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ABSTRACT Action quality assessment (AQA) is a task for assessing a specific action quality in videos.
Since existing AQA datasets provide only two-dimensional (2D) video data captured from fewer viewpoints,
existing AQA methods based on deep neural networks (DNNs) often struggle to assess complex three-
dimensional (3D) actions accurately, and their robustness against diversified viewpoints remains unknown.
We created a dataset called multimodal in-the-wild (MMW)-AQA in freestyle windsurfing that addresses
these concerns. In addition to video data, MMW-AQA provides inertial measurement unit (IMU) and
global positioning system (GPS) data. The 3D information of IMU data helps DNNs accurately assess
complex 3D actions. Moreover, MMW-AQA provides wild video data captured by a single unmanned
aerial vehicle (UAV). These wild video data enable us to evaluate whether AQA methods can work well
on diversified viewpoints. Furthermore, we also present the baseline multimodalization framework with a
transformer-based fusion module. These frameworks multimodalize existing unimodal DNN models easily
to assess action quality using multimodal data. Our experimental results demonstrate that multimodal data
improves the AQA accuracy compared with unimodal video data.

INDEX TERMS Action quality assessment, deep learning, multimodal dataset, multimodal learning.

I. INTRODUCTION
Action quality assessment (AQA) is a computer vision task
for assessing the action quality in videos. AQA has been
applied to various domains, such as competitive sports [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], surgical training [18], [19], [20],
[21], daily skills [22], [23], health care [24], [25], [26],
and musical performances [27]. In competitive sports, AQA
has attracted significant attention because it can replace
human judges and provide feedback to athletes, helping them
improve their action quality during practice. In fact, an AQA
systemwas introduced at the 2019 Artistic GymnasticsWorld
Championships in Germany for scoring [28].
Most AQA methods, including state-of-the-art ones, are

based on deep neural networks (DNNs) to learn/predict action
quality and its corresponding score in a video. These methods
use existing AQA datasets that provide not only video
data and action-quality scores but also various additional
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information; the MTL-AQA dataset [4] provides action
classes and action-described texts, FineDiving dataset [9]
provides temporal action segmentations in each video, and
LOGO dataset [29] provides formation graphs of group
competitive sports, such as artistic swimming.

While various AQA datasets have been proposed as
described above, two major concerns remain regarding
the AQA dataset. First, these datasets provide only uni-
modal video data. It is widely known that DNNs often
struggle to extract three-dimensional (3D) features from
two-dimensional (2D) videos [30], [31], [32], [33]. Thus,
DNNs trained on unimodal video data cannot accurately
assess complex 3D actions. Second, the video data in the
existing AQA datasets are captured from fewer viewpoints.
Thus, it is still unknown whether the existing AQA methods
can work on wild videos, where actions are captured from
diversified viewpoints, e.g., an unmanned aerial vehicle
(UAV) camera [34], [35].

In this paper, we propose a new AQA dataset
in freestyle windsurfing, called multimodal in-the-wild
(MMW)-AQA, that addresses the aforementioned two
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concerns. MMW-AQA is novel in two aspects: (I. Multi-
modality) it newly provides multimodal data to help DNNs
learn complex 3D actions, and (II. In-the-wild) it consists of
wild video data with diversified viewpoints to evaluate the
robustness of AQA methods against the wild setting. In more
detail, (I) MMW-AQA contains not only video data but
also inertial measurement unit (IMU) and global positioning
system (GPS) data, as illustrated in Figure 1. The IMU data
can provide 3D rotation angles during actions, which helps
DNNs accurately assess complex 3D freestyle actions. Also,
the GPS data provides how far an athlete is from a shore; in
freestyle windsurfing, it is difficult to perform actions if the
athlete is close to the shore because the wind weakens, and
this data thus assists DNNs in understanding the difficulty
of actions. (II) The video data in MMW-AQA are captured
from diversified viewpoints by a single UAV flying around
an athlete at sea, as shown in Figure 2. These wild video
data enable us to evaluate whether existing AQA methods
can work well on diversified viewpoints. Furthermore,
we evaluate the effectiveness of multimodal data for this wild
setting. Note that freestyle windsurfing naturally involves
two aspects (I, II); acrobatic 3D actions are performed
in various locations on the sea. In summary, MMW-AQA
addresses the aforementioned two concerns because it
has 3D information of the IMU data and the wild video
setting.

This paper also presents the baseline multimodalization
framework with a transformer-based fusion module to
multimodalize existing unimodal AQA models [7], [8],
[11]. Using this framework, we easily obtain multimodal
AQA models. The transformer-based fusion module is
inspired by the transformer architecture [36]; it is plausible
for handling multimodal datasets because its multi-head
self-attention mechanism can efficiently learn relation-
ships across multiple modalities [37], [38], [39], [40],
[41], [42]. Therefore, we introduced this transformer-based
fusion module into state-of-the-art unimodal AQA mod-
els to fuse the multimodal inputs in MMW-AQA. Our
experimental results on three baseline multimodal AQA
models indicate that multimodal data in MMW-AQA
improves the AQA accuracy compared with unimodal video
data.

The contributions of this paper are as follows.
• We propose MMW-AQA that introduces multimodal
data into the AQA research field for the first time.
This dataset also introduces the wild video data with
diversified viewpoints.

• We present the baseline multimodalization framework
for evaluating the effectiveness of multimodal data in
MMW-AQA.

• Extensive comparisons and ablation studies demonstrate
that using multimodal data improves the AQA accuracy
compared with unimodal video data.

Our dataset will be publicly available at https://github.com/
ntthilab-cyb/mmwaqa_dataset.

II. RELATED WORK
A. DATASETS FOR ACTION QUALITY ASSESSMENT
The MIT [1] and UNLV [2] datasets were the earliest AQA
datasets that provide video data inputs and action-quality
scores as annotation labels in diving, gymnastic vault, and
figure skating sports. Subsequent AQA datasets have built
upon these earliest datasets from various perspectives. For
example, AQA-7 dataset [3] increases the total number
of competitive sports to seven, including the new skiing,
snowboarding, trampoline, and synchronized diving to gen-
eralize DNNs across multiple sports. MTL-AQA dataset [4]
introduces the concept of multi-task learning into AQA
by providing action class and action-described text other
than action-quality score. Moreover, FineDiving dataset [9]
provides temporal action segmentation that divides the
action into multiple steps to help DNNs understand the
action procedures. Recently, LOGO dataset [29] extends
the application scope of AQA from small-group to large-
group scenarios by providing artistic swimming sports with
formation graphs representing the position relationships
between multiple athletes.

While various AQA datasets have been proposed as
summarized above, all these datasets still provide only
video data captured from fewer viewpoints to assess action
quality. This characteristic hinders the AQA accuracy for
complex 3D actions and the robustness evaluation against
diversified viewpoints. In contrast, our MMW-AQA provides
multimodal data, including the IMU and GPS data, and the
video data captured from diversified viewpoints, as shown in
Table 1.

B. METHODS FOR ACTION QUALITY ASSESSMENT
In competitive sports, such as diving, gymnastics vault, and
figure skating, most AQA methods have tried to extract
spatiotemporal action features from videos using DNNs
to assess action quality accurately. These methods can be
categorized into two main approaches: train DNNs with
single/pair-video inputs.

Parmar and Morris proposed the C3D-SVR and
C3D-LSTM [2] models that use 3D convolution neural
networks to extract spatiotemporal action features from
single-video inputs. Parmar and Morris [4] also proposed
the C3D-AVG-MTL model that learns spatiotemporal action
features across multiple tasks (e.g., the action classification
and video captioning tasks) and showed higher AQA
accuracy than DNNs trained on only a single AQA task.
Moreover, Tang et al. [7] introduced the uncertainty-aware
score distribution learning (USDL) model that estimates
not score values but score distributions, representing the
ambiguity of human judges, from single-video inputs.

In contrast to the approach of single-video inputs, recent
AQAmethods use pair-video inputs to help DNNs accurately
distinguish the difference between two actions. This con-
cept, known as contrastive regression (CoRe), was initially
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FIGURE 1. Illustration of MMW-AQA. This is a novel multimodal in-the-wild dataset for action quality assessment (AQA), focusing on freestyle
windsurfing. This dataset contains multiple modalities, including video, inertial measurement unit (IMU), and global positioning system (GPS) data.
It also includes wild video data captured from diversified viewpoints by a single unmanned aerial vehicle (UAV).

FIGURE 2. Three videos captured when performing the action, shaka.
Even for the same action, viewpoints changed significantly due to UAV
movements.

proposed byYu et al. [8]. Later, Xu et al. [9] and Bai et al. [10]
proposed procedure-aware CoRe models that segment an
action into multiple steps and distinguish the pair-video
inputs at each step. Moreover, Li et al. [11] introduced
the pairwise contrastive learning network (PCLN) model
that distinguishes the pair-video inputs and estimates the
action-quality score of each video input simultaneously.

While these methods showed that the good use of
single/pair-video inputs is critical for improving the AQA
accuracy, the input type they can handle is limited to unimodal
video data. Thus, the existing unimodal AQA models
cannot directly apply to our MMW-AQA, which consists of
multimodal inputs. In this work, we present the baseline mul-
timodalization framework with a transformer-based fusion
module. These frameworks multimodalize existing unimodal
AQA models for evaluating the effectiveness of multimodal
data in MMW-AQA.

III. PROPOSED DATASET: MMW-AQA
We explain our multimodal in-the-wild dataset MMW-AQA.
MMW-AQA contains various freestyle windsurfing actions

by professional athletes. In this sport, athletes perform
various actions at sea, and human judges assess the action
quality on the basis of overall finish and impression. We give
details of the data modalities, annotations, and statistics in
MMW-AQA below.

A. DATA MODALITIES
1) VIDEO DATA
The video data show actions of freestyle windsurfing by
professional athletes. To capture these data, we used a camera
of a single UAV Phantom 4 Pro. A skilled UAV pilot operated
the UAV alongside the athletes at sea, capturing actions from
diversified viewpoints, as illustrated in Figure 2. These data
were recorded with 3840 × 2160 pixels and 60 fps. For
privacy protection, all individuals with identifiable faces who
did not consent were blurred.

2) IMU DATA
As shown in Figure 3, IMU sensors were attached to both the
board and sail–the tools of freestyle windsurfing maneuvered
by the athletes. These motions are closely related to action
quality. The IMU data provide 3D rotation angles of the board
and sail motions, namely pitch, roll, and yaw, as illustrated in
Figure 1. The IMU data were recorded fluctuating at about
15–25 fps and later up-sampled and standardized to 30 fps.
These data were synchronized with the video data using
timestamps.

3) GPS DATA
The GPS data indicates the distance between the athlete
and the shore during the action performance. We used
the UAV’s GPS as the reference for the athlete’s position
because it flew close to them. These data are used to
determine the action difficulty and annotate the action-
quality score, as explained in the following section.
This data was recorded as one scalar value for each
action; the timing of this record is when an action was
performed.
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TABLE 1. Comparison of existing AQA datasets [1], [2], [3], [4], [9], [29] and MMW-AQA. Our dataset is novel in two aspects: multimodal data and
diversified viewpoints.

B. ANNOTATION
To create this dataset, we employed three active freestyle
windsurfing judges as annotators. These annotators labeled
the action class and action-quality score under the official
rules of freestyle windsurfing competitions and their expert
knowledge. The action-quality score is determined by
considering two main factors: (1) the level of perfection and
overall impression of the action, which encompasses aspects
such as jump height and speed, and (2) the athlete’s position
from the shore when the action was performed. In this
sport, action-quality scores generally tend to be higher when
athletes perform actions closer to the shore because the wind
conditions are usually weaker in that area, making successful
performance more challenging. Please note that if the athlete
falls into the water after performing the action, the score is
zero. We provided the annotators with both video and GPS
data to annotate the action class and action-quality score. The
action-quality scores are annotated in 0.5-point increments,
ranging from the lowest score of 0.0 to the highest score of
10.5. In this paper, the average of the three action-quality
scores is used as the final annotation, ranging from the lowest
score of 0.0 to the highest score of 9.3, as illustrated in
Figure 4 (b).

C. DATASET STATISTICS
MMW-AQA consists of 205 samples from 4 athletes,
3 locations, and 14 action classes, as illustrated in Figure 4 (a).
A comparison betweenMMW-AQAwith other AQA datasets
is listed in Table 1. MMW-AQA differs from the other
datasets regarding modality type and viewpoints. Specif-
ically, MMW-AQA includes multimodal data, including
video, IMU, andGPS data. Furthermore, this dataset provides
the wild setting, where video data were captured from
diversified viewpoints by a single UAV.

IV. MULTIMODALIZATION FRAMEWORK
We present the baseline multimodalization framework that
extends existing unimodal AQA models into multimodal
AQA models for MMW-AQA, as illustrated in Figure 5.
The objective of our framework is to fuse multimodal
inputs and predict action-quality scores on MMW-AQA.
In our framework, we introduced a transformer-based fusion
module, which is used widely and commonly in multimodal

learning [37], [38], [39], [40], [41], [42], into the existing
unimodal AQA models. In this section, we explain the
transformer-based fusion module and two types of mul-
timodalization framework for the existing unimodal AQA
models in detail.

A. TRANSFORMER-BASED FUSION MODULE
As the evidence from many studies [36], [43], [44], [45],
[46], [47], the multi-head self-attention mechanism of the
transformer encoder can effectively learn the relationships
between input features. Thus, the transformer encoder is
often introduced to models of multimodal learning [37], [38],
[39], [40], [41], [42]. Inspired by these studies, we use the
transformer encoder to fuse action features of multimodal
inputs in MMW-AQA.

As shown in Figure 5, we assume that the transformer-based
fusion module receives action features of i-th sample in
MMW-AQA. The i-th sample consists of four multimodal
inputs: video data xi,0 ∈ RL×H×W×3, board IMU data
xi,1 ∈ RL×3, sail IMU data xi,2 ∈ RL×3, and GPS data
xi,3 ∈ R, where H is the video height, W is the video width,
and L is the number of frames. Before the transformer-based
fusion module, two processes are performed for the i-th
sample: the feature extraction process and the embedding
process.

In the feature extraction process, the feature of m-th modal
input in the i-th sample is extracted as follows:

fi,m =

{
Fm(xi,m; θm) (m = 0, 1, 2),
xi,m · 1D (m = 3),

(1)

where fi,0, fi,1, fi,2 ∈ RL ′
×D are the features of xi,0, xi,1, xi,2,

respectively, through the feature extraction module Fm(·; θm)
parameterized by θm, fi,3 ∈ RD is the feature of xi,3,
and 1D is the D-dimensional all ones vector. Here, L ′

indicates the temporal dimension of the features. Then, the
features, fi,m (m = 0, 1, 2, 3), are embedded bymodality-type
information in the embedding process. This process is
necessary because the transformer encoder operates on
all input features in parallel and cannot distinguish them.
Specifically, we embed these features as follows:

f ′
i,m = fi,m + em (2)
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FIGURE 3. Illustration of IMU sensors attached to (a) board and (b) sail.

FIGURE 4. Statistics of MMW-AQA. (a) Distribution of action class.
(b) Distribution of action-quality score.

where

em =

{
m · 1L ′×D (m = 0, 1, 2),
m · 1D (m = 3).

1L ′×D is the all ones L ′
×Dmatrix. The em represents them-th

modality-type information. After the above two processes,
the extracted features are fed into the transformer-based
fusion module as follows:

hi = T (f ′

i,0, f
′

i,1, f
′

i,2, f
′

i,3;φ), (3)

where hi ∈ R(3L ′
+1)×D is the fused feature of the all

modality-embedded features f ′

i,0, f
′

i,1, f
′

i,2, f
′

i,3 and T (·;φ) is
the transformer-based fusion module parameterized by φ.
We used the original transformer encoder [36] as T (·;φ).
We introduce the embedding process and transformer-

based fusion module described above into existing unimodal
AQA models based on two approaches, single/pair-video
inputs as described in Section II, to multimodalize them for
MMW-AQA. We explain this multimodalization framework
for each AQA approach in the following section.

B. MULTIMODALIZATION FRAMEWORK FOR AQA
MODELS WITH SINGLE-VIDEO INPUTS
In the existing unimodal AQA models with single-video
inputs, the action-quality score si with respect to the video
data xi,0 is predicted as follows:

si = A(fi,0;ψ), (4)

where A(·;ψ) is the assessment module parameterized
by ψ . To multimodalize these unimodal AQA models
for MMW-AQA, we fuse multimodal features before
Equation (4), namely, we insert the transformer-based fusion

module before the assessment module. Consequently, we can
describe our framework as simply replacing the feature fi,0 in
Equation (4) with the fused feature hi in Equation (3):

si = A(hi;ψ). (5)

Therefore, the existing unimodal AQA models turn to the
multimodal AQA models by Equation (5) as shown in
Figure 5 (a), and these models will predict action-quality
scores accurately because of considering multimodal inputs.

C. MULTIMODALIZATION FRAMEWORK FOR AQA
MODELS WITH PAIR-VIDEO INPUTS
In contrast to the AQA models with single-video inputs, the
existing unimodal AQA models for AQA with pair-video
inputs try to predict a relative score ri,j = si − sj directly.
Specifically, these models predict ri,j as

ri,j = A(fi,0, fj,0;ψ). (6)

Note that one of the state-of-the-art unimodal AQA model
with pair-video inputs, PCLN [11], proposed to predict both
the action-quality scores si, sj and their relative score ri,j as
follows:

[ri,j, si, sj] = A(fi,0, fj,0;ψ). (7)

Similar to the previous Section IV-B, to multimodalize these
unimodal AQAmodels for MMW-AQA, we fuse multimodal
features before Equations (6) and (7), namely, we insert
the transformer-based fusion module before the assessment
module. Consequently, we can describe our framework as
simply replacing the features fi,0 and fj,0 in Equations (6)
and (7) with the fused features hi and hj in Equation (3):

ri,j = A(hi, hj;ψ), (8)

[ri,j, si, sj] = A(hi, hj;ψ). (9)

Therefore, the existing unimodal AQA models turn to the
multimodal AQA models by Equations (8) and (9) as shown
in Figure 5 (b), and these models will predict relative score
accurately because of considering multimodal inputs.

As described above, the heart of our multimodalization
frameworks is newly inserting the transformer-based fusion
module (and the embedding process) between the feature
extraction and assessment modules. Thanks to this simple
procedure, our frameworks can be introduced easily into var-
ious AQA models. Moreover, our frameworks can adopt the
optimization schemes that are used to learn the existing AQA
models [7], [8], [11] because our frameworks simply insert
the learnable transformer-based fusionmodule parameterized
by φ as in Equation (3).

V. EXPERIMENTS
To evaluate the effectiveness of multimodal data for AQA,
we conducted experiments to compare the AQA accuracy
on multimodal data with unimodal video data. We first
describe the evaluation metric and implementation details
used in the experiments. We then evaluate the effectiveness
of multimodal data and an ablation study.
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FIGURE 5. Overview of multimodalization frameworks with a transformer-based fusion module for two AQA approaches: (a)
single-video and (b) pair-video inputs. These frameworks use multimodal inputs: video, IMU, and GPS data. Transformer-based
fusion module effectively fuses features from multiple modalities through its multi-head self-attention mechanism. These
frameworks can be introduced easily into various unimodal AQA models.

A. EVALUATION METRIC
To compare the AQA accuracy of our multimodalization
frameworks with that of the unimodal versions, we used
Spearman’s rank correlation (Sp.Corr.) to measure the
rank correlation between the outputted action-quality scores
s1, . . . , sK and the ground-truth scores y1, . . . , yK where K is
the number of samples in a dataset, following existing AQA
methods [7], [8], [11]. This metric is defined as∑K

k=1(pk − p̄)(qk − q̄)√∑K
k=1(pk − p̄)2

∑K
k=1(qk − q̄)2

,

where pk and qk denote the ranks of sk and yk , respectively,
and p̄ and q̄ denote the average of p1, . . . , pK and q1, . . . , qK ,
respectively. Note that since the AQAmodels with pair-video
inputs output the relative score ri,j, the action-quality score si
is calculated by si = ri,j + yj.

B. IMPLEMENTATION DETAILS
We implemented all models using PyTorch version 1.12.0.
Since the original frame lengths ofmultimodal data inMMW-
AQA differ, we sampled these data along the temporal
axis. We set their frame lengths to the same length L
for inputting them into the AQA models described in
Section IV-A. Specifically, we sampled the m-th original
multimodal time-series data (m = 0, 1, 2) in the i-th sample

of MMW-AQA at the following frame indices n:

n =

⌊
Ni,m

l
L − 1

⌋
(l = 0, 1, . . . ,L − 1),

where Ni,m is the number of frames of the m-th original
multimodal data in the i-th sample of MMW-AQA. After
this sampling process, the multimodal time-series inputs
xi,0, xi,1, xi,2 have the same frame length L even if Ni,m
differ among each sample. We set L = 103 for all models
following the previous studies [7], [8] for a fair comparison.
The resolution of the original video data was resized to
456 × 256 pixels, and a center cropping of 224 × 224 pixels
was applied, following [7], [8], [11]. Random horizontal
flipping for the input video data xi,0 was also carried out
during training following [7], [8], [11]. We used the Adam
optimizer [48] to train all models following [7], [8], [11].
We set the learning rate to 1e-4 for the feature extraction
and assessment modules, and 1e-5 for the transformer-based
fusion module. All accuracy results are based on 100 epochs.
We split 205 samples in MMW-AQA into 80% for training
data and 20% for test data. We present only the test data
results in this section.

By applying our multimodalization framework to uni-
modal AQA models, we prepared three multimodal ones:
MM-USDL, MM-Core+GART, and MM-PCLN as follows.
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• MM-USDL: This model is based on USDL [7], the
state-of-the-art unimodal AQA model with single-video
inputs. We followed [7] for the implementation of this
model. For the feature extraction module of the video
inputs, we used the pre-trained I3D with the Kinetics
dataset [49]. Both video input xi,0 and IMU inputs
xi,1, xi,2 were divided into 10 overlapping clips with
16 frames, and we extracted 1024-dimensional features
from each clip (denoted as fi,0, fi,1, fi,2 ∈ R10×1024). All
input clips started from {0, 10, . . . , 80, 86} -th frame.
The assessment module and optimization schemes
followed the original model [7]. This model estimates
not score value but score distributions and is optimized
on these distributions. The score distributions were
generated using a Gaussian distribution with a standard
deviation of 5.0 and a mean equal to the ground-truth
action-quality score.

• MM-Core+GART: This model is based on Core+
GART [8], one of the state-of-the-art unimodal AQA
models with pair-video inputs. We followed [8] for the
implementation of this model. For the feature extraction
module of the video inputs, we used the pre-trained I3D
with the Kinetics dataset [49]. Both video input xi,0 and
IMU inputs xi,1, xi,2 were divided into 10 clips, and
we extracted 1024-dimensional features like the imple-
mentation of the above MM-USDL. The assessment
module and optimization schemes followed the original
model [8]. We set the depth of the assessment module to
three. For pair-video inputs, we randomly selected two
samples from the same action class.

• MM-PCLN: This model is based on PCLN [11], one
of the state-of-the-art unimodal AQA models with pair-
video inputs. We followed [11] for the implementation
of this model. For the feature extraction module of
the video inputs, we used the pre-trained ResNet-50
[50] with the ImageNet dataset [51] and the temporal
encoder network [52]. The temporal encoder network
consists of two stacked encoding blocks, and each
block includes 1 × 1 temporal convolution, activation
function, and max-pooling layer. In this model, the
weights of ResNet-50 were fixed, and only the temporal
encoder network was trained to extract features from
the video inputs (denoted as fi,0 ∈ R25×1024).
For feature extraction from IMU inputs, these inputs
xi,1, xi,2 were divided into 25 overlapping clips with
6 frames, and we extracted 1024-dimensional features
fi,1, fi,2 ∈ R25×1024 from each clip. Clips of IMU inputs
started from {0, 4, . . . , 92, 96}-th frame. The assessment
module and optimization schemes followed the original
model [11]. For pair-video inputs, we randomly selected
two samples from the total samples.

Moreover, for our multimodal AQA models, we use Con-
vGRU [53] as the feature extraction module of IMU inputs.
Moreover, we use the transformer encoder [36] as the
transformer-based fusion module with two layers. Each layer

TABLE 2. Comparing the AQA accuracy across different modality
combinations in three multimodal AQA models. ∗ and ♯ indicate the
models with single/pair-video inputs, respectively.

TABLE 3. L1 score error of each model for two samples in Figure 6. ∗ and
♯ indicate the models with single/pair-video inputs, respectively. Full
indicate the models trained with all modalities of the video, IMU, and
GPS data.

contains a self-attention blockwith four heads. In ourmodule,
unlike the original transformer [36], we did not add position
information because we confirmed that it decreases the AQA
accuracy in our setting. However, it is worth noting that our
proposed multimodalization frameworks are not limited to
this type of transformer.

C. EFFECTIVENESS OF MULTIMODAL DATA
In this experiment, we tested whether the utilization of
multimodal data could improve the AQA accuracy compared
with unimodal video data. Table 2 presents the AQA accuracy
when training models with different modalities as inputs.
We first discuss the AQA accuracy of three unimodal
AQA models that rely solely on video data: USDL [7],
Core+GART [8], and PCLN [11]. As shown in Table 2,
all unimodal AQA models showed lower AQA accuracy
compared with results reported in previous research [7],
[8], [11], e.g., those for snowboarding on the AQA-7 [3]
dataset, which includes a similar data volume toMMW-AQA.
This result suggests that accurately assessing action quality
using wild video data with diversified viewpoints is more
challenging compared with fewer viewpoints as observed in
existing AQA datasets [1], [2], [3], [4], [9], [29]. We then
compared the AQA accuracy between using unimodal video
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FIGURE 6. Two samples performing the same action, grubby, with different viewpoints and heatmaps of attention weights in the transformer-based
fusion module. The scales of each heatmap are tuned for the best view.

data andmultimodal data. The table clearly shows that, across
all multimodal AQA models, the highest AQA accuracy
was achieved when all modalities were used. This result
indicates that the utilization of multimodal data helps DNNs
learn complex 3D actions and improves the AQA accuracy
compared with unimodal video data.

Next, to verify the effectiveness of multimodal data for
complex 3D action and diversified viewpoints, we compared
the AQA accuracy of the two action samples. Figure 6 shows
the same action samples, whose action class is named by
grubby. As we can see, these samples are captured from
diversified viewpoints: sample (a) from the front of the athlete
and sample (b) from the back of the athlete. We emphasize
that the back viewpoint of the grubby class is included in
only test data; for the trained DNNs, sample (b) can be
regarded as a complex 3D action sample captured from an
unexpected viewpoint in the grubby class. We here evaluated
the L1 score error between the predicted action-quality score
of each model and the ground-truth one for these two
samples. We first compared the results between samples (a)
and (b) in Table 3. In all unimodal and multimodal AQA
models, we can see that the score errors of sample (b) are
larger than those of sample (a). This is because sample
(b) is more complex than sample (a) due to its unexpected
viewpoint. These results imply that assessing complex 3D
action quality, such as grubby action in sample (b), is difficult
in AQA. We then compared the results in terms of using
data modality in Table 3, namely the unimodal (only
video) AQA models or our multimodal AQA ones. In both
samples (a) and (b), the table shows that our multimodal
AQA models achieved totally lower score errors than the
unimodal AQA ones. In particular, a significant improvement
was shown in MM-Core+GART and MM-PCLN for sam-
ple (b). These results indicate that multimodal data improves
robustness against complex 3D action and diversified
viewpoints.

Finally, to verify whether the multimodal AQA models
focus on multimodal data effectively, we visualize the

attention weights in the transformer-based fusion module.
Figure 6 presents heatmaps of attention weights, denoted
as (3L ′

+ 1) × (3L ′
+ 1) matrices, generated from the

transformer-based fusion module of each multimodal AQA
model. The value at coordinate (x, y) in the heatmap indicates
the attention weight from a x-th input to a y-th input.
In MM-USDL and MM-Core+GART, the range 0 ≤ x, y <
10 represents video data, 10 ≤ x, y < 20 represents board
IMU data, 20 ≤ x, y < 30 represents sail IMU data, and
x, y = 30 represents GPS data, respectively. In MM-PCLN,
the range 0 ≤ x, y < 25 represents video data, 25 ≤ x, y <
50 represents board IMU data, 50 ≤ x, y < 75 represents sail
IMU data, and x, y = 75 represents GPS data, respectively.
In MM-USDL and MM-Core+GART, the attention weights
for sample (b) show larger values across various modalities
compared with those of sample (a), which is biased to sail
IMU data. In MM-PCLN, the attention weights for both
samples (a) and (b) show strong responses to board IMU
data. These different attention weights indicate that each
multimodal AQAmodel can select effective modality data for
each sample to improve the AQA accuracy.

D. ABLATION STUDY
1) EFFECTIVENESS OF FUSION APPROACH
In the above experiments, we used a specific type of fusion
approach for multimodal data, i.e., the transformer-based
fusion approach. To validate the effectiveness of our
transformer-based approach, we evaluated the effects of
various fusion approaches for multimodal data. Table 4 shows
the AQA accuracy of the three multimodal AQAmodels with
different fusion modules. In this table,Concatmodule simply
concatenates features outputted from the feature extraction
module, andMLPmodule uses two fully connected layers for
fusing these features. We compared the results across Concat,
MLP, and transformer-base fusion modules. All multimodal
AQA models showed the highest AQA accuracy when using
the transformer-based fusion module. These results indicate
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TABLE 4. Effectiveness of fusion approach. ∗ and ♯ indicate the models
with single/pair-video inputs, respectively.

TABLE 5. Effectiveness of embedding process. ∗ and ♯ indicate the
models with single/pair-video inputs, respectively.

TABLE 6. Comparison on feature extraction module Fi,1, Fi,2 for IMU
inputs. ∗ and ♯ indicate the models with single/pair-video inputs,
respectively.

the effectiveness of the transformer-based fusion module for
fusing multimodal data in MMW-AQA.

2) EFFECTIVENESS OF EMBEDDING PROCESS FOR
DISTINGUISHING INPUT MODALITY TYPE
We also evaluated the effect of the embedding process,
which aims to distinguish the input modality type in the
transformer-based fusion module. Table 5 shows the AQA
accuracy of multimodal AQA models that were trained with
or without the embedding process. In all multimodal AQA
models, the AQA accuracy is improved by incorporating
the modality-type information with the embedding process.
These results suggest that considering modality-type infor-
mation is effective in the multimodal AQA models for
MMW-AQA.

3) EFFECTIVENESS OF FEATURE EXTRACTION MODULE
FI,1, FI,2
We also evaluated the feature extraction module Fi,1,Fi,2 for
IMU inputs. Table 6 shows the AQA accuracy of multimodal
AQA models trained with different feature extraction mod-
ules for IMU inputs: Bidirectional LSTM (BiLSTM) [54],
GRU [55], and ConvGRU [53]. ConvGRU achieved the
highest AQA accuracy inMM-USDL andMM-Core+GART,
and ranked second place in MM-PCLN. Therefore, we chose
ConvGRU, which demonstrated consistently high average
accuracy, as the feature extraction module Fi,1,Fi,2 for IMU
inputs in the experimental section.

VI. CONCLUSION
In this paper, we presented a novel AQA dataset, MMW-
AQA, in freestyle windsurfing. In contrast to existing AQA
datasets that only provide unimodal video data, MMW-AQA
newly provides multimodal data, including video, IMU, and
GPS data. The IMU data helps DNNs accurately assess
complex 3D actions, and the GPS data is important to
determine the action difficulty. With extensive experimental
results with MMW-AQA, we showed that using multimodal
data is plausible to improve the AQA accuracy. As another
characteristic of MMW-AQA, its video data were captured
by a single UAV flying around an athlete at sea with
diversified viewpoints. Through the evaluation of such wild
video data, we observed that existing AQA methods do not
have robustness against viewpoints that models have never
seen during training (see Table 3). In contrast, we observed
that using multimodal data in MMW-AQA improves the
robustness against such viewpoints.

This paper also presented the baseline multimodaliza-
tion frameworks with a transformer-based fusion module,
as shown in Figure 5. This framework extends the existing
AQA models, which assume unimodal video data as input,
into models that can receive multimodal data. By applying
this framework to the existing state-of-the-art unimodal AQA
models, we showed the effectiveness of using multimodal
data compared with unimodal video data.

A. FUTURE WORK
While we confirmed that the multimodal AQA models with
MMW-AQA performed well in our experiments, MMW-
AQA is relatively smaller in data volume compared with
other recent datasets [4], [9], [29]. Constructing a larger
multimodal dataset across various scenarios is a crucial future
task for further exploring the effectiveness of multimodal
data in the AQA research field. Furthermore, discussing the
dependence of AQA accuracy with respect to the action class
is difficult due to the small data volume. In future work,
we will discuss this point by constructing a larger multimodal
dataset.
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