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ABSTRACT Blade tip-timing (BTT) is a direct blade vibration monitoring technique and how to use
under-sampled BTT signals for blade damage detection is still challenging under variable conditions.
Compressed sensing (CS) has been introduced for reconstructing BTT vibration signals, but classical CS
reconstruction algorithms are limited by the sparsity and slow optimization process. In order to overcome this
issue, this paper presents an iteratively learning reconstructionmethod by introducing the vector approximate
message passing (VAMP) algorithm, called VampNet. Firstly, a discrete Multi-coset sampling (MCS)-
based CS model is built for BTT vibration signals in order domain and an improved Hanning-Possion
window is integrated to reduce the order spectrum leakage in discretization. Then the VampNet model is
proposed to reconstruct blade vibration engine orders (EOs) and the sensing matrix is discussed. Based on
reconstructed vibration EOs, a cointegration-based method is proposed for blade damage detection, so that
the influences of variable conditions can be reduced. Finally, the feasibility of the proposedmethod is testified
byMatlab simulations and experimental dataset. The results show that blade vibration EOs can be accurately
reconstructed by the VampNet and then small cracks can be detected by using the cointegrating residual.

INDEX TERMS Blade tip-timing, compressed sensing, learning reconstruction, damage detection, cointe-
gration analysis.

I. INTRODUCTION
Rotating blades are one kind of key components in the fields
of new energy and aerospace. Different kinds of faults or
damages are often caused in rotating blades due to high or
low cycle fatigues. Accurate and on-line vibration monitor-
ing of rotating blades is much necessary for safety. Up to
now, some works on blade damage detection have been
reported. Kaewniam et al. [1] reviewed the latest advances
of damage detection in wind turbine blades, where sig-
nal processing techniques were classified into three groups:
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time-domain analysis, frequency-domain analysis and time-
frequency-domain analysis. Civera and Surace [2] proposed
to use instantaneous spectral entropy and continuous wavelet
transform for anomaly detection of wind turbines. Pana-
giotopoulos et al. [3] proposed time series-based damage
detection of the blade under variable environmental and
operating conditions. According to the literature, vibration
analysis is an effective tool of online blade monitoring [4].
Inmost existing studies, accelerator sensors always have to be
mounted on the nearby case of the blades due to the condition
of continuous rotating. In this case, however, sampled vibra-
tion signal is a mixture of vibration signals from multiple
components, rather than only blades. The consequence is that
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it is not easy to detect weak blade damages due to signal
contamination. Therefore, it is much significant to directly
measure vibration signals of rotating blades.

In recent years, blade tip-timing (BTT) has been proved to
be an advanced direct vibration monitoring method [5], [6].
Compared with using strain gauges [7], [8], the BTT method
has the advantages of on-line, direct and non-intrusion mea-
surement. Different from most existing studies in which
vibration signals are sampled at the Nyquist sampling fre-
quency, the BTT sampling frequency is equal to the product
of the rotating speed and the number of BTT probes. In real-
world applications, only few BTT probes can be admitted due
to the space limitation and the cost. In this case, the BTT
sampling frequency is too low to satisfy the Nyquist sampling
theorem, leading to seriously under-sampled signals. Then
it is hardly to directly capture ‘true’ blade vibration char-
acteristics by using classical signal processing methods due
to serious frequency alias. Therefore most existing damage
detection methods cannot be used in the field of BTT and it
is very necessary to achieve accurate reconstruction of BTT
vibrations.

By now, BTT vibration reconstruction methods have been
investigated in academia & industry. The whole develop-
ment history can be divided into three stages. At the early
stage, BTT vibration signal is considered as a narrow-band
signal and its central frequency is assumed to be known in
advance. In this case, Salhi et al. [9] first proposed to recon-
struct continuous BTT vibration signals. Chen et al. [10] also
presented a BTT vibration reconstruction method based on
the Shannon theorem. In practice, however, blade vibrations
tend to be multi-band due to system nonlinearity, aerody-
namic excitations or potential damages. Chen et al. [11]
presented a novel interpolation method for wideband BTT
signal reconstruction. Cao et al. [12] developed an efficient
time delay-based spectrum reconstruction method for BTT
vibration signals. At the second stage, more attentions are
paid on multi-band BTT vibration reconstruction based on
sparse sensing. Lin et al. [13] proposed one novel method
to reconstruct multi-mode BTT vibration signals based on
sparse representation. Tian et al. [14] built a sparse recon-
struction model of BTT vibration signals in the frequency
domain. In particular, the compressed sensing (CS) theory
proposed by Donoho [15] is an effective tool of analyzing
sparse signals, which can be utilized to recover certain under-
sampled signals. In recent years, the researchers began to
introduce the CS theory for BTT vibration reconstruction.
Xu et al. [16] first built a CS model of BTT vibration mea-
surement and reconstructed the frequency spectrum of the
blade by minimizing the norm. Pan et al. [17] used the dictio-
nary learning method to represent BTT vibration signals and
then reconstructed the frequency spectrum by using the basis
pursuit algorithm. Spada and Nicoletti [18] discussed several
necessary conditions of accurate BTT vibration reconstruc-
tion by applying the CS theory. Liu et al. [19] proposed
conditions of BTT vibration reconstruction by using the
MUSIC algorithm. In particular, multi-coset sampling (MCS)

is one special way of reducing the sampling rate of multi-
band signals [20]. Chen et al. [21] first pointed out that
BTT sampling was just a natural MCS scheme and then a
MCS-based CS method was proposed under variable speeds.
Classical CS reconstruction algorithms are mainly based on
greedy algorithms and convex optimization methods. How-
ever, these algorithms have been restricted by the restriction
of Restricted Isometry Property (i.e., the sparsity) and slow
optimization process in practice. For this purpose, learning
methods including deep learning (DL) are currently being
introduced into the field of CS. Ye and Han [22] proposed a
general DL framework for image reconstruction. Inspired by
these studies, Chen et al. [23] proposed a deep compressed
sensing (DCS) method for BTT vibration reconstruction by
using convolutional neural network (CNN). But traditional
deep neural networks (DNNs) have many layers for improv-
ing accuracy, leading to complex architectures. On the other
hand, MCS-based CS can also be looked as one kind of
linear sparse inverse problems. Fast iterative thresholding
algorithms have been studied for these inverse problems
as alternatives to convex optimization. Donoho et al. [24]
proposed a new class of iterative thresholding algorithms
for reconstructing sparse signals, namely the approximate
message passing (AMP) algorithm. Low computational com-
plexity of the AMP algorithm has made it an appealing
alternative of solving linear inverse problems. Later, Ran-
gan et al. [25] proposed the vector AMP (VAMP) algorithm
to address the AMP’s fragility with respect to the sensing
matrix. In order to introduce learning scheme to solve sparse
linear inverse problems, Borgerding et al. [26] proposed a
novel deep network by unfolding the VAMP algorithm, called
the learned VAMP (LVAMP) network. Compared with clas-
sical DNNs, the outstanding features of the LVAMP network
include simple architecture, few super-parameters and good
interpretability. For this purpose, this paper will introduce the
similar idea for BTT vibration reconstruction and damage
detection. The flowchart is shown in Figure 1.

FIGURE 1. The flowchart of the proposed method in this paper.

The main contributions of this paper are threefold:
i) A discrete-time CS model of BTT vibration signal is

built in order domain, where the window function is applied
to reduce the order spectrum leakage.
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ii) A iteratively learning network is first introduced to
reconstruct blade vibrations in order domain, called Vamp-
Net, which has the advantages of simple architecture, fewer
super-parameters, and good interpretability.

iii) The cointegration analysis is carried out on recon-
structed orders so that the effects of measurement noise and
trend interrupt on damage detection can be eliminated greatly
under variable operating conditions.

The remainder of this paper is summarized as follows.
In Section II, the discrete MCS-based CS model of BTT
vibration signals is built. Then the VampNet-based learn-
ing reconstruction model of BTT vibrations is derived in
Section III and the reconstruction performance is discussed.
In Section IV, cointegrating residual-based blade damage
detection under variable conditions is proposed. Numerical
simulations and experimental testing are done to validate the
proposed method in Section V and Section VI, respectively.
Finally, some conclusions are marked in Section VII.

II. DISCRETE MCS-BASED CS MODEL OF BTT VIBRATION
SIGNALS
A. ANGULAR SAMPLING OF BTT VIBRATION SIGNALS
Basic process of the BTT method can be schematically rep-
resented as Figure 2. A bladed-disk with K blades and I BTT
probes are embedded uniformly or non-uniformly into the
stationary casing. At the same time, a once-per-revolution
(OPR) sensor is placed in front of the rotating shaft, which
is used as the timing reference by generating one pulse per
revolution. Also it is assumed that the OPR sensor is on the
same radius as the first BTT probe and the OPR marker is
on the same radius as the first blade. Then the angles of
the ith(1 ≤ i ≤ I ) BTT probe and the k th(1 ≤ k ≤ K )
blade relative to the OPR sensor are denoted as αi and θk ,
respectively.

FIGURE 2. Schematic diagram of the BTT method.

According to the principle of the BTT method, the times
of arrival (TOAs) are measured when each blade passes each
BTT probe. Under no blade vibrations, theoretical TOAs of
each blade are known in advance. However, once there are
blade vibrations, the blades will pass BTT probes earlier or
later than normal. In this case, actual TOAs will deviate from
the theoretical TOAs, leading to time differences. Further-
more, these time differences are strongly related to blade
vibration frequencies and amplitudes, so that blade vibrations

can be calculated. Classical BTT method is always carried
out in time domain and the rotating speed is assumed to be
fixed. However, the rotating speed is variable in real-world
applications. In this case, the sampling time interval is not
a constant, leading to unequally-sampled vibration signals.
In particular, the vibration displacements cannot be calculated
accurately.

As stated in [21], angular-domain sampling can be applied
to overcome the issue of variable speeds. Interestingly, the
BTT sampling process is just a natural angular-domain
sampling pattern due to that all BTT probes are mounted
circumferentially. ‘True’ angular-domain vibration displace-
ment of the kth blade is denoted as yk (θ ), which is sampled for
I times during each revolution according to Figure1. The ideal
sampling function of the ith BTT probe can be represented as,

pik (θ) =



+∞∑
n=−∞

δ [θ − (2πn+ αi − θk)],

(n = 0, 1, 2, · · · ), θk ≤ αi
+∞∑

n=−∞

δ [θ − (2πn+ 2π + αi − θk)],

(n = 0, 1, 2, · · · ), θk > αi

(1)

where δ is the Dirac delta function. Then the sampled vibra-
tion displacement of the kth blade in angular domain can be
calculated as

ŷk (θ ) =

j−1∑
i=0

+∞∑
n=−∞

yk (θ )δ [θ − (2πn+ 2π + αi − θk)]

+

I−1∑
i=j

+∞∑
n=−∞

yk (θ )δ [θ − (2πn+ αi − θk)] (2)

where j =
{
j|αj−1 ≤ θk ≤ αj

}
.

B. DISCRETE CS OF BTT VIBRATION SIGNALS IN ORDER
DOMAIN
The sampling scheme in Equation (2) can be looked as
I -channel parallel sampling with fixed angle delays. Fur-
thermore, such a sampling pattern is equivalent to a MCS
framework. Then the MCS can be used to represent the BTT
vibration signals. Similar to time-domain signals, sampled
BTT vibration signals are not sparse in angular domain, but
sparse in order domain, so the MCS-based CS can be utilized
here.

According to theMCS principle, it is assumed thatL virtual
BTT probes are uniformly mounted in the casing around the
bladed-disk and the number of each probe is set from 1 to L
clockwise. Here L should be selected to satisfy the Nyquist
sampling theorem, so that real vibration engine orders (EOs)
can be obtained. In practice, I actual BTT probes in Figure1
are chosen from the above L virtual BTT probes, which is
called as a MCS pattern (L, I ,C), where C = {ci : 1 ≤

i ≤ I }, ci is the number of the ith BTT probe in the L
probes (0 ≤ c1 < c2 · · · < cI ≤ L − 1). For a given
blade, the sampled vibration signals by all L probes and the
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ith BTT probe are denoted as y (θ) and ȳi (θ), respectively.
Furthermore, the relationship between ȳi (θ) and y (θ) can be
derived as [21],

Ȳ(O) = 8Ỹ(O) (3)

where,

Ȳ(O)= [LȲ1(O) exp (−j2πOc1),· · ·LȲI (O) exp (−j2πOcI )]T ,

Ỹ(O) = [Y1(O), · · · YL(O)]T,

8I×L =

 exp [j2πc1 × 0/L] · · · exp [j2πc1 (L − 1) /L]
...

. . .
...

exp [j2πcI × 0/L] · · · exp [j2πcI (L − 1) /L]

 ,
Yk (O) = Y

(
O0 −

(
k −

L + 1
2

)/
L
)
,

k = 1, 2, · · · L, O0 ∈ [−1
/
2, 1

/
2],

Y (O) and Ȳi (O) are theDFTs of y (θ) and ȳi (θ), respectively.
It can be seen that Y (O) is equally divided into L sub-bands

and Yk (O) is the kth sub-band. According to Equation (3),
Ȳi (O) can be looked as the weighed sum of all sub-bands of
Y (O). In real-world applications, Ȳ(O) can be calculated by
I actual BTT measurements and 8 depends on the MCS pat-
tern. Then the reconstruction task is to recover the unknown
Ỹ(O) based on Ȳ(O) and 8, so that the expected Y (O) can
be obtained. Furthermore, Ỹ(O) is sparse due to that it only
has few non-zero rows. Thus Equation (3) is equivalent to
a CS problem. On the other hand, the order in Equation (3)
is continuous so that discrete DFT should be done. The dis-
cretization process can be simplified as the following steps.

i) Taking a sampling sequence with M (a power of two)
samples from each BTT probe and calculating M -point dis-
crete DFT. The discrete DFT of the sampling sequence of
the ith BTT probe is calculated as,

Ȳi[k] =

M−1∑
n=0

yi [n] exp
(
−j2πnk

/
M
)
, k = 0, . . . ,M − 1

(4)

ii) Calculating Ȳ.

ȲI×M

= L ×

 Ȳ1 [1] e
−j2πc1×0/LM · · · Ȳ1 [M ] e−j2πc1×(L−1)/LM
...

. . .
...

ȲI [1] e−j2πcI×0/LM · · · ȲI [M ] e−j2πcI×(L−1)/LM


(5)

iii) Rewriting Equation (3) as the following discrete model.

ȲI×M = 8I×LỸL×M (6)

iv) Reconstructing Ỹ(O) by the learning model and then
re-arranging Ỹ(O) to obtain Y (O). Discrete Ỹ(O) is a L ×M
matrix, which can be re-arranged to a 1 × LM vector by
connecting successively all rows of Ỹ(O), leading to the
discrete order spectrum (Y (O)).

III. VAMPNET-BASED LEARNING RECONSTRUCTION
METHOD OF BTT VIBRATION SIGNALS
A. VAMPNET-BASED LEARNING RECONSTRUCTION
MODEL
As for the reconstruction problem in Equation (6), itera-
tive thresholding algorithms are more efficient than classical
CS reconstruction algorithms [24]. Furthermore, the VAMP
algorithm is just one kind of iterative thresholding algorithms
with low-complexity [25]. As shown in Figure3, the VAMP
algorithm is composed of two stages, namely minimummean
square error (MMSE) estimation and shrinkage stages. Each
stage is comprised of four steps: estimation, divergence com-
putation, Onsager correction and variance computation. The
‘‘Onsager correction’’ operation is used to decouple the iter-
ation errors.

FIGURE 3. Schematic diagram of the VAMP algorithm.

Recently, learning reconstruction is introduced to reduce
the constraint of sparsity in CS problems. Inspired by this
idea, Borgerding et al. [26] proposed the learned VAMP
network, where the iterative process was unfolded to a deep
network. By referring to it, the VampNet is proposed for
learning reconstruction of BTT vibration signals in this paper.
By unfolding the process of the VAMP algorithm to P itera-
tions, a P-layer VampNet is built as Figure4.

FIGURE 4. Schematic structure of the VampNet model.

Different from sparse linear inverse problems inmost exist-
ing references, all matrixes in Equation (6) are complex.
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In order to using the VampNet, firstly Equation (4) is con-
verted into the following real-value form.

9 = A� (7)

where,

92I×M =

[
Re(Ȳ)
Im(Ȳ)

]
, A2I×2L =

[
Re(8) −Im(8)
Im(8) Re(8)

]
,

�2L×M =

[
Re(Ỹ)
Im(Ỹ)

]
,

Im (·) denotes the imaginary part and Re (·) denotes the real
part.

In Figure 3, the ith layer has only several parameters to be
learned, which depends on the shrinkage function. �̂i in the
ith layer is the approximation of � and �̂P in the Pth layer is
the final reconstruction of �.
For the VAMP algorithm, the sensing matrix A should

be right-rotationally invariant, which is difficult to satisfy in
practice. For this purpose, the singular value decomposition
(SVD) of A is often applied, i.e.,

A = USVT (8)

Similar to classical DLmethods, theVampNet training pro-
cess is also composed of forward and backward operations.

Forward operation: The output of the ith layer is the input
of the (i + 1)th-layer. In the ith layer, the estimations at the
MMSE stage can be summarized as, [26]

�̃i−1 = V

(
S2 +

σ 2
w

σ̃ 2
i−1

I

)−1 (
SUT9 +

σ 2
w

σ̃ 2
i−1

VT r̃i−1

)
(9)

ṽi−1 =
1
N

R∑
j=1

1

s2j σ̃
2
i−1

/
σ 2
w + 1

(10)

ri−1 =
�̃i−1 − ṽi−1r̃i−1

1 − ṽi−1
(11)

σ 2
i−1 =

σ̃ 2
i−1ṽi−1

1 − ṽi−1
(12)

where σ 2
w is the variance of the stochastic noise, R=rank (A)

and si denotes the ith singular value of A.
The shrinkage stage is strongly related to the choice of the

shrinkage function, which includes several learnable parame-
ters. According to [26], here a zero-mean Bernoulli-Gaussian
function with two parameters λ i =

[
λi1, λi2

]
is selected as

the shrinkage function. In this case, the estimations at the
shrinkage stage can be summarized as,

�̂i=
ri−1(

1+
σ 2i−1
λi1

)(
1+
√
1+

λi1
σ 2i−1

exp
[

λi2−
r2i−1

2σ 2i−1(1+σ
2
i−1/λ i1)

])
(13)

v̂i =

〈
∂�̂i

∂ri−1

〉
(14)

r̃i =
�̂i − v̂iri−1

1 − v̂i
(15)

σ̃ 2
i =

σ 2
i−1v̂i

1 − v̂i
(16)

where ⟨·⟩ denotes the mean operation.
Backward updating: the parameters of

{
λ 1, . . . , λP

}
need to be learned by using training datasets ({(9, �)}).
Similar to classical DL methods the back-propagation
algorithm driven by an optimizer is used to update the param-
eters. Differently, each layer of the VampNet has a local loss
function. In this paper, the commonly used loss function (i.e.
mean squared error) is adopted as follows.

Li
(
λ i
)

=
1
N

N∑
k=1

∥∥∥�̂i

(
9(k)

; λ i

)
− �(k)

∥∥∥
2

(17)

where N is the batch size and ∥·∥2 denotes the 2-norm oper-
ator. At the same time, the initial inputs of the VampNet are
determined as: r̃0 is generated randomly and

σ̃ 2
0 =

∥∥∥9(k)
∥∥∥2
2

/
N (18)

After training, the P-layer VampNet can be used to recon-
struct the order spectrum of a blade based on I -channel BTT
vibration signals.

Furthermore, the advantages of the VampNet can be
summarized as: i) The VampNet has few layers (P) and
super-parameters (2P), so its architecture is very simple; ii)
Estimations at both the MMSE and shrinkage stages are
based on simple math operations, so its computation com-
plexity is much low; iii) The output (�̂i) of each layer is
the approximation of � (expected order spectrum), so the
training process is much explainable, rather than a black-box
learning framework in classical DNNs.

B. PERFORMANCE ANALYSIS OF VAMPNET-BASED BTT
VIBRATION RECONSTRUCTION
Reconstruction performance is the key point in engineering
applications. As for the proposed VampNet, the influenc-
ing factors can be divided into three main categories. The
first class is the MCS pattern, including the number of the
BTT probes and the configuration of the I BTT probes
(e.g. the sensing matrix). The second class is the VampNet
architecture, including the number of layers, the shrinkage
function, the optimizer and the loss function. The third class
is the discretization of the MCS-based CS model. This paper
will only focus on the MCS pattern and the discretization
process.

1) DISCUSSION ON THE MCS PATTERN
According to the principle of the VAMP algorithm, the sens-
ing matrix A should be a right-rotationally invariant matrix.
Furthermore, the SVD error can be utilized to evaluate how
much A is close to be right-rotationally invariant, which is
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defined as,

∥1A∥2 =

∣∣∣∣20 lg [∥∥∥∥A − Ū
√
6
(
AT Ū/

√
6
)T∥∥∥∥

2

/
∥A∥2

]∣∣∣∣ ,
with AAT

= Ū6V̄
T

(19)

Therefore, once I is determined, C needs be selected to
obtain the minimum ∥1A∥2. Furthermore, the sensing matrix
A also depends on the C , so A can be determined according
to the following rule.

A ∝

{
C

∣∣∣∣min
C, I

∥1A∥2

}
(20)

2) DISCUSSION ON THE DISCRETIZATION PROCESS
Discretization brings undesirable feature of spectrum leak-
age to ȲI×M and YL×M in Equation (6) and Equation (7).
In this case, big error will be induced into the CS model
of Equation (7). To deal with it, windowing is an effec-
tive solution. Instead of using traditional window functions,
an improved Hanning-Possion (IHP) window is introduced to
reduce spectrum leakage, which is defined as follows [27].

w(a,b) [n] =
(
1 − 2 |n|

/
K
)a e−b(2|n|/K )2 ,

n ∈
[
−K

/
2, K

/
2 − 1

]
(21)

where a and b are two controllable parameters, K is the
window length.

The unique feature of the IHP window is that the sidelobes
can be controlled by a and b. In particular, there is almost no
sidelobes when b is optimal. Then the IPH window can be
integrated into Equation (4).

In the end, the relative root mean square (RRMS) is defined
to evaluate the reconstruction performance as follows.

RRMS = 10 log

√∑LM

i=1
(ŷ [i] − y [i])2

/∑LM

i=1
y2 [i]

(22)

where y [i] and ŷ [i] are the original and reconstructed order
spectrum of BTT vibration signals, respectively.

IV. COINTEGRATION-BASED BLADE DAMAGE
DETECTION UNDER VARIABLE OPERATION CONDITIONS
Up to now, many blade damage detection methods have been
studied in the literature, including time-domain, frequency-
domain and time-frequency-domainmethods. However, these
methods are often based on Nyquist sampled signals, so they
cannot be directly utilized in the field of BTT. Even though
vibration reconstruction methods can be applied, it is almost
impossible to obtain accurate time-domain signals. Under
constant rotating speeds, the authors proposed a crack detec-
tion method based on time-domain and frequency-domain
features [10]. Under variable speeds, however, it is very
difficult to obtain these features. To our best knowledge,
it is first to study BTT-based damage detection under vari-
able conditions. It has to face big challenges. For example,
environmental temperature often changes under variable

operation conditions, which has obvious effect on blade
natural frequencies. In order to remove the influences of
environmental variations on damage detection, cointegration
analysis is a promising method. The concept of cointegration
was proposed in 1987, which was a technique used to find a
possible correlation among time series processes in the long
term [28]. Several non-stationary variables can be cointe-
grated if some linear combination of them is stationary, so that
the common trends caused by the environmental and opera-
tional conditions can be removed. Cross et al. [29] studied
the cointegration procedure for structural health monitoring.
In this paper, the cointegration is introduced for blade damage
detection and the detailed steps are summarized as Figure 5.

FIGURE 5. Schematic process of cointegration-based blade damage
detection.

1) Selection of monitored variables. After VampNet-
based reconstruction, discrete order spectrum of the blade
can be written as an LM-dimensional vector (Y =

[Y [0] , Y [1] , . . . , Y [i] , . . . , Y [LM − 1]]T ), where each
element is considered as a candidate monitored variable.
As for blade damage detection, Q monitored variables are
selected from Y according to the prior knowledge, namely
the amplitudes of the order spectrum at integer and frac-
tional orders. At the same time, each monitored variable
should have the same integrated order. Then the Q moni-
tored variables are denoted as X =

[
x1, . . . , xQ

]T
, xi ∈

{Y [0] , . . . ,Y [LM − 1]}. By using N observations, a Q-
dimensional multivariate time series can be obtained as
follows.

X =

 x1 [1] · · · x1 [N ]
...

. . .
...

xQ [1] · · · xQ [N ]

 (23)

2) The augmented Dickey-Fuller (ADF) test.
In practice, the integrated order is always equal to 1 or 2 due

to that time series is generally not divergent. In this paper,
each monitored variable is considered as integrated order one
I (1). In order to ascertain the integration order of each time
series (xi = {xi [1] , . . . , xi [N ]}), the augmented Dickey-
Fuller (ADF) test will be applied, which is based on a unit
root test for each time-series.

3) The Johansen estimation.
There are two common methods to find the cointegrat-

ing vector, namely the Engle-Granger two-step estimation
and the Johansen estimation. In this paper, the Johansen
estimation procedure is adopted, which is based on the
maximum-likelihoodmultivariate estimation.When themon-
itored variables are cointegrated, the cointegrating vector
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(9 =
[
ψ1, . . . , ψQ

]T ) can be estimated by the Johansen pro-
cedure. Then the cointegrating residual of the ith observations
can be estimated as

ri =

Q∑
j=1

ψjxj [i] (24)

4) Cointegrating residual-based damage detection.
In order to perform blade damage detection, the coin-

tegrating vector of normal samples is calculated and the
cointegrating residual can be obtained. Then the upper and
lower bounds of the cointegrating residual under normal con-
ditions are defined as rUbase = r̄ + 3σ and rLbase = r̄ − 3σ
respectively, where r̄, σ are the mean and derivation of the
cointegrating residual sequence. In engineering applications,
the cointegrating residual is continually monitored during
operations. If the cointegrating residual significantly deviates
from the interval defined as

[
rLbase, r

U
base

]
, it indicates the

occurrence of some damage in the blade.

V. NUMERICAL VALIDATION AND DISCUSSIONS
A. SIMULINK-BASED DATASET PREPARATION
The angular-domain BTT sampling process can be simulated
by Matlab/Simulink and the whole model is composed of the
dynamic model and angular-domain sampling module [23].
For the sake of simplicity, dynamic behavior of one blade can
be represented by the following single-degree-of-freedom
(SDOF) lumped-parameter model.

meqÿ(t) + ceqẏ(t) + keqy(t) = F(t) (25)

wheremeq, ceq, keq denotes the equivalent mass, damping and
stiffness, respectively. y(t) denotes blade vibration displace-
ment. F(t) denotes vibration excitation.
Furthermore, keq can be looked as a constant (keq = kneq)

when the blade is healthy. On the other hand, when there is
a crack in the blade, the crack is always in the ‘breathing’
state. In this case, keq will be time varying with the vibration
excitation. In this paper, the harmonic excitation is defined as

F(t) =

J∑
j=1

Aj sin
(
Ejθ (t)+ ϕj

)
θ (t) = 2π

∫ t

0
fr (t) dt, fr (t) = f0 + (fe − f0) t

/
Ts (26)

where Ej denotes the vibration order, J is the number of
vibration orders, Aj is the excitation amplitude, ϕj denotes the
phase, fr (t) denotes the variable rotating speed, f0, fe are the
rotating frequencies at the starting time and the ending time
respectively, Ts is the total simulation time, ϕj denotes the
phase.

Then the time-varying equivalent stiffness can be repre-
sented as [30],

kceq(t) = kopeneq +
1
2

1 +

J∑
j=1

Aj sin
(
Ejθ (t) + ϕj

)

×

(
kcloseeq − kopeneq

)
(27)

where kopeneq denotes the equivalent stiffness when the crack
is fully open, kcloseeq denotes the equivalent stiffness when the
crack is fully closed (eg. kcloseeq = kneq).

In this simulation, only one vibration order is consid-
ered, i.e. J=1. Healthy and cracked blades can be simu-
lated by using the corresponding equivalent stiffness in the
Matlab/Simulink model, respectively. Angular-domain BTT
sampling process for cracked blade is built as Figure 6 and
the simulation parameters are listed in Table 1. Then BTT
vibration signals of healthy and cracked blade are recorded
respectively. Finally, the dataset composed of 9,A and �
can be used to prepare training and testing samples for the
VampNet. After trials, a 4-layer VampNet is built and the
optimizer of ‘Gradient Descent’ with a learning rate 0.001 is
utilized.

FIGURE 6. Simulink model of angular-domain BTT sampling process for
cracked blade.

B. COMPARISON OF DIFFERENT WINDOW FUNCTIONS
As stated before, Equation (3) always holds in theory. But
for training and testing samples, 9,A and � are generated
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TABLE 1. Values of simulation parameters.

by discrete DFT of sampled BTT vibration signals. Due to
the order spectrum leakage in discretization, 9 is not exactly
equal to A�, leading to the discretization error which is
defined as,

1d = 9 − A� (28)

where 1d is the error matrix with the dimension of L × M .
Obviously, the smaller the discretization error, the closer 1d
is to the zero matrix.

Next, three window functions are applied to reduce the
discretization error respectively: the rectangular window, the
Hanningwindow and the IHPwindowwith a = 1×10−4, b =

20. Four BTT probes are selected and 1024-point discrete
DFT is done. The results under using three window functions
are shown and compared in Figure 7. It can be seen that
components in Figure 7 (c) are much closer to zero than those
in Figure 7 (a) and (b), which indicates that using the IHP
window is the best to reduce the discretization error.

C. CINFLUENCES OF KEY FACTORS ON THE
RECONSTRUCTION PROCESS
Firstly, C in the MCS pattern is an important influencing
factor of vibration reconstruction. Therefore, it is necessary
to investigate the effect of C . The number of BTT probes
is selected as 4. According to Equation (18), the best C
(C = (1, 2, 5, 7)) and the worst C (C = (3, 6, 9, 12))
are selected. Then the 4-layer VampNet is trained by using
the training samples under each C , respectively. Here no
other windows (e.g. using rectangular window) are applied
in the DFT. After 300 iterations, the reconstruction RRMSs
of all layers are plotted and compared in Figure 8. It can be
seen that the RRMSs of the second, the third and the fourth
layers under C = (1, 2, 5, 7) is much less than those under
C = (3, 6, 9, 12). Therefore, selecting proper MCS pattern
is much necessary in real-world applications.

Secondly, the window function is another important
influencing factor of reconstruction. Here, the rectangular
window, the Hanning window and the IHP window are con-

FIGURE 7. Comparison of the discretization errors using three different
window functions.

FIGURE 8. Comparison of RRMS under two MCS patterns.

sidered, respectively. Then the 4-layer VampNet is trained by
using the training samples under C = (1, 2, 5, 7). After
300 iterations, the reconstruction RRMSs of all layers using
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the three windows are plotted and compared in Figure 9.
It can be seen that using the proposed IHP window lead to
the least RRMS and using the rectangular window lead to the
maximum RRMS. Furthermore, their training processes of
each layer are plotted in Figure10. As for the output layer, the
iteration number using the IHP window is less than that using
the rectangular window. The results testify the superiority
of the proposed IHP window again. At the same time, the
original and reconstructed order spectra are compared in
Figure 11, which shows that the proposed VampNet-based
reconstruction method is much effective. It should be pointed
out that the whole range of reconstructed order spectrum is [-
13/2, 13/2], so the negative side is shown. In practice, negative
orders are meaningless.

FIGURE 9. Comparison of RRMS under using three windows.

FIGURE 10. Training process using two different windows.

FIGURE 11. Reconstructed results.

TABLE 2. Comparison with CNN-based reconstruction methods.

Finally, in the previous work [23], the authors also inves-
tigated CNN-based method of BTT vibration reconstruction.
The results indicated that the CNN model could also achieve
accurate reconstruction after training. From the viewpoint
of BTT vibration reconstruction, the VampNet model and
CNN-like modes are compared in Table 2. It can be seen
that the VampNet model is more suitable for engineering
application than CNN-like modes. In addition, Ye et al. [22]
also revealed the limitations of many existing DNNs for CS
problems.

D. DCOINTEGRATION-BASED BREATHING CRACK
DETECTION
According to Figure5, firstly it needs to select candidate
monitored variables. Based on the prior knowledge [30],
Super-harmonic/sub-harmonic vibrations will be caused by
damages. Therefore, the amplitudes at the first, third, fourth
and fifth orders in the reconstructed order spectra are
determined as the candidate monitored variables. Then the
Matlab/Simulink model in Section V-A is used to chrono-
logically generate 1000 groups of normal samples and crack
samples, respectively. The length of each group is 1024.

Firstly, the proposed VampNet model is used to reconstruct
the order spectra of each normal & crack sample and the
monitored variables are calculated. In this way, time series
of each monitored variable can be built. In order to simulate
the trend term, the same stochastic signal varying linearly
with time is added to the above each time series. Simulated
time series of all monitored variable from normal samples are
shown in Figure 12. Next, the ADF test is carried out on the
simulated time series and the cointegrating vector is estimated
as [2.5597, -1.1643, -2.6146, 3.3329] by using the Johansen
estimation.

Secondly, the estimated cointegrating vector is used to
calculate the cointegrating residual of the normal samples
and the result is shown in Figure 13. It can be seen that the
cointegrating residual is almost a stationary time series with
zero mean, so that the trend term is obviously eliminated.
Furthermore, the cointegrating residual of the crack samples
is estimated and the result is shown in Figure 14. It can be seen
that the cointegrating residual of the crack samples greatly
deviates from that of the normal samples. Thus the simulation
results show that the cointegrating residual-based method can
be applied to accurately detect the blade’s damage.

In addition, the effect of noise on the damage detec-
tion method is also studied. The results under two different
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FIGURE 12. Reconstructed monitored variables.

FIGURE 13. Cointegrating residual of normal samples.

FIGURE 14. Cointegrating residual-based crack detection.

signal-to-noise ratios (SNRs) are shown in Figure 15. It can
be seen that: i) Blade crack can still be effectively detected
based on the cointegrating residual when noises exist; ii)
Noises can reduce the damage detection capability.

VI. EXPERIMENTAL VALIDATIONS
In order to further testify the proposed method, an experi-
mental set-up of BTT-based vibration monitoring is shown in
Figure 16(a). The whole experimental system is composed of
a supporting base, an electrical motor, a testing bladed disk

FIGURE 15. Crack detection under (a) large and (b) small SNRs.

with 32 blades, a magnetic exciter, three BTT probes, a once-
per-revolution (OPR) reference sensor, a protection cover,
a data acquisition device and the vibration analysis software.
Three BTT probes were fixed around the bladed disk through
the holes in the protection cover and the angle between two
adjacent BTT probes is equal to 6 degrees. Key experimental
parameters are listed in Table 3. The blade located nearest the
OPR marker is numbered as the first blade and the left blades
are clockwise numbered from 2 to 32. The three BTT probes
are numbered as 1#, 2# and 3#.

TABLE 3. Experimental parameters.

It is difficult to generate cracks in the blades through
rotation in the experiment, so different sizes of cracks are
artificially cut at the roots of eight blades (15∼22). The
cracked blades are shown in Figure 16(b) and the depths
of cracks are listed in Table 4. According to installation
angles of the three BTT probe, the MCS pattern is repre-
sented as (60, 3, {0, 1, 2}). Here the 7th blade is selected as
the normal blade. During the experiment, the rotating speed
increases from 0 to 20000rpm, and the OPR & TOA signals
are collected. Then angular-domain vibration displacements
of each blade are calculated.
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FIGURE 16. Experimental set-up.

TABLE 4. The crack depths in different blades.

i) Firstly, angular-domain vibration displacements of
32 blades in the range of 7710∼8731 rpm are recorded.
Taking the 7th blade as an example, the rotating speed and
vibration displacement from three BTT probes are measured
and shown in Figure 17.
It can be seen that the vibration amplitude increases obvi-

ously near the 4100th revolution. By referring to the Campbell
diagram of the blade, it can be understood that high-frequency
resonant vibration occurs at this time and the vibration EO
is equal to 15. As for the 7th, 17th, 18th and 20th blades,
400 groups of vibration displacements were chronologically
collected for each blade and the length of each group is equal
to 1024. Vibration displacements of the 7th blade are con-
sidered as the normal samples, and vibration displacements
of the 17th, 18th and 20th blades are used for crack samples.
Then 400 groups of normal samples are used to train the 4-
layer VampNet model shown in Figure 3 and the learning rate

FIGURE 17. Measured rotating speed and vibration displacements of the
7th blade.

is set as 0.001. After that, the trained VampNet model is used
to reconstruct the order spectrum of all normal samples and
crack samples, respectively.

ii) The Campbell diagram of the cracked blade can be
obtained in advance by using finite element simulations,
which is shown in Figure 18. It can be seen that the rotat-
ing speed corresponding to the same vibration EO tends to
decrease with the size of crack. That is to say, other vibration
EOs may appear in the range of 7710∼8731 rpm due to the
crack. Based on it, the amplitudes at the 13th, 13.5th, 14th and
14.5th EOs in the reconstructed order spectrum are selected
as the candidate monitored variables.

iii) Similarly, time series of all monitored variable are
generated by using the normal samples and then the ADF
test is carried out. The result shows that the amplitudes at
the 13.5th and 14.5th EOs are cointegrating variables. Then
the cointegrating vector is estimated as [-7532, 5514] by
using the Johansen estimation. The cointegrating vector is
used to calculate the cointegrating residuals of the normal
samples (the 7th blade) and the crack samples (the 17th, 18th

and 20th blades). The results are shown in Figure 19 and
it can be seen that the cointegrating residuals of the crack
samples obviously deviates from those of the normal samples.
Also the deviation tends to increase with the size of crack.
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FIGURE 18. The Campbell diagram of the cracked blade.

In conclusion, 0.9mm crack can be effectively detected by
using the cointegrating residual-based method.

FIGURE 19. Experimental results of crack detection.

VII. CONCLUSION
Due to under-sampling, it is very difficult to apply the BTT
technique to detect blade damages under variable conditions.
For this purpose, this paper proposes a VampNet-based learn-
ing reconstruction method of BTT vibration signals and then
realizes cointegration-based blade damage detection. The fol-
lowing main conclusions can be drawn as follows.

(1) A discrete MCS-based CS model of BTT vibration
signal is built in order domain to deal with variable rotating
speeds, where an IHP window is integrated to reduce order
spectrum leakage in discretization.

(2) The VampNet is introduced and built to achieve learn-
ing reconstruction of BTT vibration signal, which has simpler
architecture, fewer super-parameters and better interpretabil-
ity than classical DNNs.

(3) Based on reconstructed vibration EOs, cointegrat-
ing analysis is proposed for blade damage detection under
variable conditions. In this case, the influences of variable
conditions can be reduced.

(4) The superiority of the proposed method is testified by
Matlab simulations and experimental results.

Frankly speaking, the proposed method in this paper has
its own limitations. Firstly, how to determine the number of
layers in VampNet is not discussed and it is also an open
issue similar to that in classical DNNs. Secondly, the pro-
posed method cannot be used to distinguish single damage
from multiple damages due to the utilization of cointegrating
residual. For this purpose, new damage detection methods
deserve to be studied in future works. Thirdly, the proposed
method also depends on training samples and the generaliza-
tion ability is not discussed. In future works, we will further
carry out other experiments to simulate different operation
conditions and validate the proposed method.

In addition, combining CS with deep learning has become
a future direction, where it is very promising to explore
other potential DNNmodels and novel optimizers (e.g. meta-
heuristic optimization techniques [31]) for BTT vibration
reconstruction.
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