMVG+OpenMVS, the combination of COLMAP
and OpenMVS improves the reconstruction accuracy by 2%
and the completeness by 2.6%.

In summary, COLMAP+OpenMVS can obtain a dense
and fine 3D point cloud in 88.32 minutes, maintain a low
reprojection error and a long average track length, and gener-
ate a high-precision, detailed, and realistic 3D model.

C. SUMMARY AND FORESIGHT
Based on the existing 3D reconstruction technology, this
paper proposes an improved reconstruction method by
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combining the application of UAV andmobile phones for data
acquisition and using COLMAP and OpenMVG algorithms
for image processing. This approach not only optimizes the
flexibility of data acquisition but also significantly improves
efficiency and accuracy through an automated reconstruction
process. On resource-constrained devices, such as smart-
phones or low-power drones, which often struggle to handle
complex data processing tasks, this study shows its supe-
riority. In addition, through multi-sensor fusion and deep
learning-based stereo visionmethods, the proposed technique
can effectively reconstruct scenes with poor texture or highly
repetitive scenes, alleviating the limitations of traditional
methods in these scenes. Future work will continue to study
improving the efficiency of the algorithm, enhancing the gen-
eralization ability and robustness, to adapt to more kinds of
practical application scenarios, especially those applications
with high requirements for real-time processing and high-
precision models. At the same time, the multi-view stereo
vision method based on deep learning has achieved good
results in 3D reconstruction. Multi-sensor fusion and deep
learning methods will carry out subsequent research work
based on this paper, trying to solve the practical applica-
tion problem of a 3D reconstruction algorithm based on
multi-view photos in real scenes.

Nonetheless, current approaches still face challenges of
scalability and computational complexity when dealing with
large-scale or highly dynamic scenarios. Especially on
resource-constrained devices, efficient data processing and
algorithm optimization are particularly critical. In addition,
scenes with poor texture or high repetition are still difficult to
handle and may lead to poor reconstruction quality. Future
research is needed to explore new sensor technologies or
new ways to mix existing technologies while ensuring the
efficiency and accuracy of the algorithm. In addition, the
generalization ability and robustness of the algorithm are also
the focus of future research, expecting to achieve accurate and
reliable 3D reconstruction in different environments and on
different devices.

REFERENCES
[1] Y. Hou, J. Song, and L. Wang, ‘‘P-2.27: Application of 3D reconstruction

technology in VR industry,’’ in SID Symp. Dig. Tech. Papers, vol. 54, 2023,
pp. 588–590, doi: 10.1002/sdtp.16227.

[2] N. Tanabi, A. M. Silva, M. A. O. Pessoa, and M. S. G. Tsuzuki, ‘‘Robust
algorithm software for NACA 4-Digit airfoil shape optimization using
the adjoint method,’’ Appl. Sci., vol. 13, no. 7, p. 4269, Mar. 2023, doi:
10.3390/app13074269.

[3] D. Li, B. Zhang, Q. Wu, Q. She, and C. Zhong, ‘‘A lightweight
semantic map construction method for robot target search,’’
in Proc. 34th China Conf. Control Decision Making, 2022,
pp. 73–77.

[4] C. P. Bachiller and E. Upegui, ‘‘Low cost 3D reconstruction of cave
paintings for the conservation of Colombian historical memory: Case study
indigenous rock art of the sacred place ‘Piedras de Tunjo,’’’ Int. Arch.
Photogramm., Remote Sens. Spatial Inf. Sci., vol. XLVIII-2/W1-2022,
pp. 251–256, Dec. 2022.

[5] L. Liu, H. Cai, M. Tian, D. Liu, Y. Cheng, and W. Yin, ‘‘Research on 3D
reconstruction technology based on laser measurement,’’ J. Brazilian Soc.
Mech. Sci. Eng., vol. 45, no. 6, 2023, Art. no. 297, doi: 10.1007/s40430-
023-04231-9.

[6] C.-S. Yang, Q. Zhang, Q. Xu, C.-Y. Zhao, J.-B. Peng, and L.-Y. Ji, ‘‘Com-
plex deformation monitoring over the Linfen–Yuncheng basin (China)
with time series InSAR technology,’’ Remote Sens., vol. 8, no. 4, p. 284,
Mar. 2016, doi: 10.3390/rs8040284.

[7] X. Liu, P. Ren, X. Sun, C. Xu, and Q. Zhou, ‘‘Review of 3D digitization
methods for ancient Chinese architecture,’’ J. Shanxi Univ., Natural Sci.
Ed., no. 3, pp. 592–603, 2023, doi: 10.13451/j.sxu.ns.2022112.

[8] B. Yu, G. Chen, M. Duan, F. Cao, and X. Zhang, ‘‘Application of
UAV remote sensing in 3D reconstruction of large immovable cultural
relics,’’ Surveying Mapping Bull., no. 5, pp. 43–46 and 61, 2017, doi:
10.13474/j.cnki.11-2246.2017.0151.

[9] S. Jiang, ‘‘Study on key technologies for efficient SfM reconstruction from
UAV oblique imagery,’’ Ph.D. dissertation, Dept. Remote Sens. Inf. Eng.,
Wuhan Univ., Wuhan, China, 2018.

[10] N. Tang, J. Yu, H. Xu, Z. Liang, and P. Rui, ‘‘Comparison of point cloud
model reconstruction techniques based on image matching,’’ Eng. Invest.,
vol. 49, no. 6, pp. 62–67, 2021.

[11] S. Wang, H. Yu, Y. Xi, C. Gong, W. Wu, and F. Liu, ‘‘Spectral-
image decomposition with energy-fusion sensing for spectral CT recon-
struction,’’ IEEE Trans. Instrum. Meas., vol. 70, pp. 1–11, 2021, doi:
10.1109/TIM.2021.3078555.

[12] Y. Wang, J. Ren, A. Cai, S. Wang, N. Liang, L. Li, and B. Yan,
‘‘Hybrid-domain integrative transformer iterative network for spectral CT
imaging,’’ IEEE Trans. Med. Imag., vol. 73, 2024, Art. no. 4504513, doi:
10.1109/TIM.2024.3379388.

[13] Q.-V. Dang and G.-S. Lee, ‘‘Utilizing 3D information from point
clouds to support document image binarization,’’ EasyChair, 2022.
Accessed: Mar. 18, 2024. [Online]. Available: https://easychair.org/
publications/preprint/9141

[14] E. H. H. Siong, M. F. M. Ariff, and A. F. Razali, ‘‘The application of smart-
phone based structure from motion (SFM) photogrammetry in ground
volume measurement,’’ Int. Arch. Photogramm., Remote Sens. Spatial Inf.
Sci., vol. XLVIII-4, pp. 145–152, Feb. 2023.

[15] R. Zhang, X. Yi, H. Li, L. Liu, G. Lu, Y. Chen, and X. Guo, ‘‘Mul-
tiresolution patch-based dense reconstruction integratingmultiview images
and laser point cloud,’’ Int. Arch. Photogramm., Remote Sens. Spatial Inf.
Sci., vol. XLIII-B2-2022, pp. 153–159, 2022, doi: 10.5194/isprs-archives-
XLIII-B2-2022-153-2022.

[16] J. Liao, ‘‘Research on high-precision 3D reconstruction of complex scenes
based onmulti-view photography,’’ Ph.D. dissertation, Dept. Remote Sens.
Inf. Eng., Wuhan Univ., Wuhan, China, 2021.

[17] H. Liu, ‘‘Research on 3D reconstruction technology using feature pyramid
networks,’’ M.S. thesis, Dept. Inf. Sci. Eng., Yunnan Univ., Kunming,
China, 2022.

[18] X. Meng, ‘‘3D modeling of buildings with feature preservation based on
enhanced 3D point cloud models,’’ Ph.D. dissertation, Dept. Geogr. Sci.,
Nanjing Normal Univ., Nanjing, China, 2021.

[19] Q. Kong, L. He, L. Yuan, and B. Liu, ‘‘Improved PMVS three-dimensional
reconstruction point cloud filtering algorithm,’’ Comput. Appl. Softw.,
no. 4, pp. 215–219 and 270, 2021.

[20] X. Sun, ‘‘Research on surface reconstruction algorithms for large-scale
scene point clouds,’’ M.S. thesis, Dept. Inf. Sci. Eng., Northeastern Univ.,
Shenyang, China, 2019.

[21] J. Lang, ‘‘Research on variable-scale 3D modeling technology based
on point clouds,’’ M.S. thesis, Dept. Educ. Sci., Nanjing Normal Univ.,
Nanjing, China, 2021.

[22] A. Xu, Y. Hua, C. Xia, and S. Chen, ‘‘An improved feature point matching
algorithm based on SIFT,’’ Software, vol. 43, no. 9, pp. 83–86 and 119,
2022.

[23] X. Liu, X. Zhao, Z. Xia, Q. Feng, P. Yu, and J. Weng, ‘‘Secure out-
sourced SIFT: Accurate and efficient privacy-preserving image SIFT
feature extraction,’’ IEEE Trans. Image Process., pp. 4635–4648, 2023,
doi: 10.1109/TIP.2023.3295741.

[24] M. Wang and W. Liu, ‘‘Stereo image matching algorithm based on
improved SIFT features,’’ Comput. Eng. Appl., vol. 49, pp. 203–206, 2013.

[25] B. Alsadik and N. A. Abdulateef, ‘‘Epipolar geometry between pho-
togrammetry and computer vision—A computational guide,’’ ISPRS Ann.
Photogramm., Remote Sens. Spatial Inf. Sci., vol. V-5-2022, pp. 25–32,
May 2022.

[26] Y. He and J. Yue, ‘‘Research and implementation of CMVS/PMVS
multi-view dense matching method,’’ Surveying Mapping Geograph. Inf.,
vol. 38, pp. 20–23, 2013, doi: 10.14188/j.2095-6045.2013.03.004.

[27] V. Sebestyén, M. Bulla, Á. Rédey, and J. Abonyi, ‘‘Data-driven multilayer
complex networks of sustainable development goals,’’ Data Brief, vol. 25,
Aug. 2019, Art. no. 104049, doi: 10.1016/j.dib.2019.104049.

93500 VOLUME 12, 2024

http://dx.doi.org/10.1002/sdtp.16227
http://dx.doi.org/10.3390/app13074269
http://dx.doi.org/10.1007/s40430-023-04231-9
http://dx.doi.org/10.1007/s40430-023-04231-9
http://dx.doi.org/10.3390/rs8040284
http://dx.doi.org/10.13451/j.sxu.ns.2022112
http://dx.doi.org/10.13474/j.cnki.11-2246.2017.0151
http://dx.doi.org/10.1109/TIM.2021.3078555
http://dx.doi.org/10.1109/TIM.2024.3379388
http://dx.doi.org/10.5194/isprs-archives-XLIII-B2-2022-153-2022
http://dx.doi.org/10.5194/isprs-archives-XLIII-B2-2022-153-2022
http://dx.doi.org/10.1109/TIP.2023.3295741
http://dx.doi.org/10.14188/j.2095-6045.2013.03.004
http://dx.doi.org/10.1016/j.dib.2019.104049


H. Ming et al.: Refined 3D Modeling of Complex Models Based on Stereo Vision

[28] X. Chen, ‘‘Research on 3D reconstruction algorithms based on multiple
views,’’ M.S. thesis, Dept. Inf., North China Univ. Technol., Beijing,
China, 2024.

[29] R. Song, ‘‘Research on large complex surface reconstruction methods
based on point cloud data,’’ M.S. thesis, Dept. Mech. Elect. Eng., Univ.
Electron. Sci. Technol., Chengdu, China, 2020.

[30] Y. Chengming, ‘‘Parallel construction algorithm of Delaunay triangulation
network,’’ Ph.D. dissertation, Xinyang Normal Univ., Xinyang, China,
2022.

[31] M. Cao, S. Li, W. Jia, and X. Liu, ‘‘A review of feature tracking methods
in structure from motion technology,’’ J. Comput. Res. Develop., vol. 41,
pp. 2536–2565, 2018.

[32] Z. Liang, Y. Yu,W. Hou, and X. Xu, ‘‘Crane main girder deformation iden-
tification method based on UAV 3D reconstruction,’’ Hoisting Conveying
Mach., no. 17, pp. 25–30, 2023.

[33] L. Jia, C. Wang, and H. Wang, ‘‘Comparison and analysis of UAV oblique
photography 3Dmodelling software,’’Geomatics Spatial Geo-Inf., vol. 47,
no. 5, pp. 176–179, 2024.

[34] H. Xu, W. Guo, D. Li, J. Hao, and G. Xu, ‘‘Automatic identifica-
tion and decryption method of sensitive targets in real scene 3D model
textures,’’ Bull. Surveyingv Mapping, no. 12, pp. 153–158, 2023, doi:
10.13474/j.cnki.11-2246.2023.0376.

[35] H. Zhang, Y. Ding, and D. Li, ‘‘Structural surface crack detection method
based on 3D reconstruction,’’ Ind. Construct., vol. 54, no. 5, pp. 60–67,
2024, doi: 10.13204/j.gyjzG22102611.

[36] F. Hu, ‘‘Research on 3D reconstruction method of cable-stayed bridge
structure perception based on deep learning,’’ Ph.D. dissertation, Harbin
Inst. Technol., Harbin, China, 2022.

[37] S. Wang, H. Xue, Y. Zhang, and Z. Yao, ‘‘Research on key frame extrac-
tion and 3D reconstruction methods for endoscopic video,’’ J. Chongqing
Technol. Bus. Univ., Natural Sci. Ed., pp. 1–11, Mar. 2024.

HAOTIAN MING is currently pursuing the
master’s degree with Guangxi University of
Science and Technology. His main research inter-
ests include remote sensing mapping and image
recognition.

QI LI is currently a Senior Engineer with Guangxi
University of Science and Technology. His main
research interests include remote sensing map-
ping, renewable energy, unmanned aerial vehicle,
solar energy evaluation, and prediction.

HAIBO XIA is currently pursuing the master’s
degree with Guangxi University of Science and
Technology. His main research interests include
remote sensing mapping and image recognition.

PENG LI is currently an Associate Professor
with the Department of Public Health, Faculty
of Medicine, Guangxi University of Science and
Technology. Her main research interests include
solar energy, regional climate models, atmospheric
environmental change, urban disaster prevention
and reduction, and public health.

VOLUME 12, 2024 93501

http://dx.doi.org/10.13474/j.cnki.11-2246.2023.0376
http://dx.doi.org/10.13204/j.gyjzG22102611

