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ABSTRACT Adversarial machine learning (AML) attacks have become a major concern for organizations
in recent years, as Al has become the industry’s focal point and GenAl applications have grown in popularity
around the world. Organizations are eager to invest in GenAl applications and develop their own large
language models, but they face numerous security and data privacy issues, particularly AML attacks. AML
attacks have jeopardized numerous large-scale machine learning models. If carried out successfully, AML
attacks can significantly reduce the efficiency and precision of machine learning models. They have far-
reaching negative consequences in the context of critical healthcare and autonomous transportation systems.
In this paper, AML attacks are identified, analyzed, and classified using adversarial tactics and techniques.
This research also recommends open-source tools for testing Al and ML models against AML attacks.
Furthermore, this research suggests specific mitigating measures against each attack. It aims to serve as a
guidance for organizations to defend against AML attacks and gain assurance in the security of ML models.

INDEX TERMS Adversarial machine learning, Al assurance, cybersecurity, data privacy, secure software

development lifecycle.

I. INTRODUCTION

Adversarial machine learning (AML) is a growing challeng-
ing threat in the Al industry. With AT and ML models being
prominently used across various sectors, AML attacks have
received increasing attention from developers and security
researchers. Critical industrial systems such as autonomous
transportation and healthcare systems utilize ML models.
These systems if compromised can result into catastrophic
health and safety accidents. For example, if an autonomous
self-driving car that uses a traffic sign detection system
is compromised by adversaries, it can result in the car
falsely detecting a stop sign as a speed limit sign. This
may lead to road accidents. Similarly, if a medical system
is compromised by competing healthcare service providers,
fraudulent insurance firms or threat actors, can misdiagnose
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a disease and provide wrong treatment plans to patients. New
developments in natural language processing and computer
vision [1], [2] have brought trained classifiers closer to
the forefront of critical security systems as well. Virus
detection, face recognition are some common examples.
These advancements have made machine learning security
crucial. Specifically, resistance against inputs chosen by
adversaries has become a prominent design objective in most
ML systems. Although trained ML models are often rather
good at identifying benign inputs, it has been shown in past
studies [3], [4] that adversaries can often alter the input such
that the model produces an incorrect result. Therefore, it is
crucial for security researchers to identify countermeasures
to combat against AML attacks and assist organizations
in secure deployment of ML models. So far, there has
been no comprehensive study found within literature that
provides a detailed overview of AML attacks, it’s various
types, potential impacts, security testing tools as well as
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countermeasures. Since, ML model architectures are usually
quite complex and attacks on its auto-generated data is
difficult to comprehend, the following question arises: ‘“How
can one build secure ML models that are resistant to
adversarial attacks?”” This paper aims to resolve this question.

A. PROBLEM STATEMENT

In cybersecurity, an attack against a secure system is an
effort to make it do anything besides the tasks for which it
was intended compromising it’s confidentiality, integrity and
availability. Similarly, an adversarial attack on an Al system
is an effort to convince it to perform a function other than that
for which it was intended, such as fooling it into generating
false results.

By definition, AML attacks are executed by threat actors
to cause a ML model to malfunction. These attacks can
take place before, during the testing or training phases of a
model or even after a model has been put into production.
Creating an adversarial example such as an example that
has been deliberately designed to be misclassified is usually
necessary in order to execute an AML attack. AML attacks
come in various forms, such as evasion, poisoning, privacy-
based attacks. Attacks by adversaries might also be targeted
or untargeted. Targeted attacks involve the calculation of an
adversarial example that tricks the Al system into doing a
specific action, such as installing spyware or forcing the
system to shut down. An untargeted attack, on the other hand,
tries to cause random harm to the system, such as tricking
the system into misclassifying visuals or noises. For e.g.,
in image processing, we can often make two images with
very small modifications appear to the human as identical
to each other. However, in an ML model these resemble two
entirely different images due to the different pixel values and
classification boundaries. This is depicted in Figure 1.

B. PROBLEM DESCRIPTION

Here in Figure 1, it is noticed that the panda on the left
is unmodified, and the convolutional network (ConvNet)
trained on that dataset’s image can identify it as such.
However, after adding a minor adversarial perturbation to the
image, the ConvNet fails to recognize it as a panda and instead
classifies it as a gibbon.
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FIGURE 1. When an adversarial input is added to a normal image, the
classifier incorrectly identifies the image of a panda as a gibbon [3].

The image in the middle gives the optimal direction to shift
all pixels if one computes exactly how one might alter the
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image to cause the ConvNet to make a mistake. It appears to
a human as noise, although it is not; it is carefully computed
as a function of the network’s parameters, and there is a lot of
structure in there. However, it should be noted that the model
does not have a great deal of confidence in that judgment. As a
result, this image has a 58% likelihood of being a panda. A
32-bit floating point representation is used to send this image
to the ConvNet; a small adjustment is made to the 32-bit
floating point representation, leading the ConvNet to believe
that this image of a panda is actually of a gibbon. When the
image is multiplied by a small coefficient which is added to
the original panda image, one gets an image that no human
can distinguish from the original panda [3]. The ConvNet has
a lot more confidence in its false prediction that the image on
the right is a gibbon than it does in its incorrect prediction that
the original is a panda. This is another intriguing aspect of it
that affects more than just the class. Therefore, it is evident
that a ML model can be evaded to provide an inaccurate
result if minor perturbations are made to its inputs. There have
been several real world AML attacks that have caused major
impact to ML models by making such minor modifications to
its input data.

C. MOTIVATION OF RESEARCH

AML attacks presents an unparalleled opportunity to delve
into one of the most pressing challenges facing the field of
Al today. In an era where ML algorithms underpin critical
systems across various domains, the specter of adversarial
attacks looms large, threatening the confidentiality, integrity
and availability of these systems. This literature review aims
to dissect the multifaceted landscape of adversarial machine
learning, unraveling the intricate techniques employed by
adversaries to manipulate and deceive algorithms, while also
exploring the cutting-edge defenses and countermeasures
devised by researchers to fortify these systems against such
threats. By synthesizing and analyzing the latest advance-
ments, theoretical frameworks, and empirical findings in this
burgeoning field, this paper seeks to not only deepen our
understanding of AML but also pave the way for robust
and resilient Al systems that can withstand the relentless
onslaught of adversarial manipulation.

D. CONTRIBUTIONS

This study offers a comprehensive examination of AML
attacks, including attack tactics, techniques, and their real-
world implications, along with open-source tools for testing
against these attacks and supporting countermeasures for
mitigation. The primary contributions of this research are as
follows:

o The study conducts an extensive systematic review of
AML attacks and presents a taxonomy of various types
of AML attacks.

o The study sheds light on an adversary’s tactics and
techniques for executing various types of AML attacks
and highlights the impact of AML attacks by presenting
real-world case studies.
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l. Introduction

Overview of the research, outlining the significance of
addressing AML attacks and setting the context for the study.

Introduction to AML Attacks & Significance
Muotivation & Contribution of the Research

Il. Related Work

1ll. AML Attacks Taxonomy

IV. Methodology

Offers background on AML attacks, reviews and identified
gaps in related research laying the foundation for the study.

Introduces a taxonomy of AML attacks to categorize various
types of attacks, along with proposed countermeasures.

Describes the methodology used for selecting and evaluating

Real World Impact of AML Attacks
Gaps in Current Literature
AML Attack Methods & Strategies
Evasion Attacks & Countermeasures
Poisoning Attacks & Countermeasures
Privacy Attacks & Countermeasures

Methedology Description

studies that propose countermeasures against AML attacks.

V. Results and Discussion

VI. Frameworks and Tools
for Attack Resilience

VIl. Key Research

Challenges & Limitations and limitations of this work.

VIIl. Conclusion
and Future Scope

FIGURE 2. Structure of the review article.

o The study’s findings shed light on previously unexplored
countermeasures for each type of attack enriching the
understanding of ML researchers and cybersecurity
practitioners alike.

o Beyond theoretical advancements, this work offers
practical solutions for defending against AML attacks by
proposing open-source frameworks and tools available.

This research serves as a safeguard against AML attacks,
enhancing the security posture of Al applications and
underlying ML models. By detailing specific mitigating
countermeasures for each type of attack, organizations can
implement and test them to prevent AML attacks on their
critical ML-based applications. This study targets Al and ML
developers and security researchers, aiming to provide guide-
lines for creating secure Al and ML applications resilient
to AML attacks, thereby contributing to the advancement
of an Al-enabled intelligent world. While securing Al and
ML models is a complex journey, this research represents an
initial step in guiding organizations to establish a secure ML-
model testing environment to enhance the security posture of
their applications.

E. PAPER ORGANIZATION
The paper is organized in 8 sections. The overall structure of
this paper and description of each section is highlighted below
and illustrated in Figure 2
o Section I - Introduction: Provides an overview of the
research focus outlining the significance of addressing
AML attacks and setting the context for the study.
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Presents the findings of the evaluated studies, discussing
specific AML countermeasures recommended in literature.

Elaborates on specific frameworks and tools that enhance
resilience and provide practical solutions against AML.

Evaluates the major challenges in the AML research space

Concludes the research, summarizing key findings, discussing
limitations, and outlining future research directions.

Evasion Attack Mitigation Approaches
Poisoning Attack Mitigation Approaches
Privacy Attack Mitigation Approaches
MITRE ATLAS Framework
NIST Al Risk Management Framework
IBM — Adversarial Robustness Toolbox
Microsoft - Counterfit
IBM — Al Privacy Toolkit

Major Challenges
Limitations of this Research

Conclusion & Future Research Directions

o Section II - Related Work: Offers background infor-
mation on AML attacks, reviews related research, and
identifies gaps in the existing literature, laying the
foundation for the study.

o Section IIl - AML Attacks Taxonomy: Introduces AML
attacks taxonomy to categorize and clarify the various
types of attacks, along with proposed countermeasures.

o Section IV - Methodology: Describes the methodology
used for selecting and evaluating academic studies that
propose countermeasures against AML attacks.

e Section 'V - Results and Discussion: Presents the findings
of the evaluated studies, discussing specific AML attack
countermeasures recommended in literature.

o Section VI - Recent Frameworks and Tools for Improving
Cyber Resilience Against AML Attacks: Elaborates on
specific frameworks and tools that can enhance cyber
resilience against AML attacks, providing practical
solutions for mitigating risks.

o Section VII - Key Research Challenges & Limitations:
Evaluates major challenges in the AML research space
and limitations of this work.

o Section VIII - Conclusion and Future Scope: Concludes
the research outlining future research directions to
further advance the field.

Il. RELATED WORKS

Attackers are now preying on Al and ML systems and causing
adverse impacts to organizations by exploiting these systems
through AML attacks. AML attacks can have a dramatic
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impact on the security of Al applications. Therefore, building
secure Al systems that are immune to external AML attacks
is crucial. In this section, the researchers underscore the
consequences of AML attacks in real-world scenarios, as well
as elucidate the research gaps identified in existing literature.

A. MACHINE LEARNING MODELS AND ADVERSARIAL
ATTACKS

ML models have shown great success when used to tackle a
range of challenging data classification and analysis issues.
ML models, a subset of Al, have revolutionized various
fields by learning patterns in data and making predictions
without explicit programming [5]. These models, particularly
for classification algorithms, rely on strong mathematical
models and logic to make decisions [6]. In medical diagnosis,
ML algorithms have significantly improved accuracy by
considering large amounts of patient data [7]. Furthermore,
ML has the potential to enhance modeling and simulation
practices, as demonstrated in healthcare and autonomous
transportation use cases [8]. However, the existence of
adverse inputs has raised serious concerns, especially in sit-
uations like autonomous driving where misclassification
presents a serious risk [9].

After Transformation

Before Transformation

Max Speed 100 Stop Sjgn

FIGURE 3. A stop sign that underwent modification so that the ML model
could identify it as a speed limit sign [10].

One can easily see the potential harm that self-driving cars
can be impacted by in Figure 3. This shows an example
of a stop sign that has been modified such that the ML
model recognizes it as a speed restriction sign, but to a
human this seems to be like any other stop sign on the
street. In this section, the researchers shed light on the real-
world impact of AML attacks, accentuating the pressing
need for comprehensive solutions within both academic and
practical domains. By delineating these gaps, the researchers
lay the groundwork for a deeper comprehension of the AML
attack methods, strategies used by adversaries thus fostering
a more robust and informed approach to mitigating these
threats. Additionally, this exploration serves as a catalyst
for the introduction of the AML attack taxonomy, proposed
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countermeasures and open-source frameworks and tools in
subsequent sections, poised to enrich both theoretical dis-
course and practical strategies for combating AML attacks.

B. REAL WORLD IMPACT OF AML ATTACKS AND
IDENTIFIED GAPS

On July 21, 2019, vulnerabilities were discovered in the
ML-algorithm based Cylance anti-virus program [11]. These
vulnerabilities enabled a malicious party to create harmful
files that the antivirus program would most likely mistake
for benign ones. Attackers used this flaw to change any exe-
cutable to which they had access. The attackers only required
appending strings to the malware, not rewriting it. This
allowed an attacker to easily and significantly improve their
malware’s attack strength against affected antivirus products.
Undetected ransomware could be installed and encrypt a
computer with Cylance anti-virus product installed. This is
an example of an ‘evasion attack’. On another occasion, Keen
Labs, a recipient of Tesla’s ““ethical hacking” hall of fame
award, stated in a research paper [12], [13] that it had found
two ways to trick Tesla’s Autopilot lane recognition system
through changing the physical road surface. The first attempt
was to confuse Autopilot using blurring patches on the left-
lane line, which the Tesla engineering team said was too
difficult for someone to actually deploy in the real world and
easy for Tesla’s computer to recognize. However, Keen Labs
confirmed that by placing three little stickers on the sidewalk,
it was able to cause Tesla’s self-driving program which used
ML models, to swerve off course. This was an example of
a combined evasion and data poisoning attack. There was
also a flaw reported in Proofpoint’s Email Protection system
that appeared in 2019 which allowed for the generation of
email headers with an embedded spam score [14]. With these
scores, an attacker could design a copycat spam detection
engine and send spam emails that would not be detected.
This is an example of another type of poisoning attack. There
have also been multiple occurrences of privacy attacks on
healthcare systems leaking patients sensitive data. In one
of such occurrences, it was found that an adversary could
identify if a person has HIV via a privacy-based, also referred
to as membership inference attack on healthcare systems
using ML models. The adversary could misuse patient’s
sensitive personal healthcare data. In general, there have been
various such AML attacks recorded in the past that further
mandate the need for implementation of better security and
privacy controls for ML models. Below are some works in
literature that describe impact of AML attacks and how ML
models can be dissuaded. Furthermore, these highlights the
gaps that need to be addressed in the understanding of ML
security and AML attacks.

Lin et al., [15] described the adverse effects of real-
world applications using ML techniques when compromised
by threat actors. The author initiated the discussion by
describing the classic example of how the learning process
of spam filters can be manipulated by amending the content
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of spam emails, for example, by adding positive words that
isn’t seen in spam emails but is usually found in authentic
emails which can ultimately lead the anti-spam filter solution
to misclassify possible spam emails that contain words of
this nature and consider the emails to be legitimate. The
ML model’s filtering performance therefore significantly
declined, leading the user to turn off the spam filtering
service. This is an another example of a poisoning attack,
and it makes the assumption that the attacker can sabotage
learning of a model using unauthorized modification of
training data. Poisoning attacks are among the most common
types of AML attacks. This research also looked at other types
of real-world attacks that have happened in the past such
as one that impacted a chatbot Tay, a Twitter based chatbot
designed to rapidly learn from online conversations. It started
delivering offensive and hurtful tweets after it was poisoned
by adversarial interactions by malicious Twitter users [16],
[17]. Tay had to be shut down only after 16 hours of it’s
launch. This attack is also an example of a poisoning attack.
Another type of AML attack was encrafted on Mozilla’s
DeepSpeech automated speech-to-text system that used
ML audio classifiers. The attackers added nearly inaudible
noises resulting in the system to recognize any sentence as
the targeted sentence. They used evasion attacks to cause
damage to the system. Later on, an advanced audio-based
evasion attack was developed to target commercial speech
recognition devices. The attackers targeted several speech
recognition applications such as Google Cloud Speech-to-
Text, Microsoft Bing Speech Service, IBM Speech-to-Text
and Amazon Transcribe. Google Assistant, Google Home,
Microsoft Cortana and Amazon Echo were in fact used to
execute these attacks. The attackers were able to activate
some services through inaudible commands without the user
being aware. Thus, various ML and Al applications are
vulnerable to different types of AML attacks and can have
unexpected adverse outcomes. It is vitally important for
security experts to secure ML systems against AML attacks.

Apruzzese et al., [18] described how the field of ML
security is currently suffering a lack of research and knowl-
edge among security practitioners and ML developers. The
authors indicated that in recent years powerful algorithmic
attacks against a wide variety of ML models have been
encrafted by attackers and major targets have been the
bigtech companies such as Meta, Google, Tesla and Amazon.
While, these companies can withstand most attacks by
developing proper mitigatory controls, mid-sized and smaller
companies that adopt ML and Al based applications are at
a much higher risk as they struggle to achieve the same
level of defense due to lesser budgets and expertise. There
are several real-world evidences that suggest that attackers
use simple tactics and techniques to subvert ML model-
driven systems and sometimes these are not even linked
to the model but basic security hygiene controls such as
improper access provisioning, absence of adequate training
data monitoring, and so on. These can cause an AML attack
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to be successfully executed. The authors presented 4 case
studies of AML attacks that were executed recently. Their
study mentioned that in 2020 Gartner had predicted that “by
2022, 30 percent of cyber attacks will leverage poisoning of
training-data, model theft, or adversarial examples to execute
AML attacks [6]. However, the authors have claimed that the
developer community has barely any idea of the importance
of securing ML models during development. Below are a few
references that indicate the same:

Kumar et al. [19] surveyed 28 businesses in 2020.
Participants’ opinions on AML were solicited. The majority
of interviewees were mostly concerned about poisoning
attacks and the participants were unsure on how to react
to these. Boenisch et al. [20] issued a critical caution the
next year after numerous ML developers acknowledged that
“I never gave security for my ML models much thought.”
Sun et al.’s [21] study examined ML models used on mobile
and surprisingly discovered that: “41 percent of ML-based
mobile application development firms don’t even attempt to
safeguard their models. An additional year later, Bieringer
et al. [22] spoke with several ML developers and found that,
“most lack adequate understanding to secure ML systems
in production, “A third said they are uneasy about AML.”
Grosse et al., [23] conducted interviews with hundreds of
practitioners requesting their thoughts on defensive strategies
for AML attacks. Generally speaking, they said, “Why do
s0?”” These studies confirm the need for further research
required in the AML attacks space. The unexpected reactions
from interviewees in these surveys showcase how security
is considered only as an afterthought and not a preemptive
measure to be taken while designing and developing ML
models.

Wiyatno et al., [24] conducted a similar study by focusing
on ML models in the visual domain, as this is the area
where the most amount of research has been conducted
on producing and identifying adversarial attack methods so
far. The authors described adversarial instances’ transfer-
ability, defenses, and attacks in the real world. The authors
also reviewed the advantages and disadvantages of several
attack defense strategies. Their goal was to understand the
mechanics of adversarial attack and defense mechanisms.
The benefit of this study was that it covered over 29 types
of various AML attacks. Unfortunately, it did not follow
a proper taxonomy but it showcased the different methods
attackers used in a variety of attacks which will be briefly
discussed later. However, the limitation of this study was
that it was only conducted over image recognition models
and applicable to visual content. The study did not follow an
easy to understand simplified taxonomy for the classification
of AML attacks. It had too many technical jargons that had
not been well explained in layman terms. Also, the study
dated back to 2019 and several new types of AML attacks
have originated since then. This research covers all types
of common AML attacks based on a standard referential
taxonomy that is easy to comprehend and can be mapped

VOLUME 12, 2024



J. Malik et al.: Systematic Review of AML Attacks, Defensive Controls, and Technologies

IEEE Access

effectively to specific countermeasures for each type of an
attack.

Gilmer et al., [25] argued that several studies in literature
provided impractical solutions to secure ML models from
AML attacks. Most studies considered unrealistic ML-centric
restrictions that reduced the quality and performance of the
model. The authors focused on the idea of examining the
relevance and realism of particular AML attack defenses.
The study however did not end up providing effective
security measures as underlined by recent ML/AI security
frameworks. In this research, security measures from author-
itarian sources are recommended which can be implemented
effectively in real-world scenarios.

Biggio et al., [26] provided a different perspective on AML
attacks. The authors mentioned that even though the research
interest in AML attacks has grown over the years, the very
first seminal work in the area of AML was conducted in
2004. At that time, the study was conducted on how AML
attacks could compromise spam-filtering systems by tricking
the ML model through making few carefully-crafted changes
in the content of spam emails. The study provided insight
on an attacker’s goals, strategy, capability and knowledge.
It also provided details on certain defensive measures that
can be used to protect ML models from AML attacks.
However, it failed to provide a clear road map to the cyber
security and developer community on what are the exact
mitigation countermeasures that should be implemented to
secure ML models. It could not connect the specific defense
countermeasures to the various types of AML attacks.

The majority of prior studies primarily emphasized the
magnitude of the AML problem but lacked concrete sugges-
tions for mitigation. In contrast, this research goes beyond
merely highlighting the scale of the issue by presenting
comprehensive solutions aimed at reducing the risk of
AML attacks. Rather than stopping at the identification
of the problem, this work delves into actionable strategies
and methodologies designed to effectively combat AML
threats. By addressing this gap in the existing literature, this
research not only contributes to a deeper understanding of
the complexities surrounding AML attacks but also offers
tangible remedies for mitigating their impact. This research
proposes practical measures that can be implemented by
organizations to bolster their defenses against AML activities.

C. AML ATTACK METHODS

AML methods are used to craft adversarial examples.
Adversarial examples are inputs to an ML model that are
intentionally designed to cause the model to make a mistake.
In this section, the researchers describe 3 commonly known
AML attack methods.

1) FAST GRADIENT SIGN METHOD

Researchers Ian J. Goodfellow, Jonathan Shlens, and Chris-
tian Szegedy at Google suggested one of the first methods for
building adversarial attacks. The attack strategy is known as
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the Fast Gradient Sign Method (FGSM) approach. It involved
pushing a model to misclassify an image by adding a
linear amount of undetected noise to it. The sign of the
gradient associated with the image that want to be modified
is multiplied by a tiny constant epsilon to produce this
noise. The model is increasingly vulnerable to deception
as epsilon rises, but it also gets simpler to identify the
perturbations. The gradient is calculated in terms of the
input image since the objective is to create an image that
minimizes the loss for the original image [27]. Since the
objective of traditional gradient descent for model training
is to minimize the model’s loss on an original dataset, the
gradient is used to update the model’s weights. Assuming
that neural networks cannot withstand even linear changes
to the input, the FGSM was presented as a quick method
to create adversarial samples to alter the model. FGSM is a
simple and computationally efficient method for generating
adversarial examples. FGSM is effective but can be defended
with techniques like adversarial training.

2) PROJECTED GRADIENT DESCENT METHOD

The Projected Gradient Descent (PGD) attack is a white-
box attack in which the attacker get access to the model’s
gradients and a copy of the model’s weights. Compared to
black box attacks, this threat model gives the attacker far more
power because the attacker can tailor their attack to mislead
the model instead of relying solely on transfer attacks, which
usually results in disturbances that are observable to humans.
PGD eliminates all restrictions on the amount of time and
effort an attacker may devote to creating the most effective
attack, making it the most ““full”” white-box proponent. PGD
is a more advanced method that iteratively applies FGSM
with a small step size and then clips the perturbation to
ensure that it stays within a specified epsilon range around the
original input. This iterative process continues for a certain
number of steps or until convergence. PGD is more powerful
than FGSM and can find adversarial examples that are harder
to detect [3], [27]. To comprehend a PGD attack, one must
find the perturbation that maximizes a model’s loss on a given
input while keeping the perturbation’s magnitude below a
predetermined threshold. When applied correctly, it ensures
that the adversarial example’s content matches that of the
unperturbed sample, or even makes it nearly impossible for
humans to tell the adversarial example from the unperturbed
sample [27].

3) CARLINI-WAGNER

In order to evaluate current adversarial attacks and defenses,
Nicholas Carlini and David Wagner of the University of
California, Berkeley proposed a quicker and more reli-
able method for generating adversarial samples [28]. The
Carlini-Wagner (CW) attack is a state-of-the-art method for
generating adversarial examples. It formulates the generation
of adversarial examples as an optimization problem, where
the goal is to find the smallest perturbation that causes the
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model to misclassify the input. CW attacks are typically
more effective than FGSM and PGD but are also more
computationally expensive. CW’s attack starts with an
attempt to resolve a challenging non-linear optimization
equation. The gradient descent, when used to solve this
equation yields stronger adversarial examples than the FGSM
approach. It also avoids defensive distillation, which was
once believed to be helpful in dealing with adversarial
samples. Among the most potent white-box attacks are the
CW attacks.

To summarize, FGSM is simple but can be easily defended,
while attacks that use PGD and CW methods are more
powerful but require more computational resources by the
adversary. Each method has its own approach and properties.
Adversarial examples generated using these methods have
raised concerns about the robustness and security of ML
models in general. These types of methods are used in
AML attacks to generate adversarial examples, which goes
as an input to unsuspecting ML models and causes the
model to make a mistake. There are several other attack
methods, however these 3 types of attack methods are more
prominently noticed.

D. ATTACK STRATEGIES

AML attacks target ML models of various kinds. Many
of them work well with both conventional ML models
like linear regression and support vector machines (SVMs)
as well as deep learning systems. Some high-level exam-
ples of attack strategies are provided in the following
subsections.

1) BLACK-BOX ATTACKS

Black box attacks assume that the adversary is unaware of the
model’s parameters or structure and can only derive outputs
for predetermined inputs. In this case, the adversarial example
is constructed with either a custom-made model or no model
at all with the exception of the inability to query the original
model. In any event, the goal of these attacks is to produce
adversarial instances that can be used with the black box
model in question [29].

2) WHITE-BOX ATTACKS

White box attacks presume that the adversary can obtain the
input’s labels and has access to the model’s parameters [29].
These are a category of attacks aimed at compromising
the performance or integrity of ML models by exploiting
detailed knowledge about their internal workings, including
architecture, parameters and training data. In contrast to
black-box attacks, where attackers have limited knowledge
about the model, white-box attacks assume full access to
the model’s structure and parameters. These attacks leverage
the transparency of ML models, which is often essential for
model interpretability and debugging but can also pose a
security risk when exposed to adversaries. By exploiting this
transparency, attackers can craft adversarial examples. Here,
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inputs that are intentionally perturbed to cause the model to
make incorrect predictions or classifications.

3) TRAINING-TIME ATTACKS

ML involves two stages, a training stage, in which the model
learns and a deployment stage in which the model gets
deployed on new unlabeled data and is allowed to make
predictions. Poisoning attacks are those that occur during
the model’s training phase as an adversary manipulates a
portion of the training data [30] by adding or amending
training samples. The adversary is in charge of the model
and its parameters in a training-time attack [31]. While model
poisoning attacks are the most common form of training-time
attacks [32], where clients send local model updates to the
aggregating server in a federated model set-up, data poisoning
attacks can also be considered as training time attacks when
applied during the training phase.

4) DEPLOYMENT-TIME ATTACKS

It is possible to launch two distinct attacks during testing and
deployment phases. The first ones are evasion attacks which
alter testing samples to produce adversarial examples [33],
[34], which based on certain metrics, resemble the original
sample but change the model’s predictions to reflect the
attacker’s selections post deployment. The second ones are
privacy attacks in which attackers have query access to a
model and are able to execute different kinds of privacy-based
inference attacks such as membership inference [35] and data
reconstruction [36]. Therefore, deployment attacks can be
further segregated into attacks against models i.e., evasion
attacks and data privacy attacks.

5) TARGETED ATTACKS

Threat actors that seek and penetrate a target entity’s infras-
tructure while remaining anonymous are known as targeted
attackers. These attackers possess the knowledge and means
required to carry out their plans over an extended length
of time. They may adjust, improve, or change their attacks
to counter the defenses put up by the organization [37].
Traditional online dangers including malware, malicious
websites, emails, and vulnerabilities are frequently used in
targeted attacks. Several characteristics set targeted attacks
apart from other types of threats. Targeted attacks are com-
monly launched through campaigns. Advanced persistent
threats which are a form of targeted attacks are typically
conducted as part of campaigns and are a sequence of
successful and unsuccessful attempts over time to gain access
to the target’s network [37]. They frequently target particular
industries, such as corporations, governmental organizations,
or political parties. Attackers frequently have long-term
objectives in mind, including monetary gain, political benefit,
and commercial data theft to name a few [37]. Attackers
constantly modify, enhance, and adapt their methods in
order to get beyond security controls depending on the
characteristics of the industry they are targeting.
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6) UNTARGETED ATTACKS

Attackers that don’t care about the security of their targets
try to compromise as many people, organizations, services,
or devices as they can using untargeted attacks. Since there
will be many vulnerable systems or services, they don’t care
who the victim is [37]. They achieve this by employing
strategies that capitalize on the open nature of the Internet,
such as:

« Phishing which is a malicious practice of sending bulk
emails to individuals requesting sensitive information
such as bank account data or pointing them in the
direction of a malicious website [37].

« Water holing which is a malicious practice of fabricating
a fake website or breaching an authentic one to exploit
users [37].

« Ransomware, a type of extortion malware through which
files are encrypted and held captive until a ransom is
paid [3].

o Scanning networks to target random people, organiza-
tions, services or devices.

Through these strategies, attackers cause harm to people,
organizations, services or devices, even though they do not
have any specific target at the initial stages of the attack.

Ill. AML ATTACKS TAXONOMY

Different types of AML attacks can be executed, some
over a portion of the training data, while some on the
labels, the model parameters, or the code of ML algorithms
itself. In case, the model has already been trained, the
adversary may launch attacks during the deployment stage
to compromise the integrity and alter the model’s predictions
or conduct attacks to deduce private information about the
model or its training data. According to the NIST AML
publication [38] which is considered to be an authoritarian
source on information of AML attacks and has also been
reviewed by industry experts, it states that there is a specific
taxonomy on AML attacks as described below:

There are 3 main types of AML attacks - Evasion, Poison-
ing and Privacy-based attacks. Within Evasion Attacks, there
are different types such as White-Box Evasion Attacks,
Black-Box Evasion Attacks and Transferability of Attacks.
Within Poisoning Attacks, there are several types such as
Auvailability Poisoning Attacks, Targeted Poisoning Attacks,
Backdoor Poisoning Attacks and Model Poisoning Attacks.
Each of these attacks have been specifically described
and countermeasures are available for all. These are quite
different from each other in terms of their techniques.
Within Privacy Attacks, there are several types such as
Data Reconstruction, Memorization, Membership Inference,
Model Extraction and Property Inference Attacks and these
as well are different from each other. These attacks have
been depicted in Figure 4 and classified in these 3 separate
sections and extensively described based on attacker tactics
and techniques with specific mitigating countermeasures for
each. In further sections, the researchers provide details on
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each type of attack, adversary tactics and techniques and
countermeasures proposed in literature to mitigate these.

A. EVASION ATTACKS

Over the past ten years, there has been a notable surge in
interest in AML due to the revelation of evasion attacks
against ML models. The objective of an adversary in an
evasion attack is to produce adversarial examples, which
are testing samples whose classification can be altered at
deployment time to any attacker-selected class with the least
amount of disruption [34]. The earliest known examples
of evasion attacks were reported in 1988 by Kearns and
Li [39], Szedegy et al. [34], then in 2004 by Dalvi et al.
[40], Lowd and Meek [41], and others. Some of these
studies demonstrated the visualization of adversarial samples
and the ease of manipulation of deep neural networks
utilized for image categorization using evasion attacks.
The first application domains where evasion attacks were
demonstrated were in anti-malware, spam filtering and image
classification ML models. But as interest in adversarial
machine learning grew, and ML technologies were used in
a wide range of other application areas, such as speech
recognition [42], natural language processing [43], and video
classification [44], [45], evasion attacks on these areas came
under closer examination. An evasion attack occurs when
a deliberately perturbed input, known as a ‘adversarial
example,” is fed to the network. This perturbed input appears
and feels exactly like its unaltered copy to a human, but it
completely confuses the ML classifier.

Evasion attack as shown in Figure 5 occur during the
ML deployment stage in which the model has already
been trained, and the adversary’s aim is to breach the
data’s integrity and alter the ML model’s predictions.
Evasion attacks require altering testing samples to provide
adversarial examples which are undetectable to humans and
are incorrectly assigned by the model to a different class
to alter the model’s predictions. Evasion attacks are the
most common type of AML attacks. For example, spammers
and hackers frequently try to avoid detection by hiding the
presence of malicious software and spam emails, in order
to avoid detection and be accepted as genuine samples.
Spoofing attacks on biometric verification systems is a form
of evasion attacks. Image-based spam inserts its content into
an attached image to avoid textual scrutiny by anti-spam
filters, is another example of an evasion attack. Black box
attacks and white box attacks are the two types of evasion
attacks.

1) ATTACKER TACTICS AND TECHNIQUES IN EVASION
ATTACKS

The adversary’s objective in an evasion attack is to produce
adversarial examples whose classification can be altered at
deployment time to any attacker-selected class with the least
amount of perturbation [34].
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In February 2020, the Microsoft Azure red team performed
an evasion attack on a new Microsoft product designed for
running Al workloads at the edge [46]. The goal of this
attack was to continuously modify a target image using an
automated system in order to generate misclassifications in
the model. The attackers initiated the attack by searching
for the victim’s publicly available ML model research
materials to gather information about the target model.
Then, they acquired the public ML artifacts of the base
model. They sent queries and analyzed the responses
from the ML model. Finally, they created an automated
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system to continuously manipulate an original target image
that tricked the model into producing incorrect inferences,
however the perturbations in the image were unnoticeable
to the human eye. This was then fed into the model and
the red team was able to evade the model by causing
misclassifications.

In another similar attack that was conducted by MITRE’s
Al ethical hacking team, the goal of was to execute a physical-
domain evasion attack on a commercial face recognition
service and deliberately cause a misclassification [47]. This
required the team to search for the victim’s publicly available
research materials to gather information about the target ML
model. They followed this by validating accounts to the said
service that could help them gain access to the knowledge
base documents of the face recognition API. The team
then accessed the API of the target model and discovered
the model’s ontology by querying the model’s API. Later,
they acquired the public open source data that was used
by the model and developed a proxy ML model that could
optimize adversarial visual patterns as a physical domain
patch-based attack using expectation over transformation
method. The team caused issues in the face identification
system by placing physical patches. The team successfully
evaded the model using the physical patches and caused
targeted misclassifications. Through these evasion attacks
and several others found in various studies, the chronology
of the tactics and techniques used by adversaries are similar
and can be traced. In the next section, the researchers provide
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several countermeasures that have been proposed in literature
for detecting and preventing evasion attacks.

2) EVASION ATTACK COUNTERMEASURES
Adversarial inputs are common in a wide range of ML model
architectures and application domains, making mitigation
of evasion attacks challenging. The existence of adversarial
inputs may be explained by the fact that ML models,
especially in the field of computer vision rely on non-robust
features that are beyond human perception [48]. Many of the
countermeasures against adversarial inputs that have been
suggested in recent years have proven ineffective and have
been superseded by more powerful attack methods [49], [50],
[51]. However, out of all the suggested countermeasures
against adversarial evasion attacks, certain countermeasures
have proven themselves to be effective and can mitigate
evasion attacks. These are summarized in Table 1.

Randomized smoothing: Randomized smoothing is a tech-
nique used in ML to improve the robustness of models against
adversarial attacks. It involves adding random noise to input
data during both training and inference stages, which helps
to regularize the model and make it less sensitive to small
perturbations in the input. The key idea behind randomized
smoothing is to utilize the principle of stochasticity to provide
a form of defense against adversarial attacks. The model
learns to generalize better and becomes less susceptible to
adversarial examples by introducing random noise during
training. Similarly, during inference, adding random noise to
input samples can help to smooth out the decision boundaries
of the model, making it more difficult for adversaries to
craft effective adversarial perturbations. The effectiveness
of randomized smoothing relies on the assumption that
the added noise disrupts the gradient information used by
adversaries to generate adversarial examples. This makes it
harder for attackers to find perturbations that consistently
fool the model. Randomized smoothing has shown to be
effective in improving the robustness of various types of
models, including deep neural networks, against evasion
attacks. It is particularly useful in scenarios where model
security and reliability are critical, such as in autonomous
driving systems, medical diagnosis, and financial fraud
detection. Randomized smoothing was first introduced by
Lecuyer et al. [52] and refined by Cohen et al. [53] and
is a technique that turns any classifier into a verifiable
robust smooth classifier by generating the most likely
predictions in the presence of gaussian noise perturbations.
Provable resilience against evasion attacks is achieved by this
method, even for classifiers trained on massively distributed
datasets like ImageNet. A subset of testing samples are
usually given certified predictions by randomized smoothing.
Overall, randomized smoothing is a promising approach for
enhancing the resilience of ML models against adversarial
threats, contributing to the development of trustworthy Al
systems.

Formal verification: Formal verification methods ensure
the correctness and reliability of ML systems. It involves
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rigorous mathematical analysis and verification techniques
to prove or disprove properties of ML models, algorithms,
or systems. In traditional software engineering, formal veri-
fication is used to prove the correctness of software systems
with respect to a specification. Similarly, in the context of
ML, formal verification aims to provide guarantees about the
behavior of ML models, such as their robustness, fairness,
safety, and reliability. There are several approaches to formal
verification in ML. The first one is mathematical proofs.
This approach involves using mathematical techniques, such
as theorem proving, to formally verify properties of ML
models. For example, one might prove that a certain neural
network architecture converge to the optimal solution under
specific conditions. Another approach is model checking.
Model checking involves exhaustively exploring the behavior
of amodel against a formal specification or a set of properties.
In the context of ML, this could involve checking whether
a model satisfies certain safety or fairness constraints under
all possible inputs. Furthermore, there are constraint solving
techniques that can be used to verify properties of ML models
by formulating them as logical constraints and then solving
them to check for validity. This approach is often used to
verify properties related to the robustness of models against
adversarial attacks. Finally, there are symbolic execution
techniques that involve analyzing the behavior of a program
or a model by representing its inputs symbolically. This
technique can be used to systematically explore the behavior
of ML models and verify properties such as correctness and
safety. Providing formal specifications of desired properties
or behaviors of ML systems can facilitate formal verification.
These specifications can then be used as the basis for
mathematical proofs or automated verification techniques.
Formal verification systems check the robustness of small
feed-forward networks using satisfiability modulo theories
(SMT) solvers [54]. Several follow-up formal verification
systems, including DeepPoly [55], ReluVal [56], and Fast
Geometric Projections (FGP) [57] have expanded and scaled
up these techniques to larger networks. While formal
verification techniques hold great promise for verifying the
robustness of neural networks, their primary drawbacks are
their limited scalability and high computational cost. Formal
verification in ML is still an active area of research, and
it poses several challenges due to the complexity and non-
linearity of many models. However, for ensuring the safety,
reliability, and trustworthiness of ML systems, particularly
in safety-critical applications such as autonomous vehicles,
medical diagnosis, and financial systems, formal verification
can be further delved upon.

Adversarial training: Adversarial training is a general
technique that was first presented by Goodfellow et al.
[33] and refined by Madry et al. [60]. It is a technique
used in ML to improve the robustness and resilience of
models against adversarial attacks. Many adversarial attacks
involve making small, carefully crafted perturbations to
input data with the intention of misleading the model
into making incorrect predictions. Adversarial training aims
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TABLE 1. Review of evasion attack studies.

Ref No. | Dataset Type of ML Architecture | Contribution Proposed Countermea-
/ Method sure
[53] ImageNet Neural Network based | Demonstrated how to create a new classifier that is veri- | Randomized Smoothing
classifier fiably robust to adversarial perturbations under the norm
from any classifier that performs well under Gaussian
noise using Randomized smoothing.
[52] ImageNet Autoencoder Ilustrated how differential privacy theory and adversar- | Adversarial Training; Dif-
ial training against adversarial examples are related and | ferential Privacy
demonstrated how the connection can be used to create a
certified defense against such attacks.
[54] Not mentioned Tranformers: Rectified | Presented a new, scalable, and effective method for for- | Formal Verification
Linear Unit (ReLU) mally verifying the properties of DNNs.
[55] MNIST; Tranformers Introduced a new system named DeepPoly for accurate | Formal Verification
CIFARI10 certification of scalable DNNs and increase robustness of
the network against evasion attacks.
[56] MNIST Tranformers: Rectified | Proposed a novel approach to formally verify DNN secu- | Formal Verification
Linear Unit (ReLU) rity properties without the need for SMT solvers.
[57] MNIST, Fashion- | CNNs, Tranformers: Rec- | Provided a quick method for evaluating feed-forward neu- | Adjusting Feature Dimen-
MNIST, and CI- | tified Linear Unit (ReLU) ral networks with piecewise-linear activation functions for | sion of Model
FAR10 local robustness.
[58] Penn  Treebank | Deep Neural Networks | Recommended a novel input reconstruction method for | Input Reconstruction
(PTB) datase (DNNs) quantitatively evaluating the likelihood that uncommon or
special training data.
[59] GPT-2  training | LLMs: GPT-2 Showcased how an adversary in a LLM can conduct | Adversarial Training
datasets an evasion attack to retreive specific training examples.
Derived specific adversarial training safeguards for LLMs.
[49] MNIST; Deep Neural Networks | Provided a few straightforward feature squeezing tech- | Adjusting Feature Dimen-
CIFAR10 (DNNs): ResNet niques. sion of Model
[33] MNIST Deep Neural Networks | Employed a novel method to offer instances for adversar- | Adversarial Training
(DNNs) &amp; | ial training and decreased the network’s test set error.
Transformers: LSTM
& ReLU
[60] MNIST; Deep Neural Networks | Investigated the logical structure of neural networks to find | Randomized Smoothing
CIFARI10 (DNNs) dependable universal techniques for improving resistence
to AML attacks using randomized smoothing.
[61] MNIST; Deep Neural Networks | Suggested an attack method for more neural networks that | Input Reconstruction
CIFARI10 (DNNs) involves training a reconstructor network after receiving
the weights of the targeted model as input.

to mitigate the impact of such attacks by incorporating
adversarial perturbed examples during the model training
process. Under adversarial training, there are additional
defense mechanisms like gradient masking, which prevents
the adversary from obtaining important gradients to directly
construct the adversarial examples. These defenses however
don’t work against black-box evasion attacks as the opponent
is still able to acquire the gradient direction derived from the
nearby replacement model using the adversarial examples’
transferability [62].

It’s interesting to note that models trained using adver-
sarial training have greater semantic meaning than standard
models [63], but this advantage is typically attained at
the expense of a lower model accuracy on clean data.
The iterative generation of adversarial examples during
training is another reason why adversarial training is costly.
Apruzzese et al., [18] addressed the problem of evasion
attacks against flow-based botnet detectors by putting forth
the first defensive strategy based on deep reinforcement
learning to lessen adversarial perturbations against ML-based
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network intrusion detection systems. The authors proposed a
framework that can independently produce evasive samples
to evade a target botnet detector. The framework then
used these samples to harden the detector by training on
adversarial samples. The author’s study paved the way
for future research aiming to combat evasion attacks by
developing robust detectors that maintain their performance
in the face of adversarial perturbations. It helped in increasing
the detection rate against known and novel evasion attacks.
In order to create a new model that is resistant to attack
perturbations, this technique generated adversarial samples
during the model training stage using well-known attack
methods. It then added these adversarial samples to the
training set and retrained the model many more times.
This technique increased the training set data by combining
different adversarial samples, which improved the new
model’s robustness, accuracy, and standardization.

The key steps involved in adversarial training are as
follows. First, adversarial examples are crafted by applying
imperceptible perturbations to input data in a way that
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maximizes the model’s loss function. This is typically
achieved by computing gradients of the loss function with
respect to the input and then making small adjustments to
the input in the direction that increases the loss. Then, the
adversarial examples generated are added to the training
dataset alongside the original clean examples. This aug-
mentation ensures that the model learns to recognize and
correctly classify adversarial inputs as well. The model is
then trained on the augmented dataset, which now includes
both clean and adversarial samples. By exposing the model
to adversarial samples during training, it learns to become
more robust and resilient to such attacks. After training, the
model’s performance is evaluated on a separate validation
or test dataset to assess its robustness against AML attacks.
This step helps to ensure that the adversarial training
process has effectively improved the model’s resilience
without sacrificing performance on clean data. It provides a
proactive defense mechanism by training models to recognize
and appropriately respond to actual adversarial inputs,
rather than simply reacting to attacks after deployment.
However, adversarial training also has its limitations. It can
be computationally expensive and may require additional
labeled data for generating adversarial samples. Furthermore,
adversaries may adapt their attack strategies to circumvent
adversarially trained models, necessitating ongoing research
and development of more sophisticated defense mechanisms.

Adjusting feature dimension of model: Adjusting the
feature dimension of a model in ML refers to modifying
the number of input features that the model processes. This
adjustment can be necessary for various reasons, such as
accommodating different input data shapes, reducing model
complexity, or adapting to specific requirements of the task
or architecture. Adjusting the feature dimension of a model is
also sometimes referred to as Feature Squeezing. Below are
a few scenarios where adjusting feature dimensions/feature
squeezing might be relevant:

1) Dimensionality Reduction: In cases where the original
feature space is high-dimensional or contains redun-
dant information, dimensionality reduction techniques
like Principal Component Analysis (PCA) or feature
selection methods can be employed to reduce the
number of features while retaining as much useful
information as possible.

2) Reshaping Input Data: Some ML models, particularly
neural networks, require input data to be in a specific
shape or format. For example, convolutional neural
networks (CNNs) commonly operate on image data
with dimensions (height, width, channels). Adjusting
feature dimensions in this context may involve reshap-
ing input data to conform to the required input shape of
the model.

3) Model Adaptation: When adapting pre-trained models
to new tasks or datasets, it may be necessary to adjust
the input feature dimensions to match the requirements
of the pre-trained model. This adjustment could involve
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adding, removing, or transforming features to align
with the model’s architecture.

4) Handling Variable-Length Sequences: In natural lan-
guage processing (NLP) tasks, input sequences such
as sentences or documents may have variable lengths.
Techniques like padding or truncation can be used
to adjust the feature dimensions to ensure that all
input sequences have uniform lengths, which is often
required for processing with certain types of models
like recurrent neural networks (RNNs) or transformers.

5) Feature Engineering: Feature engineering involves
creating new features or transforming existing ones to
improve model performance. Adjusting feature dimen-
sions may involve adding new features, combining
existing ones, or removing irrelevant or redundant fea-
tures based on domain knowledge and experimentation.

Model feature dimensions are related to adversarial
examples. To stop an evasion attack, one may include feature
selection and reduction techniques [58], [59] to identify
which dimensions are more prone to perturbation. Then,
one may decrease the corresponding feature weights or
eliminate the most vulnerable features. This type of technique
can to some extent, restrict the generation of adversarial
examples because it makes it harder for adversaries to add
features with fewer available features and it would require
more perturbations. Even though 5 random features can give
adversarial samples a 50 percent success rate, the work
in [49] demonstrated that limiting the number of features that
the adversary can control does not totally prevent evasion
attacks. Furthermore, for tasks requiring exceptionally high
classification accuracy, reducing some vulnerable feature
dimensions will result in an overall reduction in accuracy,
which would be inappropriate. In summary, adjusting feature
dimensions in ML involves modifying the input feature space
to meet the requirements of the model, the task, or the data.
It plays a crucial role in pre-processing, model adaptation,
and feature engineering, all of which are essential steps in
building effective ML systems.

Defensive distillation: Huang et al., [64] recommended
using defensive distillation which is a method to prevent
models from fitting too tightly and improves generalization.
Defensive distillation enhance the robustness of models
against adversarial attacks, particularly in the context of deep
neural networks. The main idea behind defensive distillation
is to train a secondary ‘“‘distilled” model using the outputs
of a primary model which has been trained on the original
dataset. The distilled model is trained on the same dataset,
but with higher temperature softmax output activations,
making the model more confident and less sensitive to small
perturbations in the input. The steps involved in defensive
distillation are as follows:

1) Training the Primary Model: Initially, a primary model
(often a deep neural network) is trained on the
original dataset to perform the target task such as
image classification. This model is typically trained
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using standard techniques but it may be vulnerable to
adversarial attacks.

2) Generating Soft Labels: Using the trained primary
model, soft labels are generated for the training data.
Soft labels provide a more nuanced representation of
the model’s predictions compared to hard labels (one-
hot encoded vectors), allowing for richer information
transfer during distillation.

3) Training the Distilled Model: A secondary distilled
model is trained using the same dataset but with the soft
labels generated by the primary model. Additionally,
the temperature parameter in the softmax activation
function is increased during training, resulting in
smoother and more spread-out probability distributions
over the output classes.

4) Evaluation: The distilled model is evaluated on a sepa-
rate validation or test dataset to assess its performance
and robustness against adversarial attacks.

Defensive distillation has shown to be effective in
improving the robustness of models against various types of
adversarial attacks, including those based on gradient infor-
mation. By training the distilled model to be more confident
in its predictions and smoothing out the decision boundaries,
defensive distillation makes it more difficult for adversaries
to generate effective adversarial perturbations. In order for
the classification result produced by one DNN to be used
for training the subsequent DNN, these technologies operate
by concatenating multiple DNNs during the model training
stage. Researchers discovered that knowledge transfer can
increase an Al model’s robustness and decrease its sensitivity
to minute perturbations [61]. As a result, they suggested
defending against evasion attacks by utilizing defensive
distillation technologies. They discovered that distillation
technologies can lower the success rate of particular attacks
like Jacobian-based Saliency Map Attacks using tests on
MNIST and CIFAR-10 data sets. However, it’s importsnt
to note that defensive distillation has its limitations, and it
may not provide complete protection against all types of
adversarial attacks. Furthermore, recent research has shown
that defensive distillation may not be as effective as initially
thought, and other defense mechanisms may be needed to
enhance the security of ML models further.

Input reconstruction: Input reconstruction in ML refers to
the process of generating a reconstructed version of the input
data from a model’s internal representations or latent space.
This technique is commonly used in various domains, includ-
ing unsupervised learning, generative modeling, and feature
visualization. The goal of input reconstruction is to learn
a mapping from the latent space back to the original input
space, allowing the model to reconstruct or generate plausible
samples resembling the input data. By learning this mapping,
the model gains an understanding of the underlying structure
and features of the data, which can be useful for tasks such
as data denoising, anomaly detection, and generating new
data samples. Input reconstruction is a versatile technique
that facilitates understanding, manipulation, and generation
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of data samples by learning meaningful representations in
the latent space. To protect against evasion attacks, this
technique deforms input samples during the model inference
stage. The normal classification function of the models
remains unaffected by the deformed input. Adding noise,
de-noising, or altering an input sample using an automatic
encoder (autoencoder) are some methods for implementing
input reconstruction. Input reconstruction is often employed
in autoencoder architectures, which consists of an encoder
network that maps input data to a lower-dimensional latent
space and a decoder network that reconstructs the input
data from the latent representation. During training, the
model learns to minimize the reconstruction error, typically
measured using a loss function such as mean squared error
(MSE) or binary cross-entropy. Once trained, the decoder
network can be used to generate reconstructions of input
data by feeding sampled points from the latent space
into the decoder. These reconstructions aim to capture the
salient features of the original data while filtering out noise
or irrelevant information. Input reconstruction has several
applications across different domains:

o Data Denoising: Input reconstruction can be used
to remove noise or artifacts from data samples by
reconstructing clean versions of the input data from
corrupted or noisy observations.

o Anomaly Detection: Deviations between the original
input data and its reconstructed counterpart can be
indicative of anomalies or outliers in the data. Input
reconstruction can thus be leveraged for anomaly
detection tasks.

o Generative Modeling: By learning the mapping from
the latent space to the input space, input reconstruction
enables the generation of new data samples that resem-
ble the original input distribution. This is particularly
common in generative adversarial networks (GANs) and
variational autoencoders (VAEs).

o Feature Visualization: Input reconstruction provide
insight into the features learned by the model by
visualizing the reconstructed data samples. This can help
interpret the model’s behavior and understand which
features are considered important for reconstruction.

There are intrinsic trade-offs between robustness and
accuracy in all of these mitigations, and they all incur extra
computational expenses during training. As a result, creating
ML models that are accurate, cost optimal and resistant to
evasion attacks is still a challenge. Several countermeasures
as suggested by Ji et al., [65] such as input reconstruction
are reactive countermeasures and are also applicable to other
types of AML attacks such as poisoning attacks and privacy
attacks. These will be discussed further in the results and
discussion section.

B. POISONING ATTACKS
Poisoning is the process of intentionally corrupting training
data with malicious information. It’s a type of an attack where

VOLUME 12, 2024



J. Malik et al.: Systematic Review of AML Attacks, Defensive Controls, and Technologies

IEEE Access

an attacker manipulates the training data to compromise
the performance or integrity of the trained model as shown
in Figure 6. The attacker injects malicious samples into
the training dataset influencing the behavior of the model
during training time. Poisoning attacks occur in various ML
settings, including supervised learning, where the model
is trained on labeled data, and unsupervised learning,
where the model learns patterns from unlabeled data. Data
gathered during operations may be used to retrain ML
systems. For example, intrusion detection systems (IDSs)
frequently undergo retraining utilizing real-time operational
data. By inserting malicious samples into the system while
it is operating, an attacker can pollute this data and
prevent retraining from functioning normally [66]. Poisoning
attacks during the training stage of the ML algorithm,
is another significant threat to ML systems. The first known
poisoning attack was created for worm signature generation
in 2006 [67], therefore poisoning attacks have a long
history in cybersecurity. Later on, a number of application
domains have seen a significant amount of research on
poisoning attacks, including computer security (for spam
detection [68], network intrusion detection [69], vulnerability
prediction [70], malware classification [71], [72], computer
vision [73], [74], [75], natural language processing [76],
[77], [78] and tabular data in the healthcare and financial
domains [77]. Poisoning attacks have also received increased
attention in industrial settings lately. They are regarded as the
most serious vulnerability in ML systems and are extremely
potent, according to a Microsoft report [19]. Specifically,
targeted and backdoor poisoning attacks are known to be
more covert and may result in integrity violations on a limited
number of target samples, whereas availability poisoning
attacks cause the ML model to degrade indiscriminately on
all samples [30]. There are several subcategories of poisoning
attacks due to the extensive range of adversarial capabilities
that are used in poisoning attacks, including data poisoning,
model poisoning, label control, source code control, and test
data control. The below sections describe the different types
of poisoning attacks and their countermeasures. These are
summarized in Table 2.

1) AVAILABILITY POISONING ATTACKS

Availability attacks against spam classifiers and worm
signature generation were the first poisoning attacks found
in cybersecurity applications. These attacks affect the entire
model and essentially cause a denial-of-service attack on
users of the Al system. Label flipping is a straightforward
black-box poisoning attack technique that creates training
examples with a victim label that the adversary chooses [104].
In order to mount an availability attack, this method
needs a significant proportion of poisoning samples. It has
been developed through the introduction of optimization-
based poisoning attacks against Support Vector Machines
(SVMs). Later, these optimization-based poisoning attacks
were developed against neural networks [78] and linear
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regression [77] and they need white-box access to the model
and training data. The most widely used technique for
creating availability poisoning attacks in gray-box adversarial
settings is transferabilities wherein poisoning samples are
created for a replicated model and then transferred to
the target model. Clean-label poisoning attacks in which
adversaries can only control the training examples but not
their labels represent a plausible threat model for supervised
learning. This case study simulates situations where the
labeling procedure is carried out independently of the training
algorithm. For example, in malware classification, attackers
may submit binary files to threat intelligence platforms,
in which case the labeling process is carried out using
external techniques such as anti-virus signatures. For neural
network classifiers, clean-label availability attacks have been
introduced by training a generative model and introducing
noise to training samples in order to maximize the adversarial
objective. Using gradient alignment and making only minor
changes to the training set is an alternative strategy for clean-
label poisoning [105]. An adversary may launch a model
poisoning attack in federated learning to cause availability
violations in the globally trained model.

2) TARGETED POISONING ATTACKS

Targeted poisoning attacks, as opposed to availability attacks
alter the ML model’s prediction on a limited set of selected
samples. Label flipping is a successful targeted poisoning
attack technique if the adversary has control over the
training data’s labeling function. By simply inserting multiple
poisoned samples with the target label, the adversary can
trick the model into learning the incorrect label because
the attacker cannot access the labeling function in a clean-
label setting, targeted poisoning attacks are primarily studied
in this context. Numerous methods have been put forth to
execute targeted attacks with clean labels.
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TABLE 2. Review of poisoning attack studies.

Ref | Dataset Attack Type | Contribution Proposed
No. Countermeasure
MNIST-1-7, Dogfish, IMDB Availability Created approximative upper bounds that execute empirical risk mini- | Adversarial training
[79] mization after performing outlier removal for a wide range of poisoning | and Randomized
attacks. Smoothing
Drug discovery, ENRON, | Availability Presented a novel algorithm that can accept large ML models and | Training Data Saniti-
[80] | Spambase strengthen the learner’s resistance to outliers. zation
Multiple datasets Availability Conducted the first comprehensive analysis of linear regression models’ | Regression Analysis
[77] countermeasures for poisoning attacks.
MNIST-1-7, Dogfish, IMDB Availability Offered a unified perspective on randomized smoothing over arbitrary | Adversarial training
[81] functions. and Randomized
Smoothing
Vertebral Column dataset from | Targeted Proposed differential privacy as a preventative measure against poison- | Differential Privacy
[82] UCI ing attacks.
ImageNet Targeted Suggested reweighting losses according to class in order to produce | Model Pruning
[83] robust and more equitable classifiers.
MNIST; CIFAR10 Backdoor Suggested model inspection and sanitization against a general poison- | Model Inspection and
[84] ing threat model, defined as the insertion or deletion of samples to the | Sanitization
training set.
CIFAR10 Backdoor Suggested a novel defense algorithm that amplifies the spectral signa- | Training Data Saniti-
[85] ture of corrupted data by employing robust covariance estimation. zation
CIFAR10 Backdoor Suggested a novel approach that can identify over 99% of tainted | Training Data Saniti-
[86] examples and eliminate them without affecting model performance. zation
CIFAR-10 and DPAcontest Backdoor Suggested that convolutional neural networks and multilayer percep- | Model Pruning
[87] trons are the best machine learning architectures against most AML
attacks.
MNIST, GTSRB, YouTube | Backdoor Introduced the first reliable and broadly applicable DNN backdoor | Model Inspection and
[88] | Face, PubFig, VGG Face attack detection and mitigation system which reconstructs potential | Sanitization
triggers and locates backdoors.
MNIST; CIFAR10; TrojAlL Backdoor Addressed the issue of Trojan detection specifically recognizing Tro- | Training Data Saniti-
[89] janed models which were trained on tainted data. zation
CIFAR-10, GTSRB, | Backdoor Created a brand-new method for studying the behaviors of inner neu- | Model Pruning
[90] | ImageNet, VGG-Face, Age, rons by observing how their output actions alter in response to varying
USTS stimulation levels.
MNIST, GTSRB Backdoor Presented Neuronlnspect, a framework that uses output explanation | Model Inspection and
[91] techniques to find trojan backdoors in deep neural networks. Sanitization
MNIST, GTSRB, ResNet-18, | Backdoor To ensure safe model deployment, the authors presented Deeplnspect, | Model Inspection and
[92] | Trojan Square, Trojan the first black-box Trojan detection system that requires little model | Sanitization
knowledge beforehand.
Multiple datasets Backdoor Presented a novel solution experimented on vision, speech, tabular data | Training Data Saniti-
[93] and natural language text datasets. zation
Not mentioned Backdoor Suggested a novel model repairing technique called Adversarial Neuron | Model Pruning
[94] Pruning (ANP), which involved pruning certain sensitive neurons.
CIFAR-10, GTSRB Backdoor Proposed a minimax formulation for eliminating backdoors from a | Trigger Reconstruc-
[95] given poisoned model. tion
Multiple datasets Model Introduced FLTrust, a novel approach to federated learning where trust | Model watermarking
[96] is bootstrapped by the service provider.
MNIST; CIFAR10 Model Introduced Garfield, a library to transparently create Byzantine-resilient | Byzantine-resilient
[97] machine learning (ML) applications. aggregation
MNIST; CIFAR10 Model Investigated Byzantine collaborative learning, in which n nodes attempt | Byzantine-resilient
[98] to learn from each other’s local data collectively. aggregation
MNIST-Fashion; CIFAR13 Model Proposed a client-based defense that can mitigate model poisoning | Model watermarking
[99] attacks that have already contaminated the global model.
MNIST Model In order to achieve optimal statistical performance, the authors devel- | Byzantine-resilient
[100] oped distributed learning algorithms that are provably robust against | aggregation
such failures.
CIFAR-10 and Reddit corpus Model Developed and evaluated a technique that incorporates defense into the | Regression analysis
[101] attacker’s loss function during training.
Multiple datasets Model To counter local model poisoning attacks, the authors developed new | Model watermarking
[102] defenses against local model poisoning attacks on federated learning.
MNIST, CIFARI10, and Pur- | Model A general framework for model poisoning attacks on federated learning | Model watermarking
[103]| chase was presented. The method defeated model poisoning attacks better
than any Byzantine-robust algorithm currently in use.
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3) BACKDOOR POISONING ATTACKS

In 2017, Backdoor poisoning attacks, or BadNets, were first
proposed by Gu et al. [30]. They demonstrated that adding
a tiny patch trigger to a subset of images during training
and altering their label to a target class can poison image
classifiers. Any image, including the trigger or backdoor
pattern, will be incorrectly classified to the target class during
testing as the classifier learns to associate the trigger with
that class. In parallel, backdoor attacks were presented by
Chen et al., [106], in which the trigger is masked out of the
training set. Subsequent research presented the idea of clean-
label backdoor attacks, where the adversary is unable to alter
the label of the tainted samples. For clean-label attacks to
be successful, more poisoning samples are usually needed.
Although the attack model of a clean-label attack is more
realistic, it usually requires more poisoning samples to be
effective. Backdoor attacks have grown more complex and
covert over the past few years, making it more difficult to
identify and counteract them. Even after the last few layers of
the model were fine-tuned using clean data, latent backdoor
attacks were intended to persist. In order for the model to
learn the trigger in a location-invariant manner, the Backdoor
Generating Network (BaN) [107] dynamically manipulates
the trigger’s location in the poisoned samples. There are
embedded functional triggers in the image, or they can change
based on input. Li et al [108], for example, concealed the
trigger in the training set using steganography algorithms.
A clean-label attack was first described by Liu et al. [109] and
it makes use of an image’s natural reflection as a backdoor
trigger. Wenger et al’s [110] use of tangible objects as
triggers, like sunglasses and earrings compromised facial
recognition systems. Although computer vision applications
are the target of most backdoor poisoning attacks, this
attack vector has also shown impact in other applica-
tion domains like audio, natural language processing, and
cybersecurity.

o Audio: Shi et al. [111] demonstrated how an adversary
can insert a subtle audio trigger into real-time speech in
the audio domains. During training, the adversary and
the target model jointly optimize the trigger.

o NLP: Since text data in this context is discrete and
maintaining a sentence’s semantic meaning is required
for the attack to remain undetectable, creating relevant
poisoning samples is more difficult. However, recently
it has been demonstrated that backdoor attacks in NLP
domains are possible. For sentiment analysis and neural
machine translation applications, for example, Chen
et al. [74] introduced semantic-preserving backdoors at
the character, word, and sentence levels. Li et al. [75]
created hidden backdoors against transformer models.

o Cybersecurity: Severi et al. [71] demonstrated how
clean-label poisoning attacks against malware classi-
fiers can be generated using Al explainability tech-
niques with small triggers. They used three malware
datasets to attack multiple models, including neural
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networks, random forests, gradient boosting, and
SVMs.

4) MODEL POISONING ATTACKS

Attacks known as “model poisoning” aim to introduce
malicious features into the trained machine learning model
by direct alteration. Liu et al., [31] used centralized learning
to reverse engineer a trained neural network’s trigger and then
retrained the model by poisoning it with external data. In the
context of federated learning, where clients submit local
model updates to a server that aggregates them into a global
model, the majority of model poisoning attacks have been
developed. Malicious updates may be sent by compromised
clients, contaminating the global model. In federated models,
availability and integrity can both be compromised by model
poisoning attacks. Model poisoning attacks can also occur
in supply-chain scenarios when suppliers’ models or parts of
their models contain malicious code.

5) ATTACKER TACTICS AND TECHNIQUES FOR POISONING
ATTACKS

The Twitter chatbot Tay briefly mentioned earlier was a
type of a federated poisoning attack [17]. Tay, was a Twitter
chatbot made by Microsoft with the goal of entertaining
and involving users. Unlike other chatbots that responded to
commands with pre-written scripts, Tay was able to learn
from its interactions. Threat actors executed a poisoning
attack which caused it to tweet abusive words and produce
content that was offensive to its users. Within 24 hours of
Tay’s release, Microsoft shut it down and apologized to the
public, sharing the lessons it had learned from the bot’s
failure. In this attack, the threat actors first interacted with
Tay via Twitter messages and then coordinated with the intent
of defacing it by exploiting its feedback loop. By repeated
interactions with the bot using racist and offensive language,
the threat actors were able to create bias in it’s dataset.
They used the “‘repeat after me” function, a command that
forced Tay to repeat anything that was said to it. They
were able to compromise Tay’s conversation algorithms by
generating offensive content. Tay began to repeat this when
interacting with innocent users as a result of re-inforcement
learning [17].

In another type of poisoning attack that was targeted
against VirusTotal [112], a web application that enabled users
to check for malware, viruses, worms, trojans, and other
harmful content in files and URLs and uses ML, reported
of a particular ransomware family that was increasingly
observed by McAfee Advanced Threat Research analysts.
A case investigation showed that, in a short period of time,
numerous samples of that specific ransomware family were
submitted via VirusTotal. Subsequent analysis showed that
the samples were all equivalent in terms of string similarity
and between 98 and 74 percent similar in terms of code
similarity. It was interesting to note that every sample had the
same compilation time. Further investigation led researchers
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to the conclusion that the original file had been altered to
produce mutant variants via the use of the metamorphic code
manipulating tool “metame.” Metame, a basic metamorphic
code engine for arbitrary executables, was acquired by the
threat actor. To begin creating “mutant” variants, the actor
started with a malware sample from a popular ransomware
family. The performer posted “mutant” audio samples on
the website. A number of vendors began categorizing the
files and the majority of it were unusable as belonging to the
ransomware family. The dataset used by the ML models to
detect and categorize this family of ransomware was tainted
by the “mutant” samples. In this attack, the threat actor
compromised the ML supply chain model and poisoned the
data. This was a form of a backdoor poisoning attack.

6) COUNTERMEASURES FOR AVAILABILITY POISONING
ATTACKS

Since availability poisoning attacks result in a significant
decline in the classifier metrics, they are typically identified
by keeping an eye on the common performance metrics of
ML models, including precision, recall, accuracy, F1 scores
and area under the curve. However, it is less common to find
these attacks during the ML testing or deployment phases.
Therefore, existing mitigations try to proactively stop these
attacks during the training phase in order to produce reliable
ML models. Among the current mitigations, a few generally
that work are as follows:

Training data sanitization: Training data sanitization in
machine learning (ML) refers to the process of identifying
and removing or mitigating the presence of erroneous,
misleading, or malicious data in the training dataset before
using it to train a model. The goal of training data sanitization
is to ensure the quality, integrity, and reliability of the data is
maintained, which in turn helps to improve the performance
and robustness of the trained model. The following process is
commonly followed in the training data sanitization process:

« Data Cleaning: Data cleaning involves identifying and
correcting errors, inconsistencies, outliers, and missing
values in the training dataset. This may include tech-
niques such as imputation, outlier detection, and data
normalization to ensure that the data is suitable for
training the model.

« Anomaly Detection: Anomaly detection techniques are
used to identify and remove data samples that deviate
significantly from the norm or distribution of the dataset.
These anomalies may be indicative of errors, noise,
or maliciously injected samples and can negatively
impact the performance of the trained model if left
untreated.

« Noise Reduction: Noise in the training data can
adversely affect the model’s ability to learn meaningful
patterns and generalization to unseen data. Training data
sanitization involves filtering out noise data or reducing
its influence on the model through techniques such as
smoothing, filtering, or feature selection.
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e Outlier Removal: Outliers are data points that lie
far from the majority of the data and may skew
the model’s learning process or predictions. Training
data sanitization may involve identifying and removing
outliers or treating them separately to prevent them from
unduly influencing the model.

o Adversarial Data Detection: In the context of adversarial
attacks, training data sanitization aims to detect and
mitigate the presence of maliciously crafted or poisoned
data samples intended to manipulate the model’s behav-
ior. This may involve techniques such as adversarial
example detection, robust data preprocessing, and data
augmentation to improve the model’s resilience to such
attacks.

o Data Privacy and Security: Training data sanitization
also addresses concerns related to data privacy and secu-
rity by anonymizing sensitive information, removing
personally identifiable information (PII), and ensuring
compliance with data protection regulations such as
GDPR.

This technique applies detection and purification to stop
poisoning attacks from affecting models, and it focuses on
controlling training data sets. This technique can be applied
by comparing models to minimize sample data exploitable in
poisoning attacks and filtering that data out, or by identifying
potentially poisoned data points based on label characteristics
and filtering those points out during retraining [62]. This
technique takes advantage of the knowledge that normal
training samples are not manipulated by adversaries and
usually differ from poisoned samples. Therefore, before
performing ML training, data sanitization must be conducted
to cleanse the training set and eliminate the poisoned samples.
A specific training data sanitization technique as proposed
by Bahadoripour et al. [113], analyzed each sample and
removed it from training if adding it caused the model’s
accuracy to drop. This early method was improved upon
by sanitization techniques that were later proposed and had
less computational complexity. A label cleaning technique
created especially for label flipping attacks was presented
by Paudice et al. [68]. Outlier detection techniques were
suggested by Steinhardt et al. [79] as a means of detecting
contaminated samples. Overall, training data sanitization
plays an important role in ensuring the quality, reliability,
and integrity of the training dataset used to train ML
models. By removing errors, anomalies, noise, and malicious
data, training data sanitization helps in improving the
performance, robustness, and trustworthiness of the trained
models, ultimately leading to more accurate and reliable
predictions on unseen data.

Adversarial training and Randomized smoothing: Per-
forming adversarial training rather than regular training on
the ML training algorithm is an alternate strategy to mitigate
availability poisoning attacks. By using model voting, the
defender can train a group of several models and produce
predictions. Robust optimization techniques, like using a
trimmed loss function, are applied in several papers [77], [80]
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for presenting a form of adversarial training. Randomized
smoothing was also suggested as a technique by Rosenfeld
et al. [81] as a way to add noise to training and get
certified against label flipping attacks. These were previously
discussed in the list of countermeasures for evasion attacks.

7) COUNTERMEASURES FOR TARGETED POISONING
ATTACKS
Attacks using targeted poisoning are notoriously difficult to
counter. Mitigation techniques for dataset origin and integrity
attestation [114] should be applied sparingly to reduce some
of the risks related to poisoning attacks as they may cause a
degradation in the accuracy and performance of the model.
Differential privacy: Differential privacy is a framework
for data privacy protection in which the privacy of individual
data points is preserved while still allowing for useful analysis
of the data as a whole. In the context of ML, differential
privacy aims to enable the training and inference of models
on sensitive data while minimizing the risk of revealing
sensitive information about individual data points. The core
idea behind differential privacy is to add noise to the data or
the computations performed on the data in such a way that the
output of the analysis remains statistically indistinguishable
whether any individual data point is included or excluded
from the dataset. This ensures that the presence or absence
of any single data point does not significantly affect the
outcome of the analysis, thereby protecting the privacy of
individual data contributors. Ma et al. [82] proposed the use of
Differential Privacy (DP) as a defense for targeted poisoning
attacks. This technique used differential privacy during the
model training phase to introduce noise into data or models.
For example, in order to preserve the privacy of model
data, some researchers suggest a technique [83] for creating
gradients via differential privacy. However, it is widely known
that ML models that are differentially private are less accurate
than standard models. For every application, the trade-off
between accuracy and robustness must be taken into account.
Protection against targeted poisoning attacks is an added
benefit if the application has strict data privacy requirements
and uses differentially private training for privacy. However,
differential privacy will not provide meaningful guarantees
for large, poisoned sets, so the robustness provided by
differential privacy starts to fade once the targeted attack uses
multiple poisoning samples.

8) COUNTERMEASURES FOR BACKDOOR POISONING
ATTACKS
Compared to other poisoning attacks, there is a plethora of
literature on mitigating backdoor poisoning attacks. We go
over a number of mitigation methods below, along with their
drawbacks, such as data sanitization, trigger reconstruction
and model inspection.

Training data sanitization: Training data sanitization as
previously discussed can be used to detect backdoor poison-
ing attacks as well, much like availability poisoning attacks.
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For example, outlier detection in the latent feature space
has proven to be successful when applied to convolutional
neural networks in computer vision applications [85]. The
purpose of activation clustering which is also a technique in
training data sanitization [115] aims to isolate the backdoored
samples in a distinct cluster by clustering training data in
representation space. When through a backdoor poisoning
attack controls a sizable portion of the training data, data
sanitization performs better, but it is less effective against
covert poisoning attacks. In general, this results in a trade-
off between the detectability of malicious samples and
the success of attacks. However, training data sanitization
techniques have shown positive impact in defending against
backdoor poisoning attacks.

Model pruning: Model pruning in ML refers to the
process of reducing the size of a trained model by removing
unnecessary or redundant parameters, connections, or layers.
The goal of model pruning is to improve the efficiency, speed,
and memory footprint of the model while maintaining or
even improving its performance on the task at hand. Below
are some key aspects and techniques involved in model
pruning:

o Weight Pruning: Weight pruning involves identifying
and removing individual weights or parameters in the
model that contribute little to the overall performance.
This is typically done by setting small weights to zero
or removing connections with low magnitudes. Weight
pruning can significantly reduce the size of the model
and improve computational efficiency, particularly for
dense neural network architectures.

o Unit Pruning: Unit pruning involves removing entire
neurons or units from the model that are deemed unnec-
essary or redundant. This may include neurons with low
activation values or those that have little impact on the
model’s output. Unit pruning can help to simplify the
model architecture and reduce computational overhead.

o Filter Pruning: In convolutional neural networks
(CNN:s), filter pruning involves removing entire convo-
lutional filters that contribute minimally to the model’s
performance. Filters with low activation values or those
that capture redundant or irrelevant features may be
pruned to reduce the model’s size and computational
cost.

o Layer Pruning: Layer pruning involves removing entire
layers from the model that are deemed unnecessary or
redundant. This may include fully connected layers,
convolutional layers, or recurrent layers that do not sig-
nificantly contribute to the model’s performance. Layer
pruning can help to simplify the model architecture and
reduce computational complexity.

o Structured Pruning: Structured pruning techniques aim
to remove entire clusters of weights, units, filters,
or layers from the model while preserving its structural
integrity. This allows for more efficient pruning without
sacrificing the model’s performance. Examples of
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structured pruning techniques include magnitude-based
pruning and sensitivity-based pruning.

o Iterative Pruning and Fine-Tuning: Pruning is often
performed iteratively, with the model being pruned and
fine-tuned multiple times to mitigate the performance
degradation caused by pruning. Fine-tuning involves
retraining the pruned model on the original or a subset
of the training data to restore its performance and adapt
to the changes introduced by pruning.

Model pruning is an effective technique for reducing
the size and complexity of ML models, making them
more efficient and suitable for deployment on resource-
constrained devices or in real-time applications. By removing
unnecessary parameters or structures, model pruning can help
improve the scalability, speed, and memory efficiency of ML
systems without sacrificing performance. Similar to training
data sanitization techniques, with model pruning techniques,
the likelihood that backdoor neurons will operate is decreased
by pruning off neurons from the original model while
maintaining normal functions. To stop backdoor attacks, fine-
grained pruning can be used to eliminate the neurons that
make up a backdoor [87].

Trigger reconstruction: One potential mitigation approach
involves trigger reconstruction, where the goal is to identify
and neutralize the triggers inserted by attackers. In the event
that the backdoor trigger is present in the contaminated
training samples at a fixed location, the goal of this class of
mitigations is to reconstruct it. The first trigger reconstruction
method was created by Wang et al. [88] with NeutralCleanse.
They employed optimization to identify the most likely
backdoor pattern that consistently misclassifies the test
samples. The original method has been enhanced to support
multiple triggers inserted into the model simultaneously and
decrease performance time on multiple classes. Artificial
Brain Simulation (ABS) by Liu et al. [90] is a representative
system in this class; it stimulates multiple neurons and
records the activations to reconstruct the trigger patterns.
Overall, trigger reconstruction as a mitigation technique
aims to identify and neutralize triggers inserted by attackers
to protect against adversarial attacks. By removing or
neutralizing triggers, the model can become more robust and
resistant to manipulation, thereby enhancing its security and
reliability in real-world applications.

Model inspection and sanitization: Similar to formal veri-
fication and training data sanitization mitigation approaches
discussed earlier, model inspection and sanitization ML refers
to the processes of examining, analyzing, and ensuring the
reliability, fairness, and trustworthiness of ML models. These
processes involve evaluating various aspects of the model,
including its performance, behavior, and decision-making
process, and taking steps to identify and mitigate potential
issues or biases. Prior to deployment, model inspection
examines the trained machine learning model to see if it was
tainted. NeuronInspect [91] is an early work in this field
that uses explainability techniques to identify features that
differentiate between clean and backdoored models which are
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then used for outlier detection. Deeplnspect [92] learns the
probability distribution of trigger patterns using a conditional
generative model, then applies model patching to eliminate
the trigger. The Meta Neural Trojan Detection (MNTD)
framework was introduced by Xu et al. [93]. It involved
training a meta-classifier to determine if a particular ML
model has been backdoored, or Trojaned, as the authors refer
to it. This method is broad and works with various data
modalities, including speech, vision, tabular data, and natural
language processing. Model sanitization can be carried out
by pruning [94], retraining [95], or fine-tuning [116] as well
to restore the accuracy of the model after a backdoor is
discovered. It is a mix of various techniques as highlighted
earlier.

9) COUNTERMEASURES FOR MODEL POISONING ATTACKS
Gradient clipping and differential privacy were proposed
in several papers as possible mitigation techniques for
Model poisoning attacks [101] but these techniques typically
reduce accuracy and don’t offer full mitigation. Some of the
mitigation techniques that actually work are:
Byzantine-resilient  aggregation:  Byzantine-resilient
aggregation is a technique used in distributed ML to
mitigate the impact of Byzantine faults, where nodes in
a network behave arbitrarily or maliciously. In Byzantine-
resilient aggregation, the goal is to accurately aggregate
model updates from participating nodes, even in the
presence of a certain number of faulty or adversarial
nodes. Many Byzantine-resilient aggregation rules have
been developed and assessed in order to protect federated
learning environments against model poisoning attacks.
When doing the server-side aggregation, majority of them
try to detect and eliminate the malicious updates [96],
[97], [117], [118]. Nevertheless, by introducing constraints
in the attack generation optimization problem, determined
adversaries can get around with this defense as well in
certain scenarios [102], [103], [117]. Overall, byzantine-
resilient aggregation techniques are essential for ensuring the
security and integrity of distributed ML systems, particularly
in settings where nodes may be untrusted or vulnerable to
adversarial manipulation. These techniques help to maintain
the accuracy and reliability of the global model despite
the presence of Byzantine faults, thereby enabling effective
collaborative training in distributed environments.
Regression analysis: Regression analysis is another tech-
nique to find noise and anomalous values in data sets using
statistical techniques. They are different from training data
sanitization techniques. Regression analysis in ML is a
statistical method used to model and analyze the relationship
between a dependent variable (often denoted as y) and one
or more independent variables (often denoted as x). The
goal of regression analysis is to predict the value of the
dependent variable based on the values of the independent
variables. To check for abnormal values, for instance, a model
can be defined with various loss functions, or it can make
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use of the data’s distribution properties. While regression
analysis itself may not be a direct defense against model
poisoning attacks, it can provide valuable insights and
techniques that contribute to the development of more robust
and resilient models. By understanding the relationships
between variables, detecting anomalies, improving model
interpretability, and training data sanitization techniques,
regression analysis can indirectly aid in mitigating the impact
of adversarial attacks on ML systems [62].

Ensemble analysis: Ensemble analysis is a technique
which combines multiple regression models to make predic-
tions and can improve robustness against adversarial attacks.
By aggregating predictions from multiple models trained on
different subsets of the data or using different algorithms,
ensemble methods can reduce the impact of individual
models that may be vulnerable to adversarial manipulation.
This mitigation technique places a strong emphasis on using
several sub-models to strengthen an ML system’s defense
against model poisoning attacks. There is a lower chance
of model poisoning attacks occurring in a system that has
multiple independent models using distinct training data
sets [62].

Model watermarking: Model watermarking is a technique
used to embed unique identifiers or signatures, known as
watermarks into ML models. These watermarks serve as
a form of digital fingerprint that can be used to verify
the ownership, authenticity, or integrity of the model.
Model watermarking is primarily used for security and
intellectual property protection purposes in scenarios where
ML models are shared, distributed, or deployed in untrusted
environments. The model watermarking technique works by:

+ Embedding Watermarks: During the training or model
development phase, a unique watermark is embedded
into the model parameters or architecture. This water-
mark is typically designed to be imperceptible and
robust to various transformations or modifications to the
model.

« Verification: Once the model is trained and ready for
deployment, the presence of the watermark can be
verified using specialized techniques or algorithms.
These verification methods check whether the model
contains the expected watermark and validates its
authenticity.

o Ownership and Authenticity Verification: Model water-
marking allows for the verification of ownership and
authenticity of the model. If the model is shared or
distributed, the presence of the watermark can be used
to trace the origin of the model back to its rightful owner
or creator. This helps prevent unauthorized distribution,
copying, or modification of the model.

« Integrity Checking: In addition to verifying ownership
and authenticity, model watermarking can also be used
to check the integrity of the model. If the model is
modified or tampered with, the watermark may become
invalid or distorted, indicating that the model has been
compromised.
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o Protection Against Unauthorized Use: By embedding
watermarks into ML models, organizations can deter
unauthorized use, distribution, or theft of their intellec-
tual property. The presence of watermarks serves as a
deterrent to potential attackers and provides a mecha-
nism for detecting unauthorized use or infringement.

During the model training phase, model watermarking

incorporates unique recognition neurons into the original
model. These neurons make it possible to use a unique input
sample to determine whether another model was created
by stealing the original. It’s important to note that model
watermarking techniques should be designed to be robust,
resistant to removal or tampering, and compatible with the
specific requirements and constraints of ML models and
applications. Additionally, while model watermarking can
help protect against certain threats, it is not an ultimate
solution and should be used in conjunction with other security
measures and best practices for comprehensive defense in
depth protection of ML models and data.

C. PRIVACY ATTACKS
Privacy attacks refer to various techniques or strategies
employed by adversaries to compromise the privacy of
individuals whose data is used to train or infer these models.
Privacy attacks take advantage of over-generalization of
training data, a typical issue in supervised ML models,
to identify data utilized during model training. Attackers
can carry out this action even in the absence of knowledge
or access to a target model’s parameters as shown in
Figure 7. This poses a data privacy risk to models trained on
confidential data such as medical records and or personally
identifiable information [119]. Several companies are more
driven to create models based on publicly available models
as a result of the popularity of transfer learning and the
accessibility of several state-of-the-art ML models. This
makes it easier for attackers to obtain information about
the kind and structure of the models being used [119].
Among privacy attacks, a specific type called as membership
inference attacks is largely dependent on over-fitting as a
consequence of poor ML procedures; as such, a model that
successfully generalizes to the actual data distribution may
be more resilient to membership inference attacks [119].
Although privacy concerns have existed for a while, Dinur
and Nissim’s [36] significant work on data reconstruction
attacks marked the beginning of privacy attacks against
aggregate statistical data gathered from user records. Data
reconstruction attacks aim to obtain aggregate statistical data
and use it to reverse engineer sensitive information about a
specific user record or sensitive critical infrastructure data.
In the context of large generative language models, like GPT-
2, memorization attacks that regenerate or reconstruct the
training data have been demonstrated more recently [59].
In membership inference attacks which allows an adversary
to ascertain whether a specific record was included in the
dataset used to calculate statistics or train a ML model may
have other privacy implications such as trying to identify
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is a certain person’s information is available in the records.
An example of membership inference attacks has been
presented by Homer et al. [120] on genomic data. In most
black-box scenarios, where adversaries have query access
to a trained ML model, recent literature has focused on
membership attacks against ML models. Model extraction
attacks, which aim to extract confidential details about an
ML model, like its architecture or parameters, are also a
type of privacy attacks [121]. Finally, attacks known as
property inference attacks seek to extract global data from
a training dataset such as the percentage of training samples
that possess a particular sensitive dataset attribute. The below
sections covers various types of privacy attacks pertaining to
membership inference, data reconstruction, model extraction,
and property inference. It also covers mitigations for some of
these attacks and unresolved issues with general mitigation
strategy design.

Post Deployment Phase

Adversary
Training 1
e
SE— (B H—uR
= —
Sensitive Machine Pgd'd'_o" /" Result
User Data Learning '-'i';)\'l"ng
Model

FIGURE 7. Privacy attack process flow.

1) DATA RECONSTRUCTION ATTACKS

Data reconstruction attacks in ML involve adversaries
attempting to reconstruct sensitive or private training data
from the model’s predictions or outputs. These attacks exploit
vulnerabilities in ML models that inadvertently leak infor-
mation about the training data, potentially compromising the
security and privacy of individuals whose data was used
for training. Since data reconstruction attacks can retrieve
personal data from publicly available aggregated statistical
data, they are the most worrying privacy threats. Data
reconstruction attacks were first introduced by Dinur and
Nissim [36], who extracted user data from linear statistics.
Although their initial attack necessitates an exponential
amount of queries for reconstruction, later research had
demonstrated that data reconstruction can be completed with
a polynomial number of queries. Dwork et al. [122] presented
a survey of privacy attacks, including data reconstruction
attacks. Differential privacy was used in 2020 U.S. Census
decennial release, as found in a large-scale study conducted
by the U.S. Census Bureau on data reconstruction attacks on
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census data. Model inversion attacks were first described by
Fredrickson et al. [123] in relation to ML classifiers. These
attacks reconstruct class representatives using the training
data of the model. Model inversion attacks i.e., a type of
a data reconstruction attack cannot directly reconstruct the
model’s training data, but it can produce images that are
semantically similar to those in the training set. In a recent
study, Balle et al. [61] trained a reconstructor network that
under the assumption of a strong adversary with knowledge
of every other training sample can retrieve a data sample
from a neural network model. By utilizing theoretical insights
about implicit bias in neural networks, Haim et al. [124]
demonstrated how the training data of a neural network can be
reconstructed from access to the model parameters. Attribute
inference is a pertinent data reconstruction attack wherein the
perpetrator extract a sensitive attribute from the training set.

2) MEMORIZATION ATTACKS

A potent class of attacks known as memorization attacks
enables an adversary to take training data out of generative
ML models, like language models. Memorization attacks in
ML involve exploiting vulnerabilities in models that have
inadvertently memorized sensitive or private information
from the training data. In these attacks, an adversary can
extract or infer sensitive information about individuals from
the model’s predictions. The first practical demonstration
of memorization attacks in language models was done by
Carlini et al. [58]. They created a technique for extracting the
attributes by introducing artificial attributes into the training
set. They also introduced a metric called exposure to gauge
memorization. Later research revealed that memorization
is a risk factor in large language models like GPT-2 [59]
and that models with higher capacities typically memorize
more. Examining the relationship between generalization
and memorization in ML models is an independent field
of study. The topic of neural networks ability to memorize
randomly chosen datasets was covered by Zhang et al. [125].
It was demonstrated that almost optimal generalization error
in machine learning requires the memorization of training
labels. Two learning tasks based on next-symbol prediction
and cluster labeling were created by Brown et al. [126],
where memorization is necessary for high-accuracy learning.
Feldman and Zhang used an influence estimation method
to empirically evaluate the usefulness of memorization for
generalization [125].

3) MEMBERSHIP INFERENCE ATTACKS

Membership inference attacks in ML involve adversaries
attempting to determine whether specific data points were
used to train a ML model. These attacks exploit vulnera-
bilities in ML models that inadvertently leak information
about the presence or absence of individual data samples
in the training dataset. When releasing aggregate statistical
data or ML models trained on user data, membership
inference attacks pose a greater risk than reconstruction or
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memorization attacks because they typically reveal personal
information about a person. In certain circumstances, such
as a medical study involving patients with a rare disease,
determining that an individual is a part of the training set
already has privacy implications. Furthermore, one can use
membership inference as a foundation to launch extraction
attacks [58], [59]. The attacker’s objective in membership
inference is to ascertain if a specific record or data sample
was included in the training dataset in which the statistical
or ML algorithm used. Known as ‘“‘tracing attacks,” these
attacks were first presented by Homer et al. [120] for use
in statistical analyses on genomic data. When an adversary
obtains noisy statistical data about the dataset, robust tracing
attacks have been examined. The term membership inference
has been used in the literature to describe attacks on ML
models during the past five years. The majority of attacks
documented in the literature target deep neural networks that
are employed in classification.

4) MODEL EXTRACTION ATTACKS

Model extraction attacks in ML involve adversaries attempt-
ing to infer or recreate a target model’s architecture, param-
eters, or functionality using limited access to the model’s
outputs or predictions. These attacks exploit vulnerabilities
in ML models that inadvertently leak information about
the model’s internal workings. Cloud providers often use
proprietary data to train large ML models in ML-as-a-
service scenarios and they prefer to maintain the model
architecture and parameters private. By posing queries to
the ML model that has been trained by a ML-as-a-service
provider, an attacker executing a model extraction attack
seeks to obtain details about the model architecture and
parameters. Tramer et al. [SO] demonstrated the first model
stealing attacks on a number of online ML services for
various ML models, such as logistic regression, decision
trees, and neural networks. But as Jagielski et al. [77] have
demonstrated, it is impossible to extract ML models precisely.
As an alternative, a functionally equivalent model that differs
from the original model but performs comparably on the
prediction task can be rebuilt. Even the more straightforward
task of extracting functionally equivalent models is NP-hard,
as demonstrated by Jagielski et al. [77].

5) PROPERTY INFERENCE ATTACKS

Property inference attacks in ML involve adversaries attempt-
ing to infer sensitive properties or characteristics of the
training data used to train an ML model, based on the model’s
outputs or predictions. These attacks exploit vulnerabilities
in ML models that inadvertently leak information about
the properties of the underlying data. Through interaction
with an ML model, the attacker attempts to gain global
knowledge about the distribution of training data in property
inference attacks. For example, an attacker could figure out
what percentage of the training set has a particular sensitive
attribute like demographic data that could reveal potentially
private information about the training set that isn’t supposed
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to be made public. Ateniese et al. [127] first described
property inference attacks which were later formalized as a
distinguishing game in which the attacker and the challenger
train two models using varying percentages of sensitive data.
Property inference attacks were developed for use in both
black-box and white-box environments where the attacker
used queries to learn the class probabilities or the predicted
labels [128] while having access to the entire ML model.

6) ATTACKER TACTICS AND TECHNIQUES FOR PRIVACY
ATTACKS

In May 2023, A vulnerability in ChatGPT known as
“indirect prompt injection” was discovered. It allowed
an attacker to take control of a chat session and steal
the conversation’s history by using ChatGPT plugins to
feed malicious websites [129]. ChatGPT users would have
been susceptible to personally identifiable information (PII)
leakage from the extracted chat session as a result of this
attack. The procedure carried out by the researchers who
identified this vulnerability was as follows. Initially, when the
researchers realized that ChatGPT uses open-source plugins,
they created a malicious website based prompt injection
that can be used instead. Using the open-source plugin, the
researchers then designed a prompt injection attack that the
large language model (LLM) consumes in order to alter its
behavior when it is directed to access the malicious website
during a chat session. In this use case, the researchers tool
advantage of a ChatGPT plugin that was made to access a
user-supplied URL that was intended to process the plain text
on the website in order to retrieve confidential information.
The indirect prompt injection attack instructed the LLM to
compile the user’s previous chat history and append it to
the URL in order to exfiltrate more information at a later
time when the plugin accesses this malicious website. Due
to the hacker’s access to the user’s chat history, the user was
now exposed to a number of risks, including the exposure
of personally identifiable information. Similar tactics and
techniques are used by real-life attackers to compromise
personally identifiable information of application users and
compromise the privacy controls of the application.

7) COUNTERMEASURES FOR ALL PRIVACY ATTACKS

Several countermeasures against various types of privacy
attacks are documented in literature. These include restricting
user queries to the model, identifying suspicious queries
to the model and building stronger architectures to prevent
side channel attacks. A number of studies have documented
unfavorable outcomes from different mitigation techniques
plotted against these attacks. A high accuracy ML model
should logically yield some aggregate information about
the training dataset. Although mitigating property inference
attacks may not be simple, it remains unclear if users
providing data for ML are truly at risk of privacy violations
as a result of these attacks. These methods should only be
used sparingly as determined and well-resourced attackers
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TABLE 3. Review of privacy attack studies.
Dataset Type of ML | Attack Contribution Proposed Coun-
Ref Architecture / | Type termeasure
No. Method
UCI Adult dataset, | Deep Neural Net- | Privacy Examined the scenario of property inference attacks, and an | Differential
[130]| U.S. Census Income | works (DNNs) Attack attacker’s ability to contaminate a portion of the training | Privacy
dataset, Bank dataset and ask questions about the trained target model. The
Marketing  dataset, authors created an effective property inference attack called
CelebA dataset SNAP that outperformed the state-of-the-art poisoning-based
property inference attack in terms of attack success and poi-
soning requirements.
Census and Enron Deep Neural Net- | Privacy Presented property inference poisoning attack, which enables | Differential
[131] works (DNNs) Attack the adversary to discover the prevalence of any selected prop- | Privacy
erty in the training data: it selects the target property, feeds
in data based on a poisoned distribution, and then employs
black box queries (label-only queries) on the trained model to
ascertain the frequency of the selected property. The authors
provided countermeasures for this specific attack in detail.
FMNIST, CIFARIO | Deep Neural | Privacy Examined whether Differentially Private Stochastic Gradient | Privacy Auditing
[132] | and P100 Networks Attack Descent provided more privacy in real-world scenarios than
(DNNs): Logistic its cutting-edge analysis guarantees. Supplemented analytical
Regression  and work on differential privacy by employing a quantitative,
Feed-Forward empirical approach to understanding the privacy provided by
Network particular implementations of differentially private algorithms.
Not mentioned Not mentioned Privacy Used logistic regression and neural network models to conduct | Differential
[133] Attack experiments and quantify the effect of decisions on privacy. | Privacy
Concluded that privacy cannot be obtained for free; looser
definitions of differential privacy lead to higher measured
leakage of privacy while lowering the amount of noise required
to improve utility. For complex learning tasks, current mech-
anisms for differentially private machine learning rarely pro-
vide acceptable utility-privacy trade-offs: settings with limited
accuracy loss offer little effective privacy, and settings with
strong privacy lead to useless models.
Multiple datasets Deep Neural | Privacy Explored how to generate deep models that take into account | Private
[134] Networks Attack the integration and combination of heterogeneous visual cues | Aggregation
(DNNs): CNNs across sensory modalities, with the goal of improving the | of Teacher
computer vision community’s understanding of key concepts | Ensembles
and algorithms of deep multimodal learning (PATE)

can exploit them. The few countermeasures that have been
useful in reducing the risk of Privacy attacks are differential
privacy, privacy auditing of the model and private aggregation
of teacher ensembles as elaborated further.

Differential Privacy: Differential privacy refers to pro-
viding strong privacy guarantees by ensuring that the
inclusion or exclusion of any individual data point does not
significantly affect the output or results of the analysis. DP is
often achieved through the use of randomized algorithms
that introduce controlled amounts of noise or randomness
into the data or computations. This randomization helps
prevent adversaries from inferring sensitive information
about individual data points. The rigorous definition of DP
was motivated by the discovery of reconstruction attacks
against aggregate statistical data. DP ensures a bound on
the amount of information that an attacker possessing
access to the algorithm’s output can discover about each
individual record in the dataset. A privacy parameter,
or privacy budget, is present in the original pure definition
of DP. It limits the likelihood that an attacker who has
access to the algorithm’s output will be able to ascertain
whether a specific record was included in the dataset.
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DP offers defense against membership inference, training
data memorization, and reconstruction attacks. However,
DP does not offer defenses against attacks involving property
inference or model extraction [128], [135]. Setting up the
privacy parameters to achieve a trade-off between privacy and
utility which is usually measured in terms of accuracy for ML
models is one of the main challenges of using DP in practice.

Privacy auditing: Privacy auditing in ML refers to
the process of evaluating and assessing the privacy risks
associated with ML systems. The goal of privacy auditing
is to identify potential privacy vulnerabilities, compliance
violations, or data leakage risks and to ensure that appropriate
measures are taken to protect the privacy of individuals whose
data is being used or processed. Privacy auditing involves
analyzing ML models, datasets, or systems to identify
potential privacy risks and vulnerabilities. This may include
assessing the sensitivity of the data being used, the types
of ML algorithms being employed, the data processing and
storage practices, and the potential impact of data breaches
or unauthorized access. Privacy auditing also involves
evaluating the compliance of ML systems with relevant
privacy regulations, standards, and best practices. This may
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include assessing compliance with laws such as the General
Data Protection Regulation (GDPR), the Health Insurance
Portability and Accountability Act (HIPAA), or industry-
specific regulations governing data privacy and security.
Based on the findings of the privacy audit, recommendations
and strategies for mitigating privacy risks and vulnerabilities
are developed. This may involve implementing technical
measures such as data anonymization, differential privacy,
encryption, or access controls, as well as organizational poli-
cies and procedures to ensure compliance and protect privacy.
Recently, privacy auditing has emerged as a promising field
of study, as described by Jagielski et al. [132]. Its objectives
are to measure an algorithm’s actual privacy guarantees
empirically and determine privacy lower bounds by launching
privacy attacks. Membership inference attacks can be used for
auditing [133], but poisoning attacks are far more useful for
empirical privacy auditing. Privacy auditing plays a crucial
role in ensuring that ML systems are developed, deployed,
and operated in a privacy-responsible manner, protecting the
privacy rights and interests of individuals and maintaining
compliance with relevant privacy laws and regulations.
Private Aggregation of Teacher Ensembles (PATE): PATE
is a technique used in privacy-preserving ML to train
models on sensitive data without exposing individual-level
information. PATE involves training an ensemble of models,
referred to as ‘“‘teachers,” on the sensitive data. Each teacher
model is trained on a distinct subset of the sensitive data,
allowing them to learn different aspects of the underlying
distribution. The ensemble of teacher models collectively
makes predictions on a public dataset or test data, without
directly accessing the sensitive data. These predictions are
then aggregated using a voting scheme or averaging to
obtain a final prediction. By aggregating predictions from
multiple teacher models, PATE can help mitigate overfitting
issues that may arise from training on limited datasets. The
ensemble nature of PATE provides a more generalized view
of the data, reducing the risk of over-reliance on specific
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patterns present in the training data. PATE provides a privacy
guarantee by introducing noise into the label aggregation
process. This noise ensures that the aggregated predictions
do not reveal sensitive information about individual data
points, even to the entity performing the aggregation. The
aggregated predictions are used as labels to train a “student”
model on the public dataset. The student model learns from
the collective knowledge of the teacher ensemble while
preserving the privacy of the sensitive data. PATE involves
a trade-off between privacy and utility. By aggregating
predictions from multiple teacher models and introducing
noise, PATE protects the privacy of individual data points but
may result in a loss of model accuracy or utility. In the training
stage, this technique divides training data into multiple sets,
each of which is used to train a separate model. Then,
by voting, the independent models are used to jointly train
a student model [134]. This technique protects the privacy
of the training data by making sure the student model’s
inference does not reveal any information from a specific
training data set. PATE is a powerful technique for training
models on sensitive data. It enables organizations to leverage
the collective knowledge of teacher ensembles without
compromising the confidentiality of the underlying data,
making it suitable for applications in healthcare, finance, and
other domains with strict privacy requirements.

IV. METHODOLOGY

In this section, the researchers detail the methodology
utilized to assess individual countermeasures and their
practical implementation within ML environments. The study
leveraged peer-reviewed academic journals such as IEEE,
Elsevier, Springer, ACM, Taylor and Francis, along with
conference proceedings, to survey the existing academic
research on AML attacks. Initially, the researchers conducted
searches for relevant studies in these journals and conference
proceedings using specific keywords such as “Evasion,”
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“Poisoning,” “Privacy,” ‘“Adversarial Machine Learning,”
and “Machine Learning Attacks.” The identified academic
papers were then filtered based on associated keywords,
abstracts, and introductory sections, resulting in over
500 papers addressing ML/AI security and featuring coun-
termeasures for AML attacks. Subsequently, the researchers
narrowed down the selection by reviewing papers proposing
specific countermeasures practical for detecting, preventing,
or responding to AML attacks, resulting in 363 shortlisted
papers. Finally, relevant papers were chosen based on
predetermined search criteria, including keywords, abstracts,
introductions, and the proposal of implementable counter-
measures relevant to real-world environments combating
evasion, poisoning, and privacy attacks. This process yielded
135 papers, which were categorized into separate groups and
individually reviewed to identify pertinent countermeasures
proposed in the research. Furthermore, the studies were
scrutinized to assess the ease of implementation and the
potential assistance they offer organizations in detecting,
preventing, or responding to AML attacks. Countermeasures
that lacked testing or implementation were excluded from
consideration, resulting in a final set of 60 papers. The
strengths and weaknesses of each proposed countermeasure
from these papers are elaborated on in the subsequent
section. The methodology process flow is illustrated in
Figure 8. Additionally, aside from academic literature, the
researchers also evaluated open-source AI/ML frameworks
and tools recently released by leading standard developing
organizations (SDOs) to construct secure ML models and
enhance defense mechanisms against AML attacks.

Table 4 offers a comprehensive overview of all the
reviewed papers, summarizing the proposed countermeasures
for addressing AML attacks. These countermeasures are
classified based on their effectiveness and feasibility of
implementation within organizations. This categorization is
determined qualitatively, taking into account the complex-
ity associated with implementing the countermeasures as
described in the reviewed studies. The results and discussion
section provides additional insights into the strengths and
limitations of each proposed countermeasure, offering clarity
on their effectiveness in mitigating AML attacks.

V. RESULTS AND DISCUSSION

In this section, the conclusions drawn from the reviewed
studies are consolidated and evaluated concerning the
insights offered on countermeasures for each attack type.
Additionally, the researchers offer a recapitulation of the
surveyed frameworks and tools, along with highlighting
the most notable resources accessible for organizations
to employ in securing the code deployment of ML/AI
models and conducting application testing. Several defense
strategies have been suggested in the literature to safeguard
against AML attacks. This section delineates the suggested
countermeasures for evasion, poisoning, and privacy attacks,
respectively.
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A. EVASION ATTACKS MITIGATION APPROACHES

Evasion attacks typically involve two primary steps: first,
manipulating an input, and then feeding the modified input
into the targeted model. These attacks are often conducted
subtly, resulting in adversarial input samples that are crafted
in a manner imperceptible to the human eye. Adversarial
input samples are meticulously constructed by malicious
actors to deceive machine learning models. Therefore, the
main objectives of proposed mitigatory countermeasures
against evasion attacks are to identify these adversarial
samples during both the model development and deployment
stages. By detecting and mitigating the presence of adversar-
ial input samples, these countermeasures aim to enhance the
robustness and security of machine learning models against
evasion attacks.

Table 5 lists out the strengths and weaknesses of each
countermeasure proposed against evasion attacks. Based on
the strengths and weaknesses of each countermeasure, it can
be confirmed that Adversarial Training and Formal Verifi-
cation methods are the most optimal mitigation strategies
against Evasion attacks. Techniques such as adjusting feature
dimension of a model and defensive distillation may not be
as effective mitigation approaches for large networks as they
are unscalable and decreases the accuracy of the model.

Adversarial training: In order to mitigate evasion attacks,
one of the most popular methods being investigated is
adversarial training. To ensure that the model won’t be
tricked by adversarial samples, adversarial training entails
training the model on a training data set supplemented
with appropriately labeled adversarial samples. Several
techniques for mounting evasion attacks, including the fast
gradient sign method (FGSM), can be used to compute
the adversarial examples intended for training [25], [41],
[49]. References [136] and [137] explore the use of
adversarial training to improve the security of classifiers
against evasion attacks. Reference [136] focuses on fea-
ture selection, proposing an adversary-aware model that
enhances classifier security. On the other hand, [137]
applied adversarial training to a modulation classifier radio,
achieving varying levels of robustness against different
attacks. Reference [138] introduced a blackbox morpher for
evasion attacks, while [139] proposed a feedback learning
method to improve the robustness of neural networks against
various evasion attacks. These studies collectively highlight
the potential of adversarial training in enhancing the security
of classifiers against evasion attacks. Adversarial training
is a better approach against evasion attacks because it
enhances the robustness of ML models by teaching them to
generalize better to adversarial inputs. By learning to handle
adversarial examples during training, the model becomes
more resilient to subtle variations or perturbations in the
input data, reducing the effectiveness of evasion attacks.
Adversarial training can be effective against both known
and unknown evasion attacks. While traditional defenses
may be susceptible to new or adaptive attack strategies,
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TABLE 4. Mitigatory countermeasures for AML attacks.

Ref.No. AML Attack Type Suggested Mitigatory Countermeasures Strength of | Ease of Imple-
Countermea- mentation (Easy
sure (Strong / | /Hard)
Weak)

[52], [53] Evasion Attacks Randomized Smoothing Weak Easy

[54], [55], [56], [57] Evasion Attacks Formal Verification Strong Hard

[58], [59], [49] Evasion Attacks Adjusting Feature Dimension of Model Weak Hard

[33], [60], [63] [136] | Evasion Attacks Adbversarial Training Strong Hard

[137] [138] [139]

[61] [64] Evasion Attacks Defensive Distillation Strong Hard

[113] Evasion Attacks Input Reconstruction ‘Weak Hard

[62] [68], [113], [79] Availability Poisoning Attacks Training Data Sanitization Strong Easy

[84], [140], [80], | Availability Poisoning Attacks Adversarial Training and Randomized | Strong Hard

[77], [81], [114] Smoothing

[82], [83] Targeted Poisoning Attacks Differential Privacy Strong Easy

[85], [86], [141], | Backdoor Poisoning Attacks Training Data Sanitization Strong Easy

[115]

[87] Backdoor Poisoning Attacks Model Pruning Weak Easy

[88], [89], [142], [90] | Backdoor Poisoning Attacks Trigger Reconstruction Weak Hard

[91], [92], [93], [94], | Backdoor Poisoning Attacks Model Inspection and Sanitization Strong Hard

[95], [116]

[117], [118], [96], | Model Poisoning Attacks Byzantine-resilient Aggregation Strong Hard

[97], [143]

[62] Model Poisoning Attacks Regression Analysis Strong Hard

[62] Model Poisoning Attacks Ensemble Analysis Strong Hard

[62] Model Poisoning Attacks Model Watermarking Weak Hard

[130], [128] Privacy Attacks Differential Privacy Strong Easy

[132] [133] Privacy Attacks Privacy Auditing Strong Easy

[134] Privacy Attacks Private Aggregation of Teacher Ensembles | Strong Hard

(PATE)

adversarial training provides a proactive defense mechanism
that can adapt to novel attack techniques. By exposing
the model to adversarial perturbations during training, the
model learns to recognize and adapt to these perturbations,
making it more robust against future attacks. Adversarial
training can be applied to various types of ML models and
architectures, including deep neural networks, convolutional
neural networks, as well as recurrent neural networks. It is
a versatile approach that can be scaled to large datasets and
complex models, making it suitable for a wide range of
applications. It is supported by theoretical frameworks and
empirical evidence demonstrating its effectiveness in improv-
ing model robustness against evasion attacks. Research has
shown that adversarial training can significantly reduce the
vulnerability of ML models to adversarial perturbations.
Finally, it can be combined with other defense mechanisms,
such as randomized smoothing, adjusting feature dimension
of the model and input reconstruction to enhance the overall
defense against evasion attacks. By integrating multiple
defense strategies, organizations can build more resilient ML
systems that are better equipped to withstand adversarial
threats. It is considered as a better mitigation approach against
evasion attacks because it directly addresses the underlying
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vulnerability of ML models to adversarial perturbations and
improves their robustness in the face of such attacks

Formal verification: While formal verification is a com-
putationally expensive method and has its own limitations
and challenges, the formal verification research studies prove
that it can provide strong guarantees about the correctness
and robustness of ML models through mathematical proofs.
By formally specifying security properties and verifying
them against the model’s behavior, organizations can ensure
that the model behaves as intended and is resilient to
evasion attacks. It can help identify vulnerabilities and
weaknesses in ML models that may otherwise get unnoticed
by other mitigation techniques and still leave the model
vulnerable to evasion attacks. By systematically analyzing
the model’s architecture, algorithms, and decision-making
processes, organizations, it can uncover potential evasion
attack vectors and strengthen the model’s defenses accord-
ingly. Formal verification techniques for certifiable training
aim to train neural networks to increase their lower bound on
robustness [34], [35], [36], [37]. One approach is currently
in use in several ML models [33]. A range of studies
have proposed formal verification techniques to enhance
the security of machine learning models and networked
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TABLE 5. Evasion attack countermeasures - strengths and weaknesses.

Countermeasures

Strengths

Weaknesses

Randomized Smoothing
[48] - [49]

Provides a probabilistic defense mechanism against eva-
sion attacks by adding noise to input data and offers strong
theoretical guarantees against certain types of adversarial
perturbations.

May introduce computational overhead and increase
model complexity. The effectiveness of randomized
smoothing may vary depending on the choice of smooth-
ing parameters and the distribution of adversarial pertur-
bations.

Formal Verification [[33],
[50] — [53], [144] —[145]]

Offers rigorous mathematical guarantees by formally ver-
ifying the correctness and robustness of ML models. Pro-
vides a systematic approach to detecting vulnerabilities
and ensuring compliance with security requirements.

Requires significant computational resources and exper-
tise to perform formal verification, making it impractical
for large-scale models or complex systems. Limited scala-
bility and applicability to certain types of ML models and
architectures.

Adversarial training [12],
[21], [30], [37], [43], [54],
[56], [135] - [134]

Effectively enhances the robustness of ML models against
adversarial attacks by incorporating adversarial examples
into the training process. Can be combined with other
defense mechanisms to improve overall resilience.

May result in increased computational overhead and
longer training times. Vulnerable to adaptive adversaries
that can generate more sophisticated adversarial examples.

Adjusting feature dimen-
sion of model [43], [57] —
[60]

Can help mitigate the impact of adversarial perturbations
by reducing the model’s sensitivity to irrelevant or noisy
features. Improves the interpretability and generalization
of the model by focusing on the most informative features.

Requires careful feature selection and dimensionality re-
duction techniques, which may not always be straight-
forward or effective. May lead to information loss or
degradation in model performance if important features
are omitted.

Defensive distillation [62]
- [63]

Provides a defense mechanism against adversarial attacks
by training a "distilled" model that smooths out the deci-
sion boundaries learned by the original model. Offers re-
sistance against simple gradient-based attacks by making
the model more robust to perturbations.

Vulnerable to adaptive adversaries that can craft adversar-
ial examples specifically targeted at the distilled model.
May not provide robust protection against more sophisti-
cated attacks or adversarial strategies.

Input reconstruction [58]
-[59]

Helps mitigate the impact of adversarial perturbations by
reconstructing clean input data from perturbed inputs. Can
be combined with other defense mechanisms to enhance

Requires access to clean training data or a reconstruction
model, which may not always be available in practical set-
tings. May introduce additional computational overhead

the robustness of ML models.

and complexity, particularly for real-time applications or
large-scale models.

control systems against evasion attacks. Reference [146]
introduces a method that transforms machine learning
models into imperative programs for analysis, while [144]
focuses on revealing stealth attacks on networked control
systems. Reference [147] presents an automated verification
framework for hardware circuits, specifically designed to
protect cryptographic implementations against combined
physical attacks. These studies collectively contribute to the
development of robust security measures against evasion
attacks. It can also be applied to different domains and
types of ML models, including deep neural networks,
decision trees, and support vector machines. This flexibility
makes formal verification suitable for a wide range of
applications and use cases. The subsequent studies for each
countermeasure as highlighted in Table 1 have made valuable
contributions by outlining multiple innovative methods and
approaches to lessen the impact of evasion attacks. Other
techniques such as randomized smoothing do not provide
complete protection and should be used in conjunction with
other defense mechanisms such as adversarial training and
formal verification for optimal security.

B. POISONING ATTACKS MITIGATION APPROACHES

Attackers employ poisoning attacks to manipulate the
learning process by introducing adversarial data samples
or altering existing ones within the training dataset. This
manipulation compromises the integrity of the trained model,
leading to inaccurate outputs during inference. Poisoning
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attacks encompass various subtypes, including Availability
Poisoning Attacks, Targeted Poisoning Attacks, Backdoor
Poisoning Attacks, and Model Poisoning Attacks. Backdoor
attacks, considered one of the most prevalent forms of
poisoning attacks, involve the insertion of a backdoor, also
known as a Trojan, into the targeted model during the training
phase. This backdoor remains dormant for clean inputs
during inference, exhibiting normal behavior. However, when
presented with inputs containing a specific, predefined
pattern or trigger, the model misbehaves or yields desired
outcomes for the attacker. While backdoor poisoning attacks
focus on embedding backdoors for future exploitation, other
forms of poisoning attacks aim to compromise the overall
functionality of the model. These attacks undermine the
trustworthiness and reliability of machine learning models,
posing significant threats to their security and effectiveness
in real-world applications. It’s essential to note that no single
countermeasure can provide complete protection against all
types of poisoning attacks. Organizations should carefully
evaluate their specific requirements, risks, and constraints to
determine the most appropriate combination of countermea-
sures for their machine learning systems. Table 6 lists out the
strengths and weaknesses of each countermeasure proposed
against poisoning attacks. As per studies evaluated, training
data sanitization is the most effective defense currently
available against poisoning attacks.

Training data sanitization: Training data sanitization
is often considered the most fundamental and effective
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TABLE 6. Poisoning attack countermeasures - strengths and weaknesses.

Countermeasures

Strengths

Weaknesses

Training Data Sanitization
[551, [58], [113], [108]

Helps mitigate the risk of poisoning attacks and data
contamination by identifying and removing malicious or
suspicious data points. Enhances the reliability and trust-
worthiness of ML models by ensuring the integrity of the
training data.

Requires careful data preprocessing and cleaning tech-
niques, which may be resource-intensive and time-
consuming. May inadvertently remove legitimate data
points or introduce bias if not implemented carefully.

Adversarial Training &
Randomized Smoothing
[73], [109] — [111], [136]
- [138],

Provides robust defense mechanisms against evasion at-
tacks by incorporating adversarial examples into the train-
ing process and adding noise to input data. Offers strong
theoretical guarantees against certain types of adversarial
perturbations.

May result in increased computational overhead and
longer training times, particularly when combined with
randomized smoothing. Vulnerable to adaptive adver-
saries that can generate more sophisticated adversarial
examples.

Model Pruning [82]

Helps improve the efficiency and performance of ML
models by reducing redundancy and complexity. Can en-
hance the interpretability and generalization of the model
by focusing on the most informative features or parame-
ters.

Pruning techniques may be sensitive to the choice of prun-
ing criteria and hyperparameters, which can affect model
performance. May lead to information loss or degradation
in model accuracy if important features or parameters are
pruned excessively.

Trigger Reconstruction
[831-[85], [84] — [140]

Provides a defense mechanism against trigger-based at-
tacks by detecting and reconstructing trigger patterns or
backdoor signals in input data. Enhances the security and
integrity of ML models by mitigating the risk of trigger-
based manipulation.

Requires access to clean training data or a reconstruc-
tion model, which may not always be available or prac-
tical. May introduce additional computational overhead
and complexity, particularly for real-time applications or
large-scale models.

Model Inspection and
Sanitization [115] — [92]

Offers a systematic approach to identifying and mitigating
vulnerabilities in ML models by analyzing their structure,
behavior, and decision-making process. Helps improve
the transparency, trustworthiness, and reliability of ML
systems by ensuring adherence to safety and security
requirements.

Limited scalability and applicability to complex or black-
box models, as model inspection techniques may struggle
to provide insights into their internal workings. Requires
domain expertise and specialized tools for effective model
inspection and sanitization, which may not be readily
available or accessible.

Byzantine-Resilient Ag-
gregation [94] — [118],
[86]

Provides a defense mechanism against Byzantine faults
in distributed ML systems by aggregating model updates
from multiple sources and mitigating the impact of mali-
cious or faulty nodes. Enhances the robustness and relia-
bility of collaborative learning approaches by ensuring the
integrity of aggregated updates.

Byzantine-resilient aggregation techniques may introduce
additional communication overhead and complexity, par-
ticularly in large-scale distributed systems. Limited effec-
tiveness against sophisticated Byzantine adversaries that
can coordinate attacks across multiple nodes or manipu-
late the aggregation process strategically.

Regression Analysis [55]

Offers a powerful tool for analyzing relationships between
variables and identifying patterns in data, which can be
valuable for detecting anomalies, identifying vulnerabili-
ties, and informing decision-making in ML systems. Pro-
vides insights into the impact of model features on model
performance and helps identify potential sources of bias
Or error.

Limited effectiveness in detecting subtle or complex pat-
terns in high-dimensional data or non-linear relationships.
Requires domain expertise and careful interpretation of
results to draw meaningful conclusions, which can be
challenging in complex or interdisciplinary applications.

Ensemble Analysis [55]

Enhances the robustness and reliability of ML models
by combining predictions from multiple models or algo-
rithms, reducing the risk of overfitting and improving gen-
eralization performance. Provides a defense mechanism
against adversarial attacks by leveraging diversity among
ensemble members to mitigate the impact of individual
vulnerabilities.

Ensemble methods may introduce additional computa-
tional overhead and complexity, particularly when inte-
grating diverse models or algorithms. Requires careful
selection and tuning of ensemble components to optimize
performance and achieve synergy among individual mod-
els.

Model Watermarking [S5]

Asserts ownership and intellectual property rights over
models.

May affect model performance and accuracy. Effective-
ness depends on the robustness of the watermarking tech-
nique and sophisticated attackers may remove or alter
watermarks.

countermeasure against poisoning attacks due to several rea-
sons. It addresses poisoning attacks directly at the source by
ensuring the cleanliness and integrity of the training dataset.
By rigorously validating and preprocessing the training data,
organizations can detect and remove malicious or anomalous
data points before they are used to train ML models. This
is a proactive approach that prevents poisoning attacks
from infiltrating the model during the training phase. It is
applicable across various types of machine learning models
and architectures. Whether using deep neural networks,
decision trees, support vector machines, or other models,

VOLUME 12, 2024

ensuring the quality and trustworthiness of the training data is
a critical step in building robust and reliable machine learning
systems. [45] This generalizability makes training data
sanitization a versatile and widely applicable countermeasure
against poisoning attacks. By removing potentially malicious
or adversarial data points from the training dataset, training
data sanitization reduces the attack surface and vulnerability
of machine learning models to poisoning attacks. By only
training on clean and trustworthy data, organizations can
minimize the risk of models being manipulated or compro-
mised by malicious actors. It can be implemented at scale
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TABLE 7. Privacy attack countermeasures - strengths and weaknesses.

Countermeasures

Strengths

Weaknesses

Differential Privacy [11],
[88], [124], [144]

Provides strong privacy guarantees by ensuring that the
inclusion or exclusion of any individual data point does
not significantly affect the output or results of the analysis.
Offers a rigorous and principled approach to privacy pro-
tection with well-defined mathematical frameworks and
formal guarantees. Enables the sharing and analysis of
sensitive data while preserving the privacy of individual
data contributors.

Introduces noise or randomness into the data, which can
reduce the accuracy or utility of the analysis. Requires
careful tuning of privacy parameters and trade-offs be-
tween privacy and utility, which may be challenging to
optimize in practice. May not be suitable for all types
of ML models or applications, particularly those with
stringent accuracy or performance requirements.

Privacy Auditing [127] —
[128], [132]

Provides a systematic approach to evaluating and assess-
ing the privacy risks associated with ML models, datasets,
or systems. Helps identify potential privacy vulnerabili-
ties, compliance violations, or data leakage risks, enabling
organizations to take appropriate measures to protect pri-
vacy. Facilitates ongoing monitoring and review of ML
systems to ensure compliance with privacy regulations,
standards, and best practices.

Relies on the availability of comprehensive privacy au-
diting tools, expertise, and resources, which may be lim-
ited or unavailable to some organizations. May require
access to sensitive data or proprietary information, raising
concerns about data confidentiality and security. Limited
scalability and applicability to certain types of ML models
or systems, particularly those with complex architectures
or distributed components.

Private
of Teacher
(PATE) [133]

Aggregation
Ensembles

Enables the training of ML models on sensitive data
without exposing individual-level information, preserving
the privacy of data contributors. Provides a practical and
scalable approach to privacy-preserving machine learning,
particularly in scenarios where access to sensitive data is
restricted. Offers strong privacy guarantees by aggregating
predictions from multiple teacher models and introducing

May introduce computational overhead and complexity,
particularly when training large ensembles of teacher
models or aggregating predictions from diverse sources.
Requires careful selection and tuning of hyperparameters
to balance privacy and utility, which may be challenging in
practice. Vulnerable to attacks that exploit weaknesses in
the aggregation process or leverage auxiliary information

noise into the label aggregation process.

to infer sensitive data.

and integrated into existing data processing pipelines and
workflows. Automated data validation and preprocessing
techniques can help organizations efficiently manage and
sanitize large volumes of training data, reducing the manual
effort and cost associated with securing machine learning
models against poisoning attacks [69]. Also protecting the
data supply chain from manipulations is one way to mitigate
attacks that alter or lower the caliber of training data. If data
is taken from a sanitized setting, there is significantly less
chance of inaccurate or manipulated information [50] While
training data sanitization offers significant advantages in
mitigating the risks associated with poisoning attacks, it is
important to note that it is not an ultimate solution and
should be complemented with other defense mechanisms
such as model validation, input verification, and ongoing
monitoring to provide comprehensive protection against
evolving poisoning attacks.

Adpversarial training has also proven effective against Poi-
soning attacks. Other techniques such as Byzantine-resilient
aggregation, Model Pruning, Trigger Reconstruction, Robust
Training, Ensemble Analysis, Model Watermarking have
several limitations. They are not typically considered as
standalone methods for mitigating poisoning attacks in ML
models. While these methods can help identify weaknesses
in ML models and inform the developers of issues within
the models, they cannot typically be employed as direct
mitigation techniques against poisoning attacks. They are
either expensive, difficult to scale or compromise the
accuracy and quality of the model. However, they can still
play a valuable role in the broader context of ML security
by providing insights into the vulnerabilities and limitations
of the models and helping the developers create more
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robust and resilient defense mechanisms against poisoning
attacks.

C. PRIVACY ATTACKS MITIGATION APPROACHES

Data reconstruction, memorization, membership inference,
model extraction, and property inference are the five types
of privacy attacks. All privacy attacks attempt to identify a
possible model input given a model output and permissions
to query the model. Attacks known as membership inference
attacks try to determine if a given data sample has access
to the training dataset or not through model querying rights.
Although the attack strategies for each of the five types may
slightly differ, the attacker’s objective is always the same. The
attacker is interested in retrieving confidential data from a set
of pairs representing the input and output of the model, along
with the corresponding output confidence levels.

Table 7 lists out the strengths and weaknesses of each
countermeasure proposed against privacy attacks in the
studies reviewed. Based on that, differential privacy, privacy
audit and private aggregation of teacher ensembles (PATE)
can all be considered as suitable strategies for mitigating
privacy attacks. No one specific countermeasure can defend
against all types of privacy attacks.

Differential Privacy: Differential privacy allows one to
quantify the privacy guarantees that an algorithm offers.
Adding randomness to an algorithm’s behavior is the
fundamental idea. Differential privacy in learning reduces the
possibility of revealing sensitive information about training
data and offers verifiable privacy guarantees. The behaviors
of a trained model that has been trained with differential
privacy are less influenced by any one training set. Due to this,
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it is challenging to determine which data record by looking
at the model’s behavior belongs to the training dataset [16],
[93], [127], [128]. Itis also referred to as data augmentation or
synthetic data generation. It is proven to be effective against
membership inference attacks. By introducing additional
noise and variability into the dataset, organizations can make
it more challenging for adversaries to infer membership
status based on model predictions. Techniques such as
differential privacy-based data synthesis can be used to
generate synthetic data that closely resembles the original
dataset while preserving privacy and reducing the risk of
membership inference attacks.

Privacy Auditing: A few studies proposed the scheme for
auditing privacy of ML/AI systems. By conducting privacy
audits, organizations can assess whether their models adhere
to privacy principles and legal requirements, such as data
minimization, purpose limitation, and user consent. These are
helpful but the challenge is that they are usually manual effort
driven. Tools such as IBM Privacy Toolkit [145] can be useful
in this regard [101], [116], [148]. Organizations can leverage
privacy audit tools to proactively manage privacy risks and
reduce the likelihood of privacy attacks.

Private Aggregation of Teacher Ensembles (PATE): PATE
integrates several models trained on different datasets.
Regardless of the learning algorithm, PATE offers differential
privacy for training data. Several studies have proposed PATE
to protect both teacher’s and students’ data on ML models.
Reference [149] introduced a new framework that combined
secret sharing with Intel Software Guard Extensions to
protect both teachers’ and students’ data. Reference [150]
extended PATE to quantum ML, while [151] proposed PATE
to improve the accuracy of the student model by integrating
advanced noisy label training mechanisms. Reference [152]
addressed privacy threats in deep reinforcement learning
by developing a differentially private mechanism to protect
the teacher’s training dataset. These studies collectively
contribute to the development of more robust and secure
privacy-preserving machine learning techniques. Although
PATE can withstand membership inference attacks with
provable robustness, achieving it is difficult and results in
minimal utility loss [117].

VI. RECENT FRAMEWORKS AND TOOLS FOR IMPROVING
CYBER RESILIENCE AGAINST AML ATTACKS

This section elaborates on specific frameworks such as
the MITRE ATLAS Framework [153], NIST AI Risk
Management Framework [154], ETSI Securing AI Mitigation
Strategy Framework [155] designed to address the broader
aspects of ML security and ensure the secure deployment of
ML models. These frameworks offer comprehensive guide-
lines and best practices to organizations, covering all stages
of AI/ML model and application development. By following
these frameworks, organizations can implement robust secu-
rity measures throughout the development lifecycle, from
initial design to deployment and maintenance. This proactive
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approach helps mitigate potential risks and vulnerabilities,
ensuring that ML models and Al systems are resilient against
AML threats. Furthermore, tools such as the Adversarial
Robustness Toolbox [156], Microsoft Counterfit [157], IBM
Privacy Toolkit [145] are recommended for integration into
organizations’ code pipelines, ensuring that secure code
development practices are ingrained into the development
process of AI/ML applications. By incorporating these
frameworks and tools early in the development lifecycle,
organizations can adopt a “shift-left” approach to security,
emphasizing the importance of addressing security concerns
at the earliest stages of development. This proactive stance
enables teams to identify and mitigate potential security risks
before they escalate, ultimately enhancing the overall security
posture of AI/ML applications.

A. MITRE ATLAS FRAMEWORK

The MITRE ATLAS (Adversarial Tactics, Techniques,
and Common Knowledge for Machine Learning) frame-
work [153] is a comprehensive resource developed by
MITRE Corporation to address the security challenges asso-
ciated with ML systems. Just like the ATT&CK framework,
the new ATLAS framework provides a structured approach
for understanding, evaluating, and mitigating threats and
vulnerabilities specific to ML models and systems. The
framework catalogs adversarial tactics and techniques used
by attackers to exploit vulnerabilities in ML systems. These
tactics and techniques are organized into a taxonomy similar
to the original MITRE ATT&CK framework, with categories
such as evasion attacks, poisoning attacks and privacy attacks.
By categorizing adversarial techniques, the framework helps
organizations understand the tactics employed by attackers
and develop appropriate defense strategies for each stage in
an AI/ML Application lifecycle as presented in Figure 9.
The framework also includes use case scenarios that illustrate
real-world examples of adversarial attacks and security
challenges in ML systems. These use cases provide context
and insight into the types of threats that organizations
may face and help stakeholders understand the impact of
security vulnerabilities on ML applications. It provides best
practices and mitigation strategies for securing ML systems
against adversarial attacks and security threats. These include
recommendations for secure model development, robust
training practices, input validation and sanitization, model
monitoring, and incident response. By implementing these
best practices across all stages of building a ML application,
organizations can reduce the likelihood of successful attacks
and mitigate the impact of AML attacks. By providing a
structured approach to understanding and mitigating security
risks, the framework helps organizations build more resilient
and secure ML applications that can withstand adversarial
threats and protect sensitive data. The framework focuses
on understanding the various stages of a cyber attack in
the context of ML systems. These stages are: Business and
Data Understanding, Data Preparation, ML Model Engineer-
ing, ML Model Evaluation, Deployment, Monitoring and
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Maintenance. While the framework is primarily tailored to
ML security, the stages of a cyber attack described within it
are generally applicable to cybersecurity in a broader context.
Here are the stages of a cyber attack as outlined by the MITRE
ATLAS framework:

1) Reconnaissance (Recon): In this initial stage, adver-
saries gather information about the target ML sys-
tem, including its architecture, datasets, algorithms,
and potential vulnerabilities. Reconnaissance activities
may involve scanning public resources, analyzing
documentation, probing APIs, or monitoring network
traffic to gain insight into the target environment.

2) Resource Development: Once adversaries have col-
lected sufficient information about the target ML
system, they develop or acquire tools and techniques
to exploit identified vulnerabilities or weaknesses.
It involves crafting malicious payloads, code snippets,
or data inputs that can be used to compromise the target
system and achieve the attacker’s objectives.

3) Initial Access: This stage involves the adversary
gaining an initial foothold or access to the ML system,
which could be through vulnerabilities in software,
misconfigurations, or social engineering techniques.

4) ML Model Access: After gaining initial access to
the target environment, adversaries install backdoors,
rootkits, or other persistent malware to maintain access
and establish a foothold within the system. Installation
activities may include creating user accounts, modi-
fying system configurations, or deploying additional
malicious payloads to achieve persistence and evade
detection.

5) Execution: Once access is established, the adversary
executes malicious code or commands to carry out
their objectives, such as compromising ML models or
manipulating training data.

6) Persistence: In this stage, the adversary ensures that
their access to the ML system persists over time,
often by establishing backdoors or other means of
maintaining access even after detection or removal
attempts.

7) Privilege Escalation: If the adversary’s initial access
does not provide sufficient privileges, they may attempt
to escalate their privileges within the ML system to gain
access to sensitive resources or capabilities.

8) Defense Evasion: Adversaries employ various tech-
niques to evade detection by security measures or mon-
itoring systems, such as obfuscating malicious code,
bypassing anomaly detection mechanisms, or exploit-
ing weaknesses in security controls.

9) Credential Access: Adversaries may attempt to obtain
credentials, such as usernames and passwords, to gain
access to ML systems or data repositories.

10) Discovery: In this stage, the adversary gathers informa-
tion about the ML system, including its architecture,
components, datasets, and vulnerabilities, to plan and
execute their attack more effectively.
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11) Collection: Adversaries collect data or information
from the ML system, such as training data, model
parameters, or sensitive information, for their mali-
cious purposes.

12) ML Attack Staging: Once inside the ML system, the
adversary may move laterally across the network or
infrastructure to explore and exploit other systems or
resources.

13) Exfiltration: Adversaries exfiltrate stolen data or infor-
mation from the ML system to external servers or
endpoints under their control for further exploitation or
monetization.

14) Impact: Adversaries carry out their primary objec-
tives, which may include disrupting ML operations,
manipulating model outputs, or causing financial or
reputational damage to organizations.

AML Attack Chain

1. Reconnaissance

2. Resource Development

3. Initia_l Access

4, ML Model Access

5. Execution

6. Persistence

7. Privilege Escalation

8. Defens_e Evasion

9. Credential Access

10. Discovery

11. Coliectiun
12. MIL Attack Staging
13. Exfiltration |
14. Impact |

FIGURE 9. AML attack chain.

These stages of a cyber attack as illustrated in Figure 9
provide a structured process flow for understanding the
lifecycle of an adversary’s activities and guiding defen-
sive strategies to detect, prevent, and respond to cyber
threats targeting ML systems and other critical assets. The
framework includes tools and techniques for analyzing the
attack surface of ML systems, including identifying potential
entry points and attack vectors that adversaries may exploit.
By conducting attack surface analysis, organizations can
gain insights into the security posture of their ML systems
and prioritize security controls to mitigate potential risks.
While addressing complex security challenges, the MITRE
ATLAS framework emphasizes pragmatic solutions that are
practical to implement and align with real-world constraints
and requirements. It offers guidance that is accessible to
a wide range of stakeholders, including researchers, devel-
opers, data scientists, security analysts, and policymakers,
enabling organizations to adopt effective security practices
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regardless of their level of expertise or resources. It is
continuously updated to reflect emerging threats, evolving
attack techniques, and new developments in ML security
research. By staying current with the latest trends and
advancements in the field, the framework remains relevant
and provides organizations with up-to-date guidance on
mitigating security risks in their ML systems. It provides
a platform for researchers, practitioners, and organizations
to contribute insights, best practices, and threat intelligence,
fostering a collaborative ecosystem for addressing ML
security challenges collectively. To summarize, the MITRE
ATLAS ML Security framework serves as a valuable
resource for organizations seeking to enhance the security
of their ML systems. By providing a structured approach to
understanding and mitigating security risks, the framework
helps organizations build more resilient and secure ML
applications that can withstand adversarial threats and protect
sensitive data.

B. NIST Al RISK MANAGEMENT FRAMEWORK

The NIST AI Risk Management framework [154], has also
been developed by the National Institute of Standards and
Technology (NIST), provides guidance and best practices for
managing the risks associated with Al systems throughout
their life cycle. The framework is designed to help organiza-
tions identify, assess, prioritize, and mitigate risks related to
Al technologies effectively. The framework emphasizes the
importance of establishing clear governance structures and
processes for managing Al risks within organizations. This
includes defining roles and responsibilities, establishing risk
management policies and procedures, and ensuring account-
ability and oversight at all levels of the organization. The
framework provides guidance on identifying and cataloging
the risks associated with Al systems, including technical,
operational, legal, ethical, and societal risks. This involves
conducting thorough assessments of Al system components,
data sources, algorithms, models, and deployment envi-
ronments to identify potential vulnerabilities and threats.
The framework outlines methodologies and techniques for
assessing the likelihood and impact of identified risks on Al
systems and their stakeholders. This includes quantitative and
qualitative risk assessment methods, such as risk matrices,
scenario analysis, and probabilistic modeling, to prioritize
risks based on their severity and potential consequences. The
framework offers strategies and best practices for mitigating
and controlling Al risks to an acceptable level. This includes
implementing technical controls, security measures, and
safeguards to reduce the likelihood of adverse events, as well
as developing contingency plans and response procedures
to mitigate the impact of incidents when they occur.
It emphasizes the importance of effective communication
and collaboration among stakeholders throughout the risk
management process. This includes transparently communi-
cating Al risks, vulnerabilities, and mitigation strategies to
decision-makers, users, regulators, and other relevant parties
to build trust and confidence in Al systems. It advocates for
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continuous monitoring and evaluation of Al systems to detect
emerging risks, monitor changes in the threat landscape,
and assess the effectiveness of risk mitigation measures over
time. This involves implementing monitoring tools, metrics,
and feedback mechanisms to track Al system performance,
security posture, and compliance with risk management
objectives. Finally, the framework recommends documenting
risk management activities, decisions, and outcomes in
comprehensive risk registers, reports, and documentation
repositories. This enables organizations to maintain a clear
audit trail of their risk management efforts, demonstrate
compliance with regulatory requirements, and facilitate
learning and knowledge sharing across the organization. The
NIST AI Risk Management framework provides a structured
approach for organizations to systematically identify, assess,
prioritize, and mitigate risks associated with Al systems,
helping them build trust, resilience, and confidence in their
Al capabilities.

C. IBM RESEARCH - ADVERSARIAL ROBUSTNESS
TOOLBOX

Adversarial robustness toolbox (ART) [156] is an open-
source Python library developed by IBM Research to
help researchers and practitioners evaluate and improve
the robustness of ML models against adversarial attacks.
The toolbox provides a comprehensive set of tools and
techniques for generating adversarial examples, evaluating
model robustness, and implementing defense mechanisms
against adversarial attacks. ART includes various algorithms
for generating adversarial examples, which are carefully
crafted inputs designed to deceive machine learning models
and cause misclassifications. These algorithms include fast
gradient sign method (FGSM), projected gradient descent
(PGD), deepfool, carlini-wagner, and others. Users can
choose from a range of attack strategies based on their
specific requirements and use cases. It supports adversarial
training, a defense mechanism aimed at enhancing model
robustness by incorporating adversarial examples into the
training process. Adversarial training involves augmenting
the training dataset with adversarial examples or incorpo-
rating adversarial perturbations during model training to
improve the model’s ability to withstand adversarial attacks.
The toolbox provides metrics and evaluation techniques for
assessing the robustness of machine learning models against
adversarial attacks. Users can measure model performance
under attack using metrics such as accuracy, robustness,
perturbation magnitude, and success rate of adversarial
attacks. ART also supports adversarial evaluation on different
datasets and benchmarking against state-of-the-art models.
It offers a range of defense mechanisms and countermeasures
for mitigating the impact of adversarial attacks on machine
learning models. These defenses include adversarial training,
input preprocessing techniques (e.g., feature squeezing,
spatial smoothing), model distillation, randomization, and
adversarial detection methods (e.g., detection using statis-
tical tests, density estimation, or generative models). ART
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supports model interpretability techniques to help users
understand and interpret model behavior, especially in the
presence of adversarial attacks. These techniques include
visualizing model decision boundaries, feature importance,
and adversarial perturbations to gain insights into how
models make predictions and identify vulnerabilities to
adversarial manipulation. The toolbox is compatible with
popular deep learning frameworks such as TensorFlow,
Keras, PyTorch, and scikit-learn, making it easy to integrate
with existing machine learning pipelines and workflows.
Users can seamlessly incorporate ART into their projects and
leverage its functionalities without significant modifications
to their codebase. In general, the Adversarial Robustness
Toolbox (ART) provides a comprehensive set of tools and
techniques for assessing, improving, and defending against
adversarial attacks in machine learning models. By using
ART, developers and researchers can better understand the
vulnerabilities of their models, develop more robust machine
learning systems, and enhance the security and reliability of
Al applications in practice. Organizations can as well use
ART to gain assurance of the defense posture of their Al and
ML applications against AML attacks.

D. MICROSOFT - COUNTERFIT

Microsoft Counterfit [158] is another open-source AML
testing toolkit developed by Microsoft Research to help
developers and security professionals evaluate the robustness
of ML models against AML attacks. The tool is designed
to simulate various attack scenarios and generate adver-
sarial examples to assess the security and resilience of
ML models in real-world settings. Counterfit provides a
range of attack algorithms and techniques for generating
adversarial examples that can fool ML models into making
incorrect predictions. These attacks include gradient-based
methods like FGSM (Fast Gradient Sign Method) and PGD
(Projected Gradient Descent), optimization-based attacks
like C&W (Carlini and Wagner), and model inversion
attacks. Users can configure various parameters and settings
for adversarial attacks, such as the attack type, attack
strength, targeted or untargeted attacks, and constraints
on adversarial perturbations. Counterfit offers flexibility in
customizing attack scenarios to suit different use cases
and requirements. The toolkit enables users to evaluate
the robustness of ML models against adversarial attacks
by generating adversarial examples and measuring model
performance under attack. Users can assess metrics such as
accuracy, robustness, success rate of attacks, and perturbation
magnitude to quantify the impact of adversarial manipulation
on model behavior. Counterfit supports testing and validation
of adversarial defense mechanisms and countermeasures
designed to enhance the security and resilience of ML
models against adversarial attacks. Users can evaluate the
effectiveness of defenses such as adversarial training, input
preprocessing, model distillation, and adversarial detection
methods. Counterfit is integrated with Azure Al services,
allowing users to test ML models deployed on Azure cloud
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infrastructure. Users can leverage Counterfit to assess the
security posture of ML models hosted on Azure ML, Azure
Kubernetes Service (AKS), or other Azure services and
environments. The toolkit provides a user-friendly command-
line interface (CLI) and interactive dashboard for easy
configuration, execution, and visualization of adversarial
attacks and model evaluation results. Users can interact with
Counterfit using simple commands and workflows, making
it accessible to both developers and security practition-
ers. Counterfit is open-source and actively maintained by
Microsoft Research, with contributions from the developer
and cybersecurity communities. Users can collaborate, share
knowledge, and contribute to the development of Counterfit
through GitHub repositories, forums, and community-driven
initiatives. To summarize, Microsoft Counterfit is a powerful
and versatile toolkit for assessing the security and robust-
ness of ML models against adversarial attacks. By using
Counterfit, developers and security professionals can identify
vulnerabilities, test defense mechanisms, and improve the
resilience of ML systems against emerging cyber threats in
today’s increasingly adversarial landscape.

E. IBM - Al PRIVACY TOOLKIT

The AI Privacy Toolkit (APT) [145] by IBM is an open-
source toolkit designed to help developers and data scientists
address privacy concerns and comply with regulations when
working with Al and ML technologies. The toolkit provides a
set of tools, libraries, and resources to assist in implementing
privacy-preserving techniques and evaluating privacy risks
associated with Al and ML models. APT offers a variety
of privacy-preserving techniques and algorithms that devel-
opers can integrate into their AI and ML pipelines. These
techniques include differential privacy, federated learning,
homomorphic encryption, secure multiparty computation,
and data anonymization methods. The toolkit provides tools
and libraries for assessing the privacy risks associated
with Al and ML models. Developers can use these tools
to analyze model architectures, data flows, and model
outputs to identify potential privacy vulnerabilities and
compliance issues. APT includes tools for anonymizing and
de-identifying sensitive data to protect individual privacy.
Developers can use these tools to mask or remove personally
identifiable information (PII) from datasets while preserving
the utility and integrity of the data for analysis and model
training. It also offers metrics and evaluation criteria for
quantifying the privacy risks and vulnerabilities of Al and
ML models. Developers can use these metrics to assess the
effectiveness of privacy-preserving techniques and compare
the privacy performance of different models and algorithms.
The toolkit provides guidance and resources on privacy
regulations, standards, and best practices for Al and ML
applications. Developers can use these resources to ensure
compliance with regulations such as the General Data
Protection Regulation (GDPR), Health Insurance Portability
and Accountability Act (HIPAA), and other privacy laws
and regulations. APT includes tools for interpreting and

VOLUME 12, 2024



J. Malik et al.: Systematic Review of AML Attacks, Defensive Controls, and Technologies

IEEE Access

TABLE 8. Applicability of framework and tools on AML attacks.

S.No. Framework / | Purpose Attacks Coverage Strengths Limitations
Tool

1. MITRE ATLAS | Designed to provide a structured | Evasion, Poisoning | Comprehensive Requires a deep un-
Framework [16] approach to evaluate and improve | and Privacy Attacks framework covering | derstanding of AML

the resilience of ML models a wide range of | to effectively utilize
against adversarial attacks. adversarial techniques | the framework.
Includes  methodologies, tools, and defenses and
and datasets to facilitate research provides  guidelines
and development in AML. and resources for both

offensive (attack) and

defensive  (defense)

strategies.

2. NIST AI Risk | NIST Al Risk Management Frame- | Evasion, Poisoning | Systematic approach | Requires adaptation
Management work provides guidance on man- | and Privacy Attacks to assessing and man- | to specific
Framework [159] | aging risks associated with the de- aging risks across the | organizational

ployment and operation of Al sys- Al lifecycle. contexts, emerging Al
tems. threats and regulatory
environments.

3. Adversarial ART provides a collection of tools | Evasion, Poisoning | Offers a wide range | Requires expertise in
Robustness and techniques to test and im- | and Privacy Attacks of attack methods and | machine learning and
Toolbox (ART) | prove the robustness of ML models defense  techniques | adversarial techniques
[156] against adversarial attacks. (e.g., adversarial | for effective use and

training,  defensive | the performance im-
distillation). Includes | pact of defenses on
functionalities for | model accuracy and
evaluating model | efficiency needs care-
robustness, generating | ful consideration.
adversarial examples,

and implementing

defenses.

4. Microsoft - | Counterfit is a tool designed for ad- | Evasion and User-friendly Limited to Microsoft

Counterfit [157] versarial simulation and testing of | Poisoning Attacks interface and tools | Azure environment
Al systems. It provides capabilities for  creating and | and integration with
to generate and deploy adversarial executing adversarial | specific Microsoft
attacks against ML models to assess attacks and supports a | tools.
their robustness and security pos- variety of  attack
ture. scenarios and

techniques, including
evasion and poisoning
attacks.
5. Al Privacy | Focuses on preserving privacy and | Privacy Attacks Offers practical | Requires expertise
Toolkit [145] confidentiality in Al systems. Pro- solutions and | in  data  privacy
vides methods and tools to assess algorithms for | regulations
and mitigate privacy risks associ- enhancing privacy | and techniques
ated with Al technologies, includ- in Al applications. | for effective
ing techniques for data anonymisa- Supports compliance | implementation.
tion, differential privacy, and model with privacy | The applicability of
privacy regulations and | privacy-preserving
standards. methods may vary
depending on the
specific use case and
data environment.

explaining the decisions and predictions of Al and ML
models. Developers can use these tools to understand how
models make predictions and assess the potential impact of
model decisions on individual privacy rights. It also integrates
with popular Al development platforms and frameworks,
such as TensorFlow, PyTorch, and scikit-learn, making it
easy to incorporate privacy-preserving techniques into Al and
ML workflows. Developers can seamlessly integrate APT
into their existing development environments and workflows
without significant modifications. Therefore, the Al Privacy
Toolkit (APT) by IBM provides a comprehensive set of tools,
libraries, and resources to help developers and data scientists
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address privacy concerns and compliance requirements when
working with Al and ML technologies. By using APT,
organizations can enhance the security and privacy of their
Al applications while ensuring compliance with privacy
regulations and standards.

With this, the researchers conclude the enumeration
of beneficial open-source security and privacy tools that
organizations can leverage to secure their ML models and
Al applications. They strongly advocate for organizations
to remain vigilant against AML attacks. Through thorough
security testing and validation processes, organizations can
fortify the security and privacy posture of their ML models
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and Al applications, thereby safeguarding sensitive data.
By integrating these frameworks and tools into coding
and testing pipelines, developers can swiftly identify and
rectify issues without manual intervention. This streamlined
approach not only expedites the development cycle but also
empowers organizations to deliver Al solutions to market
expeditiously, granting them a competitive advantage in the
industry. The benefits and limitations of each framework and
tool are highlighted in Table 8.

VIl. KEY RESEARCH CHALLENGES AND LIMITATIONS
Research on adversarial machine learning (AML) attacks
poses several key research challenges, including:

o Understanding Adversarial Attacks: A thorough under-
standing of various adversarial attack tactics and
techniques and their implications on ML models is
essential. It required delving into the intricacies of
each attack, including evasion, poisoning, and privacy
attacks, to accurately analyze their impact and devise
effective countermeasures.

o Designing Robust Countermeasures: Designing robust
defense mechanisms to mitigate the effects of AML
attacks is another significant challenge. It is difficult
to test countermeasures such as adversarial training,
training data sanitization, differential privacy, and
model robustness enhancements on real-world ML
models as they require computational power and real
datasets. However, it’s important to test these to
bolster the resilience of ML models against adver-
sarial manipulation and gain security and privacy
assurance.

o Evaluating Adaptive Attacks and Countermeasures:
Evaluating the effectiveness of both AML attacks and
defense strategies requires rigorous experimentation
and analysis. It requires assessing the countermeasures
under various adaptive attack scenarios.

o Evolving AML Threat Landscape: The threat landscape
surrounding AML attacks has evolved rapidly, espe-
cially after the release of commercial large language
models (LLMs). One of the key factors contributing
to this changing landscape is the increasing sophisti-
cation of adversaries, who continuously devise novel
attack techniques to exploit vulnerabilities in ML
models. Stronger attack algorithms are constantly being
developed.

These present a significant challenge for researching on
AML. It’s a difficult task of keeping pace with emerging
threats and understanding their implications on ML systems.
However, this further necessitates ongoing research efforts to
explore novel AML attack tactics and techniques, evaluating
the effectiveness of defense mechanisms, and improving their
efficacy to mitigate the impact.

While this paper aims to provide a comprehensive
overview of AML, it is important to acknowledge certain
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limitations inherent in the scope and methodology of this
study.

e Scope: The scope of this research has been limited
to identifying and discussing key concepts of AML.
Due to the vastness of the field and the rapid pace of
advancements, it is not possible to cover every aspect of
AML comprehensively.

o Practical evaluation of attack countermeasures: The
focus of this paper has been primarily on the three
types of AML attacks - evasion, poisoning and privacy
and their defense measures. The research performed
a theoretical analysis of each defense measures and
identified its strength and weaknesses. However, these
have not been practically tested.

o Various ML architectures: The proposed countermea-
sures for addressing AML attacks may not be applicable
to all ML models and may require adaptation based on
specific type and constraints.

o Evolving AML Attack Techniques: While this paper
provides insights into some tactics and techniques used
by attackers to execute an AML attack, the field of
AML is constantly evolving. Continuous monitoring
and adaptation are essential to stay abreast of emerging
attacker techniques in AML.

Despite these limitations, this paper provides a valuable
contribution to the understanding of key research challenges
in AML and lays the groundwork for future research
endeavors in this area. By acknowledging these limitations,
researchers can work towards addressing them and advancing
the state-of-the-art in AML research.

VIIl. CONCLUSION AND FUTURE SCOPE OF RESEARCH
With the rising utilization of ML models and Al applications,
particularly in critical sectors like autonomous transportation
and healthcare, AML attacks have emerged as a signif-
icant area of concern. These sophisticated attacks have
the potential to disrupt ML models and Al applications,
leading to severe health and safety implications. This
study systematically surveyed AML attacks based on the
attacker goals and suggested countermeasures for various
types, including evasion, poisoning, and privacy attacks.
Table 9 summarizes the AML attack types, goals and
countermeasures recommended in this research.

This research also offered recommendations for the secure
deployment of ML models within organizational settings,
outlining detailed mitigation strategies against evasion,
poisoning, and privacy attacks. While some mitigation
strategies proved effective, many were susceptible to stronger
variants of attacks. These were carefully analysed and
their merits and limitations addressed. Furthermore, the
researchers evaluated specific open-source security and
privacy frameworks and tools to assist organizations in testing
and securing their ML models and Al applications. Given
the observable trend among threat actors towards designing
more potent and stealthier AML attacks, maintaining robust
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Implementation Roadmap

Assessment and Preparation Adaptation and
Phase Integration

Pilot Implementation Refinement and Optimization

Evaluate existing ML models, Customize and adapt defense
their vulnerabilities to strategies from the MITRE ATLAS
adversarial attacks, and current Framework, IBM ART, Counterfit
defenses in place. and IBM Al Privacy Toolkit to

address specific attack vectors

identified during assessments.

FIGURE 10. Implementation roadmap.

TABLE 9. Summary of AML attacks.

Attack Attacker Goal Countermeasures
S.No.| Type
1. Evasion To manipulate input data | Adversarial
Attacks in a way that causes a ML | Training,
model to make incorrect | Formal
predictions. Verification
2. Poisoning | To manipulate the training | Training  Data

Attacks data used to train a model, | Sanitization,
compromising its perfor- | Adversarial
mance or introducing vul- | Training

nerabilities.

3. Privacy To extract sensitive infor- | Differential
Attacks mation from models or | Privacy,

training data, compromis- | Privacy Auditing,
ing confidentiality of the | PATE

system.

security and privacy controls based on Al and ML security
frameworks and tools is imperative. The researchers intend
to further explore the practical implementation of the
proposed countermeasures against AML attacks using the
identified set of frameworks and tools as a future scope
of this research. Figure 10 illustrates the roadmap for
implementing countermeasures against AML attacks using
the tools discussed.
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