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ABSTRACT The combination of q-spherical fuzzy sets and rough sets has emerged as a useful paradigm for
fuzzy mathematics and decision-making. The hybrid structure of q-spherical fuzzy sets and rough sets has
shown to be useful in the fields of fuzzy mathematics and decision-making. The primary goal of this research
is to present Einstein’s operational principles for q-spherical rough numbers (q-SFRNs). The fundamental
goal of this research is to develop geometric aggregation operators (AOs), such as q-spherical fuzzy rough
Einsteinweighted geometric (q-SFREWG) and q-spherical fuzzy rough Einstein orderedweighted geometric
(q-SFREOWG) operators.Wewill look at the idempotency, boundedness, and other theorems linked with the
suggested AOs. Recognizing the importance ofmulti-criteria decision-making (MCDM) in dealingwith real-
world difficulties, it is important to note that traditional MCDM procedures sometimes provide contradicting
outcomes. Using the proposedAOs, this study presents a robustMCDMapproach designed to address picture
understanding and interpretation issues inside the q-SFRS framework. In addition, a complete comparative
study is carried out to assess the suggested method’s efficacy and value in comparison to existing procedures.
The findings from these comparison investigations show that our developed technique outperforms current
approaches. The study emphasizes the expanded capabilities of the suggested technique in resolving the
complexities of picture perception and interpretation within the q-SFRS environment, bringing a potential
addition to the field of decision-making and fuzzy mathematics.

INDEX TERMS q-spherical fuzzy rough sets, Einstein operators, MCDM involving image understanding
and interpretations.

I. INTRODUCTION
Zadeh [1] introduced the concept of fuzzy sets, which
inspired subsequent extensions such as interval-valued fuzzy
sets (IVFSs) [2], Atanassov’s intuitionistic fuzzy sets (IFSs)
[3], and interval-valued intuitionistic fuzzy sets (IVIFSs)
[4] as alternative structures within the fuzzy set framework.
However, Zadeh’s study [5] and other studies [6], [7] have
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demonstrated that Atanassov’s intuitionistic fuzzy sets (IFS)
and IVFSs are mathematically equal. IFS is closely linked to
the representation of intuitionistic fuzzy information, neces-
sitating a thorough understanding of both intuitive fuzzy
sets and aggregation methods [8]. The concept of IFSs has
evolved, allowing non-membership and membership func-
tions to take interval values, leading to the development of
interval-valued intuitionistic fuzzy sets (IVIFSs) [9]. IVIFS
offers a more complicated representation of uncertainty and
imprecision in fuzzy set theory. The invention of intuition-
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istic fuzzy numbers (IFNs) was a significant step towards
determining decision outcomes. To elaborate, Xu [10] pre-
sented other aggregation operators, including IFWA, IFOWA,
and IFHA, and detailed their unique properties. Notably,
Xu and Yager [11] introduced three new geometric aggre-
gation operators for IFNs: IFWG, IFOGA, and IFHG. The
application of these mathematical principles to a wide range
of topics and situations is intriguing. Zeng and Su [12]
examined the development of an intuitionistic fuzzy ordered
weighted distance (IFOWD) operator and its use in group
decision-making for system selection. Their finding throws
light on this vital location, paving the way for future discov-
eries. The IFOWD operator shows fascinating applications
throughout a wide spectrum. When decision-makers express
preference values like ζA = 0.6 and ξA = 0.7, the total
of both values exceeds 1. This violates the criterion of an
intuitionistic fuzzy set. Yager’s Pythagorean fuzzy sets [13]
solve these problems by ensuring that

(
(ζA)

2
+ (ξA)

2)
≤

1. Pythagorean fuzzy sets are recognized to manage uncer-
tainty better than intuitionistic fuzzy sets (IFSs), making
Pythagorean fuzzy set theory a more popular and exciting
research topic. Yager and Abbasov [14] developed many
aggregation approaches to address Multiple Criteria Decision
Making (MCDM) issues in the Pythagorean fuzzy frame-
work. The neutrosophic set [15] is a remarkable extension
of conventional fuzzy sets that leads to neutrosophic cubic
sets [16]. According to the existing literature, major research
efforts have been focused on the study of neutrosophic sets
(NSs), neutrosophic cubic sets (NCSs), and the accompa-
nying aggregation operators. Alia et al. [17] investigate the
notion of NCSs and their use in pattern recognition. Further-
more, Je [18] developed operations and aggregation methods
specifically for NCSs. Ajay et al. [19] used geometric Bon-
ferroni mean operators for multicriteria decision-making
(MCDM) using neutrosophic cubic sets (NCSs). Coung and
Kreinovich [20] introduced the concept of picture fuzzy sets,
with the restriction that the sum of all memberships lies
inside the interval [0,1]. In more recent work, Atta et al. [21]
used the notion of neutrosophic sets (NSs) in an upgraded
picture steganography system that is based on modifica-
tion direction. Gundogdu and Kahraman [22] developed the
notion of spherical fuzzy sets (SFS) and its associated the-
ory, describing it as a unique extension of fuzzy set theory.
This paradigm is differentiated by its triple membership
structure, which contains membership, non-membership, and
hesitation functions. They look at the positive, neutral, and
negative membership functions with total squares equal to
or less than one. In dealing with uncertainty, imprecision,
and vagueness, the SFS model surpasses Pythagorean fuzzy
sets. A thorough examination of the most recent literature
demonstrates a growing preference for investigations into
SFS. Ashraf and Abdullah [23] developed a set of aggrega-
tion strategies, particularly for a spherical fuzzy framework.
Ashraf et al. [24] took a unique approach by providing a
grey technique (GRA) based on the groundbreaking notion

of spherical linguistic fuzzy Choquet integrals. Furthermore,
Jin et al. [25] developed and utilized logarithmic operators
designed for spherical fuzzy sets (SFSs) in decision sup-
port systems. Rafiq et al. [26] introduced a cosine similarity
measure tailored particularly to the SFS model, intending to
improve decision-making in scenarios including ambiguous
and imprecise data. Furthermore, Ashraf et al. [27] pro-
posed a group decision-making technique customized for
the spherical fuzzy environment and used it to solve chal-
lenges in multi-criteria group decision-making (MCGM).
Gundogdu et al. [28] updated the well-known VIKOR tech-
nique to include the spherical fuzzy set (SFS) model and
used it in a Multi-Criteria Decision Making (MCDM) con-
text within a spherical fuzzy setting. Acharjya and Rathi [29]
proposed an integrated decision-making approach that com-
bines fuzzy rough sets and genetic algorithm models. They
evaluated its effectiveness in a relevant MCDM scenario
about smart agriculture. Sharaff et al. [30], [31] investigated
a fuzzy-based technique for text summarization extraction
and proposed a document categorization strategy based
on a fuzzy clustering algorithm. Gou et al. [32] devel-
oped exponential operating rules for interval fuzzy sets
(IFSs) and innovative aggregation operators for the IFS
framework. Gou et al. [32] created new exponential oper-
ating laws for the Pythagorean Fuzzy Set (PFS) model,
as well as aggregation operators based on these laws,
to improve the management of uncertainty, imprecision, and
ambiguity in data. Furthermore, Borg et al. [33] developed
decision-making projection models based on PFS exponen-
tial operational laws, whereas Haque et al. [34] expanded the
notion of SFS by integrating exponential operational laws.
Akram et al. [35] investigated spherical fuzzy graphs and pre-
sented results on symmetric difference, rejection, degree,
and total degrees. In a different setting, Ashraf et al. [36]
developed a unique integrated strategy by combining estab-
lished Multi-Criteria Decision Making (MCDM) techniques
such as the Strategy for Order of Preference by Similar-
ity to Ideal Solution (TOPSIS) and Complex Proportional
Assessment of Alternatives (COPRAS). Using this integrated
method, they addressed a Multi-Criteria Group Decision-
Making (MCGDM) difficulty in emergency response during
the COVID-19 pandemic. Quek et al. [37] proposed fresh
operational concepts for the T-SFS model, as well as two
versions of Einstein aggregation operators tailored partic-
ularly to these models. They then used these operators
to solve a multi-attribute, multi-perception decision-making
issue with pollution levels in five major Chinese cities.
Aydogdu and Gul [38] presented a new entropy measure
designed particularly for the SFS model and conducted a
performance comparison with current measures in the liter-
ature. Shishavan et al. [39] developed Jaccard, exponential,
and square root cosine similarity metrics in a spherical fuzzy
environment and used them to solve Multi-Criteria Deci-
sion Making (MCDM) problems in medical diagnostics and
supplier selection. Ali et al. [40] paved the road for compli-
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cated T-SFSs, defining associated operational concepts and
offering two novel aggregation operators designed specifi-
cally for this architecture. Similarly, Garg et al. [41] proposed
power aggregation operators for the T-SFS model and devel-
oped an MCDM approach using these operators. In a similar
context, Liu et al. [42] developed the notion of linguistic
T-spherical fuzzy numbers, as well as a weighted aggre-
gation operator and two unique Multi-Criteria Decision
Making (MCDM) algorithms designed for this concept. Fur-
thermore, Guleria and Bajaj [43] described the T-spherical
fuzzy soft set model and its associated aggregation methods.
Sharaf and Khalil [44] applied the widely used MCDM tech-
nique known as Tomada de Decisao Interactive e Multicrite-
rio (TODIM) to the spherical fuzzy environment by adding
SFS-based models into Multi-Criteria Decision Making
(MCDM) procedures. This strategy allows decision-makers
to communicate their levels of reluctance. Meanwhile,
Mathew et al. [45] suggested a novel decision-making frame-
work that combines the well-known Analytic Hierarchy
Process (AHP) and the Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS) techniques in a
spherical fuzzy environment. Gundogdu and Kahraman [45]
proposed the idea of Interval Valued Spherical Fuzzy Sets
(IV-SFS) and provided key supporting concepts for this
model, such as score and accuracy functions, arithmetic,
and geometric mean operators. Sharaf and Khalil [44] used
the widely used MCDM technique, Tomada de Decisao
Interactive e Multicriteria (TODIM), to a spherical fuzzy
environment by combining SFS-based models into Multi-
Criteria Decision Making (MCDM) procedures. This method
allows decision-makers to communicate their levels of reluc-
tance. Meanwhile, Mathew et al. [45] developed a novel
decision-making framework that combines the well-known
Analytic Hierarchy Process (AHP) and Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS) algo-
rithms in a spherical fuzzy environment. Gundogdu and
Kahraman [46] developed the notion of Interval Valued
Spherical Fuzzy Sets (IV-SFS) and defined keymodel support
concepts including score and accuracy functions, as well
as arithmetic and geometric mean operators. They also cre-
ated a Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS) based on IV-SFS and used it in a
Multi-Criteria DecisionMaking (MCDM) scenario involving
the choosing of 3D printers. Barukab et al. [47] developed an
updated TOPSIS-based solution for the SFS model that was
specially designed to solve issues in Multi-Criteria Group
Decision-Making (MCGDM). They developed a general-
ized distance measure for SFSs based on spherical fuzzy
entropy, with undetermined weights for the criterion. In a
similar vein, Farrokhizadeh et al. [48] used the original max-
imum deviation technique to determine criterion weights in
the spherical fuzzy environment, using both single-valued
and interval-valued SFS. Akram et al. [49] suggested four
separate aggregation operators for the intricate SFS model
and used them to apply the multi-criteria optimization and

compromise solution (VIKOR) approach to the complex
spherical fuzzy environment. Simultaneously, Ali et al. [50]
created a TOPSIS technique based on the complicated SFS
model, as well as two Bonferroni mean aggregation pro-
cesses that were adapted to this model. In their efforts to
remove uncertainty, Kahraman and his research team [51]
proposed the innovative concept of a q-spherical fuzzy set (q-
SFS). This novel concept has been tremendously effective in
encouraging informed decision-making, and it is frequently
viewed as an extension of the standard ‘‘q-spherical fuzzy
set.’’ Each aspect in the q-SFS framework is classified as
either positive, neutral, or negative. It is important to follow
the requirement 0 ≤ (ζA)q + (ηA)

q
+ (ξA)

q
≤ 1. The

q-spherical fuzzy set has a wide range of responses, includ-
ing positive, negative, doubtful, and even abstention from
replying. This condition ensures that the total q powers of
ζA, ηA and ξA are not more than one. The q-SFS with the
parameter q provides decision-makers with a greater variety
of options, allowing them to specify their preferences for
membership, non-membership, and the level of ambiguity.

The concept of rough sets (RS) was first introduced by
Pawlak [52], [53] as a means of dealing with uncertainty.
When examined from a mathematical perspective, this con-
figuration demonstrates attributes that could be construed as
vagueness and indeterminacy. Rough set theory (RST) is a
modification of the traditional set theory, that uses the notion
of connection to elucidate the operations of information sys-
tems. Researchers have acknowledged that the applicability
of the equivalence relation in Pawlak’s relational semantic
theory is subject to notable constraints in a range of real-world
situations, a point emphasized by multiple scholars. Conse-
quently, several researchers have expanded upon Pawlak’s
rough set theory [54], [55]. IFSs, PyFSs, and q-ROFSs,
while serving different purposes, are all confined to binary
choices, such as positive or negative choices. Nevertheless,
it is essential to recognize that individuals’ viewpoints are
never as straightforward as a binary affirmation or negation.
Consider exploring the process of voting as an illustrative
instance. There exist four distinct potential outcomes: casting
a vote in favor (voting yes), casting a vote against (voting no),
refraining from casting a vote (abstaining from voting), or not
participating in the voting process altogether. The specific
incident in question lacks a valid explanation within the exist-
ing recognized framework. It’s worth mentioning that both
the PFS and the SFS can be employed to address such issues,
although they come with their inherent limitations. The uti-
lization of the q-spherical fuzzy set has been identified as the
optimal approach for resolving this problem. Additionally,
it’s crucial to ensure that the existing theories adeptly handle
any possible concerns or challenges within their respective
frameworks or contexts, as exemplified below. The extent of
plagiarism is considerably high. Swift action is imperative
to entirely rectify this matter. The theories of IFRS [56],
PyFRS [57], and q-ROFRS [58], [59] are well-established in
the field and have been acknowledged for their contributions.
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However, it is essential to acknowledge that these theories
encounter substantial limitations when striving to encompass
all three potential grades within a given dataset: positive, neu-
tral, and negative grades. The examination of voting can be
approached through the utilization of a theoretical framework
termed a picture fuzzy rough set (PFRS). Nevertheless, the
existence of lower and upper approximations, represented as(
ζA+ηA+ξA

)
∈ [0, 1] and (ζA+ηA+ξA ) ∈ [0, 1], imposes

certain constraints. The level of plagiarism is excessively
high. Immediate and decisive measures are necessary to
completely address this issue. Nevertheless, it is crucial to
acknowledge that when decision-makers are presented with
information in the format of SFRS, involving both the lower
and upper approximations like {(07,0.8,0.9), (0.9,0.8,0.7)}
and so on, it is important to acknowledge that the combine
values of the lower and upper approximations exceed the
interval [0, 1]. This suggests that the values (0 ̸≤ 0.72 +

0.82 + 0.92 ̸≤ 1) and (0 ̸≤ 0.92 + 0.82 + 0.72 ̸≤ 1) are
inappropriate with the SFRS framework, hence, this imparts
a limitation on the extent to which the SFRS concept can
be effectively applied. To remove this difficulty Azim et al.
[60] defined the notions of q-SFRS in their research paper
published in 2023. Now with information in the format of q-
SFRS, involving both the lower and upper approximations
like (07,0.8,0.9), (0.9,0.8,0.7) and so on, it is important to
acknowledge that the combine values of the lower and upper
approximations do not exceed the interval [0, 1]. This fuzzy
set combines the advantages inherent in both the RS and
the q-SFS. This research introduces a practical approach to
decision-making within the framework of q-spherical fuzzy
rough sets, thereby expanding the existing knowledge in this
field. Within q-SFRS, three distinct parameters involve lower
and upper approximations. Our main objective in this study
is to advance future research by devising novel aggregation
operators alongside defuzzification methods. After a com-
prehensive analysis, it becomes clear that the concept of
q-SFRSs holds substantial potential as an innovative idea,
thereby paving the way for numerous opportunities in future
research endeavors.

A. LITERATURE REVIEW
Image understanding and interpretation play pivotal roles in
the realm of computer vision, finding applications across
diverse domains such as medical diagnosis and autonomous
driving. As this field continues to evolve, researchers have
explored various approaches aimed at enhancing robots’
ability to comprehend visual information. This literature
review provides a comprehensive overview of key advance-
ments, methodologies, and challenges encountered in image
understanding and interpretation. Initially, early efforts in
image understanding primarily relied on conventional com-
puter vision algorithms. These methods, including handmade
feature extraction, template matching, and rule-based sys-
tems, demonstrated effectiveness in certain contexts. How-
ever, their utility was limited when confronted with the

intricate complexity and variability inherent in real-world
images. The advent of deep learning marked a signifi-
cant paradigm shift in image understanding. Convolutional
Neural Networks (CNNs) emerged as the predominant frame-
work, delivering remarkable achievements in tasks such
as image classification, object recognition, and segmenta-
tion. Foundational architectures like AlexNet, VGG, and
ResNet laid the groundwork for subsequent advancements
in deep learning-based image interpretation. Fuzzy logic has
emerged as a valuable tool for addressing uncertainties and
ambiguities present in image data. Fuzzy sets and fuzzy
rule-based systems have been instrumental in representing
imprecise relationships within images. The application of
fuzzy logic in image interpretation has shown promise in
tackling complex scenarios where conventional methods fall
short. Furthermore, rough set theory has been leveraged to
handle uncertainty and granularity in image interpretation.
By encoding image attributes as rough sets, researchers have
achieved enhanced robustness in tasks such as image segmen-
tation and pattern recognition. The flexibility of rough sets
in accommodating imprecision aligns well with the inherent
uncertainties inherent in visual data. Recent research has
focused on integrating fuzzy logic with rough set theory,
giving rise to fuzzy rough sets. This hybrid approach aims to
leverage the strengths of both paradigms, resulting in a more
comprehensive framework for picture analysis. Fuzzy rough
sets offer an adaptable representation of uncertainty, enabling
detailed analysis of image data. To address the limitations of
traditional fuzzy rough sets, q-spherical fuzzy rough sets have
emerged as a promising development. This methodology
introduces a spherical fuzzy set framework, enhancing the
capability to describe and reason about uncertainty in image
data. q-spherical fuzzy rough sets serve as sophisticated
tools for picture interpretation, particularly in challenging
scenarios. The integration of multi-criteria decision-making
techniques into image interpretation has gained traction,
allowing for comprehensive assessments and comparisons of
alternative approaches. Criteria such as accuracy, efficiency,
robustness, and generalization play crucial roles in evaluating
image interpretation algorithms. Understanding the strengths
and limitations of these methodologies is essential for driving
future advancements in image understanding and interpreta-
tion within the rapidly evolving field of computer vision.

B. GAP BEFORE ESTABLISHING OUR PROPOSED
OPERATORS
The preceding gap in the domain of q-SFRsets may be briefly
expressed as follows:

Traditional fuzzy sets helped control uncertainty, but they
struggled to absorb complicated information and effectively
express decision-makers’ preferences. This constraint cre-
ated a gap in decision-making processes, especially when
dealing with complex and unexpected data that required
more efficient treatment. The introduction of q-SFRsets
addressed this gap by improving the ability of conventional
fuzzy sets to handle complicated information. However,
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a critical necessity remained for sophisticated aggregation
operators capable of negotiating the intricacies of q-SFRsets
while accurately conveying decision-makers’ preferences
and uncertainties. Einstein’s operations and operators, such
as q-SFREWG and q-SFREOG, were designed to fill the
current gap. These operators combine the advantages of
q-SFR sets with Einstein aggregation techniques, allowing
for more accurate and adaptive decision-making in complex
and unpredictable circumstances. They provide powerful and
comprehensive ways of gathering information and accurately
reflecting decision-makers’ preferences. In essence, before
the advent of Einstein’s operations and operators, there was a
lack of sophisticated aggregation approaches capable of pro-
cessing complicated information and properly representing
decision-makers’ preferences. Einstein’s operators effec-
tively bridge this gap by incorporating powerful and thorough
aggregation methods into decision-making procedures.

C. MOTIVATION FOR THE PROPOSED OPERATORS
In the field of fuzzy mathematics and decision-making, the
combination of orthopair q-spherical fuzzy sets and rough
sets has emerged as a viable approach. The combination of
these two paradigms provides a distinct viewpoint that has
proven useful in resolving the complexity inherent in real-
world decision-making circumstances. Significant advances
in fuzzy mathematics have been made as a result of the
use of this hybrid structure, notably in the contexts of
uncertainty modeling and decision support systems. The
motivation for this study derives from the practical appli-
cability of q-spherical fuzzy sets in conjunction with rough
sets. As academics continue to investigate novel techniques
to improve the robustness and flexibility of decision-making
processes, the hybrid framework under consideration pro-
vides a convenient scenario in which theoretical advances
may be turned into practical solutions. Einstein’s operational
rules have been extensively recognized for their effectiveness
in a variety of mathematical contexts. Extending these rules
to q-spherical rough numbers (q-SFRNs) offers an attractive
opportunity to expand the theoretical underpinnings of fuzzy
mathematics. This study seeks to contribute to this evolu-
tion by proposing and investigating geometric aggregation
operators (AOs) designed for q-spherical fuzzy rough sets,
specifically q-spherical fuzzy rough Einstein weighted geo-
metric (q-SFREWG) and q-spherical fuzzy rough Einstein
ordered weighted geometric (q-SFREOWG) operators. The
primary motivation for proposing these operators is their abil-
ity to handle basic issues in multi-criteria decision-making
(MCDM).WhileMCDMapproaches are essential for dealing
with real-world difficulties, current methods frequently yield
inconsistent results. The suggested method tries to provide a
robust MCDM technique inside the q-SFRS framework, with
a focus on image understanding and interpretation situations.
Ultimately, the objective of this study is to connect theoretical
advances in fuzzy mathematics with actual decision-making
issues. This work aims to significantly improve image under-
standing and interpretation methodologies by developing and

validating innovative aggregation operators and decision-
making techniques, with potential applications in a variety of
fields characterized by uncertainty and decision complexity.

The primary contributions of our research can be summa-
rized as follows:

This study proposes two innovative geometric aggrega-
tion operators specifically tailored for q-spherical fuzzy
rough sets, namely q-spherical fuzzy rough Einstein weighted
geometric (q-SFREWG) and q-spherical fuzzy rough Ein-
stein ordered weighted geometric (q-SFREOWG) operators.
These operators extend Einstein’s operational principles to q-
SFRNs, offering robust and adaptive aggregation methods for
multi-criteria decision-making (MCDM) tasks.

This research emphasizes the practical applicability of
q-SFRNs and AOs in resolving complexities in image
understanding and interpretation, particularly within the q-
SFRS framework. By integrating these novel techniques into
MCDM processes, we aim to provide a more reliable and
consistent approach to decision-making, addressing the limi-
tations of existing methodologies.

This research article conducts a thorough comparative
analysis to evaluate the efficacy and value of our proposed
method against existing procedures in the literature. Our find-
ings demonstrate that the developed technique outperforms
current approaches, highlighting its enhanced capabilities in
addressing real-world challenges.

By extending Einstein’s operational rules to q-SFRNs and
developing tailored aggregation operators, our study con-
tributes to the theoretical advancements in fuzzy mathematics
and decision-making. This novel integration expands the the-
oretical underpinnings of fuzzy mathematics, paving the way
for practical solutions in various domains characterized by
uncertainty and decision complexity.

This research presents a significant advancement in the
field of fuzzy mathematics and decision-making by intro-
ducing novel q-SFRNs and geometric aggregation operators
tailored for image understanding and interpretation tasks.
We believe that our contributions fill a critical gap in the exist-
ing literature and offer valuable insights for both theoretical
advancements and practical applications.

The comprehensive structure of the paper is shown in
Figure 1.

II. PRELIMINARIES
In this section, wewill look at a variety ofmathematical ideas,
beginning with an in-depth review of FS, IFS, PFS, SPS, q-
SFS, and RS.
Definition 1: In 1965, Zadeh [1] proposed the idea of a

fuzzy set as an extension of the conventional crisp set. The
formal definition of a fuzzy set can be represented mathe-
matically as follows:

A = {⟨ ,ζA ( )⟩ : ∈ X } (1)

where 0 ≤ ζA ( ) ≤ 1.
Definition 2: In 1986, Atanassov [3] proposed the intu-

itionistic fuzzy set (IFS) as an extension of the fuzzy set. The
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FIGURE 1. Structure of the research article.

FIGURE 2. Some graphical representations of fuzzy spaces.

formal mathematical representation of an IFS is as follows:

A = {⟨ ,ζA ( ) , ξA ( )⟩ : ∈ X } (2)

where 0 ≤ ζA ( ) + ξA ( ) ≤ 1.
Definition 3: [13] Let X be a non-empty finite set.

A PyFS A over ∈X is defined as follows:

A = {⟨ ,ζA ( ) , ξA ( )⟩ : ∈ X } (3)

where ζA ( ) and ξA ( ) represent the MD and NMD of A
respectively such that ξA ( ) , ηA ( ) ∈ [0, 1] and where 0 ≤

(ζA ( ))2 + (ξA)2 ≤ 1.
Definition 4: Building on the fundamental principles of

FSs and IFSs, Cuong and his team [20] introduced the idea
of a picture fuzzy set in 2014. Its definition can be expressed
mathematically as follows:

A = {⟨ ,ζA ( ) , ηA ( ) , ξA ( )⟩ : ∈ X } (4)

where 0 ≤ ζA ( ) + ηA ( ) + ξA ( ) ≤ 1.
The following symbols represent the representation of the

membership functions for a fuzzy set in this situation, which
includes positive, neutral, and negative aspects: ζA ( ) ( ):

FIGURE 3. A comparison of the differences between Pythagorean and
intuitionistic fuzzy spaces.

FIGURE 4. Picture membership grade space.

FIGURE 5. The condition 0 ≤ (ζA ( ))2 + (ηA ( ))2 + (ξA ( ))2 ≤ 1
describes a spherical fuzzy set-in three-dimensional space.

X→ [0,1], ηA ( ): X→ [0,1] and ξA ( ): X→ [0,1] respec-
tively.
Definition 5: Gündoğdu et al. [22] introduced the idea of

a spherical fuzzy set in 2019, further advancing the picture
fuzzy set framework. The concept can be expressed in the
following way from a mathematical standpoint:

A = {⟨ ,ζA ( ) ( ) , ηA ( ) , ξA ( )⟩ : ∈ X } (5)

where 0 ≤ (ζA ( ))2 + (ηA ( ))2 + (ξA ( ))2 ≤ 1.
Where the positive, neutral, and negative membership

function for a fuzzy set is represented by ζA ( ): X→ [0,1],
ηA ( ): X→ [0,1] and ξA ( ): X→ [0,1] respectively.
Definition 6: The idea of a q-SFS was introduced by

Kahraman et al. [51] in the year 2020, as an extension of the
existing notion of a spherical fuzzy set. Mathematically, the
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FIGURE 6. Graphical representation between spherical fuzzy set and
q-spherical fuzzy set in three-dimensional space.

concept may be formally defined in the following manner.

A = {⟨ ,ζA ( ) ( ) , ηA ( ) , ξA ( )⟩ : ∈ X } (6)

such that 0 ≤ (ζA ( ))q + (ηA ( ))q + (ξA ( ))q ≤ 1 for
all q ≥ 1. Where ζA:X→ [0,1], ηA: X→ [0,1] and ξA:
X→ [0,1] correspond to the positive, neutral, and negative
membership functions, respectively.
Definition 7: Pawlak [52] introduced the notion of RS in

back 1982. The definition of rough set is as follows: The
triplet (G1,G2, R) is referred to as an approximation space
when considering an arbitrary binary relation R on G1 ×G2.
TheR (A) andR (A) are defined for setsX ⊆G1 andA⊆G2.(

R (A) = { ∈G1 : [ ]A⊆G}

R (A) =
{

∈G1 : [ ]A
⋂
G ̸=φ

}) (7)

where [ ]A represents the idea of indiscernibility.
The set

(
R (A) , R (A)

)
is sometimes referred to as a

rough set.
Definition 8: [60] A q-spherical fuzzy relation R in is a

q-spherical fuzzy subset of G1 × G2. and is given by

R

=
{
⟨(w, ) : ζR (w, ) , ηR (w, ) , ξR (r, s)⟩ :

(
(ζR (w, ))q

+(ηR (w, ))q+(ξR (w, ))q
)

≤ 1 : ∀ w ∈ G1, ∈ G2
}
,

where ζR : X → [0, 1], ηR : X → [0, 1] and ξR : X →

[0, 1].
Definition 9: Azim et al. [60] introduced the concept of a

q-spherical fuzzy rough set, which is defined as:
For a universal set G1 and G2 is a set of attributes. Let R be

a q-SF relation from G1to G2. Then the triplet (G1,G2, R)
is called q-SF approximation space. Now for any element
w ∈ q − SFRS, the lower and upper approximation space of
w w.r.t approximation space (G1,G2, R) are presented and
given as:

A

= (A,A) =

{
w,

(
ζA (w) , ζA (w) , ζA (w) ,

ζA (w) , ζA (w) , ζA (w)

)
: w ∈ G1

}
(8)

FIGURE 7. Graphical representation of q-spherical fuzzy rough set-in
three-dimensional space.

where,

ζA (w) =

∧
∈G2

{
ζR (w, )

∧
ζA ( )

}
,

ηA (w) =

∨
∈G2

{
ηR (w, )

∨
ηA ( )

}
,

ξA (w) =

∨
∈G2

{
ξR (w, )

∨
ξA ( )

}
,

ζA (w) =

∨
∈G2

{
ζR (w, )

∨
ζA ( )

}
,

ηA (w) =

∧
∈U2

{
ηR (w, )

∧
ηA ( )

}
,

ξA (w) =

∧
∈G2

{
ξR (w, )

∧
ξA ( )

}
,

with the condition that (0 ≤ ζA
q (w)+ηA

q (w)+ξA
q (w) ≤

1)) and
(
0 ≤ ζA

q
(w) + ηA

q (w) + ξA
q
(w) ≤ 1

)
.

The q-SFRS is defined as a pair of q-SFSs, where A is
distinct from A. To facilitate comprehension, we denote the
given concept as A = (A,A), which is referred to as a
q-spherical fuzzy rough number. The notation Ai represents
the set that encompasses all q-SFR numbers.
Definition 10: The q-spherical fuzzy rough number A =(
A,A

)
consists of two components:

Lower Approximation Space A: Represents the lower
approximation space of w in the q-spherical fuzzy rough set.
It captures the lower bound of uncertainty associated with the
element w.

Upper Approximation SpaceA: Denotes the upper approx-
imation space of w in the q-spherical fuzzy rough set.
It captures the upper bound of uncertainty associated with the
element w.
Definition 11: [60] Let A1 = (ζ

1
, η

1
, ξ

1
, ζ 1, η1, ξ1),

A2 = (ζ
2
, η

2
, ξ

2
, ζ 2, η2, ξ2) and A = (ζ , η, ξ, ζ , η, ξ ) be

any three q−SFRNs, and ω > 0, then,

1. A1⊕A2

=

〈 q
√

ζ
q
1 + ζ

q
2 − ζ

q
1ζ
q
2, η

q
1η
q
2, q

√(
1 − ζ

q
2ξ
q
1 + 1 − ζ

q
1ξ
q
2

)
− ξ

q
1ξ
q
2,

q
√

ζ
q
1 + ζ

q
2 − ζ

q
1ζ
q
2, η

q
1η
q
2, q

√(
1 − ζ

q
2ξ
q
1 + 1 − ζ

q
1ξ
q
2

)
− ξ

q
1ξ
q
2

〉
,

2. A1⊗A2

=

〈
ζ
q
1ζ
q
2, q

√
η
q
1 + η

q
2 − η

q
1η
q
2, q

√(
1 − η

q
2ξ
q
1 + 1 − η

q
1ξ
q
2

)
− ξ

q
1ξ
q
2,

ζ
q
1ζ
q
2, q

√
η
q
1 + η

q
2 − η

q
1η
q
2, q

√(
1 − η

q
2ξ
q
1 + 1 − η

q
1ξ
q
2

)
− ξ

q
1ξ
q
2

〉
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3. Aω

=

〈
ζω, q

√
1 − (1 − ηq)ω, q

√
(1 − ηq)ω −

(
1 − ηq − ξq

)ω
,

ζ
ω
, q
√
1 − (1 − ηq)ω, q

√
(1 − ηq)ω −

(
1 − ηq − ξ

q
)ω

〉
,

4. ωA

=

〈 q
√
1 − (1 − ζ q)ω, ηω, q

√(
1 − ζ q − ξq

)ω
,

q
√
1 − (1 − ζ

q)ω, ηω, q
√(

1 − ζ
q

− ξ
q
)ω

〉
,

5. A1 = A2 if and only if ζ 1 = ζ 2, η1 = η2 ξ1 = ξ2and ζ 1 =

ζ 2, η1 = η2 ξ1 = ξ2.

Definition 12: [60] Let A = (ζ , η, ξ, ζ , η, ξ ) be a
q−SFRN. Then the score value which is denoted as AQ can
be determined by the following function.

Sco(A) =

2 +

(
ζ
)q

+
(
ζ
)q

−

(
η
)q

− (η)q −

(
ξ
)q

−
(
ξ
)q

3
(9)

where,

0 ≤ Sco (A) ≤ 1.

Definition 13: [60] Let A = (ζ , η, ξ, ζ , η, ξ ) be a
q−SFRN. The accuracy of A is calculated by using the
formula mentioned in Equation No. 10.

Acc (A) =

(
ζ
)q

+

(
ζ
)q

−

(
ξ
)q

−
(
ξ
)q

2
(10)

where −1 ≤ Acc (A) ≤ 1.
Definition 14: [60] LetA1 = (ζ

1
, η

1
, ξ

1
, ζ 1, η1, ξ1) and

A2 = (ζ
2
, η

2
, ξ

2
, ζ 2, η2, ξ2) are two q−SFRNs, then

1. If Sco(A1) < Sco(A2) then A1 < A2,
2. If Sco(A1) > Sco(A2) then A1 > A2,
3. If Sco (A1) = Sco(A2) then

• If Acc(A1) < Acc(A2) then A1 < A2,

• If Acc(A1) > Acc(A2) then A1 > A2,

• If Acc(A1) = Acc(A2) then A1 = A2.

Definition 15: [60] LetA1 = (ζ
1
, η

1
, ξ

1
, ζ 1, η1, ξ1) and

A2 = (ζ
2
, η

2
, ξ

2
, ζ 2, η2, ξ2) and A = (ζ , η, ξ, ζ , η, ξ )

be any three q−SFRNs, and ω, ω1 and ω2 are any positive
integers then the following properties are held.

1. A1⊕A2 = A2⊕A1,

2. A1⊗A2 = A2⊗A1
3. ω (A1⊕A2) = ωA1⊕ωA2,

4. ω1A⊕ω2A = (ω1 + ω2)A,

5. (A1⊗A2)
ω

= Aω
1 ⊗Aω

2 ,

6. Aω1⊗Aω2 = Aω1+ω2 .

Definition 16: Using the t-norm , t-conorm S, Einstein’s
operations are as follows:

E
∼

(X ,Y) =
X+ Y

1 + (1 − X)(1 − Y)
(11)

SE
∼

(X,Y) =
X+ Y

1 + XY
(12)

III. PROPOSED OPERATIONAL LAWS FOR q-SFRNs
In this section, we develop a set of operational laws using
Equations (11) and (12) in the context of q-spherical fuzzy
rough numbers. Using these established operational laws,
we provide a diversified collection of Aggregation Operators
(AOs) designed specifically for the integration of q-spherical
fuzzy rough information. This technique greatly increases
the flexibility and accuracy of aggregation procedures within
the stated framework, resulting in higher decision-making
efficacy in complex settings.

A. OPERATIONAL LAWS
Definition 17: Let A1 = (ζ

1
, η

1
, ξ

1
, ζ 1, η1, ξ1), A2 =

(ζ
2
, η

2
, ξ

2
, ζ 2, η2, ξ2) and A = (ζ , η, ξ, ζ , η, ξ ) be any

three q-SFRNs, where ω > 0, the essential Einstein’s opera-
tions for q-SFRNs are presented as follows:

(i). Addition Operation (A1⊕E
∼
A2 ):

A1⊕E
∼

A2

=


〈 q

√
ζ
q
1+ζ

q
2

1+ζ
q
1.ζ

q
2

, q

√
η
q
1+η

q
2

1+η
q
1.η

q
2
, q

√
ξ
q
1.ξ

q
2

1+
(
1−ξ

q
1

)
.
(
1−ξ

q
2

) ,

q

√
ζ
q
1+ζ

q
2

1+ζ
q
1.ζ

q
2

, q

√
η
q
1+η

q
2

1+η
q
1.η

q
2
, q

√
ξ
q
1.ξ

q
2

1+
(
1−ξ

q
1

)
.
(
1−ξ

q
2

)
〉

(ii). Multiplication Operation (A1⊗E
∼
A2 ):

A1⊗E
∼

A2

=


〈 q

√
ζ
q
1.ζ

q
2

1+
(
1−ζ

q
1

)
.
(
1−ζ

q
2

) , q

√
η
q
1.η

q
2

1+
(
1−η

q
1

)
.
(
1−η

q
2

) , q

√
ξ
q
1+ξ

q
2

1+ξ
q
1.ξ

q
2

,

q

√
ζ
q
1.ζ

q
2

1+
(
1−ζ

q
1

)
.
(
1−ζ

q
2

) , q

√
η
q
1.η

q
2

1+
(
1−η

q
1

)
.
(
1−η

q
2

) , q

√
ξ
q
1+ξ

q
2

1+ξ
q
1.ξ

q
2

〉
(iii). Scalar Multiplication Operation (ωE

∼

A):

ωE
∼

A

=


〈 q

√√√√√
(
1+ζq

)ω
−

(
1−ζq

)ω(
1+ζq

)ω
+

(
1−ζq

)ω , q

√√√√√
(
1+ηq

)ω
−

(
1−ηq

)ω(
1+ηq

)ω
+

(
1−ηq

)ω , q

√√√√√ 2
(
ξq

)ω(
2−ξq

)ω
+

(
ξq

)ω ,

q

√√√√√
(
1+ζ

q
)ω

−

(
1−ζ

q
)ω(

1+ζ
q
)ω

+

(
1−ζ

q
)ω , q

√ (
1+ηq

)ω
−

(
1−ηq

)ω(
1+ηq

)ω
+

(
1−ηq

)ω , q

√√√√√ 2
(
ξ
q
)ω(

2−ξ
q
)ω

+

(
ξ
q
)ω

〉
(iv). Power Operation (AE

∼
ω

):

A
ω

E
∼

=


〈 q

√√√√√ 2
(
ζq

)ω(
2−ζq

)ω
+

(
ζq

)ω , q

√√√√√ 2
(
ηq

)ω(
2−ηq

)ω
+

(
ηq

)ω , q

√√√√√
(
1+ξq

)ω
−

(
1−ξq

)ω(
1+ξq

)ω
+

(
1−ξq

)ω ,

q

√√√√√ 2
(
ζ
q
)ω(

2−ζ
q
)ω

+

(
ζ
q
)ω , q

√
2
(
ηq

)ω(
2−ηq

)ω
+

(
ηq

)ω , q

√√√√√
(
1+ξ

q
)ω

−

(
1−ξ

q
)ω(

1+ξ
q
)ω

+

(
1−ξ

q
)ω

〉 .

These operational laws are essential for performing geo-
metric operations and transformations involving q-spherical
fuzzy rough numbers, providing a foundation for subsequent
developments and applications in decision-making tasks.
Example 1: Let A1 = (0.4, 0.1, 0.3, 0.2, 0.4, 0.3),

A2 = (0.5, 0.9, 0.5, 0.8, 0.6, 0.2) and A =
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(0.4, 0.6, 0.7, 0.5, 0.2, 0.8) be any three q-SFRNs if ω =

0.5 and q = 3 then the operational laws defined in Defini-
tion 16 can be calculated as:

A1⊕E
∼

A2

=


〈 q

√
ζ
q
1+ζ

q
2

1+ζ
q
1.ζ

q
2

, q

√
η
q
1+η

q
2

1+η
q
1.η

q
2
, q

√
ξ
q
1.ξ

q
2

1+
(
1−ξ

q
1

)
.
(
1−ξ

q
2

) ,

q

√
ζ
q
1+ζ

q
2

1+ζ
q
1.ζ

q
2

, q

√
η
q
1+η

q
2

1+η
q
1.η

q
2
, q

√
ξ
q
1.ξ

q
2

1+
(
1−ξ

q
1

)
.
(
1−ξ

q
2

)
〉

=


〈 3
√

0.43+0.53
1+0.43.0.53

, 3
√

0.13+0.93
1+0.13.0.93

, 3

√
0.33.0.53

1+(1−0.33).(1−0.53)
,

3
√

0.23+0.83
1+0.23.0.83

, 3
√

0.43+0.63
1+0.43.0.63

, 3

√
0.33.0.23

1+(1−0.33).(1−0.23)

〉
= (0.5729, 0.9002, 0.1222, 0.8031, 0.6519, 0.0479)

A1⊗E
∼

A2

=


〈 q

√
ζ
q
1.ζ

q
2

1+
(
1−ζ

q
1

)
.
(
1−ζ

q
2

) , q

√
η
q
1.η

q
2

1+
(
1−η

q
1

)
.
(
1−η

q
2

) , q

√
ξ
q
1+ξ

q
2

1+ξ
q
1.ξ

q
2

,

q

√
ζ
q
1.ζ

q
2

1+
(
1−ζ

q
1

)
.
(
1−ζ

q
2

) , q

√
η
q
1.η

q
2

1+
(
1−η

q
1

)
.
(
1−η

q
2

) , q

√
ξ
q
1+ξ

q
2

1+ξ
q
1.ξ

q
2

〉

=

〈
3

√√√√ 0.43 .0.53

1+
(
1−0.43

)
.
(
1−0.53

) , 3

√√√√ 0.13 .0.93

1+
(
1−0.13

)
.
(
1−0.93

) , 3
√

0.33+0.53

1+0.33 .0.53
,

3

√√√√ 0.23 .0.83

1+
(
1−0.23

)
.
(
1−0.83

) , 3

√√√√ 0.43 .0.63

1+
(
1−0.43

)
.
(
1−0.63

) , 3
√

0.33+0.23

1+0.33 .0.23

〉
= (0.1638, 0.0831, 0.5332, 0.3553, 0.5064, 0.5104)

ωE
∼

A

=


〈 q

√√√√√
(
1+ζq

)ω
−

(
1−ζq

)ω(
1+ζq

)ω
+

(
1−ζq

)ω , q

√√√√√
(
1+ηq

)ω
−

(
1−ηq

)ω(
1+ηq

)ω
+

(
1−ηq

)ω , q

√√√√√ 2
(
ξq

)ω(
2−ξq

)ω
+

(
ξq

)ω ,

q

√√√√√
(
1+ζ

q
)ω

−

(
1−ζ

q
)ω(

1+ζ
q
)ω

+

(
1−ζ

q
)ω , q

√ (
1+ηq

)ω
−

(
1−ηq

)ω(
1+ηq

)ω
+

(
1−ηq

)ω , q

√√√√√ 2
(
ξ
q
)ω(

2−ξ
q
)ω

+

(
ξ
q
)ω

〉
ωE

∼

A

=


〈 3

√
(1+0.43)

0.5
−(1−0.43)

0.5

(1+0.43)
0.5

+(1−0.43)
0.5 , 3

√
(1+0.63)

0.5
−(1−0.63)

0.5

(1+0.63)
0.5

+(1−0.63)
0.5 ,

3

√
2(0.73)

0.5

(2−0.73)
0.5

+(0.73)
0.5 ,

3

√
(1+0.53)

0.5
−(1−0.53)

0.5

(1+0.53)
0.5

+(1−0.53)
0.5 ,

3

√
(1+0.23)

0.5
−(1−0.23)

0.5

(1+0.23)
0.5

+(1−0.23)
0.5 ,

3

√
2(0.8)0.5

(2−0.83)
0.5

+(0.83)
0.5

〉


= (0.3176, 0.4781, 0.8552, 0.3974, 0.1587, 0.9043)

A
ω

E
∼

=


〈

, q

√√√√√ 2
(
ζq

)ω(
2−ζq

)ω
+

(
ζq

)ω , q

√√√√√ 2
(
ηq

)ω(
2−ηq

)ω
+

(
ηq

)ω , q

√√√√√
(
1+ξq

)ω
−

(
1−ξq

)ω(
1+ξq

)ω
+

(
1−ξq

)ω

q

√√√√ q√2
(
ζ
)ω

q
√(

2−ζ
)ω

+
(
ζ
)ω , q

√√√√ q√2
(
ηq

)ω
q
√(

2−ηq
)ω

+
(
ηq

)ω , q

√√√√√
(
1+ξ

q
)ω

−

(
1−ξ

q
)ω(

1+ξ
q
)ω

+

(
1−ξ

q
)ω

〉
A

ω

E
∼

=


〈 3

√
2(0.43)

0.5

(2−0.43)
0.5

+(0.43)
0.5 ,

3

√
2(0.63)

0.5

(2−0.63)
0.5

+(0.63)
0.5 ,

3

√
(1+0.73)

0.5
−(1−0.73)

0.5

(1+0.73)
0.5

+(1−0.73)
0.5 , 3

√
2(0.53)

0.5

(2−0.53)
0.5

+(0.53)
0.5 ,

3

√
2(0.23)

0.5

(2−0.23)
0.5

+(0.23)
0.5 ,

3

√
(1+0.83)

0.5
−(1−0.83)

0.5

(1+0.83)
0.5

+(1−0.83)
0.5

〉


= (0.6751, 0.8022, 0.5613, 0.7432, 0.4921, 0.6506) .

B. q-SFREWG OPERATORS

Definition 18: Assuming Ai =

(
ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i

)
(i = 1, 2, . . . , n) ne a collection of q-SFRNs, the q-spherical
fuzzy rough Einstein geometric operator (q-SFREWG) oper-
ator is defined as a mapping q − SFREWG : An

−→ A
characterized by

q− SFREWG (A1,A2, . . . ,An)

= ⊗E
∼

n

i=1
Ai

ωi

=


〈 q

√√√√√ 2
∏n
i=1

(
ζ
q
i

)ωi∏n
i=1

(
2−ζ

q
i

)ωi
+
∏n
i=1

(
ζ
q
i

)ωi , q

√√√√√ ∏n
i=1

(
1+η

q
i

)ωi
−
∏n
i=1

(
1−η

q
i

)ωi∏n
i=1

(
1+η

q
i

)ωi
+
∏n
i=1

(
1−η

q
i

)ωi ,

q

√√√√√ ∏n
i=1

(
1+ξ

q
i

)ωi
−
∏n
i=1

(
1−ξ

q
i

)ωi∏n
i=1

(
1+ξ

q
i

)ωi
+
∏n
i=1

(
1−ξ

q
i

)ωi , q

√√√√√ 2
∏n
i=1

(
ξ
q
i

)ωi∏n
i=1

(
2−ξ

q
i

)ωi
+
∏n
i=1

(
ξ
q
i

)ωi ,

q

√√√√√ ∏n
i=1

(
1+η

q
i

)ωi
−
∏n
i=1

(
1−η

q
i

)ωi∏n
i=1

(
1+η

q
i

)ωi
+
∏n
i=1

(
1−η

q
i

)ωi , q

√√√√√ ∏n
i=1

(
1+ξ

q
i

)ωi
−
∏n
i=1

(
1−ξ

q
i

)ωi∏n
i=1

(
1+ξ

q
i

)ωi
+
∏n
i=1

(
1−ξ

q
i

)ωi

〉


(13)

Hence ω = (ω1, ω2, . . . , ωn)
T signifies the weight vector

of Ai =

(
ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i

)
(i = 1, 2, . . . , n) adhering the

conditions ωi > 0 and the constrain
∑n

i=1 ωi = 1.

Theorem 1: Assuming Ai =

(
ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i

)
(i = 1, 2, . . . , n) be a collection of q− SFRNs and
(ω1, ω2, . . . , ωn)

T signifies the weight vector adhering the
condition ωi > 0 and the constrain

∑n
i=1 ωi = 1. Then the

aggregated values obtained by q-SFREWG operator is also a
q-SFRN and cab be expressed as:

q− SFREWG (A1,A2, . . . ,An)

= ⊗E
∼

n

i=1
Ai

ωi

=


〈 q

√√√√√ 2
∏n
i=1

(
ζ
q
i

)ωi∏n
i=1

(
2−ζ

q
i

)ωi
+
∏n
i=1

(
ζ
q
i

)ωi , q

√√√√√ ∏n
i=1

(
1+η

q
i

)ωi
−
∏n
i=1

(
1−η

q
i

)ωi∏n
i=1

(
1+η

q
i

)ωi
+
∏n
i=1

(
1−η

q
i

)ωi ,

q

√√√√√ ∏n
i=1

(
1+ξ

q
i

)ωi
−
∏n
i=1

(
1−ξ

q
i

)ωi∏n
i=1

(
1+ξ

q
i

)ωi
+
∏n
i=1

(
1−ξ

q
i

)ωi , q

√√√√√ 2
∏n
i=1

(
ξ
q
i

)ωi∏n
i=1

(
2−ξ

q
i

)ωi
+
∏n
i=1

(
ξ
q
i

)ωi ,

q

√√√√√ ∏n
i=1

(
1+η

q
i

)ωi
−
∏n
i=1

(
1−η

q
i

)ωi∏n
i=1

(
1+η

q
i

)ωi
+
∏n
i=1

(
1−η

q
i

)ωi , q

√√√√√ ∏n
i=1

(
1+ξ

q
i

)ωi
−
∏n
i=1

(
1−ξ

q
i

)ωi∏n
i=1

(
1+ξ

q
i

)ωi
+
∏n
i=1

(
1−ξ

q
i

)ωi

〉


(14)

Proof: This proof can be easily established using mathe-
matical induction about the natural number n.
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Step 1: For n = 2, we have,

A1
ω1 =



〈
q

√√√√ 2
(
ζ
q
1

)ω1(
2−ζ

q
1

)ω1
+

(
ζ
q
1

)ω1 , q

√√√√(
1+η

q
1

)ω1
−

(
1−η

q
1

)ω1(
1+η

q
1

)ω1
+

(
1−η

q
1

)ω1 ,

q

√√√√(
1+ξ

q
1

)ω1
−

(
1−ξ

q
1

)ω1(
1+ξ

q
1

)ω1
+

(
1−ξ

q
1

)ω1 , q

√√√√ 2
(
ζ
q
1

)ω1(
2−ζ

q
1

)ω1
+

(
ζ
q
1

)ω1 ,

q

√
(1+η

q
1)

ω1−(1−η
q
1)

ω1

(1+η
q
1)

ω1+(1−η
q
1)

ω1 , q

√√√√(
1+ξ

q
1

)ω1
−

(
1−ξ

q
1

)ω1(
1+ξ

q
1

)ω1
+

(
1−ξ

q
1

)ω1

〉


A2
ω2 =



〈
q

√√√√ 2
(
ζ
q
2

)ω2(
2−ζ

q
2

)ω2
+

(
ζ
q
2

)ω2 , q

√√√√(
1+η

q
2

)ω2
−

(
1−η

q
2

)ω2(
1+η

q
2

)ω2
+

(
1−η

q
2

)ω2 ,

q

√√√√(
1+ξ

q
2

)ω2
−

(
1−ξ

q
2

)ω2(
1+ξ

q
2

)ω2
+

(
1−ξ

q
2

)ω2 , q

√√√√ 2
(
ζ
q
2

)ω2(
2−ζ

q
2

)ω2
+

(
ζ
q
2

)ω2 ,

q

√
(1+η

q
2)

ω2−(1−η
q
2)

ω2

(1+η
q
2)

ω2+(1−η
q
2)

ω2 , q

√√√√(
1+ξ

q
2

)ω2
−

(
1−ξ

q
2

)ω2(
1+ξ

q
2

)ω2
+

(
1−ξ

q
2

)ω2

〉


as shown in the equation at the bottom of the next page, where∑2
i=1 ωi = 1. Thus, the condition n = 2 is true for Equation

No. 14
Step 2: Assume that Equation (14) is valid for n =

k , where k is any real number, given this supposition,
Equation (13) can be represented as:

q−SFREWG (A1,A2, . . . ,Ak)

= ⊗E
∼

k

i=1
Ai

ωi

=


〈 q

√√√√√ 2
∏k
i=1

(
ζ
q
i

)ωi∏k
i=1

(
2−ζ

q
i

)ωi
+
∏n
i=1

(
ζ
q
i

)ωi , q

√√√√√ ∏k
i=1

(
1+η

q
i

)ωi
−
∏n
i=1

(
1−η

q
i

)ωi∏k
i=1

(
1+η

q
i

)ωi
+
∏n
i=1

(
1−η

q
i

)ωi ,

q

√√√√√ ∏k
i=1

(
1+ξ

q
i

)ωi
−
∏n
i=1

(
1−ξ

q
i

)ωi∏k
i=1

(
1+ξ

q
i

)ωi
+
∏n
i=1

(
1−ξ

q
i

)ωi , q

√√√√√ 2
∏k
i=1

(
ζ
q
i

)ωi∏k
i=1

(
2−ζ

q
i

)ωi
+
∏n
i=1

(
ζ
q
i

)ωi ,

q

√√√√√ ∏k
i=1

(
1+η

q
i

)ωi
−
∏k
i=1

(
1−η

q
i

)ωi∏k
i=1

(
1+η

q
i

)ωi
+
∏k
i=1

(
1−η

q
i

)ωi , q

√√√√√ ∏k
i=1

(
1+ξ

q
i

)ωi
−
∏k
i=1

(
1−ξ

q
i

)ωi∏k
i=1

(
1+ξ

q
i

)ωi
+
∏k
i=1

(
1−ξ

q
i

)ωi

〉


Step 3: Now for n = k+1, we are examining the following
equations: As shown in the equation at the bottom of page 12.

Hence for k = n + 1 Equation (14) holds. By combining
observations from steps (1), (2), and (3), this result applies to
all values of n inside the natural numbers.
Example 2: Consider four q-SFRNs A1 = (0.3, 0.4,

0.1, 0.3, 0.2, 0.4), A2 = (0.5, 0.5, 0.9, 0.2, 0.8, 0.6), A3 =

(0.4, 0.5, 0.9, 0.3, 0.2, 0.6) and A4 = (0.5, 0.2, 0.5, 0.2,
0.8, 0.9) be any four q-SFRNs, if ω = (0.3, 0.1, 0.4, 0.2)T

and q = 3 then the q-SFREWG operator defined in Defini-
tion (14) can be calculated as:

q

√√√√√√ 2
∏4

i=1

(
ζ
q
i

)ωi

∏4
i=1

(
2 − ζ

q
i

)ωi
+

∏4
i=1

(
ζ
q
i

)ωi

=
q

√√√√√√√√√
2
(
ζ
q
i

)ω1
(
ζ
q
2

)ω2
(
ζ
q
3

)ω3
(
ζ
q
4

)ω4(
2 − ζ

q
i

)ω1
(
2 − ζ

q
2

)ω2
(
2 − ζ

q
3

)ω3
(
2 − ζ

q
4

)ω4

+

(
ζ
q
i

)ω1
(
ζ
q
2

)ω2
(
ζ
q
3

)ω3
(
ζ
q
4

)ω4

=
3

√√√√√√√
2
(
0.33

)0.3(0.53)0.1(0.43)0.4(0.53)0.2(
2 − 0.33

)0.3(
2 − 0.53

)0.1(
2 − 0.43

)0.4(
2 − 0.53

)0.2
+

(
0.33

)0.3(
0.53

)0.1(
0.43

)0.4(
0.53

)0.2
= (0.6385)

q

√√√√√√
∏4

i=1

(
1 + η

q
i

)ωi
−

∏n
i=1

(
1 − η

q
i

)ωi

∏n
i=1

(
1 + η

q
i

)ωi
+

∏n
i=1

(
1 − η

q
i

)ωi

=
q

√√√√√√√√√√√√

(
1 + η

q
1

)ω1
(
1 + η

q
2

)ω1
(
1 + η

q
3

)ω3
(
1 + η

q
4

)ω4

−

(
1 − η

q
1

)ω1
(
1 − η

q
2

)ω2
(
1 − η

q
3

)ω3
(
1 − η

q
4

)ω4(
1 + η

q
1

)ω1
(
1 + η

q
2

)ω2
(
1 + η

q
3

)ω3
(
1 + ζ

q
4

)ω4

+

(
1 − η

q
1

)ω1
(
1 − η

q
2

)ω2
(
1 − η

q
3

)ω3
(
1 − η

q
4

)ω4

=
3

√√√√√√√√√√

(
1 + 0.43

)0.3(
1 + 0.53

)0.1(
1 + 0.53

)0.4(
1 + 0.23

)0.2
−

(
1 − 0.43

)0.3(
1 − 0.53

)0.1(
1 − 0.53

)0.4(
1 − 0.23

)0.2(
1 + 0.43

)0.3(
1 + 0.53

)0.1(
1 + 0.53

)0.4(
1 + 0.23

)0.2
+

(
1 − 0.43

)0.3(
1 − 0.53

)0.1(
1 − 0.53

)0.4(
1 − 0.23

)0.2
= (0.3916)

q

√√√√√√
∏4

i=1

(
1 + ξ

q
i

)ωi
−

∏4
i=1

(
1 − ξ

q
i

)ωi

∏4
i=1

(
1 + ξ

q
i

)ωi
+

∏4
i=1

(
1 − ξ

q
i

)ωi

=
q

√√√√√√√√√√√√

(
1 + ξ

q
1

)ω1
(
1 + ξ

q
2

)ω1
(
1 + ξ

q
3

)ω3
(
1 + ξ

q
4

)ω4

−

(
1 − ξ

q
1

)ω1
(
1 − ξ

q
2

)ω2
(
1 − ξ

q
3

)ω3
(
1 − ξ

q
4

)ω4(
1 + ξ

q
1

)ω1
(
1 + ξ

q
2

)ω2
(
1 + ξ

q
3

)ω3
(
1 + ξ

q
4

)ω4

+

(
1 − ξ

q
1

)ω1
(
1 − ξ

q
2

)ω2
(
1 − ξ

q
3

)ω3
(
1 − ξ

q
4

)ω4

=
3

√√√√√√√√√
(
1 + 0.13

)0.3(
1 + 0.93

)0.1(
1 + 0.93

)0.4(
1 + 0.53

)0.2
−

(
1 − 0.13

)0.3(
1 − 0.93

)0.1(
1 − 0.93

)0.4(
1 − 0.53

)0.2(
1 + 0.13

)0.3(
1 + 0.93

)0.1(
1 + 0.93

)0.4(
1 + 0.53

)0.2
+

(
1 − 0.13

)0.3(
1 − 0.93

)0.1(
1 − 0.93

)0.4(
1 − 0.53

)0.2
= (0.6820)

q

√√√√√√ 2
∏4

i=1

(
ζ
q
i

)ωi

∏4
i=1

(
2 − ζ

q
i

)ωi
+

∏k
i=1

(
ζ
q
i

)ωi
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=
q

√√√√√√√√√
2
(
ζ
q
1

)ω1
(
ζ
q
2

)ω2
(
ζ
q
3

)ω3
(
ζ
q
4

)ω4(
2 − ζ

q
1

)ω1
(
2 − ζ

q
2

)ω2
(
2 − ζ

q
3

)ω3
(
2 − ζ

q
4

)ω4

+

(
ζ
q
1

)ω1
(
ζ
q
2

)ω2
(
ζ
q
3

)ω3
(
ζ
q
4

)ω4

=
3

√√√√√√√√
2
(
0.33

)0.3(0.23)0.1(0.33)0.4(0.33)0.2(
2 − 0.33

)0.3(
2 − 0.23

)0.1(
2 − 0.33

)0.4(
2 − 0.33

)0.2
+

(
0.33

)0.3(
0.23

)0.1(
0.33

)0.4(
0.33

)0.2
= ( 0.5366)

q

√√√√∏4
i=1

(
1 + η

q
i

)ωi
−

∏n
i=1

(
1 − η

q
i

)ωi∏4
i=1

(
1 + η

q
i

)ωi
+

∏n
i=1

(
1 − η

q
i

)ωi

=
q

√√√√√√√√
(
1 + η

q
1

)ω1
(
1 + η

q
2

)ω2
(
1 + η

q
3

)ω3
(
1 + η

q
4

)ω4

−
(
1 − η

q
1

)ω1
(
1 − η

q
2

)ω2
(
1 − η

q
3

)ω3
(
1 − η

q
4

)ω4(
1 + η

q
1

)ω1
(
1 + η

q
2

)ω2
(
1 + η

q
3

)ω3
(
1 + η

q
4

)ω4

+
(
1 − η

q
1

)ω1
(
1 − η

q
2

)ω2
(
1 − η

q
3

)ω3
(
1 − η

q
4

)ω4

=
3

√√√√√√√√√
(
1 + 0.23

)0.3(
1 + 0.83

)0.1(
1 + 0.23

)0.4(
1 + 0.83

)0.2
−

(
1 − 0.23

)0.3(
1 − 0.83

)0.1(
1 − 0.23

)0.4(
1 − 0.83

)0.2(
1 + 0.23

)0.3(
1 + 0.83

)0.1(
1 + 0.23

)0.4(
1 + 0.83

)0.2
+

(
1 − 0.23

)0.3(
1 − 0.83

)0.1(
1 − 0.23

)0.4(
1 − 0.83

)0.2
= (0.6535)

q

√√√√√√
∏4

i=1

(
1 + ξ

q
i

)ωi
−

∏n
i=1

(
1 − ξ

q
i

)ωi

∏4
i=1

(
1 + ξ

q
i

)ωi
+

∏n
i=1

(
1 − ξ

q
i

)ωi

A1
ω1⊗E

∼

A2
ω2 =



〈
q

√√√√ 2
(
ζ
q
1

)ω1(
2−ζ

q
1

)ω1
+

(
ζ
q
1

)ω1 , q

√√√√(
1+η

q
1

)ω1
−

(
1−η

q
1

)ω1(
1+η

q
1

)ω1
+

(
1−η

q
1

)ω1 ,

q

√√√√(
1+ξ

q
1

)ω1
−

(
1−ξ

q
1

)ω1(
1+ξ

q
1

)ω1
+

(
1−ξ

q
1

)ω1 , q

√√√√ 2
(
ζ
q
1

)ω1(
2−ζ

q
1

)ω1
+

(
ζ
q
1

)ω1 ,

q

√
(1+η

q
1)

ω1−(1−η
q
1)

ω1

(1+η
q
1)

ω1+(1−η
q
1)

ω1 , q

√√√√(
1+ξ

q
1

)ω1
−

(
1−ξ

q
1

)ω1(
1+ξ

q
1

)ω1
+

(
1−ξ

q
1

)ω1

〉


⊗E
∼



〈
q

√√√√ 2
(
ζ
q
2

)ω2(
2−ζ

q
2

)ω2
+

(
ζ
q
2

)ω2 , q

√√√√(
1+η

q
2

)ω2
−

(
1−η

q
2

)ω2(
1+η

q
2

)ω2
+

(
1−η

q
2

)ω2 ,

q

√√√√(
1+ξ

q
2

)ω2
−

(
1−ξ

q
2

)ω2(
1+ξ

q
2

)ω2
+

(
1−ξ

q
2

)ω2 , q

√√√√ 2
(
ζ
q
2

)ω2(
2−ζ

q
2

)ω2
+

(
ζ
q
2

)ω2 ,

q

√
(1+η

q
2)

ω2−(1−η
q
2)

ω2

(1+η
q
2)

ω2+(1−η
q
2)

ω2 , q

√√√√(
1+ξ

q
2

)ω2
−

(
1−ξ

q
2

)ω2(
1+ξ

q
2

)ω2
+

(
1−ξ

q
2

)ω2

〉


=



〈
q

√√√√ 2
(
ζ
q
1

)ω1
(
ζ
q
2

)ω2(
2−ζ

q
1

)ω1
(
2−ζ

q
2

)ω2
+

(
ζ
q
1

)ω1
(
ζ
q
2

)ω2 , q

√√√√(
1+η

q
1

)ω1
(
1+η

q
2

)ω2
−

(
1−η

q
1

)ω1
(
1−η

q
2

)ω2(
1+η

q
1

)ω1
(
1+η

q
2

)ω2
+

(
1−η

q
1

)ω1
(
1−η

q
2

)ω2 ,

q

√√√√(
1+ξ

q
1

)ω1
(
1+ξ

q
2

)ω2
−

(
1+ξ

q
1

)ω1
(
1+ξ

q
2

)ω2(
1+ξ

q
1

)ω1
(
1+ξ

q
2

)ω2
+

(
1+ξ

q
1

)ω1
(
1+ξ

q
2

)ω2 , q

√√√√ 2
(
ζ
q
1

)ω1
(
ζ
q
2

)ω2(
2−ζ

q
1

)ω1
(
2−ζ

q
2

)ω2
+

(
ζ
q
1

)ω1
(
ζ
q
2

)ω2 ,

q

√
(1+η

q
1)

ω1(1+η
q
2)

ω2−(1−η
q
1)

ω1(1−η
q
2)

ω2

(1+η
q
1)

ω1(1+η
q
2)

ω2+(1−η
q
1)

ω1(1−η
q
2)

ω2 , q

√√√√(
1+ξ

q
1

)ω1
(
1+ξ

q
2

)ω2
−

(
1+ξ

q
1

)ω1
(
1+ξ

q
2

)ω2(
1+ξ

q
1

)ω1
(
1+ξ

q
2

)ω2
+

(
1+ξ

q
1

)ω1
(
1+ξ

q
2

)ω2

〉


=



〈
q

√√√√ 2
∏2
i=1

(
ζ
q
i

)ωi

∏2
i=1

(
2−ζ

q
i

)ωi
+

∏2
i=1

(
ζ
q
i

)ωi ,
q

√√√√∏2
i=1

(
1+η

q
i

)ωi
−

∏2
i=1

(
1−η

q
i

)ωi

∏2
i=1

(
1+η

q
i

)ωi
+

∏2
i=1

(
1−η

q
i

)ωi ,

q

√√√√∏2
i=1

(
1+ξ

q
i

)ωi
−

∏2
i=1

(
1−ξ

q
i

)ωi

∏2
i=1

(
1+ξ

q
i

)ωi
+

∏2
i=1

(
1−ξ

q
i

)ωi ,
q

√√√√ 2
∏2
i=1

(
ζ
q
i

)ωi

∏2
i=1

(
2−ζ

q
i

)ωi
+

∏2
i=1

(
ζ
q
i

)ωi ,

q

√∏2
i=1 (1+η

q
i )

ωi−
∏2
i=1 (1−η

q
i )

ωi∏2
i=1 (1+η

q
i )

ωi+
∏2
i=1(1−η

q
i )

ωi ,
q

√√√√∏2
i=1

(
1+ξ

q
i

)ωi
−

∏2
i=1

(
1−ξ

q
i

)ωi

∏2
i=1

(
1+ξ

q
i

)ωi
+

∏2
i=1

(
1−ξ

q
i

)ωi

〉
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=
q

√√√√√√√√√√√√

(
1 + ξ

q
1

)ω1
(
1 + ξ

q
2

)ω2
(
1 + ξ

q
3

)ω3
(
1 + ξ

q
4

)ω4

−

(
1 − ξ

q
1

)ω1
(
1 − ξ

q
2

)ω2
(
1 − ξ

q
3

)ω3
(
1 − ξ

q
4

)ω4(
1 + ξ

q
1

)ω1
(
1 + ξ

q
2

)ω2
(
1 + ξ

q
3

)ω3
(
1 + ξ

q
4

)ω4

+

(
1 − ξ

q
1

)ω1
(
1 − ξ

q
2

)ω2
(
1 − ξ

q
3

)ω3
(
1 − ξ

q
4

)ω4

=
3

√√√√√√√√
(
1 + 0.43

)0.3(
1 + 0.63

)0.1(
1 + 0.63

)0.4(
1 + 0.93

)0.2
−

(
1 − 0.43

)0.3(
1 − 0.63

)0.1(
1 − 0.63

)0.4(
1 − 0.93

)0.2(
1 + 0.43

)0.3(
1 + 0.63

)0.1(
1 + 0.63

)0.4(
1 + 0.93

)0.2
+

(
1 − 0.43

)0.3(
1 − 0.63

)0.1(
1 − 0.63

)0.4(
1 − 0.93

)0.2
= (0.7528)

Hence
〈 q

√√√√√ 2
∏4
i=1

(
ζ
q
i

)ωi∏4
i=1

(
2−ζ

q
i

)ωi
+

∏4
i=1

(
ζ
q
i

)ωi , q

√√√√√ ∏4
i=1

(
1+η

q
i

)ωi
−

∏4
i=1

(
1−η

q
i

)ωi∏4
i=1

(
1+η

q
i

)ωi
+

∏4
i=1

(
1−η

q
i

)ωi ,

q

√√√√√ ∏4
i=1

(
1+ξ

q
i

)ωi
−

∏4
i=1

(
1−ξ

q
i

)ωi∏4
i=1

(
1+ξ

q
i

)ωi
+

∏4
i=1

(
1−ξ

q
i

)ωi , q

√√√√√ 2
∏4
i=1

(
ζ
q
i

)ωi∏4
i=1

(
2−ζ

q
i

)ωi
+

∏4
i=1

(
ζ
q
i

)ωi ,

q

√√√√√ ∏4
i=1

(
1+η

q
i

)ωi
−

∏4
i=1

(
1−η

q
i

)ωi∏4
i=1

(
1+η

q
i

)ωi
+

∏4
i=1

(
1−η

q
i

)ωi , q

√√√√√ ∏4
i=1

(
1+ξ

q
i

)ωi
−

∏4
i=1

(
1−ξ

q
i

)ωi∏4
i=1

(
1+ξ

q
i

)ωi
+

∏4
i=1

(
1−ξ

q
i

)ωi ,

〉


= (0.6385, 0.3916, 0.6820, 0.5366, 6535, 0.7528 ) .

Theorem 2 (Idempotency): AssumingAi =

(
ζ
i
, η

i
, ξ

i
, ζ i

, ηi, ξ i
)
(i = 1, 2, . . . , n) be a collection of q− SFRNs and

(ω1, ω2, . . . , ωn)
T signifies the weight vector adhering to

the condition ωi > 0 and the constrain
∑n

i=1 ωi =

1. Ai (i = 1, 2, . . . , n) are the same ∀i, then

q− SFREWG (A1,A2, . . . ,An) = A

Proof : From Theorem 1, we have q−SFREWG : An
−→

A characterized by

q− SFREWG (A1,A2, . . . ,An) = ⊗E
∼

n

i=1
Ai

ωi

=


〈 q

√√√√√ 2
∏n
i=1

(
ζ
q
i

)ωi∏n
i=1

(
2−ζ

q
i

)ωi
+
∏n
i=1

(
ζ
q
i

)ωi , q

√√√√√ ∏n
i=1

(
1+η

q
i

)ωi
−
∏n
i=1

(
1−η

q
i

)ωi∏n
i=1

(
1+η

q
i

)ωi
+
∏n
i=1

(
1−η

q
i

)ωi ,

q

√√√√√ ∏n
i=1

(
1+ξ

q
i

)ωi
−
∏n
i=1

(
1−ξ

q
i

)ωi∏n
i=1

(
1+ξ

q
i

)ωi
+
∏n
i=1

(
1−ξ

q
i

)ωi , q

√√√√√ 2
∏n
i=1

(
ξ
q
i

)ωi∏n
i=1

(
2−ξ

q
i

)ωi
+
∏n
i=1

(
ξ
q
i

)ωi ,

q

√√√√√ ∏n
i=1

(
1+η

q
i

)ωi
−
∏n
i=1

(
1−η

q
i

)ωi∏n
i=1

(
1+η

q
i

)ωi
+
∏n
i=1

(
1−η

q
i

)ωi , q

√√√√√ ∏n
i=1

(
1+ξ

q
i

)ωi
−
∏n
i=1

(
1−ξ

q
i

)ωi∏n
i=1

(
1+ξ

q
i

)ωi
+
∏n
i=1

(
1−ξ

q
i

)ωi

〉


Since Ai (i = 1, 2, . . . , n) are the same ∀i, so, as shown in
the equation at the bottom of the next page.
Theorem 3 (Boundness): Assuming

q− SFREWG (A1,A2, . . . ,Ak ,Ak+1)

= ⊗E
∼

k

i=1
Ai

ωi⊗E
∼

Ak+1
ωk+1

= q− SFREWG (A1,A2, . . . ,An) = ⊗E
∼

k+1

i=1
Ai

ωi

=



〈
q

√√√√ 2
∏k
i=1

(
ζ
q
i

)ωi

∏k
i=1

(
2−ζ

q
i

)ωi
+

∏n
i=1

(
ζ
q
i

)ωi ,
q

√√√√∏k
i=1

(
1+η

q
i

)ωi
−

∏n
i=1

(
1−η

q
i

)ωi

∏k
i=1

(
1+η

q
i

)ωi
+

∏n
i=1

(
1−η

q
i

)ωi ,

q

√√√√∏k
i=1

(
1+ξ

q
i

)ωi
−

∏n
i=1

(
1−ξ

q
i

)ωi

∏k
i=1

(
1+ξ

q
i

)ωi
+

∏n
i=1

(
1−ξ

q
i

)ωi ,
q

√√√√ 2
∏k
i=1

(
ζ
q
i

)ωi

∏k
i=1

(
2−ζ

q
i

)ωi
+

∏n
i=1

(
ζ
q
i

)ωi ,

q

√∏k
i=1 (1+η

q
i )

ωi−
∏k
i=1 (1−η

q
i )

ωi∏k
i=1 (1+η

q
i )

ωi+
∏k
i=1(1−η

q
i )

ωi , q

√√√√∏k
i=1

(
1+ξ

q
i

)ωi
−

∏k
i=1

(
1−ξ

q
i

)ωi

∏k
i=1

(
1+ξ

q
i

)ωi
+

∏k
i=1

(
1−ξ

q
i

)ωi

〉


⊗E
∼



〈
q

√√√√ 2
(
ζ
q
k+1

)ωk+1(
2−ζ

q
k+1

)ωk+1
+

(
ζ
q
k+1

)ωk+1 , q

√√√√(
1+η

q
k+1

)ωk+1
−

(
1−η

q
k+1

)ωk+1(
1+η

q
k+1

)ωk+1
+

(
1−η

q
k+1

)ωk+1 ,

q

√√√√(
1+ξ

q
k+1

)ωk+1
−

(
1−ξ

q
k+1

)ωk+1(
1+ξ

q
k+1

)ωk+1
+

(
1−ξ

q
k+1

)ωk+1 , q

√√√√ 2
∏k
i=1

(
ζ
q
k+1

)ωk+1(
2−ζ

q
k+1

)ωk+1
+

(
ζ
q
k+1

)ωk+1 ,

q

√ (
1+η

q
k+1

)ωk+1−
(
1−η

q
k+1

)ωk+1(
1+η

q
k+1

)ωk+1+
(
1−η

q
k+1

)ωk+1 , q

√√√√(
1+ξ

q
k+1

)ωk+1
−

(
1−ξ

q
k+1

)ωk+1(
1+ξ

q
k+1

)ωk+1
+

(
1−ξ

q
k+1

)ωk+1

〉


=



〈
q

√√√√ 2
∏k+1
i=1

(
ζ
q
i

)ωi

∏k+1
i=1

(
2−ζ

q
i

)ωi
+

∏k+1
i=1

(
ζ
q
i

)ωi ,
q

√√√√∏k+1
i=1

(
1+η

q
i

)ωi
−

∏k+1
i=1

(
1−η

q
i

)ωi

∏k+1
i=1

(
1+η

q
i

)ωi
+

∏k+1
i=1

(
1−η

q
i

)ωi ,

q

√√√√∏k+1
i=1

(
1+ξ

q
i

)ωi
−

∏k+1
i=1

(
1−ξ

q
i

)ωi

∏k+1
i=1

(
1+ξ

q
i

)ωi
+

∏k+1
i=1

(
1−ξ

q
i

)ωi ,
q

√√√√ 2
∏k+1
i=1

(
ζ
q
i

)ωi

∏k+1
i=1

(
2−ζ

q
i

)ωi
+

∏k+1
i=1

(
ζ
q
i

)ωi ,

q

√∏k+1
i=1 (1+η

q
i )

ωi−
∏k+1
i=1 (1−η

q
i )

ωi∏k+1
i=1 (1+η

q
i )

ωi+
∏k+1
i=1 (1−η

q
i )

ωi , q

√√√√∏k+1
i=1

(
1+ξ

q
i

)ωi
−

∏k+1
i=1

(
1−ξ

q
i

)ωi

∏k+1
i=1

(
1+ξ

q
i

)ωi
+

∏k+1
i=1

(
1−ξ

q
i

)ωi

〉
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Ai =

(
ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i

)
(i = 1, 2, . . . , n) be a collec-

tion of q− SFRNsand(ω1, ω2, . . . , ωn)
T signifies the weight

vector adhering to the condition ωi > 0 and the constrain∑n
i=1 ωi = 1.LetA−

(
minζ

i
,minη

i
,maxξ

i
,minζ i,minηi,

maxξ i
)
and A+

=

(
maxζ

i
,maxη

i
,minξ

i
,maxζ i,maxηi,

minξ i
)
Then A−

≤ q− SFREWG (A1,A2, . . . ,An) ≤ A+

Proof: From Theorem 1, we have

q− SFREWG (A1,A2, . . . ,An) = ⊗E
∼

n

i=1
Ai

ωi

=


〈 q

√√√√√ 2
∏n
i=1

(
ζ
q
i

)ωi∏n
i=1

(
2−ζ

q
i

)ωi
+
∏n
i=1

(
ζ
q
i

)ωi , q

√√√√√ ∏n
i=1

(
1+η

q
i

)ωi
−
∏n
i=1

(
1−η

q
i

)ωi∏n
i=1

(
1+η

q
i

)ωi
+
∏n
i=1

(
1−η

q
i

)ωi ,

q

√√√√√ ∏n
i=1

(
1+ξ

q
i

)ωi
−
∏n
i=1

(
1−ξ

q
i

)ωi∏n
i=1

(
1+ξ

q
i

)ωi
+
∏n
i=1

(
1−ξ

q
i

)ωi , q

√√√√√ 2
∏n
i=1

(
ξ
q
i

)ωi∏n
i=1

(
2−ξ

q
i

)ωi
+
∏n
i=1

(
ξ
q
i

)ωi ,

q

√√√√√ ∏n
i=1

(
1+η

q
i

)ωi
−
∏n
i=1

(
1−η

q
i

)ωi∏n
i=1

(
1+η

q
i

)ωi
+
∏n
i=1

(
1−η

q
i

)ωi , q

√√√√√ ∏n
i=1

(
1+ξ

q
i

)ωi
−
∏n
i=1

(
1−ξ

q
i

)ωi∏n
i=1

(
1+ξ

q
i

)ωi
+
∏n
i=1

(
1−ξ

q
i

)ωi

〉


For lower and upper memberships:
We have

min
i

ζ
i
≤ ζ

i
≤ max

i
ζ
i

H⇒ min
i

ζ
i
q

≤ ζ
i
q

≤ max
i

ζ
i
q

H⇒ 2min
i

(
ζ
i
q
)ωi

≤ 2
∏n

j=1

(
ζ
i
q
)ωi

≤ 2max
i

(
ζ
i
q
)ωi

H⇒

2min
i

(
ζ
i
q
)ωi

(
2 − min

i
ζ
i
q
)ωi

+ min
i

(
ζ
i
q
)ωi

≤

2
∏n

i=1
i

(
ζ
i
q
)ωi

(
2 − ζ

i
q
)ωi

+
∏n

i=1

(
ζ
i
q
)ωi

≤

2max
i

(
ζ
i
q
)ωi

(
2 − max

i
ζ
i
q
)ωi

+ max
i

(
ζ
i
q
)ωi

H⇒ q

√√√√√√√
2min

i

(
ζ
i
q
)ωi

(
2 − min

i
ζ
i
q
)ωi

+ min
i

(
ζ
i
q
)ωi

q− SFREWG (A1,A2, . . . ,An)

=



〈

q

√√√√ 2
∏n
i=1

(
ζ
q
i

)∑n
i=1 ωi=1

∏n
i=1

(
2−ζ

q
i

)∑n
i=1 ωi=1

+
∏n
i=1

(
ζ
q
i

)∑n
i=1 ωi=1 ,

q

√√√√√√
∏n

i=1

(
1 + η

q
i

)∑n
i=1 ωi=1

−
∏n

i=1

(
1 − η

q
i

)∑n
i=1 ωi=1

∏n
i=1

(
1 + η

q
i

)∑n
i=1 ωi=1

+
∏n

i=1

(
1 − η

q
i

)∑n
i=1 ωi=1

,

q

√√√√√√
∏n

i=1

(
1 + ξ

q
i

)∑n
i=1 ωi=1

−
∏n

i=1

(
1 − ξ

q
i

)∑n
i=1 ωi=1

∏n
i=1

(
1 + ξ

q
i

)∑n
i=1 ωi=1

+
∏n

i=1

(
1 − ξ

q
i

)∑n
i=1 ωi=1

,

q

√√√√√√ 2
∏n

i=1

(
ζ
q
i

)∑n
i=1 ωi=1

∏n
i=1

(
2 − ζ

q
i

)∑n
i=1 ωi=1

+
∏n

i=1

(
ζ
q
i

)∑n
i=1 ωi=1

,

q

√∏n
i=1 (1+η

q
i )

∑n
i=1 ωi=1

−
∏n
i=1 (1−η

q
i )

∑n
i=1 ωi=1∏n

i=1 (1+η
q
i )

∑n
i=1 ωi=1

+
∏n
i=1(1−η

q
i )

∑n
i=1 ωi=1 ,

q

√√√√√√
∏n

i=1

(
1 + ξ

q
i

)∑n
i=1 ωi=1

−
∏n

i=1

(
1 − ξ

q
i

)∑n
i=1 ωi=1

∏n
i=1

(
1 + ξ

q
i

)∑n
i=1 ωi=1

+
∏n

i=1

(
1 − ξ

q
i

)∑n
i=1 ωi=1

〉



=


〈 q

√
2
(
ζ
q
i

)
(
2−ζ

q
i

)
+

(
ζ
q
i

) , q

√(
1+η

q
i

)
−

(
1−η

q
i

)
(
1+η

q
i

)
+

(
1−η

q
i

) , q

√(
1+ξ

q
i

)
−

(
1−ξ

q
i

)
(
1+ξ

q
i

)
+

(
1−ξ

q
i

)
q

√
2
(
ζ
q
i

)
(
2−ζ

q
i

)
+

(
ζ
q
i

) , q

√
(1+η

q
i )−(1−η

q
i )

(1+η
q
i )+(1−η

q
i )

, q

√(
1+ξ

q
i

)
−

(
1−ξ

q
i

)
(
1+ξ

q
i

)
+

(
1−ξ

q
i

)
〉

= (ζ , η, ξ, ζ , η, ξ ) = A.
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≤
q

√√√√√√ 2
∏n

i=1
i

(
ζ
i
q
)ωi

(
2 − ζ

i
q
)ωi

+
∏n

i=1

(
ζ
i
q
)ωi

≤ q

√√√√√√√
2max

i

(
ζ
i
q
)ωi

(
2 − max

i
ζ
i
q
)ωi

+ max
i

(
ζ
i
q
)ωi

Also, we have

min
i

ζ i ≤ ζ i ≤ max
i

ζ i

H⇒ min
i

ζ i
q

≤ ζ i
q

≤ max
i

ζ i
q

H⇒ 2min
i

(
ζ i
q
)ωi

≤ 2
∏n

j=1

(
ζ i
q
)ωi

≤ 2max
i

(
ζ i
q
)ωi

H⇒

2min
i

(
ζ i
q
)ωi

(
2 − min

i
ζ i
q
)ωi

+ min
i

(
ζ i
q
)ωi

≤

2
∏n

i=1
i

(
ζ i
q
)ωi

(
2 − ζ i

q
)ωi

+
∏n

i=1

(
ζ i
q
)ωi

≤

2max
i

(
ζ i
q
)ωi

(
2 − max

i
ζ i
q
)ωi

+ max
i

(
ζ i
q
)ωi

H⇒ q

√√√√√√√
2min

i

(
ζ i
q
)ωi

(
2 − min

i
ζ i
q
)ωi

+ min
i

(
ζ i
q
)ωi

≤
q

√√√√√√ 2
∏n

i=1
i

(
ζ i
q
)ωi

(
2 − ζ i

q
)ωi

+
∏n

i=1

(
ζ i
q
)ωi

≤ q

√√√√√√√
2max

i

(
ζ i
q
)ωi

(
2 − max

i
ζ i
q
)ωi

+ max
i

(
ζ i
q
)ωi

For lower and upper neutral memberships:
We have

max
i

η
i

≥ η
i
≥ min

i
η
i

max
i

η
i
q

≥ η
i
q

≥ min
i

η
i
q

H⇒

(
1 + max

i
η
i
q
)ωi

≥

∏n

i=1

(
1 + η

i
q
)ωi

≥

(
1 + min

i
η
i
q
)ωi

H⇒

∏n

i=1

(
1 + max

i
η
i
q
)ωi

−

∏n

i=1

(
1 − max

i
η
i
q
)ωi

≥

∏n

i=1

(
1 + η

i
q
)ωi

−

∏n

i=1

(
1 − η

i
q
)ωi

≥

∏n

i=1

(
1 + min

i
η
i
q
)ωi

−

∏n

i=1

(
1 − min

i
η
i
q
)ωi

H⇒

∏n
i=1

(
1 + max

i
η
i
q
)ωi

−
∏n

i=1

(
1 − max

i
η
i
q
)ωi

∏n
i=1

(
1 + max

i
η
i
q

)ωi

+
∏n

i=1

(
1 − max

i
η
i
q

)ωi

≥

∏n
i=1

(
1 + η

i
q
)ωi

−
∏n

i=1

(
1 − η

i
q
)ωi

∏n
i=1

(
1 + η

i
q
)ωi

+
∏n

i=1

(
1 − η

i
q
)ωi

≥

∏n
i=1

(
1 + min

i
η
i
q
)ωi

−
∏n

i=1

(
1 − min

i
η
i
q
)ωi

∏n
i=1

(
1 + min

i
η
i
q

)ωi

+
∏n

i=1

(
1 − min

i
η
i
q

)ωi

H⇒
q

√√√√√√√√
∏n

i=1

(
1 + max

i
η
i
q

)ωi

−
∏n

i=1

(
1 − max

i
η
i
q

)ωi

∏n
i=1

(
1 + max

i
η
i
q

)ωi

+
∏n

i=1

(
1 − max

i
η
i
q

)ωi

≥
q

√√√√√√
∏n

i=1

(
1 + η

i
q
)ωi

−
∏n

i=1

(
1 − η

i
q
)ωi

∏n
i=1

(
1 + η

i
q
)ωi

+
∏n

i=1

(
1 − η

i
q
)ωi

≥
q

√√√√√√√√
∏n

i=1

(
1 + min

i
η
i
q

)ωi

−
∏n

i=1

(
1 − min

i
η
i
q

)ωi

∏n
i=1

(
1 + min

i
η
i
q

)ωi

+
∏n

i=1

(
1 − min

i
η
i
q

)ωi

And since

max
i

ηi

≥ ηi ≥ min
i

ηi

H⇒ max
i

ηi
q

≥ ηi
q

≥ min
i

ηi
q

H⇒

(
1 + max

i
ηi
q
)ωi

≥

∏n

i=1

(
1 + ηi

q)ωi

≥

(
1 + min

i
ηi
q
)ωi

H⇒

∏n

i=1

(
1 + max

i
ηi
q
)ωi

−

∏n

i=1

(
1 − max

i
ηi
q
)ωi

≥

∏n

i=1

(
1 + ηi

q)ωi
−

∏n

i=1

(
1 − ηi

q)ωi

≥

∏n

i=1

(
1 + min

i
ηi
q
)ωi

−

∏n

i=1

(
1 − min

i
ηi
q
)ωi

VOLUME 12, 2024 140393



A. B. Azim et al.: q-Spherical Fuzzy Rough Einstein Geometric AO

H⇒

∏n
i=1

(
1 + max

i
ηi
q
)ωi

−
∏n

i=1

(
1 − max

i
ηi
q
)ωi

∏n
i=1

(
1 + max

i
ηi
q
)ωi

+
∏n

i=1

(
1 − max

i
ηi
q
)ωi

≥

∏n
i=1

(
1 + ηi

q)ωi
−

∏n
i=1

(
1 − ηi

q)ωi∏n
i=1

(
1 + ηi

q)ωi
+

∏n
i=1

(
1 − ηi

q)ωi

≥

∏n
i=1

(
1 + min

i
ηi
q
)ωi

−
∏n

i=1

(
1 − min

i
ηi
q
)ωi

∏n
i=1

(
1 + min

i
ηi
q
)ωi

+
∏n

i=1

(
1 − min

i
ηi
q
)ωi

H⇒
q

√√√√√√√√
∏n

i=1

(
1 + max

i
ηi
q
)ωi

−
∏n

i=1

(
1 − max

i
ηi
q
)ωi

∏n
i=1

(
1 + max

i
ηi
q
)ωi

+
∏n

i=1

(
1 − max

i
ηi
q
)ωi

≥
q

√√√√∏n
i=1

(
1 + ηi

q)ωi
−

∏n
i=1

(
1 − ηi

q)ωi∏n
i=1

(
1 + ηi

q)ωi
+

∏n
i=1

(
1 − ηi

q)ωi

≥
q

√√√√√√√√
∏n

i=1

(
1 + min

i
ηi
q
)ωi

−
∏n

i=1

(
1 − min

i
ηi
q
)ωi

∏n
i=1

(
1 + min

i
ηi
q
)ωi

+
∏n

i=1

(
1 − min

i
ηi
q
)ωi

For lower and upper non memberships:
We have

max
i

ξ
i

≥ ξ
i
≥ min

i
ξ
i

max
i

ξ
i
q

≥ ξ
i
q

≥ min
i

ξ
i
q

H⇒

(
1 + max

i
ξ
i
q
)ωi

≥

∏n

i=1

(
1 + ξ

i
q
)ωi

≥

(
1 + min

i
ξ
i
q
)ωi

H⇒

∏n

i=1

(
1 + max

i
ξ
i
q
)ωi

−

∏n

i=1

(
1 − max

i
ξ
i
q
)ωi

≥

∏n

i=1

(
1 + ξ

i
q
)ωi

−

∏n

i=1

(
1 − ξ

i
q
)ωi

≥

∏n

i=1

(
1 + min

i
ξ
i
q
)ωi

−

∏n

i=1

(
1 − min

i
ξ
i
q
)ωi

H⇒

∏n
i=1

(
1 + max

i
ξ
i
q
)ωi

−
∏n

i=1

(
1 − max

i
ξ
i
q
)ωi

∏n
i=1

(
1 + max

i
ξ
i
q
)ωi

+
∏n

i=1

(
1 − max

i
ξ
i
q
)ωi

≥

∏n
i=1

(
1 + ξ

i
q
)ωi

−
∏n

i=1

(
1 − ξ

i
q
)ωi

∏n
i=1

(
1 + ξ

i
q
)ωi

+
∏n

i=1

(
1 − ξ

i
q
)ωi

≥

∏n
i=1

(
1 + min

i
ξ
i
q
)ωi

−
∏n

i=1

(
1 − min

i
ξ
i
q
)ωi

∏n
i=1

(
1 + min

i
ξ
i
q
)ωi

+
∏n

i=1

(
1 − min

i
ξ
i
q
)ωi

H⇒
q

√√√√√√√√
∏n

i=1

(
1 + max

i
ξ
i
q
)ωi

−
∏n

i=1

(
1 − max

i
ξ
i
q
)ωi

∏n
i=1

(
1 + max

i
ξ
i
q
)ωi

+
∏n

i=1

(
1 − max

i
ξ
i
q
)ωi

≥
q

√√√√√√
∏n

i=1

(
1 + ξ

i
q
)ωi

−
∏n

i=1

(
1 − ξ

i
q
)ωi

∏n
i=1

(
1 + ξ

i
q
)ωi

+
∏n

i=1

(
1 − ξ

i
q
)ωi

≥
q

√√√√√√√√
∏n

i=1

(
1 + min

i
ξ
i
q
)ωi

−
∏n

i=1

(
1 − min

i
ξ
i
q
)ωi

∏n
i=1

(
1 + min

i
ξ
i
q
)ωi

+
∏n

i=1

(
1 − min

i
ξ
i
q
)ωi

And since

max
i

ξ i

≥ ξ i ≥ min
i

ξ i

H⇒ max
i

ξ i
q

≥ ξ i
q

≥ min
i

ξ i
q

H⇒

(
1 + max

i
ξ i
q
)ωi

≥

∏n

i=1

(
1 + ξ i

q
)ωi

≥

(
1 + min

i
ξ i
q
)ωi

H⇒

∏n

i=1

(
1 + max

i
ξ i
q
)ωi

−

∏n

i=1

(
1 − max

i
ξ i
q
)ωi

≥

∏n

i=1

(
1 + ξ i

q
)ωi

−

∏n

i=1

(
1 − ξ i

q
)ωi

≥

∏n

i=1

(
1 + min

i
ξ i
q
)ωi

−

∏n

i=1

(
1 − min

i
ξ i
q
)ωi

H⇒

∏n
i=1

(
1 + max

i
ξ i
q
)ωi

−
∏n

i=1

(
1 − max

i
ξ i
q
)ωi

∏n
i=1

(
1 + max

i
ξ i
q
)ωi

+
∏n

i=1

(
1 − max

i
ξ i
q
)ωi

≥

∏n
i=1

(
1 + ξ i

q
)ωi

−
∏n

i=1

(
1 − ξ i

q
)ωi

∏n
i=1

(
1 + ξ i

q
)ωi

+
∏n

i=1

(
1 − ξ i

q
)ωi

≥

∏n
i=1

(
1 + min

i
ξ i
q
)ωi

−
∏n

i=1

(
1 − min

i
ξ i
q
)ωi

∏n
i=1

(
1 + min

i
ξ i
q
)ωi

+
∏n

i=1

(
1 − min

i
ξ i
q
)ωi

H⇒
q

√√√√√√√√
∏n

i=1

(
1 + max

i
ξ i
q
)ωi

−
∏n

i=1

(
1 − max

i
ξ i
q
)ωi

∏n
i=1

(
1 + max

i
ξ i
q
)ωi

+
∏n

i=1

(
1 − max

i
ξ i
q
)ωi
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≥
q

√√√√√√
∏n

i=1

(
1 + ξ i

q
)ωi

−
∏n

i=1

(
1 − ξ i

q
)ωi

∏n
i=1

(
1 + ξ i

q
)ωi

+
∏n

i=1

(
1 − ξ i

q
)ωi

≥
q

√√√√√√√√
∏n

i=1

(
1 + min

i
ξ i
q
)ωi

−
∏n

i=1

(
1 − min

i
ξ i
q
)ωi

∏n
i=1

(
1 + min

i
ξ i
q
)ωi

+
∏n

i=1

(
1 − min

i
ξ i
q
)ωi

.

Hence A−
≤ q− SFREWG (A1,A2, . . . ,An) ≤ A+.

Example 3: Consider four q-SFRNs A1 = (0.3, 0.4, 0.1,
0.3, 0.2, 0.4),A2 = (0.5, 0.5, 0.9, 0.2, 0.8, 0.6) , A3 =

(0.4, 0.5, 0.9, 0.3, 0.2, 0.6) andA4 = (0.5, 0.2, 0.5, 0.2, 0.8,
0.9) be any four q-SFRNs, ifω = (0.3, 0.1, 0.4, 0.2)T andq =

3 then the q-SFREWG operator values solved in Example (2)
can be write as:

〈 q

√√√√√ 2
∏4
i=1

(
ζ
q
i

)ωi∏4
i=1

(
2−ζ

q
i

)ωi
+
∏4
i=1

(
ζ
q
i

)ωi , q

√√√√√ ∏4
i=1

(
1+η

q
i

)ωi
−

∏4
i=1

(
1−η

q
i

)ωi∏4
i=1

(
1+η

q
i

)ωi
+
∏4
i=1

(
1−η

q
i

)ωi ,

q

√√√√√ ∏4
i=1

(
1+ξ

q
i

)ωi
−

∏4
i=1

(
1−ξ

q
i

)ωi∏4
i=1

(
1+ξ

q
i

)ωi
+
∏4
i=1

(
1−ξ

q
i

)ωi , q

√√√√√ 2
∏4
i=1

(
ζ
q
i

)ωi∏4
i=1

(
2−ζ

q
i

)ωi
+
∏4
i=1

(
ζ
q
i

)ωi ,

q

√√√√√ ∏4
i=1

(
1+η

q
i

)ωi
−

∏4
i=1

(
1−η

q
i

)ωi∏4
i=1

(
1+η

q
i

)ωi
+
∏4
i=1

(
1−η

q
i

)ωi , q

√√√√√ ∏4
i=1

(
1+ξ

q
i

)ωi
−

∏4
i=1

(
1−ξ

q
i

)ωi∏4
i=1

(
1+ξ

q
i

)ωi
+
∏4
i=1

(
1−ξ

q
i

)ωi

〉


= (0.6385, 0.3916, 0.6820, 0.5366, 0.6535, 0.7528)

A−

=

(
minζ

i
,maxη

i
, maxξ

i
, minζ i,maxηi, maxξ i

)
= (0.3, 0.5, 0.9, 0.2, 0.8, 0.9)

A+

=

(
maxζ

i
, minη

i
, minξ

i
, maxζ i, minηi, minξ i

)
= (0.5, 0.2, 0.1, 0.3, 0.2, 0.4)

Since A−
≤ q − SFREWG (A1,A2, . . . ,An) ≤ A+ holds,

it confirms the boundness property as stated in Theorem 3.
Theorem 4 (Monotonicity): Assuming Ai =

(
ζ
i
, η

i
, ξ

i
,

ζ i, ηi, ξ i
)
(i = 1, 2, . . . , n) and Ai

∗
=

(
ζ
i
∗, η

i
∗, ξ

i
∗, ζ i

∗
,

ηi
∗, ξ i

∗
)

(i = 1, 2, . . . , n) be a collection of two q −

SFRNs such that Ai ≤ Ai
∗ for all i, then q −

SFREWG (A1,A2, . . . ,An) ≤

q− SFREWG
(
A1

∗,A2
∗, . . . ,An

∗
)
.

Proof: From Theorem 1, we have

q− SFREWG (A1,A2, . . . ,An) = ⊗E
∼

n

i=1
Ai

ωi

=


〈 q

√√√√√ 2
∏n
i=1

(
ζ
q
i

)ωi∏n
i=1

(
2−ζ

q
i

)ωi
+
∏n
i=1

(
ζ
q
i

)ωi , q

√√√√√ ∏n
i=1

(
1+η

q
i

)ωi
−

∏n
i=1

(
1−η

q
i

)ωi∏n
i=1

(
1+η

q
i

)ωi
+
∏n
i=1

(
1−η

q
i

)ωi ,

q

√√√√√ ∏n
i=1

(
1+ξ

q
i

)ωi
−

∏n
i=1

(
1−ξ

q
i

)ωi∏n
i=1

(
1+ξ

q
i

)ωi
+
∏n
i=1

(
1−ξ

q
i

)ωi , q

√√√√√ ∏n
i=1

(
ζ
q
i

)ωi∏n
i=1

(
2−ζ

q
i

)ωi
+
∏n
i=1

(
ζ
q
i

)ωi ,

q

√√√√√ ∏n
i=1

(
1+η

q
i

)ωi
−

∏n
i=1

(
1−η

q
i

)ωi∏n
i=1

(
1+η

q
i

)ωi
+
∏n
i=1

(
1−η

q
i

)ωi , q

√√√√√ ∏n
i=1

(
1+ξ

q
i

)ωi
−

∏n
i=1

(
1−ξ

q
i

)ωi∏n
i=1

(
1+ξ

q
i

)ωi
+
∏n
i=1

(
1−ξ

q
i

)ωi

〉


and

q− SFREWG
(
A1

∗,A2
∗, . . . ,An

∗
)

= ⊗E
∼

n

i=1
Ai

∗ωi

=


〈 q

√√√√√ 2
∏n
i=1

(
ζ∗
i
q
)ωi∏n

i=1

(
2−ζ∗

i
q
)ωi

+
∏n
i=1

(
ζ∗
i
q
)ωi ,, q

√√√√√ ∏n
i=1

(
1+η∗

i
q
)ωi

−
∏n
i=1

(
1−η∗

i
q
)ωi∏n

i=1

(
1+η∗

i
q
)ωi

+
∏n
i=1

(
1−η∗

i
q
)ωi ,

q

√√√√√ ∏n
i=1

(
1+ξ∗

i
q
)ωi

−
∏n
i=1

(
1−ξ∗

i
q
)ωi∏n

i=1

(
1+ξ∗

i
q
)ωi

+
∏n
i=1

(
1−ξ∗

i
q
)ωi , q

√√√√√ ∏n
i=1

(
ζ
∗
i
q)ωi∏n

i=1

(
2−ζ

∗
i
q)ωi

+
∏n
i=1

(
ζ
∗
i
q)ωi ,

q

√√√√√ ∏n
i=1

(
1+η∗

i
q
)ωi

−
∏n
i=1

(
1−η∗

i
q
)ωi∏n

i=1

(
1+η∗

i
q
)ωi

+
∏n
i=1

(
1−η∗

i
q
)ωi , q

√√√√√ ∏n
i=1

(
1+ξ

∗
i
q)ωi

−
∏n
i=1

(
1−ξ

∗
i
q)ωi∏n

i=1

(
1+ξ

∗
i
q)ωi

+
∏n
i=1

(
1−ξ

∗
i
q)ωi

〉


For the lower and upper memberships:
As, ζ

i
≤ ζ

i
∗

H⇒ ζ
q
i ≤ ζ ∗

i
q

H⇒

(
ζ
q
i

)ωi
≤

(
ζ ∗

i
q
)ωi

H⇒ 2
∏n

i=1

(
ζ q
i

)ωi
≤ 2

∏n

i=1

(
ζ ∗

i
q
)ωi

q

√√√√√√ 2
∏n

i=1

(
ζ
q
i

)ωi

∏n
i=1(2 − ζ

q
i )

ωi +
∏n

i=1

(
ζ
q
i

)ωi

≤
q

√√√√√√ 2
∏n

i=1

(
ζ ∗

i
q
)ωi

∏n
i=1(2 − ζ ∗

i
q)ωi +

∏n
i=1

(
ζ ∗

i
q
)ωi

And, ζ i ≤ ζ i
∗

H⇒ζ
q
i ≤ ζ

∗

i
q

H⇒

(
ζ
q
i

)ωi
≤

(
ζ

∗

i
q
)ωi

H⇒ 2
∏n

i=1

(
ζ
q
i

)ωi
≤ 2

∏n

i=1

(
ζ

∗

i
q
)ωi

q

√√√√√√ 2
∏n

i=1

(
ζ
q
i

)ωi

∏n
i=1(2 − ζ

q
i )ωi +

∏n
i=1

(
ζ
q
i

)ωi

≤
q

√√√√√√ 2
∏n

i=1

(
ζ

∗

i
q
)ωi

∏n
i=1(2 − ζ

∗

i
q
)ωi +

∏n
i=1

(
ζ

∗

i
q
)ωi

.

For the lower and upper neutral memberships:
As, η

i
≥ η

i
∗

H⇒ η
q
i ≥ η∗

i
q

H⇒ 1 + η
q
i ≥ 1 + η∗

i
q

H⇒

(
1 + ηq

i

)ωi
≥

(
1 + η∗

i
q
)ωi

H⇒

∏n

i=1

(
1 + ηq

i

)ωi
≥

∏n

i=1

(
1 + η∗

i
q
)ωi

q

√√√√√√
∏n

i=1

(
1 + η

q
i

)ωi
−

∏n
j=1

(
1 − η

q
i

)ωi

∏n
i=1

(
1 + η

q
i

)ωi
+

∏n
j=1

(
1 − η

q
i

)ωi

≥
q

√√√√√√
∏n

i=1

(
1 + η∗

i
q
)ωi

−
∏n

i=1

(
1 − η∗

i
q
)ωi

∏n
i=1

(
1 + η∗

i
q
)ωi

+
∏n

i=1

(
1 − η∗

i
q
)ωi

and ηi ≥ ηi
∗for all i then η

q
i ≥ η∗

i
q

H⇒ 1 + η
q
i ≥ 1 + η∗

i
q

H⇒
(
1 + η

q
i

)ωi
≥

(
1 + η∗

i
q)ωi

H⇒

∏n

i=1

(
1 + η

q
i

)ωi
≥

∏n

i=1

(
1 + η∗

i
q)ωi

q

√√√√∏n
i=1

(
1 + η

q
i

)ωi
−

∏n
i=1

(
1 − η

q
i

)ωi∏n
i=1

(
1 + η

q
i

)ωi
+

∏n
i=1

(
1 − η

q
i

)ωi
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≥
q

√√√√∏n
i=1

(
1 + η∗

i
q)ωi

−
∏n

i=1
(
1 − η∗

i
q)ωi∏n

i=1
(
1 + η∗

i
q)ωi

+
∏n

i=1
(
1 − η∗

i
q)ωi

For the lower and upper non-memberships:
As, ξ

i
≥ ξ

i
∗

H⇒ ξ
q
i ≥ ξ∗

i
q

H⇒ 1 + ξ
q
i ≥ 1 + ξ∗

i
q

H⇒

(
1 + ξq

i

)ωi
≥

(
1 + ξ∗

i
q
)ωi

H⇒

∏n

i=1

(
1 + ξq

i

)ωi
≥

∏n

i=1

(
1 + ξ∗

i
q
)ωi

q

√√√√√√
∏n

i=1

(
1 + ξ

q
i

)ωi
−

∏n
j=1

(
1 − ξ

q
i

)ωi

∏n
i=1

(
1 + ξ

q
i

)ωi
+

∏n
j=1

(
1 − ξ

q
i

)ωi

≥
q

√√√√√√
∏n

i=1

(
1 + ξ∗

i
q
)ωi

−
∏n

i=1

(
1 − ξ∗

i
q
)ωi

∏n
i=1

(
1 + ξ∗

i
q
)ωi

+
∏n

i=1

(
1 − ξ∗

i
q
)ωi

and ξ i ≥ ξ i
∗

H⇒ ξ
q
i ≥ ξ

∗

i
q

H⇒ 1 + ξ
q
i ≥ 1 + ξ

∗

i
q

H⇒
(
1 + ξ i

)ωi
≥

(
1 + ξ i

∗
)ωi

H⇒

∏n

i=1

(
1 + ξ

q
i

)ωi
≥

∏n

i=1

(
1 + ξ

∗

i
q
)ωi

q

√√√√√√
∏n

i=1

(
1 + ξ

q
i

)ωi
−

∏n
i=1

(
1 + ξ

q
i

)ωi

∏n
i=1

(
1 + ξ

q
i

)ωi
+

∏n
i=1

(
1 + ξ

q
i

)ωi

≥
q

√√√√√√
∏n

i=1

(
1 + ξ

∗

i
q
)ωi

−
∏n

i=1

(
1 − ξ

∗

i
q
)ωi

∏n
i=1

(
1 + ξ

∗

i
q
)ωi

+
∏n

i=1

(
1 − ξ

∗

i
q
)ωi

C. SOME SPECIFIC CASES REGARDING q-SFREWG
OPERATOR
From Theorem 1, we have

q− SFREWG (A1,A2, . . . ,An) = ⊗E
∼

n

i=1
Ai

ωi

=


〈 q

√√√√√ 2
∏n
i=1

(
ζ
q
i

)ωi∏n
i=1

(
2−ζ

q
i

)ωi
+

∏n
i=1

(
ζ
q
i

)ωi , q

√√√√√ ∏n
i=1

(
1+η

q
i

)ωi
−

∏n
i=1

(
1−η

q
i

)ωi∏n
i=1

(
1+η

q
i

)ωi
+

∏n
i=1

(
1−η

q
i

)ωi ,

q

√√√√√ ∏n
i=1

(
1+ξ

q
i

)ωi
−

∏n
i=1

(
1−ξ

q
i

)ωi∏n
i=1

(
1+ξ

q
i

)ωi
+

∏n
i=1

(
1−ξ

q
i

)ωi , q

√√√√√ 2
∏n
i=1

(
ζ
q
i

)ωi∏n
i=1

(
2−ζ

q
i

)ωi
+

∏n
i=1

(
ζ
q
i

)ωi ,

q

√√√√√ ∏n
i=1

(
1+η

q
i

)ωi
−

∏n
i=1

(
1−η

q
i

)ωi∏n
i=1

(
1+ζ

q
i

)ωi
+

∏n
i=1

(
1−η

q
i

)ωi , q

√√√√√ 2
∏n
i=1

(
ξ
q
i

)ωi∏n
i=1

(
2−ξ

q
i

)ωi
+

∏n
i=1

(
ξ
q
i

)ωi

〉


We are facing the following cases:
Case 1: If ζ

i
= η

i
= ξ

i
= 0 and q = 2 then

q− SFREWG (A1,A2, . . . ,An) = ⊗E
∼

n

i=1
Ai

ωi

=


〈

√√√√ 2
∏n
i=1

(
ζ
2
i

)ωi

∏n
i=1

(
2−ζ

2
i

)ωi
+

∏n
i=1

(
ζ
2
i

)ωi ,√∏n
i=1

(
1+η2i

)ωi
−

∏n
i=1

(
1−η2i

)ωi∏n
i=1

(
1+η2i

)ωi
+

∏n
i=1

(
1−η2i

)ωi ,∏n
i=1

(
1+ξ

2
i

)ωi
−

∏n
i=1

(
1−ξ

2
i

)ωi

∏n
i=1

(
1+ξ

2
i

)ωi
+

∏n
i=1

(
1−ξ

2
i

)ωi

〉


= SFEWG (A1,A2, . . . ,An) = ⊗E
∼

n

i=1
Ai

ωi

(The spherical fuzzy rough Einstein weighted geometric
operator).

Case 2: If ξ
i
= ξ i = 0 and q = 2 then

q− SFREWG (A1,A2, . . . ,An) = ⊗E
∼

n

i=1
Ai

ωi

=


〈 √√√√√ 2

∏n
i=1

(
ζ2i

)ωi∏n
i=1

(
2−ζ2i

)ωi
+

∏n
i=1

(
ζ2i

)ωi ,

√√√√√ ∏n
i=1

(
1+η2i

)ωi
−

∏n
i=1

(
1−η2i

)ωi∏n
i=1

(
1+η2i

)ωi
+

∏n
i=1

(
1−η2i

)ωi ,√√√√√ 2
∏n
i=1

(
ζ
2
i

)ωi∏n
i=1

(
2−ζ

2
i

)ωi
+

∏n
i=1

(
ζ
2
i

)ωi ,

√√√√√ ∏n
i=1

(
1+η2i

)ωi
−

∏n
i=1

(
1−η2i

)ωi∏n
i=1

(
1+η2i

)ωi
+

∏n
i=1

(
1−η2i

)ωi

〉
= PyFREWG (A1,A2, . . . ,An) = ⊗E

∼

n

i=1
(ωiAi)

(The Pythagorean fuzzy rough Einstein weighted geometric
operator).

Case 3: If q = 1 then

q− SFREWG (A1,A2, . . . ,An) = ⊗E
∼

n

i=1
Ai

ωi

=


〈 2

∏n
i=1

(
ζ i

)ωi∏n
i=1

(
2−ζ i

)ωi
+

∏n
i=1

(
ζ i

)ωi ,

∏n
i=1

(
1+ηi

)ωi
−

∏n
i=1

(
1−ηi

)ωi∏n
i=1

(
1+ηi

)ωi
+

∏n
i=1

(
1−ηi

)ωi ,∏n
i=1

(
1+ξ i

)ωi
−

∏n
i=1

(
1−ξ i

)ωi∏n
i=1

(
1+ξ i

)ωi
+

∏n
i=1

(
1−ξ i

)ωi ,
2
∏n
i=1

(
ζ i

)ωi∏n
i=1

(
2−ζ i

)ωi+∏n
i=1

(
ζ i

)ωi ,∏n
i=1

(
1+ηi

)ωi−∏n
i=1

(
1−ηi

)ωi∏n
i=1

(
1+ηi

)ωi+∏n
i=1

(
1−ηi

)ωi ,

∏n
i=1

(
1+ξ i

)ωi−∏n
i=1

(
1−ξ i

)ωi∏n
i=1

(
1+ξ i

)ωi+∏n
i=1

(
1−ξ i

)ωi

〉
= PFREWG (A1,A2, . . . ,An) = ⊗E

∼

n

i=1
Ai

ωi

(The picture fuzzy rough Einstein weighted geometric oper-
ator).

Case 4: If ξ
i
= ξ i = 0 and q = 1 then

q− SFREWG (A1,A2, . . . ,An) = ⊗E
∼

n

i=1
Ai

ωi

=

〈 2
∏n
i=1

(
ζ i

)ωi∏n
i=1

(
2−ζ i

)ωi
+

∏n
i=1

(
ζ i

)ωi ,

∏n
i=1

(
1+ηi

)ωi
−

∏n
i=1

(
1−ηi

)ωi∏n
i=1

(
1+ηi

)ωi
+

∏n
i=1

(
1−ηi

)ωi ,

2
∏n
i=1

(
ζ i

)ωi∏n
i=1

(
2−ζ i

)ωi+∏n
i=1

(
ζ i

)ωi ,

∏n
i=1

(
1+ηi

)ωi−∏n
i=1

(
1−ηi

)ωi∏n
i=1

(
1+ηi

)ωi+∏n
i=1

(
1−ηi

)ωi

〉
= IFREWG (A1,A2, . . . ,An) = ⊗E

∼

n

i=1
Ai

ωi

(The intuitionistic fuzzy rough Einstein weighted geometric
operator).

D. q-SFREOWG OPERATOR

Definition 19: Assuming Ai =

(
ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i

)
(i = 1, 2, . . . , n) be a collection of q-SFRNs, the q-spherical
fuzzy rough Einstein-ordered geometric operator (q-
SFREOWG) the operator is defined as a mapping q −

SFREOWG : An
−→ A associated with the weight vector

(ω1, ω2, . . . , ωn)
T adhering the condition ωi > 0 and the

constrain
∑n

i=1 ωi = 1.

q− SFREOWG
(
Aδ(1),Aδ(2), . . . ,Aδ(n)

)
= Aδ(1)⊗Aδ(2), . . . ,⊗Aδ(n) = ⊗

n
i=1

(
Aδ(i)

)ωi
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FIGURE 8. Specific cases regarding q-SFREWG operator.

where δ(1), δ(2), . . . , δ(n) is a permutation of (1, 2, 3, .., n)
such that Aδ(1) ≤ Aδ(i−1) for all i = 1, 2, 3, .., n., as shown
in the equation at the bottom of the next page.
Theorem 5: Assuming Ai =

(
ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i

)
(i = 1, 2, . . . , n) be a collection of q-SFRNs and
ω = (ω1, ω2, . . . , ωn)

T be the weight vector adhering the
condition ωi > 0 and the constrain

∑n
i=1 ωi = 1. If it meets

the requirements, it is known as q− SFREOWG operator. As
shown in the equation at the bottom of the next page.
Proof: The proof is same as Theorem 1.
Theorem 6 (Idempotency): Assuming Ai =

(
ζ
i
, η

i
, ξ

i
,

ζ i, ηi, ξ i
)
(i = 1, 2, . . . , n) be a collection of q− SFRNs and

(ω1, ω2, . . . , ωn)
T signifies the weight vector adhering to

the condition ωi > 0 and the constrain
∑n

i=1 ωi =

1. Ai (i = 1, 2, . . . , n) are the same ∀i, then

q− SFREOWG
(
Aδ(1),Aδ(2), . . . ,Aδ(n)

)
= A

Proof : The proof is the same as Theorem 2.
Theorem 7 (Boundness): Assuming Ai =

(
ζ
i
, η

i
, ξ

i
,

ζ i, ηi, ξ i
)
(i = 1, 2, . . . , n) be a collection of q− SFRNs and

(ω1, ω2, . . . , ωn)
T signifies the weight vector adhering to the

condition ωi > 0 and the constrain
∑n

i=1 ωi = 1.
Let

A−
=

(
minζ

i
, maxη

i
, maxξ

i
, minζ i, maxηi, maxξ i

)
and

A+
=

(
maxζ

i
, minη

i
, minξ

i
, maxζ i,minηi, minξ i

)
Then

A−
≤ q− SFREOWG

(
Aδ(1),Aδ(2), . . . ,Aδ(n)

)
≤ A+

Proof : The proof is the same as Theorem 3.
Theorem 8 (Monotonicity): Assuming

Ai =

(
ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i

)
(i = 1, 2, . . . , n)

and

Ai
∗

=

(
ζ
i
∗, η

i
∗, ξ

i
∗, ζ i

∗
, ηi

∗, ξ i
∗
)

(i = 1, 2, . . . , n)

be a collection of two q− SFRNs such thatAi ≤ Ai
∗ for all

i, then

q− SFREOWG
(
Aδ(1),Aδ(2), . . . ,Aδ(n)

)
≤ q− SFREOWG

(
A∗

δ(1),A∗
δ(2), . . . ,A∗

δ(n)
)
.

Proof: The proof is the same as Theorem 4.

E. SOME SPECIFIC CASES REGARDING
q-SFREOWG OPERATOR
From Theorem 5, we have, as shown in the equation at the
bottom of the next page.

We are facing the following cases:
Case 1: If ζ

δ(i)
= η

δ(i)
= ξ

δ(i)
= 0 and q = 2 then

q− SFREOWG
(
Aδ(1),Aδ(2), . . . ,Aδ(n)

)
= ⊗E

∼

n

i=1

(
Aδ(i)

)ωi

=



〈
√√√√ 2

∏n
i=1

(
ζ
2
δ(i)

)ωi

∏n
i=1

(
2−ζ

2
δ(i)

)ωi
+

∏n
i=1

(
ζ
2
δ(i)

)ωi ,√√√√∏n
i=1

(
1+η2δ(i)

)ωi
−

∏n
i=1

(
1−η2δ(i)

)ωi

∏n
i=1

(
1+η2δ(i)

)ωi
+

∏n
i=1

(
1−η2δ(i)

)ωi ,√√√√∏n
i=1

(
1+ξ

2
δ(i)

)ωi
−

∏n
i=1

(
1−ξ

2
δ(i)

)ωi

∏n
i=1

(
1+ξ

2
δ(i)

)ωi
+

∏n
i=1

(
1−ξ

2
δ(i)

)ωi

〉


= SFREOWG
(
Aδ(1),Aδ(2), . . . ,Aδ(n)

)
= ⊗E

∼

n

i=1

(
Aδ(i)

)ωi

(The spherical fuzzy rough Einstein ordered weighted geo-
metric operator).

Case 2: If ξ
δ(i)

= ξ δ(i) = 0 and q = 2 then, as shown in
the equation at the bottom of the next page.

(The Pythagorean fuzzy rough Einstein ordered weighted
geometric operator).

Case 3: If q = 1 then, as shown in the equation at the
bottom of the next page.

(The picture fuzzy rough Einstein ordered weighted geo-
metric operator).

Case 4: If ξ
δ(i)

= ξ δ(i) = 0 and q = 1 then

q− SFREOWG
(
Aδ(1),Aδ(2), . . . ,Aδ(n)

)
= ⊗E

∼

n

i=1

(
Aδ(i)

)ωi

=


〈

2
∏n
i=1

(
ζ

δ(i)

)ωi

∏n
i=1

(
2−ζ

δ(i)

)ωi
+

∏n
i=1

(
ζ

δ(i)

)ωi ,

∏n
i=1

(
1+η

δ(i)

)ωi
−

∏n
i=1

(
1−η

δ(i)

)ωi

∏n
i=1

(
1+η

δ(i)

)ωi
+

∏n
i=1

(
1−η

δ(i)

)ωi ,∏n
i=1

(
1+ξ

δ(i)

)ωi
−

∏n
i=1

(
1−ξ

δ(i)

)ωi

∏n
i=1

(
1+ξ

δ(i)

)ωi
+

∏n
i=1

(
1−ξ

δ(i)

)ωi

〉


= IFREOWG
(
Aδ(1),Aδ(2), . . . ,Aδ(n)

)
= ⊗E

∼

n

i=1

(
Aδ(i)

)ωi
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(The intuitionistic fuzzy rough Einstein ordered weighted
geometric operator).
Example 4: Consider four q-SFRNs A1 = (0.3, 0.4, 0.1,

0.3, 0.2, 0.4),A2 = (0.5, 0.5, 0.9, 0.2, 0.8, 0.6) , A3 =

(0.4, 0.5, 0.9, 0.3, 0.2, 0.6) andA4 = (0.5, 0.2, 0.5, 0.3, 0.8,
0.9) be any four q-SFRNs, ifω = (0.3, 0.1, 0.4, 0.2)T andq =

3 then the q-SFREOWG operator defined in Definition (13)
can be calculated as:

For this purpose first, we calculate the score values of
Ai (i = 1, 2, 3, 4)

Sco (A1)

=
2 + (0.3)3 + (0.3)3 − (0.4)3 − (0.2)3 − (0.1)3 − (0.4)3−

3
= 0.6390

Sco (A2)

q− SFREOWG
(
Aδ(1),Aδ(2), . . . ,Aδ(n)

)

=



〈
q

√√√√ 2
∏n
i=1

(
ζ
q
δ(i)

)ωi

∏n
i=1

(
2−ζ

q
δ(i)

)ωi
+

∏n
i=1

(
ζ
q
δ(i)

)ωi ,
q

√√√√∏n
i=1

(
1+η

q
δ(i)

)ωi
−

∏n
i=1

(
1−η

q
δ(i)

)ωi

∏n
i=1

(
1+η

q
δ(i)

)ωi
+

∏n
i=1

(
1−η

q
δ(i)

)ωi ,

q

√√√√∏n
i=1

(
1+ξ

q
δ(i)

)ωi
−

∏n
i=1

(
1−ξ

q
δ(i)

)ωi

∏n
i=1

(
1+ξ

q
δ(i)

)ωi
+

∏n
i=1

(
1−ξ

q
δ(i)

)ωi , q

√√√√ 2
∏n
i=1

(
ζ
q
δ(i)

)ωi

∏n
i=1

(
2−ζ

q
δ(i)

)ωi
+

∏n
i=1

(
ζ
q
δ(i)

)ωi ,

q

√√√√∏n
i=1

(
1+η

q
δ(i)

)ωi
−

∏n
i=1

(
1−η

q
δ(i)

)ωi

∏n
i=1

(
1+η

q
δ(i)

)ωi
+

∏n
i=1

(
1−η

q
δ(i)

)ωi ,
q

√√√√∏n
i=1

(
1+ξ

q
δ(i)

)ωi
−

∏n
i=1

(
1−ξ

q
δ(i)

)ωi

∏n
i=1

(
1+ξ

q
δ(i)

)ωi
+

∏n
i=1

(
1−ξ

q
δ(i)

)ωi

〉


q− SFREOWG
(
Aδ(1),Aδ(2), . . . ,Aδ(n)

)

=



〈
q

√√√√ 2
∏n
i=1

(
ζ
q
δ(i)

)ωi

∏n
i=1

(
2−ζ

q
δ(i)

)ωi
+

∏n
i=1

(
ζ
q
δ(i)

)ωi ,
q

√√√√∏n
i=1

(
1+η

q
δ(i)

)ωi
−

∏n
i=1

(
1−η

q
δ(i)

)ωi

∏n
i=1

(
1+η

q
δ(i)

)ωi
+

∏n
i=1

(
1−η

q
δ(i)

)ωi ,

q

√√√√∏n
i=1

(
1+ξ

q
δ(i)

)ωi
−

∏n
i=1

(
1−ξ

q
δ(i)

)ωi

∏n
i=1

(
1+ξ

q
δ(i)

)ωi
+

∏n
i=1

(
1−ξ

q
δ(i)

)ωi , q

√√√√ 2
∏n
i=1

(
ζ
q
δ(i)

)ωi

∏n
i=1

(
2−ζ

q
δ(i)

)ωi
+

∏n
i=1

(
ζ
q
δ(i)

)ωi ,

q

√√√√∏n
i=1

(
1+η

q
δ(i)

)ωi
−

∏n
i=1

(
1−η

q
δ(i)

)ωi

∏n
i=1

(
1+η

q
δ(i)

)ωi
+

∏n
i=1

(
1−η

q
δ(i)

)ωi ,
q

√√√√∏n
i=1

(
1+ξ

q
δ(i)

)ωi
−

∏n
i=1

(
1−ξ

q
δ(i)

)ωi

∏n
i=1

(
1+ξ

q
δ(i)

)ωi
+

∏n
i=1

(
1−ξ

q
δ(i)

)ωi

〉


q− SFREOWG
(
Aδ(1),Aδ(2), . . . ,Aδ(n)

)

=



〈
q

√√√√ 2
∏n
i=1

(
ζ
q
δ(i)

)ωi

∏n
i=1

(
2−ζ

q
δ(i)

)ωi
+

∏n
i=1

(
ζ
q
δ(i)

)ωi ,
q

√√√√∏n
i=1

(
1+η

q
δ(i)

)ωi
−

∏n
i=1

(
1−η

q
δ(i)

)ωi

∏n
i=1

(
1+η

q
δ(i)

)ωi
+

∏n
i=1

(
1−η

q
δ(i)

)ωi ,

q

√√√√∏n
i=1

(
1+ξ

q
δ(i)

)ωi
−

∏n
i=1

(
1−ξ

q
δ(i)

)ωi

∏n
i=1

(
1+ξ

q
δ(i)

)ωi
+

∏n
i=1

(
1−ξ

q
δ(i)

)ωi , q

√√√√ 2
∏n
i=1

(
ζ
q
δ(i)

)ωi

∏n
i=1

(
2−ζ

q
δ(i)

)ωi
+

∏n
i=1

(
ζ
q
δ(i)

)ωi ,

q

√√√√∏n
i=1

(
1+η

q
δ(i)

)ωi
−

∏n
i=1

(
1−η

q
δ(i)

)ωi

∏n
i=1

(
1+η

q
δ(i)

)ωi
+

∏n
i=1

(
1−η

q
δ(i)

)ωi ,
q

√√√√∏n
i=1

(
1+ξ

q
δ(i)

)ωi
−

∏n
i=1

(
1−ξ

q
δ(i)

)ωi

∏n
i=1

(
1+ξ

q
δ(i)

)ωi
+

∏n
i=1

(
1−ξ

q
δ(i)

)ωi

〉


q− SFREOWG
(
Aδ(1),Aδ(2), . . . ,Aδ(n)

)
= ⊗E

∼

n

i=1

(
ωiAδ(i)

)

=


〈

√√√√ 2
∏n
i=1

(
ζ 2

δ(i)

)ωi

∏n
i=1

(
2−ζ 2

δ(i)

)ωi
+

∏n
i=1

(
ζ 2

δ(i)

)ωi ,

√√√√∏n
i=1

(
1+η2

δ(i)

)ωi
−

∏n
i=1

(
1−η2

δ(i)

)ωi

∏n
i=1

(
1+η2

δ(i)

)ωi
+

∏n
i=1

(
1−η2

δ(i)

)ωi ,√√√√ 2
∏n
i=1

(
ζ
2
δ(i)

)ωi

∏n
i=1

(
2−ζ

2
δ(i)

)ωi
+

∏n
i=1

(
ζ
2
δ(i)

)ωi ,

√√√√∏n
i=1

(
1+η2δ(i)

)ωi
−

∏n
i=1

(
1−η2δ(i)

)ωi

∏n
i=1

(
1+η2δ(i)

)ωi
+

∏n
i=1

(
1−η2δ(i)

)ωi

〉


= PyFREOWG (A1,A2, . . . ,An) = ⊗E
∼

n

i=1

(
Aδ(i)

)ωi
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FIGURE 9. Specific cases regarding q-SFREOWG operator.

=
2 + (0.5)3 + (0.2)3 − (0.5)3 − (0.8)3 − (0.9)3 − (0.6)3

3
= 0.1837

Sco (A3)

=
2 + (0.4)3 + (0.3)3 − (0.5)3 − (0.2)3 − (0.9)3 − (0.6)3

3
= 0.3377

Sco (A4)

=
2 + (0.5)3 + (0.3)3 − (0.2)3 − (0.8)3 − (0.5)3 − (0.9)3

3
= 0.2593

Since Sco (A1) > Sco (A2) > Sco (A4) > Sco (A3)

(A1) > (A3) > (A4) > (A2)

Hence

Aδ(1) = A◦
1 = (0.3, 0.4, 0.1, 0.3, 0.2, 0.4)

Aδ(2) = A◦
2 = (0.4, 0.5, 0.9, 0.3, 0.2, 0.6)

Aδ(3) = A◦
3 = (0.5, 0.2, 0.5, 0.3, 0.8, 0.9)

Aδ(4) = A◦
4 = (0.5, 0.5, 0.9, 0.2, 0.8, 0.6)

For Aδ(i)(i = 1, 2, 3, 4), the q-SFREOWG operator defined
in Definition (19) can be calculated as:

q

√√√√√√ 2
∏4

i=1

(
ζ
q
δ(i)

)ωi

∏4
i=1

(
2−ζ

q
δ(i)

)ωi
+

∏4
i=1

(
ζ
q
δ(i)

)ωi

=
q

√√√√√√√√√
2
(
ζ
q
δ(1)

)ω1
(
ζ
q
δ(2)

)ω2
(
ζ
q
δ(3)

)ω3
(
ζ
q
δ(4)

)ω4(
2−ζ

q
δ(1)

)ω1
(
2−ζ

q
δ(2)

)ω2
(
2−ζ

q
δ(3)

)ω3
(
2−ζ

q
δ(4)

)ω4

+

(
ζ
q
δ(1)

)ω1
(
ζ
q
δ(2)

)ω2
(
ζ
q
δ(3)

)ω3
(
ζ
q
δ(4)

)ω4

=
3

√√√√√√√
2
(
0.33

)0.3(0.43)0.1(0.53)0.4(0.53)0.2(
2−0.33

)0.3(
2−0.43

)0.1(
2−0.53

)0.4(
2−0.53

)0.2
+
(
0.33

)0.3(
0.43

)0.1(
0.53

)0.4(
0.53

)0.2
= 0.6435

q

√√√√√√
∏4

i=1

(
1+η

q
δ(i)

)ωi
−

∏4
i=1

(
1−η

q
δ(i)

)ωi

∏4
i=1

(
1+η

q
δ(i)

)ωi
+

∏4
i=1

(
1−η

q
δ(i)

)ωi

=
q

√√√√√√√√√√√√

(
1+η

q
δ(1)

)ω1
(
1+η

q
δ(2)

)ω2
(
1+η

q
δ(3)

)ω3
(
1+η

q
δ(4)

)ω4

−

(
1−η

q
δ(1)

)ω1
(
1−η

q
δ(2)

)ω2
(
1−η

q
δ(3)

)ω3
(
1−η

q
δ(4)

)ω4(
1+η

q
δ(1)

)ω1
(
1+η

q
δ(2)

)ω2
(
1+η

q
δ(3)

)ω3
(
1+η

q
δ(4)

)ω4

+

(
1−η

q
δ(1)

)ω1
(
1−η

q
δ(2)

)ω2
(
1−η

q
δ(3)

)ω3
(
1−η

q
δ(4)

)ω4

=
3

√√√√√√√√√
(
1+0.43

)0.3(
1+0.53

)0.1(
1+0.23

)0.4(
1+0.53

)0.2
−
(
1−0.43

)0.3(
1−0.53

)0.1(
1−0.23

)0.4(
1−0.53

)0.2(
1+0.43

)0.3(
1+0.53

)0.1(
1+0.23

)0.4(
1+0.53

)0.2
+
(
1−0.43

)0.3(
1−0.53

)0.1(
1−0.23

)0.4(
1−0.53

)0.2
= 0.3916

q

√√√√√√
∏4

i=1

(
1+ξ

q
δ(i)

)ωi
−

∏4
i=1

(
1−ξ

q
δ(i)

)ωi

∏4
i=1

(
1+ξ

q
δ(i)

)ωi
+

∏4
i=1

(
1−ξ

q
δ(i)

)ωi

q− SFREOWG
(
Aδ(1),Aδ(2), . . . ,Aδ(n)

)

=


〈 2

∏n
i=1

(
ζ

δ(i)

)ωi

∏n
i=1

(
2−ζ

δ(i)

)ωi
+

∏n
i=1

(
ζ

δ(i)

)ωi ,

∏n
i=1

(
1+η

δ(i)

)ωi
−

∏n
i=1

(
1−η

δ(i)

)ωi

∏n
i=1

(
1+η

δ(i)

)ωi
+

∏n
i=1

(
1−η

δ(i)

)ωi ,∏n
i=1

(
1+ξ

δ(i)

)ωi
−

∏n
i=1

(
1−ξ

δ(i)

)ωi

∏n
i=1

(
1+ξ

δ(i)

)ωi
+

∏n
i=1

(
1−ξ

δ(i)

)ωi ,
2
∏n
i=1

(
ζ δ(i)

)ωi∏n
i=1

(
2−ζ δ(i)

)ωi+∏n
i=1

(
ζ δ(i)

)ωi ,∏n
i=1 (1+ηδ(i))

ωi−
∏n
i=1 (1−ηδ(i))

ωi∏n
i=1 (1+ηδ(i))

ωi+
∏n
i=1(1−ηδ(i))

ωi ,

∏n
i=1

(
1+ξ δ(i)

)ωi−∏n
i=1

(
1−ξ δ(i)

)ωi∏n
i=1

(
1+ξ δ(i)

)ωi+∏n
i=1

(
1−ξ δ(i)

)ωi

〉


= PFREOWG
(
Aδ(1),Aδ(2), . . . ,Aδ(n)

)
= ⊗E

∼

n

i=1

(
Aδ(i)

)ωi

VOLUME 12, 2024 140399



A. B. Azim et al.: q-Spherical Fuzzy Rough Einstein Geometric AO

=
q

√√√√√√√√√√√√
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)ω1
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−
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+
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=
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(
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)0.4(
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)0.2
−
(
1−0.43
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)0.2(
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Hence, as shown in the equation at the bottom of the next
page.

IV. APPLICATIONS OF THE PROPOSED OPERATORS
This section focuses on solving multi-attribute decision-
making (MADM) problems using the previously described
operators and q-SFR numbers. An example is presented to
demonstrate the effectiveness and use of these operators in
real-world scenarios.

Consider the following sets:V =V1,V2,V3, . . . ,Vm for the
m alternatives, J = {J1,J2,J3, . . . ,J n} for n criteria, and
D=D1,D2,D3,..,Dk for k experts. Consider the correspond-
ing weight vector for alternatives as ω = (ω1, ω2, . . . , ωn)

T .
Let λ = (λ1, λ2, . . . , λn)

T represent the weighted vector for
experts D = D1, D2,D3,.., {Dk}. Both weight vectors meet
the identical requirements and are in the closed interval [0,1],
with their sum equal to one.
Let Aij =

(
ζ
ij
, η

ij
, ξ

ij
, ζ ij, ηij, ξ ij

)
(i = 1, 2, . . . , n) and

(j = 1, 2, . . . ,m), where (ζ
i
, η

i
, ξ

i
) and (ζ i, ηi, ξ i) represents

lower set approximation and upper aet approximation, subject
to the constraint (0 ≤ ζ

ij
q
+ η

ij
q
+ ξ

ij
q

≤ 1) and (0 ≤ ζ ij
q
+

ηij
q
+ξ ij

q
≤ 1). Following is the procedure to solve aMCDM

problem.
Step 1: Construct D( )

=

[(
A( )

)]
m×n

( = 1, 2, 3, . . . , d) for decision.
Step 2: If the criteria have two types, such as benefit

criteria and cost criteria, the D( )
=

[(
A( )

)]
m×n

( = 1, 2, 3, . . . , d) van be converted into the normalized
decision matricesR(s)=(s = 1, 2, 3, . . . , t) where

r (s) =

A
( ) for benefit type of criteria[(
A( )

)]C
for cost type of citeria

where
[(
A( )

)]C
is a complement of A( ).

Step 3: Utilize the proposed operators to aggregate
R( )

=

[(
A( )

)]
m×n

intoR =
[
Aij

]
m×n

Step 4: Utilize the Aij = σλiAij.
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FIGURE 10. Flow chart of the proposed model.

Step 5: Utilize the proposed operator to derive the overall
preferences values.

Step 6: Calculate the scores of all values.
Step 7: Select the alternative which has the highest score

value.
The flow chart of the proposed model is shown in

Figure 10.

A. NUMERICAL EXAMPLE
To elucidate and illustrate the suggested technique, we offer
an example in this section. In this scenario, consider an image
recognition test where the goal is to identify objects in a com-
plex scene. The four alternative solutions V1,V2,V3 and V4
represent different image algorithms. The four criteria
J1,J2,J3 and J4 are defined as: J1 = Accuracy of object
recognition, J2 = Computational efficiency, J3 =

Robustness to variations in lighting conditions and J4 =

Generalization across diverse datasets. The alternatives are
V1 = Deep vision net, V2 = Fuzzy inferno, V3 = Adap
to sight and V4 = neuro fusion. A group of four experts
assigns weights to these criteria ω = (0.3, 0.1, 0.4, 0.2)T .
The weight vector presents the importance of each criterion
as determined by a group of experts. Now let’s create a
decision matrix D( )

=

(
α
( )

)
( = 1, 2, 3, 4) for each

FIGURE 11. Image understanding and interpretation.

automatic car. Tables 1-4 provide the decision matrix for
evaluating image understanding and interpretations. The goal
is to rank these cars and select the most suitable automatic
car. Figure 11 illustrates a decision tree used for the image
recognition test selection process.

Step 1: Construct the decision matrices (Tables 1-4).
Step 2:Construct the normalized decision matrices

(Table 5-8). Since lower computational is better. As a result,
a computational efficiency is regarded as advantageous, con-
verting computational efficiency into a cost type criterion.

Step 3: Utilize the q-SFREOWA operator as shown in
Table 9, where ω = (0.3, 0.1, 0.4, 0.2)T .

Step 4.Utilize Aij = σλiAij, where

λ = (0.4122, 0.1222, 0.2315, 0.2341)T .

A11 = (0.5246, 0.9826, 0.2478, 0.3456, 0.5496, 0.4528) ;

A12 = (0.2453, 0.2459, 0.9467, 0.6582, 0.4529, 03452)

A13 = (0.4652, 0.8956, 0.5298, 0.9746, 0.3246, 0.8576) ;

A14 = (0.2459, 0.7459, 0.3127, 0.4598, 0.2456, 0.4196)

A21 = (0.2546, 0.2498, 0.4278, 0.2457, 0.2546, 0.4527) ;

A22 = (0.5278, 0.2546, 0.2546, 0.2546, 0.5897, 0.2456)


〈 q

√√√√ 2
∏4
i=1

(
ζ

δ(i)

)ωi

∏4
i=1

(
2−ζ

δ(i)

)ωi
+

∏4
i=1

(
ζ

δ(i)

)ωi , q

√√√√∏4
i=1

(
1+η

δ(i)

)ωi
−

∏4
i=1

(
1−η

δ(i)

)ωi

∏4
i=1

(
1+η

δ(i)

)ωi
+

∏4
i=1

(
1−η

δ(i)

)ωi ,

q

√√√√∏4
i=1

(
1+ξ

δ(i)

)ωi
−

∏4
i=1

(
1−ξ

δ(i)

)ωi

∏4
i=1

(
1+ξ

δ(i)

)ωi
+

∏4
i=1

(
1−ξ

δ(i)

)ωi ,
q

√
2
∏4
i=1

(
ζ δ(i)

)ωi∏4
i=1

(
2−ζ δ(i)

)ωi+∏4
i=1

(
ζ δ(i)

)ωi ,
q

√∏4
i=1 (1+ηδ(i))

ωi−
∏4
i=1 (1−ηδ(i))

ωi∏4
i=1 (1+ηδ(i))

ωi+
∏4
i=1(1−ηδ(i))

ωi
, q

√∏4
i=1

(
1+ξ δ(i)

)ωi−∏4
i=1

(
1−ξ δ(i)

)ωi∏4
i=1

(
1+ξ δ(i)

)ωi+∏4
i=1

(
1−ξ δ(i)

)ωi

〉


= (0.6435, 0.3916, 0.6820, 0.5588, 0.6908, 0.7528) .
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TABLE 1. Decision matrix D1.

TABLE 2. Decision matrix D2.

A23 = (0.4528, 0.2456, 05246, 0.9864, 0.6589, 0.2458) ;

A24 = (0.2475, 0.2458, 0.2549, 0.4726, 0.2548, 0.2549)

A31 = (0.5296, 0.2754, 0.8569, 0.5963, 0.4725, 0.8549) ;

A32 = (0.5134, 0.2546, 0.7849, 0.5467, 0.2579, 0.6498)

A33 = (0.5497, 0.2549, 0.6587, 0.2413, 0.9846, 0.57492) ;

A34 = (0.2549, 0.2549, 0.2549, 0.2589, 0.5421, 0.2542)

A41 = (0.2548, 0.2519, 0.4528, 0.3289, 0.9957, 0.5279) ;

A42 = (0.2471, 0.2587, 0.2573, 0.9735, 0.2549, 0.2589)

TABLE 3. Decision matrix D3.

TABLE 4. Decision matrix D4.

A43 = (0.5427, 0.5467, 0.5482, 0.2548, 0.2879, 0.6985) ;

A44 = (0.7413, 0.5821, 0.6428, 0.9856, 0.2546, 0.5496)

Step 5.Utilize the q-SFREWG operator to derive the over-
all preferences values.

Step 6.Utilize the q-SFREWG operator to derive the over-
all preferences values.

Calculate the overall preference values S ( = 1, 2, 3, 4)
for the alternative V i(i = 1, 2, 3, 4) using the given data and
the q− SFREWA operator as shown below:

S1 =

(
0.2573, 0.2791, 0.2781,
0.5263, 0.9685, 0.8428

)
,
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TABLE 5. Normalized decision matrix R(1).

TABLE 6. Normalized decision matrix R(2).

S2 =

(
0.8576, 0.9489, 0.5249,
0.2968, 0.4528, 0.8762

)
,

S3 =

(
0.6975, 0.2375, 0.2897,
0.2574, 0.3687, 0.5143

)
and

S4 =

(
0.8864, 0.8296, 0.6374,
0.2867, 0.2386, 0.5983

)
.

By using Equation (9) we get Sco (S1) = 0.2042,
Sco (S2) = 0.2975, Sco(S3) = 0.7108andSco (S4) =

0.5541. Using the score values, we can establish the ranking
order of the available alternatives as follows:
V3 > V4 > V2 > V1. Hence fuzzy inferno is the best

alternative. For these assessed alternatives, Table 11 provides

TABLE 7. Normalized decision matrix R(3).

TABLE 8. Normalized decision matrix R(4).

a succinct illustration of the score’s values and the ensuing
ranking order utilizing the q− SFREWG and
q− SFROWG operators.
The graphical representation of score values is shown in

Figure 12.
This study also investigates the applicability of these

operators in cases where decision-makers seek to adjust
their choice aggregation approaches to their own prefer-
ences. Table 11 shows the results when various operators
are employed, demonstrating how decision-makers may
improve their decisions by considering both assigned val-
ues and expert opinions at the same time. The previous
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TABLE 9. Collective normalized decision matrix R.

TABLE 10. Overall preferences values.

discussion shows that the proposed aggregation operators
offer decision-makers a more adaptive framework for select-
ing viable choices. Furthermore, as compared to conventional
aggregation methods, these operators offer more flexibility.
This shows that the proposed operators can handle a broader
range of decision-making scenarios while also providing bet-
ter flexibility and relevance in several settings. By providing
a more adaptive and inclusive framework, these aggregation
operators enable decision-makers tomake informed decisions
that are in line with their needs and preferences. Furthermore,
the generalizability of these operators assures their usefulness
across a wide range of decision domains, hence improving

TABLE 11. Alternatives scores and sequence of ranking.

FIGURE 12. Graphical representation of score values of q-SFREWG and
q-SFROWG.

the overall robustness and reliability of the decision-making
process.

B. EFFECT OF q ON RANKING ORDER AND SCORE VALUES
To fulfill the constraint requirement (0 ≤ ζA

q (w) +

ηA
q (w) + ξA

q (w) ≤ 1) and (0 ≤ ζA
q
(w) + ηA

q (w) +

ξA
q
(w) ≤ 1), and then by examining the attribute values,

a decision-maker can determine which integer parameter,
q, is the smallest. For example, while evaluating an alter-
native, if the attribute values are (0.8,0.7,0.9,0.9,0.8,0.7),
one should choose q as 3 or q as 4, as both configurations
meet the criterion. However, we employed several values
of q of the novel approach to solve the case to fully eval-
uate the effect of parameter q on the experimental results.
Table 12 presents the results of these modifications and indi-
cates that V3 is at the top, followed by V4, V2, and finally,
V1. Notable is the relevance of the best alternative and the
unchanging ranking. Table 12 illustrates this point. Specifi-
cally, when q equals 1. The alternatives and ratings offered
do not adhere to the requirements of either 1 (i.e., under the
PFRS environment

(
0 ≤ ζA (w) + ηA (w) + ξA (w) ≤ 1

)
and

(
0 ≤ ζA (w) + ηA (w) + ξA (w) ≤ 1

)
) or 2 (i.e., under

SFRS environment (0 ≤ ζA
2 (w)+ηA

2 (w)+ξA
2 (w) ≤ 1)

and (0 ≤ ζA
2
(w) + ηA

2 (w) + ξA
2
(w) ≤ 1).
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TABLE 12. Sorting alternatives according to their respective parameter q
values.

Table. 12 shows how, for a range of q-parameter values,
the ranking order of the alternatives stays consistent. This
consistent ranking provides decision-makers with a robust
framework to evaluate test alternatives within a given collec-
tion of finite alternatives. This gives decision-makers a secure
and adaptable environment, facilitating careful examination
and well-informed choices based on the specified parameters.

The q-SFREWG and q-SFROWG operators are applied
within the framework of multi-criteria decision-making
(MCDM) to address challenges in image understanding.
In the context of MCDM for image understanding, decision-
makers are faced with the task of analyzing and interpreting
images based on multiple criteria or features extracted from
the images. These criteria may include color, texture, shape,
spatial relationships, and statistical properties, among others.
The proposed q-SFREWG and q-SFROWG operators serve
as aggregation functions that enable the integration and anal-
ysis of these multiple criteria. Specifically, the q-SFREWG
operator combines the q-spherical fuzzy rough sets with
Einstein-weighted aggregation, while the q-SFROWG oper-
ator combines these sets with ordered weighted aggregation.
Decision-makers assign weights to each criterion based on
their relative importance in the image understanding task.
The q-SFREWG and q-SFROWG operators allow for the
incorporation of these weights into the decision-making pro-
cess. Once the criteria are weighted, the q-SFREWG and
q-SFROWG operators aggregate the information from dif-
ferent criteria to obtain a comprehensive representation of
the image. This aggregation process takes into account the
relationships between criteria and the degree of uncertainty
or imprecision associated with each criterion. The aggregated
information obtained from the q-SFREWG and q-SFROWG
operators serves as the basis for making informed deci-
sions in image understanding tasks. Decision-makers can
use the aggregated results to perform tasks such as object
detection, classification, segmentation, and scene under-
standing with greater accuracy and reliability. By integrating
q-spherical fuzzy rough sets with Einstein weighted aggre-
gation and ordered weighted aggregation, the q-SFREWG

and q-SFROWG operators offer a robust framework for
handling uncertainty, imprecision, and vagueness in multi-
criteria decision-making for image understanding. These
operators provide decision-makers with the tools necessary to
effectively analyze and interpret images based on diverse cri-
teria, ultimately improving the quality of decision outcomes
in image understanding applications.

C. TEST OF VALIDITY
To illustrate the adaptability of the proposed technique in
various settings, we utilize the evaluation protocols developed
by Wang and Trianaphyllou [61] in the following ways:

Step 1.Replacing the rating values of less-than-ideal alter-
natives with those of inferior quality shouldn’t affect the
identification of the best alternative, preserving the selection
that is rated highest, and assuming stable relative weights for
the criterion.

Step 2.Transitivity should be followed in the procedure.
Step 3.When using the same decision-making process for

a given problem that has been broken into smaller ones, the
initial ranking of the alternatives should be preserved.

Test of validity utilizing criteria 1.
The alternatives ranked by using our suggested method

are V3 > V4 > V2 > V1. Based on test
criteria 1, we replaced the non-optimal alternative V1
with the lowest alternative V∗

2 to evaluate the stability
of the suggested method. (0.25,0.87,0.29,0.64,0.85,0.74),
(0.65,0.85,0.25,0.64,0.78,0.96), (0.25,0.83,0.28,0.73,
0.83,0.67) and (0.58,0.87,0.38,0.91,0.67,0.28) were used as
the rating values of F∗

1. The aggregated score values for
the alternatives were as follows after we used our suggested
methodology: Sco(F∗

1) = 0.2390, Sco(F2) = 0.4342,
Sco(F3) = 0.9486, Sco(F4) = 0.6879, and as a result,
the ranking order is V3 > V4 > V2 > V∗

1 with the
best alternative remaing the same as the suggested approach.
Thus, the findings consistently support test criteria 1.

Test of validity employing criteria 2 and 3.
The fragmented decision-making subcases are regarded

as {V1,V2,V3} , {V2,V3,V4} and {V1,V2,V4} to assess the
validity based on criteria 2 and 3. They rank in the following
sequence via the procedures mentioned: V3 > V2 > V1,
V3 > V4 > V2 and V4 > V2 > V1. After combining all
the findings, the overall ranking appears as V3 > V4 > V2 >

V1, which is exactly in line with the outcomes of the initial
decision-making process. As a result, our suggested strategy
meets requirements 2 and 3.

V. MANAGERIAL IMPLICATIONS
The advent of the innovative q-SFR Einstein operators bears
significant managerial implications. It plays a crucial role
in aiding managers and decision-makers in shaping strategic
choices and attaining robust, reliable results. This frame-
work demonstrates impressive versatility across a range of
industries and proves to be effective in diverse decision-
making situations. Managers from various sectors can effi-
ciently harness the potential of the image understanding and
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interpretation model. For example, it demonstrates its worth
in the process of image understanding and interpretation
selection by assisting in the evaluation of various factors
to identify the most advantageous image understanding and
interpretation technology.Moreover, it can aid in the selection
of maintenance strategies, allowing managers to choose the
most suitable maintenance approach for their equipment or
systems. The assessment of robots in industrial settings is
another field where the model can be utilized, aiding man-
agers in evaluating the effectiveness and appropriateness of
various robotic solutions. Additionally, it can be employed
in the process of selecting material handling equipment,
assisting managers in making informed decisions about the
most optimal and productive equipment that suits their unique
needs. Nevertheless, it is crucial to acknowledge that the
decision-making process within this framework is dependent
on the preferences of experts and individuals who are engaged
in it. The model offers a methodical and organized method
for decision-making, but the ultimate decisions and rankings
will ultimately be based on the judgments and preferences
of the decision-makers. Therefore, it becomes imperative to
involve experts and stakeholders to ensure the precision and
significance of the findings. To ensure the credibility and
resilience of the obtained results, two pivotal analyses are
conducted.
Comparative Analysis:The analysis serves as a valuable

tool for decision-makers in assessing and comparing rankings
and outcomes among different alternatives, each evaluated
based on distinct criteria, IT enables a deeper understanding
of trad0offs and facilitates well-informed decision-making by
highlighting the strengths and weaknesses of each alternative.
Sensitivity Analysis: By doing so, it offers crucial insights

into the stability and sensitivity of the outcomes. Decision-
makers can thus evaluate how various factors influence their
choices, enhancing their ability to make adaptive decisions
in dynamic environments. By incorporating this analysis
into the decision-making process, managers can enhance the
reliability and confidence in their strategic decisions. The
q-SFR Einstein operators, in conjunction with comparative
and sensitivity analysis, provide a comprehensive framework
that equips managers across diverse industries and applica-
tions with the tools needed to make informed and resilient
decisions.

A. COMPARATIVE ANALYSIS
Table 13 presents a comparative evaluation of rankings
achieved through the utilization of the q-SFR Einstein geo-
metric operators in contrast to four other methods for
Multi-Criteria Decision Making (MCDM). A review of
recent research. The works from [62] to [70] add to the
field of fuzzy aggregation operators and decision-making
approaches. Wang and Liu provide intuitionistic fuzzy geo-
metric aggregation operators based on Einstein’s opera-
tions [62]. Arora and Garg examine robust aggregation oper-
ators for multi-criteria decision-making in an intuitionistic

TABLE 13. Comparative analysis of rankings across differing
methodologies.

FIGURE 13. Visual representation of the rankings acquired using different
methodologies.

fuzzy soft set environment, emphasizing the significance of
robustness in decision-making processes [63]. Rahman et
al. present Pythagorean fuzzy Einstein weighted geometric
aggregation procedures, which are particularly useful for
multiple attribute group decision-making [64]. Zulqarnain
and colleagues investigate a variety of applications, including
green supply chain management [65], multi-attribute group
decision-making [66], and mathematical issues in engineer-
ing, such as MAGDM [67]. Riaz et al. describe q-Rung
orthopair fuzzy geometric aggregation operators for water
loss management [68]. Furthermore, Chinram et al. propose
geometric aggregation operations for multi-criteria decision-
making using q-rung orthopair fuzzy soft information [69].
Finally, Zulqarnain et al. provide Einstein geometric aggre-
gation procedures for Q-rung orthopair fuzzy soft sets, with
a particular emphasis on their use in multi-criteria decision-
making settings [70].

Figure 13 presents a visual representation of the rankings
acquired using different methodologies.

Based on the propositions, calculations, and applications
discussed above, the following comparative remarks and
advantages of employing the notion of q-spherical fuzzy
rough sets emerge:

1. Traditional fuzzy sets and intuitionistic fuzzy sets
exhibit limitations as they may fail to capture com-
plete information specifications in certain scenarios. The
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TABLE 14. The pros and cons of both the proposed and existing
operators.

conditions of membership degrees and non-membership
degrees may not always be satisfied, restricting
decision-makers from expressing opinions freely.

2. To address these limitations, Yager proposed
Pythagorean fuzzy sets, extending the representation to
ζ 2

+ ξ2 ≤ 1., enabling a wider range of applications.
3. In contexts involving uncertain information, such as

voting systems, the introduction of ‘‘degree of refusal’’
necessitates the utilization of picture fuzzy sets. How-
ever, this approach presents its limitations in accommo-
dating decision-maker flexibility.

4. Spherical fuzzy numbers offer a solution, capable of
representing diverse information sets without exceed-
ing the bounds of unity. This flexibility empowers
decision-makers to allocate membership values accord-
ing to their preferences.

5. The utilization of q-spherical fuzzy rough sets and
associated algorithms, as demonstrated in selection pro-
cesses, provides a generalized framework for impactful
applications.

6. The proposed aggregation operators effectively handle
imprecise information with a degree of refusal, offering
superior reliability compared to existing approaches,
as delineated in Table 13 and Table 14.

7. The applicability of q-spherical fuzzy rough sets extends
to various domains, including stock investment anal-
ysis, airline service quality evaluation, investment
banking authority selection, and electronic learning
factor assessment, indicating their broad utility and
relevance.

8. By leveraging the advantages of q-spherical fuzzy rough
sets, decision-makers can navigate complex decision
landscapes with greater confidence and precision.

Table 14 represents the pros and cons of the proposed
operators and existing operators along with their year of
publications.

FIGURE 14. Alternative classification considering variations in criteria
weights.

B. SENSITIVITY ANALYSIS
In this work, the developed model is verified using two
separate sensitivity analyses that focus on changes in criteria
and decision-making weights and examine their impact on
final rankings. In the first research, a temporal sensitivity
analysis is undertaken to explore the effect of varying the
weights of reference criteria with high, equal, and low priority
on the overall ranking. The model is then run separately for
each criterion, assigning reference weights one at a time.
Figure 14 displays the results from twenty distinct settings.
In all circumstances, alternative V4 consistently ranks first,
while alternative V2 regularly ranks last. Notably, despite
considerable variations in the criterion weights, the model
output is quite insensitive.

The second research focuses on adjusting the weights
assigned to decision-makers, resulting in four possible situ-
ations with different weight distributions. Figure 15 displays
the final rankings for these scenarios. In all scenarios, alter-
native V3 is consistently the greatest alternative, whereas
alternative V2 is continuously the least loved. Although the
relative rank of the alternatives differs according to the
decision-maker weights utilized, the proposed approach is
robust and consistent over a wide range of decision-weighting
scenarios.

C. ADVANTAGES
The proposed technique has various benefits:
1. The addition of parameters q to the aggregation oper-

ators gives decision-makers a great deal of freedom.
This versatility allows them to tailor the settings to the
individual needs and preferences of the decision-making
scenarios. The decision process’s versatility allows for
varying degrees of membership and non-membership,
making it appropriate for a broad range of real-world
scenarios.
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FIGURE 15. Alternative rankings in response to adjustments in
decision-makers weights.

2. The parametric character of the suggested operators
enables decision-makers to fine-tune the impact ofmem-
bership and non-membership degrees. This degree of
control enables decision-makers to accurately tailor the
aggregation process to their preferences and the unique
aspects of the situation at hand.

3. The symmetry of the suggested aggregation opera-
tors with respect to the parameter ensures that the
ranking orders of alternatives stay generally consistent
across parameter values. This stability is critical in
decision-making because it prevents the outcomes from
being impacted by the decision-makers’ pessimism or
optimism.

D. LIMITATIONS
Every research endeavor has limits, and the approach
described in this study is not immune to such constraints.
Following is a discussion of these limitations:

1. The applicability of the proposed technique may be
limited to specific domains or decision contexts. Under-
standing these limitations is critical to determining the
optimal use of the recommended strategy.

2. As with any research approach, the proposed method
relies on certain assumptions and simplifications to
facilitate analysis. It is important to recognize that these
assumptions may not align perfectly with real-world
scenarios, potentially limiting the broad or practical
applicability of the results.

3. The accomplishment of the suggested framework is
established through a case study including four alterna-
tives and four criteria. It is critical to identify that the
pattern may be expanded to integrate more possibilities
and abilities in future efforts.

4. For several values of the parameter q, alternative ranking
orders are calculated. It is important to note that more
investigationsmight be conducted to investigate the hier-
archical order for other values of these considerations.

E. IMPACTS
This research contributes to the field by proposing novel
aggregation operators, namely q-spherical fuzzy rough

Einstein weighted geometric (q-SFREWG) and q-spherical
fuzzy rough Einstein ordered weighted geometric (q-
SFREOWG) operators, specifically tailored for q-SFRS.
These operators address the inherent complexities of multi-
criteria decision-making (MCDM) scenarios by effectively
integrating the orthopair q-spherical fuzzy sets with rough
set theory. The impacts of our proposed operators extend
beyond theoretical advancements; they offer practical solu-
tions for real-world decision-making problems characterized
by uncertainty and complexity. By bridging the gap between
theoretical developments and practical applications, our
work facilitates informed decision-making processes across
various domains, including image understanding, pattern
recognition, and system selection.

VI. CONCLUSION AND RECOMMENDATIONS FOR
FUTURE WORK
In this paper, we looked at aggregation operators, with
a particular emphasis on proposing new q-SFREWG and
q-SFREOWA for q-spherical fuzzy rough sets (q-SFRSs).
Clearly stated operational laws are critical in decision-
making processes, and Einstein operators excel in accom-
modating experts’ preferences over time. Our objective was
to use these operators to enhance decision-making, resulting
in a smoother and more effective end. We presented Ein-
stein sum and Einstein product for q-spherical fuzzy rough
numbers (q-SFRNs) and thoroughly investigated their prop-
erties. This investigation led to the creation of q-SFREWG
and q-SFREOWG operators based on these rules, creat-
ing a framework for incorporating decision-makers’ prefer-
ences. Furthermore, we investigated the underlying linkages
between these aggregation operators, resulting in a thor-
ough grasp of their interconnections. To apply these newly
described operators to real-world decision-making scenar-
ios, we suggested a novel technique for multiple attribute
group decision-making (MAGDM), which addresses group
choice difficulties. To evaluate the efficiency of our suggested
strategy, we used a practical example involving the selection
of an image understanding and interpretations. We exten-
sively studied the approach’s practicality and performance,
including a comparative study with existing approaches and
a sensitivity analysis to confirm its efficacy. Looking ahead,
we will use the framework established by the new multiple
attribute assessment models to address fuzziness and ambigu-
ity in a variety of decision-making parameters, such as design
choices, building options, site selection, and decision-making
problems in a soft set environment.
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