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ABSTRACT The transformer architecture has been focused on many tasks like natural language processes,
vision tasks and etc. The most important and general requirement of using the transformer-based architecture
is that the model must be trained on a large-scale dataset before it can be fine-tuned for a specific task like
classification, object detection and etc. However, in this paper, we find that the transformer architecture
has better generalization capability to capture the features from data samples for sleep stage classification
than CNN-based architectures, despite using a small-scale dataset without pretraining on large-scale dataset.
This outcome contradicts the widely-held belief that a transformer architecture is more effective when
trained on large datasets. In this paper, we investigate the attention behavior of a transformer model and
demonstrate how global and local attentions influence an attention map in a transformer architecture. Finally,
through experiments, we show that restricting global attention using ‘Masked Multi-Head Self-Attention
(M-MHSA)’ can lead to improved model generalization in sleep stage classification compared with the
previous methodologies and original transformer-based architecture on three different datasets.

INDEX TERMS Sleep stage classification, deep learning, transformer.

I. INTRODUCTION
Recently deep learning approaches have been focused on
many tasks such as vision tasks, medical fields, natural lan-
guage processing (NLP) and etc. In particular, convolutional
neural networks (CNNs) have been proven highly effective
for many computer vision tasks such as classification,
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object detection and segmentation tasks. Contrary to CNNs,
recurrent neural networks (RNNs) have shown meaningful
performance on NLP tasks. More recently, a transformer
architecture has gained popularity in various tasks, particu-
larly in NLP tasks. Transformer-based architectures, such as
the transformer [1] and BERT [2] models, have been used
successfully in these tasks due to their ability to capture both
of local and global features through the use of multi-head
self-attention (MHSA) which enables them to understand
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the relationships among the words in a sentence, unlike
conventional CNNs and RNNs. Similarly, in computer vision
tasks, the transformer-based architectures such as the Vision
Transformer (ViT) [3] have been used for image classification
tasks by using the attention mechanism to capture image
features among the different patches of an image.

Many studies in sleep stage classification have used
a CNN-based model architecture to predict sleep stages
from an epoch1 of polysomnography (PSG) using mainly
signal channels such as Electroencephalogram (EEG), Elec-
trooculography (EOG) and Electromyography (EMG) [4],
[5]. Although some recent studies have used transformer-
based architectures, they have received less attention than
conventional CNN-based architectures [6], [7].

In general, transformer-based architectures require a
large-scale dataset for pre-training before fine-tuning spe-
cific downstream tasks to achieve meaningful performance
compared to conventional CNN-based architectures [8].
Therefore, we expect that transformer-based architectures
will achieve lower performance compared to conventional
CNN-based architectures when using small-scale training
PSG records due to a lack of inductive bias [9]. However, the
transformer-based architectures present higher performance
compared to the CNN-based architectures even with small-
scale training PSG records in sleep stage classification. This
result contradicts the commonly accepted knowledge that
transformer-based architectures require a large-scale training
dataset for pre-training to perform better on specific tasks [8].
In this paper, first, we analyze the reason why transformer-

based architecture can obtain the generalization capability
compared to CNN-based architecture. Second, to have a
deeper understanding of the attention behavior of a trans-
former model, we develop a novel approach to restrict the
global attention inMHSA using a masking strategy applied to
the attention map. Through comprehensive experimentation,
we figure out that this restriction strategy can effectively
enhance the model’s generalization ability in sleep stage
classification tasks, leading to performance improvements.

Our contributions can be summarized as follows:
1. In contrast to the well-accepted training guideline for a

transformer architecture, we show that the transformer
model performs better in sleep stage classification
compared to conventional CNN-based architectures,
even when using a small dataset without pre-training
with an extra large-scale dataset.

2. We investigate the reason for the robustness of a
transformer-based architecture and we evaluate the
impact of local and global information by limiting the
locality in the MHSA mechanism using an attention
mask.

3. To enhance the generalization ability, we propose a
novel approach to focus on the local information

1A 30-second interval of PSG data is referred to as an ‘epoch’, and sleep
stage classifications are made for each epoch. It should not be confused with
a ‘train epoch’, which refers to the process of using all the data to train a
model.

using Masked Multi-Head Self-Attention (M-MHSA).
When applying the M-MHSA in transformer-based
architecture, the model can improve performance.

II. RELATED WORKS
A. SLEEP STAGE CLASSIFICATION
In sleep stage classification, sleep experts determine the
class of a sleep stage for a given epoch according to the
Rechtschaffen and Kales (R&K) [10] or American Academy
of Sleep Medicine (AASM) [11] criteria. In AASM criterion,
the sleep stage was classified into 5 classes such as Wake,
Non-REM1 (N1), Non-REM2 (N2), Non-REM3 (N3), and
Rapid Eye Movement (REM). The sleep stage classification
uses PSG data that consists of various biosensors information
including EEG, EOG, EMG and etc. According to the AASM
sleep standard, PSG records are usually segmented into
30 seconds to determine the specific sleep stages by sleep
experts. To classify the sleep stage into 5 classes, sleep
experts mainly utilize EEG, EOG and EMG channels.

B. CNN-BASED MODEL ARCHITECTURE
In numerous studies [12], [13], [14], [15], researchers
frequently employ CNN-based models to extract time-
invariant features from an epoch data. In general, a CNN-
based architecture is adopted well in capturing the ‘temporal’
information from the time-varying signal data. In Deep-
SleepNet [12], the authors utilize two convolutional layers
of different sizes to extract distinct features. Typically, the
larger CNN layer captures ‘frequency’ information from
the signal (i.e., frequency components), while the smaller
CNN layer focuses on capturing ‘temporal’ information (i.e.,
when certain of EEG patterns appear such as k-complex)
[16]. Similarly, SleepEEGNet [13] utilizes the same CNN
architecture as DeepSleepNet. However, they adopt an
encoder-decoder architecture instead of employing an RNN.
ResNet+LSTM [14] utilizes a ResNet architecture to extract
features from the epochs of EEG signals. AttnSleep [15]
employs attention mechanisms, including adaptive feature
recalibration and causal convolutional multi-head attention,
to extract meaningful features from epoch samples.

Typically, in order to achieve the generalized prediction
performance with a small-scale training set, most of the
approaches utilize CNN-based architectures, which have an
inductive bias, instead of using transformer-basedmodels [9].

C. TRANSFORMER-BASED MODEL ARCHITECTURE
The transformer is a widely-used deep learning model
architecture designed specifically for processing sequential
data such as NLP and time series analysis. It utilizes
‘‘self-attention’’ mechanisms, allowing the model to learn
relationships between elements in the sequence without
relying on recurrence or convolutions [1]. In recent years,
in addition to sequential data processing, the transformer
architecture has seen success in a variety of vision tasks.
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TABLE 1. Class distributions of SHHS public PSG dataset.

It is worth noting that in general, transformer architectures
are known to require a larger amount of data samples than
CNNmodels in order to achieve comparable performance [1],
[2], [3], [17]. This is because transformer-based models lack
the inductive bias which is presented in the CNNs but the
inductive bias can limit their ability to generalize to new data
with fewer training samples [3], [8].
Sleep stage classification tasks, like vision tasks, also

make use of attention mechanisms in transformer-based
architectures. To extract inner and inter features from
raw signals, two transformer-based encoder blocks are
employed [6]. SleepTransformer [7] utilizes a transformer-
based architecture to extract features using spectrogram
images which are obtained from epoch samples by applying
Fourier transform, and further it employs an entropy-based
method to quantify uncertainty.

III. SLEEP STAGE CLASSIFICATION: DATASETS AND
MODEL
A. DATASETS
We use three datasets for our analysis: the SHHS [18],
[19] public dataset, Institution-A dataset and Institution-B
dataset. Institution-A and Institution-B datasets are collected
from different hospitals using a Noxturnal software system.
Therefore, the sleep experts of each institution are different.
The sampling rates of the signals in the SHHS, Institution-
A and Institution-B are 125 Hz, 200 Hz and 200 Hz,
respectively.

Table 1, 2 and 3 present the distribution of sleep stages on
the datasets used in this experimental study. The number of
PSG records in SHHS, Institution-A and Institution-B dataset
are 5,550, 582 and 2,266, respectively. The Institution-A
dataset includes various patient records with obstructive sleep
apnea (OSA), encompassing normal, mild, moderate, and
severe cases.

TABLE 2. Class distributions of Institution-A PSG dataset.

TABLE 3. Class distributions of Institution-B PSG dataset.

The ratios of men and women in the Institution-A
dataset are 78.01% (454 records) and 21.99% (128 records),
respectively. In addition, the mean and standard deviation of
age in Institution-A dataset are 48.74 and 15.47, respectively.
The statistical characteristic (mean and standard deviation) of
the AHI-index in the Institution-A dataset is 47.07 ± 30.09.
The individual statistical characteristic of the AHI-indices for
normal, mild, moderate and severe cases are 1.71± 1.03 (21
records), 9.58±3.10 (66 records), 22.65±4.46 (113 records)
and 63.26 ± 24.02 (382 records), respectively.
The demographic information for the ‘‘Institution-B’’

dataset is not available due to the strict data protection rules
of the Institution-B. The dataset is divided into training,
validation, and test sets with a 70:15:15 ratio on SHHS,
Institution-A and Institution-B datasets. Therefore, the num-
bers of PSG records for a test set in SHHS, Institution-A and
Institution-B are 832, 91 and 340, respectively. In addition,
to verify the generalization ability, we utilize various numbers
of PSG records for training the model (50, 100, . . . , 400).

The distribution of sleep stages for the patients with
severe OSA differs from that of the patients with normal
OSA, as seen in the SHHS. In particular, the institution-
A dataset consists of a relatively large distribution of N1.
On the contrary, the distribution of N3 is smaller than
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FIGURE 1. CNN-based model architectures: (a) a DeepSleepNet
architecture and (b) a ResNet-based architecture.

SHHS dataset. We mainly use the ‘‘C3-A2’’ and ‘‘C3-M2’’
single EEG channels to classify sleep stages for SHHS and
Institution datasets, respectively. Finally, two preprocessing
approaches are applied to PSG record data. First, the band-
pass filter is used to extract signal information within
0.5-35 Hz range, following the AASM criterion. Second, the
z-score normalization is used to rescale the values to improve
robustness and convergence speed.

B. MODEL ARCHITECTURE
To investigate the effect of deep learning models on the
accuracy and the sensitivity with regard to the size of training
dataset, we employ various backbone model architectures:
DeepSleepNet, ResNet-based model and a transformer
model. Through the experiments with those backbone
models, we attempt to search the robust architecture when
training the model with a limited number of samples.

Figures 1 and 2 present the detailed structures of the
models employed for sleep stage classification. In the CNN-
based model architecture, we use DeepSleepNet architecture
shown in Fig. 1(a) and ResNet-based CNN architecture
shown in Fig. 1(b).
For the transformer-based model architecture shown in

Fig. 2, we only utilize encoder blocks for extracting features
from an epoch such as ViT [3]. Before inputting the signal
into the encoder block in the transformer architecture, the
signal is divided into sub-patches and then passed through
an embedding layer. For dividing patches from an epoch,
we use sliding window algorithm [20]. We use window
size (W = 200(sampling rate) × 4(sec)) and stride (S =

200(sampling rate) × 2(sec)) to divide the patches from
an epoch. According to the sliding window method, each
patch has 4-second information with 2-second overlapping
between adjacent patches [21].
Therefore, the number of patches (P) can be calculated as

follows:

P =
200(sampling rate) × 30(sec) −W

S
+ 1 (1)

From Eq. 1, we know that 14 patches (i.e., (200 ×

30 − 800)/400 + 1) are generated from an epoch sample.
Then, the generated 14 patches pass through an embedding
layer and corresponding embedding latent vectors are used
as an input for a transformer model. For the embedding,
we aim to incorporate the inductive biases formed by a CNN
into the transformer model through the use of a CNN-based
embedding layer instead of a linear projection such as the
architecture used in [22].
As shown in Fig. 2, the CNN-based embedding layer block

consists of 5 small-sized stacked convolution layers, each
with a Rectified Linear Unit(ReLU) and batch normalization.
In the transformer block, we employ three encoder blocks that
consist of an MHSA and an FFN. In this work, 8 heads are
used in the MHSA to extract various attention scores using
queries, keys, and values.

C. MODEL TRAINING
In this paper, we not only focus on identifying a suitable
model for extracting important features from an epoch
sample, but also aim to achieve generalized performance
with limited amounts of data. The limited number of data
samples is a common problem in medical applications. As a
result, it’s crucial to build a model with high accuracy and
strong generalization capabilities using only a small number
of samples.

To assess the generalization abilities of different model
architectures, we train the three different model architectures
while keeping the hyperparameters constant. The Adam
optimizer is used for training with a learning rate of 0.0001,
and a batch size of 512. No data augmentation techniques
are applied during training as it was observed that the model
performance decreases when techniques such as flipping,
jittering, scaling, and shifting are used. A cosine schedule
is employed to regulate the learning rate over the training
epochs.

D. NEW MASK DESIGN FOR CONTROLLING ATTENTION
RANGE
The equations for an original MHSA can be expressed as
follows [1]:

MHSA=concatenate(H1,H2, . . . ,HN )WO

(2)

Hi = SelfAttention(Qi,Ki,Vi) (3)

SelfAttention(Qi,Ki,Vi) = softmax(
QiKT

i
√
dk

)Vi (4)

In the equations, Qi, Ki and Vi are the query, key and value
embedding vectors, respectively, to utilize self-attention (Hi)
for the i-th head in anMHSAand those embedding vectors are
derived from input patches. dk is the dimension of the keys.
WO is a weight matrix for a fully connected layer in MHSA.
The originalMHSA inside encoder layers does not use amask
filter to restrict the use of specific patches. Therefore, the
original MHSA can utilize all the patch information without
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FIGURE 2. Overall of the transformer-based architecture. The transformer-based model consists of 3 modules embedding layer,
MHSA and FFN.

FIGURE 3. Adding an attention mask Mv to constraint the range of attention between patches in the masked self attention
map.

any constraint on the local and global relations between the
patches.

In this paper, we observe that a transformer-based archi-
tecture attains generalized performance even though using
the small-scale dataset for sleep stage classification. The
observation goes against the commonly held notion that a
transformer requires large amounts of data for achieving good
accuracy due to its lack of inductive bias. To investigate the
reason behind a transformer-based architecture outperforms
a CNN-based architecture in our sleep stage classification,
we propose ‘Masked MHSA’ (M-MHSA) which can control
the range of the global information considered within the
MHSA.

The masked attention mechanism used previously in
transformer-based language models is typically implemented
by adding a mask to the dot-product attention calculation.
The mask is applied to the attention scores, which are used
to weight the representation of different elements in the
sequence. The mask is usually implemented as a matrix

with large negative numbers (-∞) in the positions where
attention should be prohibited, and zeros in the positions
where attention is allowed. The mask is added to the attention
scores before they are passed through a softmax function
to produce the attention weights. In conventional masked
attention in decoder layers, the upper diagonal of the mask is
set to large negative values to remove the attention scores for
masked elements. This makes the attention weights for these
elements close to zero after the softmax function, effectively
removing their impact on the final attention output.

In this work, unlike the previous mask configuration,
in order to constrain and control the range of attentions
over near or far patches, a newly devised masked attention
approach is proposed, where zeros are placed in the main
diagonal and additional neighbor diagonals. The rest of the
non-diagonal part is filled with large negative values. The
resulting mask has a ‘‘band (or banded) matrix’’ shape, which
is a well-known structure in matrix theory [23] but with a
different value arrangement.
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Amask,Mv, for attention can be defined as an n×nmatrix
with view width v, where v is a positive integer, then the i-th
row and j-th column element,Mv

i,j (1 ≤ i, j ≤ n), in thematrix
satisfy the following conditions.

Mv
=

{
M v
i,j = −∞, if |i− j| > v

M v
i,j = 0, else

(5)

In other words, the elements of the matrix outside of the
main diagonal and the diagonals v steps away from it are
set to zero. The main diagonal is represented by the index
difference, |i− j| = 0.

With the definition of the proposed mask, the masked self-
attention (MaskedSA) can be calculated with Eq. 6 as follows:

MaskedSA(Qi,Ki,Vi) = softmax(
QiKT

i
√
dk

+ Mv)Vi (6)

Mv is an attention mask used to limit the scope of the
attention map, as demonstrated in Fig. 3. When v is equal
to 0, the transformer-based model can only utilize self-
patch information. On the other hand, if v is greater than 0,
the model can access much information from more distant
patches (2v+1 patches), including the self-patch.

A small value of v results in the early transformer block
only being able to consider information from nearby patches,
as opposed to using a larger v of a mask. If v is not 0, however,
the deeper transformer block can capture much more global
information than the early transformer block, as the receptive
field is larger in later layers compared to the early layers in
CNNs. The v can be considered like as the size of a CNNfilter
in some sense. In our MHSA model, the proposed attention
mask, Mv, is added to the calculated original attention map,
as shown in Eq. 6.
Our hypothesis is that the enhanced performance of

the transformer-based architecture is contributed from its
capability of effectively regulating the extraction of both
local and global features based on input features from an
epoch data sample, leading to better generalization compared
to a conventional CNN-based architecture. Therefore, when
applying strict local regulation in MHSA, the performance of
the model will decline, while the performance of the model
will increase when applying less regulation in the attention
mask.

E. METHODOLOGY TO MEASURE DISTANCE BETWEEN
DIFFERENT PATCHES (MEAN DISTANCE)
According to Fig. 4, a transformer-based architecture is
shown to have more generalized model performance com-
pared to conventional CNN-based architectures in sleep stage
classification tasks without any pre-training step on a large-
scale dataset. To prove our hypothesis that a transformer-
based architecture can utilize global features well in addition
to local features, we use a metric of ‘‘mean attention
distance’’ to investigate how far a patch attends to other
patches in an MHSA for the given input data, on average.

The mean attention distance is evaluated as the weighted
average of the euclidean distances between the query patch

FIGURE 4. Performance of various model architectures in sleep stage
classification into 5 classes (Wake, N1, N2, N3 and REM) when using a
C3-A2 and C3-M2 signal channel for SHHS and Institution-A dataset,
respectively.

and the other patches in the sequence, where the weights
are given by the attention scores. The intuition behind this
calculation is that the mean attention distance captures ‘‘how
far away (globally related) the important patches are from the
query patch, taking into account their relative importance as
determined by the attention mechanism’’.

The mean attention distance (MDi) for the i-th head of an
MHSA can be calculated with Eq. 9 as follows:

AS(Qi,Ki) = Softmax(
QiKT

i
√
dk

) (7)

Dist(Qi,Ki) ∈ RS×S (8)

Dist(Qi,Ki)j,z = |j− z|1 (9)

MDi =

∑S
j
∑S

z AS(Qi,Ki)j,z · Dist(Qi,Ki)j,z
S

(10)

AS(Qi,Ki) and Dist(Qi,Ki) are the matrices for the
attention score of the i-th head and euclidean distance,
respectively. The elements at the j-th row and z-th column
of the matrices, AS(Qi,Ki) and Dist(Qi,Ki), are denoted by
AS(Qi,Ki)j,z and Dist(Qi,Ki)j,z, respectively.

IV. RESULTS
A. BASIC OBSERVATIONS
When only relying on epoch data, the choice of a model
architecture used to extract the features can result in signif-
icant performance differences, as shown in Fig. 4. In this
paper, we attempt to figure out what is the best backbone
architecture for extracting features from an epoch signal
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FIGURE 5. Mean attention distance of the eight heads in MHSAs at
different encoder block layers. The result is obtained from the use
of 400 PSG records.

in sleep stage classification, especially when the amount
of data is limited. Our results show that the transformer-
based architecture has more generalization capability than
the conventional CNN-based architecture even when only
a small-scale dataset is utilized. This result contradicts
common expectations regarding transformers. Thus, we aim
to investigate the reason for this phenomenon through further
experiments.

B. GENERALIZATION CAPABILITY OF A
TRANSFORMER-BASED MODEL
To analyze and assess the generalization capability of a
transformer-based model while comparing with other deep
neural network architectures, we train multiple models
using a limited amount of patient PSG data. The models
are evaluated in this experiment include DeepSleepNet,
a ResNet-based model and a transformer-based model.
Typically, researchers extract meaningful latent features from
an epoch sample using 1D-CNNs, which are well-suited for
capturing time-invariant information.

Figure 4 shows the performance of the models using
different amounts of training data. Interestingly, the
transformer-based architecture has better generalized perfor-
mance compared to CNN-based models, even with a small
number of data samples and without pre-training processing
about a large-scale dataset.

From the results of Fig. 4, we hypothesize that the gen-
eralized performance of the transformer-based architecture
is due to its ability to effectively manage the extraction of
well-balanced local and global features according to input
features from an epoch data sample, resulting in improved
generalization capability compared to a conventional CNN-
based architecture. To validate the hypothesis, in the next
subsection, we conduct multiple experiments to investigate
the attention behavior of the MHSA in a transformer
architecture in depth.

C. MEAN ATTENTION DISTANCE TO CONFIRM GLOBALITY
IN MHSA
In this section, we analyze the MHSA to verify the globality
based on mean distance. According to Eq. 9 in Sec. III-E,

FIGURE 6. The average of mean attention distances in the heads of an
MHSA for varying amounts of dataset in training.

FIGURE 7. The standard deviation of mean attention distances in the
heads of an MHSA for varying amounts of dataset in training.

when the mean attention distance is low, a self-attention head
focuses on local information more than global information.
On the other hand, when the mean attention distance is
high, the head focuses on global information more than local
information. As you can see in Fig. 5, in the encoder block
(Block1) at a shallow layer, there are cases where certain
heads (i.e., Head 4 and Head 6) in the MHSA utilize local
information more than global information, while in the other
cases, different heads utilize global information more than
local information.

This result implies that the MHSA (Block1) at the shallow
encoder layer considers both local and global information.
On the other hand, when the encoder layer becomes deeply
located (i.e., Block2 and Block3), it can be seen that the
mean attention distances of all heads become high, which
means that all the heads are focusing on utilizing global
features rather than local features. In other words, both
local and global information are utilized in the MHSA
(Block1) of the shallow layers while global information is
more strongly utilized in the MHSA (Block2 and Block3)
of the deeper layers. Compared to CNN architectures,
the MHSAs of a transformer architecture can exploit the
more globally correlated information between the patches of
epoch data. From Fig. 5, we guess that the more globally
attended information obtained through the transformer makes
it possible to achieve higher prediction accuracy even with a
small size dataset in our sleep stage classification.

Figures 6 and 7 show how the ‘‘averaged mean attention
distance’’ and the ‘‘standard deviation of the mean attention
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distances’’ vary according to the size of training dataset. The
averaged mean attention distance is the average value of all
mean attention distance (MDi) over all eight heads at a certain
block layer. For an example, in Fig. 6, ‘‘B1-MD’’ is the
average value of all the mean attention distance for all the
heads in the Block1. On the other hand, in Fig. 7, ‘‘B2-Std’’
is a standard deviation of mean attention distances of all the
heads in the MHSA of the Block2.

In general classification tasks, the layer that has the greatest
influence is usually the layer closest to the output. So, the
attention behavior in the MHSA of the output layer was
investigated, and it was observed that the MHSA of the last
encoder layer utilized global information primarily regardless
of the amount of training data. As presented in Fig. 5, the
mean attention distances of all the heads in Block3 (the
block closest to output) are evaluated as high and it means
that the MHSA in the block near an output layer has an
attention pattern of more globally correlated among patches.
Accordingly, the average mean attention distance of the
Block3 (B3-MD) is always evaluated as high between 1.7 and
1.8 regardless of the amount of training data in Fig. 6.
Unlike B3-MD, B1-MD (the averaged mean attention

distance of the Block1 which is the block closest to input)
is reduced as the size of a dataset increases as shown in
Fig. 6. The result implies that the MHSA near an input side
has the attention behavior of decreasing global attention
and increasing local attention as the number of train data
sample increases. It is note worthy that the globally activated
attentions are observed in the MHSA of the encoder block
near an input side when the size of data sample is small.

In the case of the CNN, unlike the attention behavior
of a transformer architecture, the convolution layer near an
input size has a small and limited receptive field, which
means that it uses only local information regardless of a
dataset size. We believe that this is a key difference between
our transformer architecture and a CNN architecture and
the performance difference between the two architectures
is derived from the difference particularly in the case of
employing small-sized dataset.

From the experimental result of the sleep stage classifi-
cation showing that a transformer architecture shows better
performance than a CNN architecture when a small size
dataset is available, we guess that the global information
works as a much critical feature for classifying a sleep stage
when the dataset size is small and such a property of the
sleep stage classification is well exploited in the MHSA of a
transformer architecture which has a capability of exploiting
much global information extracted from the epoch sample
than a CNN architecture.

D. BALANCING BETWEEN GLOBAL AND LOCAL FEATURES
USING MASKED MHSA BY CONTROLLING THE RANGE OF
ATTENTION IN AN MHSA
It is shown that a transformer-based model can achieve more
robust performance even when using a small-scale dataset,
compared to other CNN-based models in our application

FIGURE 8. The observed patterns of attentions in an MHSA of the Block3
according to the various v of an attention mask. 50 PSG records are used
for the training.

domain. In the previous section, with the mean attention
distance derived from the three different MHSAs at the
different layers of a transformer model, we analyzed the
attention behavior of the results and we infer the possible
interpretation for the results.

To analyze the more detailed working mechanism of an
MHSA in a transformer-based model, we investigate the
patterns of patch interactions using the attention score matrix.
After then, we use M-MHSA presented in Section III-D to
constrain the degree of global attention in the M-MHSA by
changing the value of view width, v, of the M-MHSA.

Figure 8 shows the reconstructed attention map utilizing
the attention mask as given in Eq. 6. Adding an attention
mask with a larger v (e.g., the attention map given at the right
bottom with v = 13 in Fig. 8) to the original attention score
results in the masked attention map that utilizes more global
correlations between patches. On the other hand, adding a
mask with a smaller v (e.g., the attention map given at the
left top with v = 0 in Fig. 8) to the original attention score
results in the masked attentionmap that focuses onmore local
patch interaction. In consequence, by changing the value of
v, we can control the range of attention so that we can limit
the globality of the attention in an M-MHSA. Then, the final
masked self attention map can be adjusted to incorporate ‘‘the
desired locality or globality level of the attentions between
patches’’ into the M-MHSA as presented in detail in Fig. 3.

We investigate the impact of the attention range that can be
controlled by the attention mask, Mv, on the performance of
a transformer architecture by conducting several experiments
while varying the value of v in the attention mask of
the M-MHSA. The experiments aim to figure out the
performance impact of constraining the range of attentions
of an M-MHSA in our sleep stage classification.
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From Fig. 8, we observe that a transformer model tries
to obtain global information as much as possible under a
given constraint. When the attention range is limited by v,
the attentions between the most distant patches are generally
higher than the attention between the locally correlated
patches (near diagonal in the figure). We think that we can
find the best value of v of an M-MHSA in order to achieve an
optimal performance.

In order to evaluate the importance of the attention range
for the performance of a transformer architecture, we utilize
an attentionmask to control the attention range. Table 4 shows
the accuracy performances of a sleep stage classification with
a transformer architecture while using various v (from 0 to 13)
of attention masks and various numbers of PSG records
(from 50 to 400). Note that we use only single ‘‘C3-M2
channel’’ data from the PSG records.

When a view width, v, is set to zero to totally eliminate
the attentions between two different patches in an epoch
sample and to consider the case of utilizing only the inner-
patch information (the attention map is presented with v =

0 in Fig. 8), as presented in Table 4, the performance
of the transformer-based model is lower than that of the
transformer-based model with other larger v trivially since no
information between patches is utilized.

On the other hand, when v becomes larger than 0, the
performance increases and the increase stops at a certain v
(this is an optimal v in terms of performance) between 0 and
13. It is noteworthy that when v is more than 2, the model
can achieve the performance similar to that obtained without
an attention mask (i.e., v = 13 and this is the case of fully
utilizing all the attention information between patches so all
possible local and global information are used).

Even though v is less than 13, limiting the attention range,
the M-MHSA at deeper encoder layers can obtain more
global attention information compared to the M-MHSA at
the earliest layer near the input side. This is similar to
the larger receptive field at deeper layers of a CNN-based
architecture. It is also interesting to see that the model
achieves higher performance with smaller v than that of using
larger v for attention masks. We guess this happens because
the restriction on the attention range of anM-MHSA prevents
overfitting caused by too much global information and it also
injects a local inductive bias into the encoder blocks of a
transformer model [24].
From the results presented in Fig. 5, 6 and 7, the

transformer-based architecture has attention to various ranges
of attention information inside the early encoder block (i.e.,
Block1) while it has attention to global information inside the
deep encoder block (i.e., Block3) when the model utilizes a
sufficient amount of the dataset (i.e., 400 PSG records).

A moderately M-MHSA is shown to make a transformer
model well-suited for the inherent range of inter-patch
correlation in the input data samples for a specific application,
i.e., sleep stage classification. Such a moderately constraint
M-MHSA can make earlier layers to focus on local inter-
patch interactions while the global attention between long

TABLE 4. Model performance when using various v (0 to 13) for the
attention masks in M-MHSA and different numbers (50 to 400) of PSG
records including C3-M2 channel data. Red and blue colors mean first
highest performance and second highest performance compared to
different v with the same number of training PSG records, respectively.

TABLE 5. Model performance when using various v for the attention
masks in M-MHSA with multi-channel signal data. For the experiment, 50
PSG records are used for training. Red and blue colors mean first highest
performance and second highest performance compared to different v
with the same channels, respectively.

distant patches is exploited well at deeper layers with more
emphasis. Finally, the model can achieve higher performance
than that without M-MHSA by controlling v properly in the
M-MHSA.

Since the multi-channel sleep stage classification using
multiple bio-signal channel data is also an important problem
in addition to single channel sleep stage classification,
we conduct another experiment with the multi-channel input
signals which are available from PSG records. Table 5
shows the performances for the cases of using various v
(from 0 to 13) of attention masks while increasing channels.
Note that ‘‘+ Channel-Name’’ in Table 5 means that the
channel is added additionally. So, the results in the second
column, ‘‘C3-M2’’ implies the case of using the single C3-M2
channel. On the other hand, the third column, ‘‘+C4-M1’’,
include the results of using two channels, C3-M2 and C4-M1.
With continuous additions, the results in the last column,
‘‘+Chin’’ implies the case of using all the channels, C3-M2,
C4-M1, E1-M2, E2-M1 and Chin.
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TABLE 6. Model performance when using various model architectures when using 50 and 400 PSG records. The C3-A2 and C3-M2 channels are used for
training SHHS and Institution-A/Institution-B, respectively. Red and blue colors mean first highest performance and second highest performance
compared to different model architectures, respectively.

The experimental results in Table 5 is obtained from a
model trained with 50 PSG records. The result of Table 5
is similar to Table 4 from the perspective that there exists
an optimal value of v between 0 and 13. Lastly, we find out
that the capability of utilizing proper range of attention in
an M-MHSA of a transformer architecture helps to improve
its performance and the use of an appropriate v of masked
attention in the M-MHSA can enhance the generalizability
of the model in sleep stage classification tasks.

E. VALIDATION IN OTHER DATASETS
In addition to two datasets (SHHS and Institution-A),
we use another dataset (Institution-B) that is collected
from a different medical institution in order to show the
experimental reliability and consistency on the performance
superiority of a transformer architecture particularly for a
sleep stage classification task. To evaluate the performance
on the Institution-B dataset, the models are trained on the
Institution-B training dataset using 50 and 400 PSG records
and then evaluated on the test dataset from the Institution-B
dataset.

Table 6 shows the performance obtained through evaluat-
ing the various model architectures with SHHS and our two
datasets (Institution-A and Institution-B). The transformer-
based architecture achieves higher performance compared
to traditional CNN-based architectures when using both of
50 and 400 PSG records to train the model.

Specifically, even when using a small number of PSG
records (50 PSG records) to train the models, the transformer-
based architecture with our M-MHSA attains 1.404%,
5.343% and 4.010% higher accuracy than different CNN-
based architecture on SHHS, Institution-A and institution-B
datasets, respectively. When we use a large number of
PSG records to train the model, transformer-based archi-
tecture also achieves 0.828%, 1.845% and 1.918% higher
accuracy on SHHS, Institution-A and Institution-B datasets,
respectively. The proposed method achieves better weighted
accuracy excluding Institution-B dataset with 400 PSG
records compared to the original transformer method which
does not include M-MHSA. Transformer-based architecture
already obtains better overall performance compared to
conventional CNN-based architecture. Specifically, one of
the main goals is to improve the generalization ability
utilizing aM-MHSA to reflect globality restriction inMHSA.
According to Table 6, the proposed method outperforms
different model architectures including original transformer-
based architecture evenwith small-scale training PSG records
in which case the probability of falling into overfitting is high.

V. CONCLUSION
In this paper, we analyzed three representative deep learning
model architectures for sleep stage classification tasks
and we aimed to determine a suitable backbone model
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architecture for extracting meaningful features from a PSG
dataset, particularly under the limited data availability.
Traditionally, the most prevalent backbone architectures
utilized in sleep stage classification have been CNN-based
architectures. Recently, transformer-based architectures have
been introduced by some researchers. However, they have
not received as much attention as CNN-based architectures.
In our experiments, we observed that a transformer-based
architecture outperforms conventional CNN-based archi-
tectures, even when using a small amount of data. This
result is intriguing, as typically transformer architectures
require a large dataset for pre-training before fine-tuning
in a specific task. However, in our experiments on the
sleep stage classification task, the transformer-based archi-
tecture achieved the highest performance without any pre-
training step on the well-known public dataset (SHHS)
and two our own datasets (Institution-A and Institution-B
datasets).

To understand the reason for these uncommon results
obtained from the performance evaluations, we conducted
additional experiments and analyzed the detailed behavior of
the transformer architecture. For the analysis, we particularly
investigated patterns of attentions in the MHSA of the trans-
former architecture and we found that the MHSAmechanism
in the transformer allows the model to extract more useful
latent features from an epoch sample data depending on the
number of train samples, i.e., the size of a dataset. In addition,
by introducing an attention mask utilizing the shape of a band
matrix for controlling the range of attention between patches,
we can improve the classification performance further by
assigning an optimal value to a view width, v, of an attention
mask.
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