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ABSTRACT The utilization of three-dimensional point clouds is an advanced approach for detecting the
geometry of objects within a building environment. Nonetheless, a vast amount of data still needs to be
manually processed. Intelligent automation frameworks could be deployed to overcome such issues. Hence,
this study proposes a machine learning-based framework for successfully classifying structural components
in indoor environments. The proposed framework consists of four stages: pre-processing, feature extraction,
feature selection, and interpretability of classification results using an explainable machine learning method.
According to the proposed framework, the chi-squared test stands out for optimum local neighborhood radius
determination and feature selection. The CatBoost model has the highest accuracy of 82.96%, whereas the
Random Forest model’s accuracy is 82.09%. However, the training time for the Random Forest is 27 times
shorter than the CatBoost. Hence, both models could be preferred to other machine learning models for
practical applications due to the good balance between accuracy and calculation efficiency. Additionally,
the model with the highest accuracy, CatBoost, is evaluated using the Shapley Additive exPlanations to
understand the impacts of features on predictions, and according to the results, Z coordinate and verticality
had a relatively high impact on the model, while others had low impacts. The proposed framework uses
machine learning to classify indoor point clouds, balancing processing time and accuracy for computational
efficiency in practical applications. Hence, the framework could be utilized to automate the digitalization
efforts of indoor environments effectively.

INDEX TERMS 3D point cloud, classification, explainable machine learning, indoor environment, local
neighborhood, machine learning, structural element, terrestrial laser scanning.

I. INTRODUCTION
Three-dimensional (3D) point clouds emerge as data struc-
tures that can capture objects’ geometric properties and
precise positions with Industry 4.0 and the digital trans-
formation process, where point clouds play an important
role in digital twins. These high-accuracy data types can
be obtained using terrestrial laser scanning and photogram-
metric techniques [1] and have various uses in different
fields [2], [3], [4], [5]. Several application domains exist, such
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as preserving cultural heritage, the robotics industry, digital
twins, autonomous vehicles, indoor navigation, and others.
For example, cultural heritage experts and researchers use
point cloud data to conduct detailed analyses, allowing for
a deeper understanding of historical sites without causing
physical damage. In addition, digital replicas enable virtual
exploration and educational experiences, making cultural
heritage accessible to people worldwide [3], [6], [7]. Another
essential use of the point cloud is for medical applications.
Point clouds in medical imaging are pivotal in creating
detailed, patient-specific 3D models. These models are
essential for planning complex surgical procedures and
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designing custom prosthetics, leading to enhanced surgical
precision and improved patient outcomes [8], [9]. With the
development of the robotics industry in recent years, point
clouds have become widespread in this field. Integrating 3D
point clouds has significantly enhanced the capabilities and
efficiency of robotic systems in the industry. Robots equipped
with sensors that generate point clouds can accurately per-
ceive their environment. This is crucial for object recognition,
spatial mapping, and indoor navigation [10], [11]. Point
cloud allows robots to interact with their surroundings more
safely and efficiently [12]. It is applicable in various settings,
such as manufacturing, warehouse logistics, and autonomous
vehicles. Due to its high-quality realistic visualization and
real-world 3D modeling, point cloud has become widely
used in the gaming industry [13], [14]. Point clouds are
significant for developing advanced Virtual Reality (VR) and
Augmented Reality (AR) games, where the precision and
depth of the environments are critical factors in creating
an immersive experience [15], [16]. The 3D point cloud
significantly advances the creation of digital twins, virtual
replicas of physical environments [17]. Point clouds generate
high-quality 3D models of buildings or even entire cities
in this context, creating precise digital counterparts [18],
[19]. These digital twins are used for various purposes,
such as performance monitoring, predictive maintenance,
and simulation of different scenarios, which allows for
informed decision-making and operations optimization. The
utilization of 3D point clouds in creating indoor information
is another crucial application area. Point clouds enable
highly accurate construction of all geometric aspects of
a 3D indoor space [20], [21], [22]. This is particularly
important for interior design and indoor navigation systems,
especially in complex environments like shopping malls,
public buildings, hospitals, and airports [23]. Hence, point
cloud is widely used in various fields due to its valuable infor-
mation and its high accuracy in geometrical representation.
However, due to its complex data structure and large data
volume, extracting information from the point cloud requires
extensive effort, experience, and hardware infrastructure.
Furthermore, most object classification efforts are conducted
semi-automatically, where automatization efforts are still in
progress. Moreover, managing such data can be challenging
since a vast amount of complex 3D spatial data is produced.

In order to overcome such challenges, machine learn-
ing and deep learning approaches are highly preferred
to automatize the digitalization effort of 3D point cloud
classification. Several researchers have suggested 3D point
classification using machine learning techniques such as
Random Forest, XGBoost, LightGBM, CatBoost, Support
VectorMachine, and Naïve Bayesian algorithm. The Random
Forest algorithm is known for its fast processing, high
accuracy, and efficiency, making it a reliable model for 3D
point cloud classification [24], [25], [26], [27]. XGBoost,
a gradient-boosting algorithm, has shown outstanding per-
formance in classification of 3D point cloud of trees [25].

LightGBM, another gradient-boosting-based algorithm, has
been effectively used for leaf and wood classification from
LiDAR point cloud [28]. CatBoost is another machine
learning model based on gradient boosting that can classify
3D point clouds with high precision [29]. The Support Vector
Machine algorithm is also frequently employed for point
cloud classification [27], [30], [31], [32]. The Naïve Bayesian
algorithm is preferred for 3D point classification due to its
fast-processing time [27]. Such studies are performed in an
out environment, whereas indoor environments utilize deep
learning algorithms. The PointNet combines local features
to extract global features, making it suitable for generating
final predictions [33]. PointNet++ is another deep learning
model that uses PointNet as a base and is used for similar
purposes. It is known for its ability to perform more effective
feature extraction than PointNet [34]. PointSIFT is a model
developed for object extraction in indoor and 3D models.
This model captures information of different orientations and
enables the processing of objects with various scales [35].
The VoteNet is a deep learning model that allows models
to vote to object centroids directly from point clouds and
learn to aggregate votes through their features and local
geometry for indoor object detection [36]. PointGroup is
another model used only indoors and developed for instance
segmentation. This model assigns labels and offset vectors
to points, clusters them based on original and offset-shifted
coordinates, and optimizes precision by combining the
two coordinate sets [37]. RandLA-Net was developed for
information extraction from the point cloud. It stands out
from other models due to its high training speed [38].
ResPointNet++ is a deep learning model designed to process
industrial point clouds. It extracts significant features from
3D point clouds using residual connections and hierarchical
feature learning [39]. KPConv is a deep learning model
that processes 3D point clouds. It introduces kernel point
convolutions that allow adaptive convolution operations on
the point cloud, thus enabling effective feature learning [40].
According to the literature, deep learning models are mainly
preferred when large datasets and structures are more
complex and require high hardware capacity [41], [42].
This study will focus on machine learning models since the
structural component is simple, machine learning models
are more flexible, and studies deploying machine learning
algorithms are rare. Hence, six machine learning methods
will be deployed and evaluated in indoor environments.

In order to classify 3D point clouds with machine learning
models, geometric and non-geometric features of objects
are utilized. These features are employed as independent
variables to provide input to machine learning methods.
Geometric features include the basic geometric properties
of individual points and their relationships within the
point cloud [43], [44]. Furthermore, 3D point coordinates,
surface normal and eigenvalue-based features are geometric
features that provide valuable geometric information about
the structures represented by the points [45], [46], [47],
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[48], [49]. Non-geometric features such as colors and
intensity values could also be used [43]. For geometric
features, using eigenvalue-based geometric features such as
anisotropy, eigenentropy, linearity, omnivariance, etc., is a
well-established and highly applied approach for extracting
significant spatial information from 3D point clouds [50],
[51]. These techniques rely on the covariance matrix’s
eigenvalues derived from the data points’ spatial coordinates.
The data is transformed into a new space using the eigen-
vectors, enabling the eigenvalue-based geometric features
to capture the dataset’s inherent geometric structures and
variances. Choosing appropriate parameters when extracting
eigenvalue-based features from point clouds is crucial to
achieving high classification performance. For this purpose,
it is essential to determine the appropriate local neighborhood
radius for each eigenvalue-based feature since each feature
represents a different object that determines the classification
performance. Different approaches can define neighborhood
relations, such as k-nearest-neighbor search, fixed radius
(local neighborhood radius), and histogram interpretation.
Within the literature, several studies have determined the
optimum radius for producing feature sets. Reference [25]
extract feature sets with different radius values for each
feature. They examined the feature value-radius histogram for
each class to determine the optimum radius. Reference [52]
used different search radiuses to produce features. Refer-
ence [53] used a fixed radius, a fixed number of points,
and eigenentropy-based scale selection to extract features.
Reference [45] extracts the eigenvalue-based features using
a fixed radius to classify outdoor point clouds. Within this
study, the determination of local neighborhood radius via
statistical methods, which is widely preferred in feature
selection in machine learning due to processing time and
performance, is performed.

In order to classify the objects via machine learning
methods, a feature selection step is required to reduce the
data volume and improve the models’ accuracy [54], [55].
Various techniques are used to select the most relevant
features, such as filter-based, wrapper, and embedded [56].
When dealing with big datasets, selecting the most efficient
processing technique and prioritizing processing time is
essential. Filter-based feature selection approach evaluates
the significance of each feature in the dataset using statistical
tests and information-theoretic measures. The features with
the highest scores on these metrics are then selected
and included in the modeling process. This method is
fast, scalable, and improves generalizability, making it an
ideal choice for practitioners looking for a reliable and
efficient feature selection approach [57], [58]. Wrapper-
based feature selection integrates feature selection with the
chosen machine learning algorithm to evaluate the impact of
the feature set on performance metrics like accuracy [56],
[59]. Embedded feature selection differs from filter-based
or wrapping methods by integrating feature selection within
the model training process [60], [61]. The field of point
cloud classification has some significant research gaps that

need to be addressed: a) Most of the studies in the literature
use CNN-based deep learning algorithms to classify indoor
3D point clouds. However, machine learning algorithms,
frequently preferred in different application domains, are
rarely used in indoor point cloud classification, b) Different
methods are used to determine local neighborhood radius
while extracting eigenvalue-based features. However, it is
uncertain whether the most statistically significant radius was
utilized, c) It is necessary to incorporate objects’ geometric
and non-geometric features to facilitate the classification of
3D point clouds through machine learning models. However,
the impacts of features on model predictions are rarely
assessed.

Hence, the study’s novelty is evaluating machine
learning-based methods for 3D point cloud classification,
deploying statistical methods for determining the optimum
local neighborhood radius, and interpreting the machine
learning model via an explainable machine learning within
an indoor environment. Hence, via deploying this framework,
the expected results are: a) to successfully implement
machine learning frameworks in an indoor environment, b) to
increase the classification performance of available machine
learning models, and c) to explain the impacts of features on
model predictions.

This research aims to propose a machine learning-based
framework and interpret model results via an explain-
able machine learning within an indoor environment.
Furthermore, an optimum local neighborhood radius for
eigenvalue-based features is proposed via deploying sta-
tistical methods for available machine learning models to
increase classification accuracy. The system architecture
of the study includes four stages: pre-processing, feature
extraction, feature selection, and evaluation of the model.
The first stage covers creating the dataset and preparing it
for training. In this context, splitting for the train/test dataset,
sampling, and normalization were applied. The second stage
includes feature extraction. The extracted features represent
the geometric structure of the objects. In this stage, statistical
methods were used to increase the representation of the
geometric structures of the objects on the features. In the
third stage, machine learning models are chosen using feature
combinations and statistical feature selection techniques. The
fourth stage includes interpreting the model using the SHAP
method, an explainable machine-learning approach.

II. DATA AND METHODOLOGY
This study consists of four steps: pre-processing, feature
extraction, feature selection, and explaining the trainedmodel
via an explainable machine learning technique. The study
area, 3D point cloud, and system architecture are described
in the following sections.

A. DATA AND STUDY AREA
The data acquisition and data analyses took place in a
public building, Istanbul Technical University, Faculty of
Civil Engineering, Türkiye. The 3D point cloud data was
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obtained with a Leica C10 terrestrial laser scanner 4.5 mm
scan resolution from 0-50 m, where only the 3rd floor and
classrooms were scanned. The total area is 350 m2. This
dataset contains colors, surface normal, and intensity values.
It includes ten classes of objects, such as structural elements,
lighting, doors, and windows. The 3D point cloud data of the
study area is illustrated in Fig. 1.

B. SYSTEM ARCHITECTURE
The system architecture comprises four essential steps: pre-
processing, feature extraction, feature selection, and machine
learning model explanation. Firstly, pre-processing steps
were applied, including splitting the dataset, balancing the
training dataset, and normalizing. Then, the feature extraction
step was applied. This stage includes extracting geometric
and non-geometric features and selecting the optimum
local neighborhood radius through statistical methods for
eigenvalue-based geometric features. Then, different feature
combinations and feature selection methods were applied to
evaluate model performance by F1 score and processing time.
Then, the impacts of the features on the trained model and the
relationships between the feature and the class were evaluated
with an explainable machine learning model. The proposed
framework is presented in Fig. 2.

C. PRE-PROCESSING
Completing a series of critical pre-processing steps is
essential to effectively train the point cloud classification
models. These steps include splitting datasets into the training
and test datasets, resolving imbalances in the training data,
and normalizing the data to enhance the model’s accuracy.
The first step involves dividing the dataset into training and
test datasets. This division helps the model learn from diverse
data, acquiring robust and generalized learning capabilities
that can perform reliably on unseen samples. The second
step is to address potential imbalances in the training dataset.
Imbalanced datasets can cause biased model performance,
leading to skewed results that favor majority classes and
underrepresent minority classes [62]. Imbalanced datasets
occur when the dataset’s classes have significantly different
frequencies, leading to biased model predictions. Machine
learning commonly uses undersampling and oversampling
to address this issue [63]. Undersampling aims to balance
the dataset by selecting a subset of the majority class
samples, thereby reducing the frequency of the majority
class. This method maintains the classes’ overall distribution
while reducing the majority class’s size. On the other hand,
oversampling aims to balance the dataset by increasing the
frequency of the minority class. This can be achieved by
replicating or synthesizing new instances of the minority
class. Both undersampling and oversampling techniques
can be used to create a balanced dataset and improve the
predictive accuracy of a model [64], [65]. In our study,
we utilized random undersampling and random oversampling
techniques. The last step in the pre-processing pipeline is

TABLE 1. Eigenvalue-based geometric features and equations.

normalization. It scales data to a consistent range, preventing
specific attributes from dominating the training process solely
based on their magnitude [66]. This creates a fair and stable
learning environment, ultimately improving the accuracy and
dependability of the model during training.

D. FEATURE EXTRACTION
Machine learning techniques use various features of point
cloud data for efficient classification. Some features are
generated during the data collection step, while others are
produced later using different feature extraction techniques.
A total of 19 geometric and non-geometric features were used
in the study. The geometric features consist of eigenvalue-
based features (9), the 3D coordinates of the point (3), and
surface normals along three axes (3). The non-geometric
features consist of four features: RGB color information (3)
and the intensity value of the point (1). The numbers
in parentheses indicate the number of relevant features.
Eigenvalue-based features that offer valuable insights into the
location and structure of objects. These features are computed
from the eigenvalues of the covariance matrix, which is
derived from the 3D coordinates of the points. The equations
of eigenvalue-based features are illustrated in Table 1.

CloudCompare environment was utilized to create fea-
tures based on eigenvalues. Batch processing was applied
through the software ‘‘command line mode’’ using Python
programming to generate features with different radius for
each eigenvalue-based feature [67]. Then, statistical tests
were applied for each eigenvalue-based feature using the
scikit-learn machine learning library, and the optimum local
neighborhood radius was determined for each eigenvalue-
based feature [68].
Eigenvalues are calculated using the covariance matrix

equation in (1). Here, C denotes the covariance matrix, N
value, number of neighboring points, pi the vector with the
coordinates of the point, and p̄ the vector with the mean
coordinates of the neighboring points. Equation (2) is used
to calculate eigenvalues using covariance matrices. C is the
covariancematrix, I is the unit matrix, and λ is the eigenvalue.
Eigenvectors are calculated using (3) where ei refers to the
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FIGURE 1. 3D point cloud of the study area.

FIGURE 2. The proposed framework.

eigenvector.

C =
1
N

N∑
i=1

(pi − p̄)(pi − p̄)T (1)

det (C − λI ) = 0 → λ1 ≥ λ2 ≥ λ3 ≥ 0 (2)

(C − λiI ) ei = 0 (3)

The λ1, λ2, and λ3 values in the equations below
represent the eigenvalues produced from the covariance
matrix. Each eigenvalue-based geometric feature embodies
objects characterized by diverse geometric dimensions and
shapes. Therefore, selecting each feature’s optimum local
neighborhood radius is essential when extracting the geo-
metric features. As the number of local neighborhood radius
increases, the processing time required for analysis also
increases. Conducting repeated model training to determine
the most suitable radius is not feasible due to the processing
time involved. Therefore, selecting the radius based on statis-
tical methods can make the process more manageable. This
way, the impact of the features determined for each radius
value on the model’s accuracy can be evaluated objectively.
When considering the applicability of statistical methods

to large datasets and processing time, the Chi-squared test,
ANOVA F-test, and Mutual Information statistical methods
are commonly used [69]. Machine learning often applies
these methods to reduce data size for model training and
feature importance calculation. These methods are called
filter-based feature selection in machine learning. Relevant
statistical methods have been examined in detail in the
following sections.

E. FEATURE SELECTION
Feature selection is a crucial step in machine learning to
identify the most relevant features of the data. The study
employed filter-based feature selection methods: the chi-
squared test, ANOVA F-test, and Mutual Information. The
following headings explain these methods in detail.

1) CHI-SQUARED TEST
The chi-squared test (χ2) is often used to determine whether
two categorical variables in a dataset are independent or
associated [70]. The difference between the observed and
expected frequencies of each category for the variables
is calculated by this test, and the significance of this
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difference is quantified. The features likely to contribute
significantly to the model’s performance can be determined
by analyzing the association between each feature and the
target. The chi-squared value is computed using (4), where
Oi represents the observed value, and Ei shows the expected
value. The chi-squared value can be improved by refining
feature selection techniques and optimizing Ei. These help to
uncover and understand the underlying relationship between
variables that leads to an improved machine learning model
performance.

χ2
=

∑
i (Oi − Ei)2

Ei
(4)

Suppose the target variable and feature value in the dataset
are independent. In that case, the relevant feature does not
contribute to the model training, and the chi-squared value
of these features is small. While selecting the feature, the
relationship of all the features in the dataset with the target
variable is examined, and feature selection is performed
according to the decreasing chi-squared value.

2) ANOVA F-TEST
ANOVA F-test was used to identify significant differences
between the groups. This approach evaluates the relevance
of different features for distinguishing between different
classes within a dataset [61]. The F-statistic is calculated by
comparing the between group and within group variance. The
mean and variance of each feature are calculated for each
group, and the overall mean and variance of each feature
across all groups are computed. These values calculate the
variances of between group andwithin group for each feature.
The features are ranked based on their F-statistic values.
When testing hypotheses and analyzing data, the Sum of
Squares Between Groups (SSB) and the Sum of Squares
Within Groups (SSW) are necessary to evaluate the variance
and dispersion of data points across different groups or
classes in a dataset. The sum of squared differences between
the groups is demonstrated by (5), which indicates the
variation among the means of individual classes. The sum of
squared differences between each data point is demonstrated
by (6). The level of dispersion present among the data points
within each group is indicated by this calculation. The k
parameter represents the number of classes, while the n
parameter represents the total number of samples in the
dataset. The relevant F-score is calculated with (7), which
enables the determination of significant differences between
the means of various groups.

SSB =

k∑
j=1

(
X̄j − X̄

)2 (5)

SSW =

k∑
j=1

l∑
j=1

(
X − X̄j

)2 (6)

F − score =
SSB/(k − 1)
SSW/(n− k)

(7)

3) MUTUAL INFORMATION
The Mutual Information (MI) technique helps to identify the
most informative features in a dataset that can distinguish
between different classes [71]. It also measures the statistical
dependence between each feature and the target class vari-
able. The MI value is calculated with (8). P(x, y) represents
the joint probability mass of x and y together, while P(x)
and P(y) represent their individual probability mass. A higher
MI score indicates more informative and relevant features
and stronger dependency. Conversely, lower values suggest
weaker or no dependence between the two variables.

MI =

∑
x, y

P (x, y) log
P (x, y)
P (x)P (y)

(8)

F. CLASSIFICATION
This research employed six distinct models: XGBoost,
LightGBM, CatBoost, Random Forest, Gaussian Naïve
Bayes, and Support Vector Machine. Their accuracy and
computational efficiency were evaluated. XGBoost is a
popular gradient-boosting framework used for supervised
machine-learning tasks due to its high effectiveness and
efficiency [72]. It works by building an ensemble of weak
learners sequentially, with each new tree added aiming to
correct the errors made by the previous ones. This produces a
powerful ensemble of decision trees contributing to the final
prediction. XGBoost uses a depth-first approach to construct
decision trees, optimizing the objective function at each step.
It also employs approximate learning to efficiently identify
the best-split points for each feature, granting XGBoost a
significant speed advantage over traditional gradient boosting
methods. To avoid overfitting, XGBoost incorporates L1 and
L2 regularization terms in its objective function, penalizing
large weights assigned to features in decision trees and
maintaining a balance between model complexity and
performance. LightGBM is another robust gradient-boosting
framework developed byMicrosoft that focuses on efficiency,
scalability, and the ability to handle large datasets [73].
One of its notable features is the Gradient-based One-Side
Sampling technique, which reduces the number of data
instances used during training by selecting and keeping the
data instances with large gradients contributing more to the
model’s updates. This approach significantly reduces training
time and memory usage without affecting the model’s perfor-
mance. Also, this model employs Histogram-based Gradient
Boosting, which allows for faster computations of split points
during tree-building, contributing to the algorithm’s speed
and scalability. CatBoost is an advanced algorithm developed
by Yandex for gradient boosting that handles both categorical
and numerical features effectively [74]. This algorithm uses
a variant of ordered boosting that incorporates statistical
methods. During training, the algorithm treats missing values
as a separate category, simplifying data preparation and
preventing the exclusion of valuable information due to
missing values. Furthermore, CatBoost automatically tunes
the learning rate during training to ensure a balanced
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trade-off between fast convergence and accurate predictions.
CatBoost uses optimized algorithms for calculating feature
statistics and gradient updates to speed up computation
and enhance training efficiency, resulting in faster model
training and better scalability for large datasets. Random
Forest is an ensemble learning technique widely preferred
for classification [75]. When building a model, avoiding
overfitting by introducing randomness through two methods
is essential. Firstly, each decision tree is trained on a random
subset of the data. Secondly, only a random subset of features
is considered at each split in the tree. By doing this, the trees
can capture different data patterns, enhancing the model’s
generalization ability. The Gaussian Naive Bayes algorithm
assumes features that follow a Gaussian distribution and
applies Bayes’ theorem to make predictions [76]. By esti-
mating the likelihood and prior probability, it calculates the
posterior probability and selects the predicted class with
the highest probability based on a given feature vector.
Support Vector Machine is a machine learning algorithm that
locates the optimal hyperplane in a high-dimensional feature
space that can effectively separate data points from different
classes [77]. The support vectors, the data points closest to
the hyperplane, are crucial in defining the hyperplane and
influencing its position. The margin around the hyperplane
is vital for the algorithm’s ability to generalize well to unseen
data.

1) PERFORMANCE EVALUATION METRICS
Accuracy, Precision, Recall, and F1 score are frequently
used for classification performance evaluation. These metrics
are calculated with true positive (TP), false positive (FP),
true negative (TN), and false negative (FN) values from
the confusion matrix. The accuracy value is calculated
using (9). This metric provides a general assessment of
a model’s performance. The precision value calculated
with (10) expresses the ratio of positively predicted samples
to true positives. High precision gives information about the
reliability of optimistic predictions. The recall value assesses
how accurately a classification model identifies positive
instances among the true positive instances, expressed
by (11). The F1 score, the harmonic means of precision and
recall values, is utilized through (12). This score is usedwhere
there is an imbalance in the classes within the dataset.

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(9)

Precision =
TP

TP+ FP
(10)

Recall =
TP

TP+ FN
(11)

F1 score = 2 ×
Precision× Recall
Precision+ Recall

(12)

G. EXPLAINABLE MACHINE LEARNING
The results from the models trained with different
machine-learning methods must be interpretable. Here,
by determining the relationships between input variables

and outputs, the results obtained are improved, and the
decision-making ability of the model is strengthened.
By using Explainable Machine Learning methods, the
trained models are made interpretable, and performance
improvements can be made by determining the impacts
and contributions of the model variables to the model [78],
[79]. Game theory and perturbation-based approaches have
been developed to explain the models. The Shapley value is
used in the game theory-based approach, which expresses
the contribution of each input used in model training to
the result [80], [81]. In calculating the Shapley value, the
interaction of each player’s earnings with other players is
considered. Using the Shapley value in machine learning, the
importance and impact rates of the features in the prediction
results are calculated [82]. Shapley Additive exPlanations is
a frequently preferred library where Shapley value and game
theory-based approaches and machine learning models are
interpreted [83]. To calculate the Shapley value, the first step
is to define a set of all features. Then, subsets are created,
and the impacts of each subset’s features are calculated. This
process is applied to all subsets to determine the Shapley
value of each feature. Shapley value is calculated using (13).
Within this context, ∅i denotes the Shapley value for feature i.
F represents the set of all features, while S refers to any
subset of players that excludes feature i. |F | and |S| signify the
size of the set of all features and subsets, respectively. fS (xS)
represents the value calculated for the subset S. fS∪{i}

(
xS∪{i}

)
indicates the new value obtained by adding the feature i.

∅i =

∑
S⊆Fi

|S|! (|F | − |S| − 1)!
|F |!

[
fS∪{i}

(
xS∪{i}

)
− fS (xS)

]
(13)

This study utilized SHAP to interpret the model and
explain the effect of features on the model and the relation-
ships between features and classes.

III. RESULT AND DISCUSSION
In the study area, a comparison was made between six
machine-learning models to assess their training time,
testing time, accuracy metrics, and explanation of the
trained model. The first step was pre-processing the dataset
before training and evaluating the models. Statistical feature
selection methods were used to determine the optimum local
neighborhood radius for eigenvalue-based geometric features
and comparison with a fixed radius. The best models were
then examined in detail regarding their training time and
accuracy. Six different feature combinations were created and
trained to evaluate the effect of features on classification
accuracy, training, and testing time. Finally, the best model
regarding accuracy was selected, and evaluation metrics were
examined. Explainable machine learning was used to observe
the impact of features on class predictions and their average
impacts on the model. All models are trained on the grid
computing system, with detailed information in Table 2.
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TABLE 2. Hardware specifications of a grid computing system.

TABLE 3. Number of points for each class of the training and testing
dataset.

A. PRE-PROCESSING
The initial step of the pre-processing varies for the selected
six distinct models. The dataset is divided into a 70% training
area and a 30% testing area to ensure the accuracy and
reliability of the machine learning model. Within the training
area, 80% is used for training, whereas 20% is used for
validation for XGBoost, LightGBM, and CatBoost. An out-
of-back (OOB) technique is applied for the Random Forest
model, where there is no need for a validation dataset.
Furthermore, Gaussian Naïve Bayes and Support Vector
Machine do not support direct validation datasets. It supports
only calculation expensive methods that use k-fold-cross
validation. The partitioning of the dataset is presented in
Fig. 3, with blue and orange regions representing the training
and test datasets, respectively.

The number of points for each class in the training dataset
is unbalanced. This could lead to an imbalanced model train-
ing. To address this issue, random undersampling and random
oversampling techniques were applied while considering the
dataset size and hardware capacity. During the sampling
process, the class frequencies were thoroughly examined, and
the average frequency of classes was established at 300,000.
Subsequently, the dataset was balanced by applying sampling
techniques to the relevant classes, and the number of points
for all classes was resampled to 300,000 for each class,
ensuring equitable and unbiased model training. Once the
dataset was balanced, the features were normalized to a range
of 0-1 to reduce data size and standardize inputs. The number
of points for each class of the training and testing dataset are
listed in Table 3.

B. FEATURE EXTRACTION
The classification features are categorized into eigenvalue-
based geometric features (F1,r ) and other features (F2).

TABLE 4. Eigenvalue-based geometric features and other features.

TABLE 5. Determination of the local neighborhood radius (cm) with fixed
values and statistically.

There are 19 features, with nine being eigenvalue-based and
10 being other features are given in Table 4.
F1,r feature set were extracted using a fixed local

neighborhood radius of 20 cm, 40 cm, 60 cm, 80 cm, and
100 cm, resulting in five feature sets (F1,r20 , F1,r40 , F1,r60 ,
F1,r80 , F1,r100 ), each set contains nine distinct features. After
that, the relevant radius for each feature was determined
by applying statistical methods, namely the chi-squared
test, ANOVA F-test, and mutual information. To perform
this, features were also extracted using 50 different local
neighborhood radiuses, ranging from 2 cm to 100 cm
with 2 cm intervals, and the relevant local neighborhood
radius was determined for each feature. For example, the
chi-squared values of verticality, linearity, and sphericity
features are shown in Fig. 4, where the vertical axis represents
the chi-squared value. The horizontal axis is the local
neighborhood radius, and the red-colored columns imply
the highest local neighborhood radius, chi-squared value,
or significance. This analysis applied to all eigenvalue-based
features.

The local neighborhood radius of the eigenvalue-based
features with fixed values and determined based on the
statistics, is illustrated in Table 5.

Performance evaluations were completed using six
machine-learning models: XGBoost, CatBoost, LightGBM,
Random Forest, Gaussian Naïve Bayes, and Support Vector
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FIGURE 3. Train and test area.

FIGURE 4. Local neighborhood radius graphs for verticality, linearity and sphericity features by applying the chi-squared test.

Machine. From the models mentioned above, Gaussian Naïve
Bayes and Support Vector Machine are simpler models
used as reference models within this study. The accuracy
values for the analyzes are illustrated in Table 6. The lowest
accuracy value was obtained in the Gaussian Naïve Bayes
(F1,r60 + F2) model, 52.40%, and the highest in the Random
Forest (F1,r

χ2
+ F2) model, 79.66%. It is observed that most

of the results that have the highest accuracy are obtained with
F1,r

χ2
+ F2 features.

F1 scores of the related neighborhood radius and class
values of the models are presented in Table 7. While the F1
score of beam, column, other, and window classes is high
in the LightGBM (F1,r

χ2
+ F2) model, The F1 score of the

ceiling, desk, door, floor, lighting, and wall class is higher
in the Random Forest (F1,r

χ2
+ F2) model model. The F1

scores of the column and window classes are approximately
the same in both models.

The confusion matrix of the Random Forest (F1,r
χ2

+

F2) model is shown in Fig. 5. It was observed that the
classification accuracy of ceiling, floor, lighting, and wall is
high. However, some points were classified as walls, even
though these are points of the beam, column, door, other, and
window class. Moreover, some parts of the floor class were
classified as desks. Furthermore, the classification accuracy
of the objects represented by lower density is lower than
expected, although the balancing procedure was applied.

C. EVALUATION OF FEATURE COMBINATIONS
To investigate the impact of features on model accuracy,
training, and testing time, analyses were conducted by

FIGURE 5. Normalized confusion matrix of the Random Forest
(F1,r

χ2
+ F2) model.

creating various feature combinations. During the evaluation
phase, six distinct feature combinations were experimented.
These combinations are illustrated in Table 8. The initial
combination (C1) included all 19 features. The second com-
bination (C2) excluded RGB color and intensity values. This
combination was chosen to investigate the influence of RGB
color information obtained through camera and laser scanner
fusion and the intensity value of points. These features
include features that relate to objects’ optical properties,
roughness, material type, and light conditions. The use of
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TABLE 6. The accuracy values (%) according to the F1,rn + F2 features.

TABLE 7. F1 scores (%) of classes obtained using F1,ropt
+ F2 features.

eigenvalue-based features for point cloud classification is a
common practice. However, their impact on classification
accuracy has yet to be fully understood. To address this issue,
the third feature combination (C3) was generated to exclude
these features intentionally. This exclusion provides a more
complete understanding of the effects of eigenvalue-based
features on classification accuracy. The feature combinations
of C4, C5, and C6 were generated to reduce the total number
of features. This was achieved by employing statistical tests
and observing their effects on accuracy and processing time.
Following this, the top 10 important features were selected
from the 19 features, reducing approximately 50% of the total
number of features. C4 involved feature selection using the
chi-squared, C5 utilized ANOVA F-test, and C6 generated
with an MI-based feature selection method.

• C1: F1,ropt + F2 → (19 features)
• C2: F1,ropt + F2 - Colors (R,G,B) - Intensity →

(15 features)
• C3: F2 → (10 features)
• C4: Feature selection according to chi-squared test for
F1,ropt + F2 → (10 features)

• C5: Feature selection according to ANOVA F-test for
F1,ropt + F2 → (10 features)

• C6: Feature selection according to mutual information
for F1,ropt + F2 → (10 features)

The accuracy for different feature combinations is pre-
sented in Table 8. For C2, the XGBoost model decreased

by 2.62%, the CatBoost model by 1.14%, the LightGBM
model by 3.05%, the Random Forest model by 0.71%, the
Gaussian Naïve Bayes model by 1.10%, and the Support
Vector Machine model by 3.80%. These results suggest
that the model’s accuracy is not adversely affected even in
errors due to different lighting conditions. In the case of
C3, the XGBoost model decreased by 12.60%, the CatBoost
model by 7.68%, the LightGBM model by 12.87%, the
Random Forest model by 9.48%, the Gaussian Naïve Bayes
model by 13.96%, and the Support Vector Machine model
by 18.03%. These findings indicate that eigenvalue-based
geometric features significantly impact 3D point cloud
classification. After examining the accuracy values of the
related combinations, it was observed that in the case of C4,
the XGBoost model increased by 2.67%, the CatBoost model
by 4.41%, and the LightGBMmodel increased by 1.39%, the
Random Forest model by 2.43%, the Gaussian Naïve Bayes
model by 0.35%, and the Support Vector Machine model
decreased by 4.00%. After applying feature selection (C5),
the accuracy of the XGBoost, CatBoost, and Random Forest
models increased by 0.90%, 1.01%, and 1.47%, respectively.
However, the accuracy of LightGBM, Gaussian Naïve Bayes,
and Support Vector Machine models decreased by 0.03%,
0.32%, and 1.29%. Despite reducing the features in the
dataset by 47%, the accuracy results remained approximately
the same. On the other hand, when feature selection wasmade
using mutual information (C6), there was a decrease of 5.25%
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in the XGBoost model, 3.21% in the CatBoost model, 6.83%
in the LightGBMmodel, 5.63% in the Random Forest model,
0.82% in the Gaussian Naïve Bayes model, and 9.80% in the
Support Vector Machine model.

In order to compare processing times consistently, hard-
ware capacity was kept constant in all processes. The
hardware specifications of which are explained in detail
in Table 2. The effects of different feature combinations
on training and testing time are shown in Table 9 and
Table 10, respectively. When the results were examined,
it was observed that reducing the features used in model
training by applying feature selection did not affect the
training or testing time. The training times for different
feature combinations have been detailed in Table 9. Upon
evaluating the model performance regarding average training
time, the CatBoost model exhibits the highest training time
of 3053.159 seconds, while the Gaussian Naïve Bayes
model demonstrates the lowest training time of merely
1.056 seconds.

The testing times for feature combinations are listed in
Table 10. When the model performance is evaluated in terms
of average testing time the LightGBMmodel have the longest
average testing time, with 50.783 seconds. On the other hand,
the Support Vector Machine model has the shortest average
testing time, taking only 0.792 seconds.

The balance between accuracy and exact processing
time is essential for computational efficiency when dealing
with practical applications. When comparing the Random
Forest and CatBoost, it becomes apparent that there is a
notable difference in accuracy, training, and testing time.
Although both models have similar accuracy across all
feature combinations, they differ sharply in processing time.
For example, the Random Forest model achieved 82.09%
accuracy for the C4 combination, with a training time
of 106.142 seconds and a testing time of 9.272 seconds.
In comparison, the CatBoost achieved the highest accuracy,
with 82.96% for the same feature combination, but with a
longer training time of 2422.738 seconds and a testing time
of 14.237 seconds. Despite the CatBoost having the highest
accuracy, the Random Forest only lost 0.87% accuracy
for the C4 feature combination. On the other hand, the
Random Forest saved 2316.596 seconds of training time
and 4.965 seconds of testing time. The same results have
been observed in other feature combinations for relevant
models. Since feature selection techniques are applied when
creatingC4,C5, andC6 feature combinations, including these
processing times in the total processing time is essential. The
ten most important features among 19 features were selected
statistically, using the Chi-squared test, ANOVA F-test, and
Mutual Information for relevant feature combinations. The
Chi-squared test was applied for the C4 combination. It took
1.132 seconds, the ANOVA F-test for the C5 combination
took 1.147 seconds, and the Mutual Information calculation
for the C6 feature combination with 449.119 seconds.

The results show that the Chi-squared test and ANOVA
F-test have similar processing times. However, the highest

FIGURE 6. Normalized confusion matrix of CatBoost (F1,r
χ2

+ F2, C4)

model.

accuracy was obtained in four out of six machine learning
models when feature selection was applied with the Chi-
squared test. In contrast, using Mutual Information resulted
in a decrease in accuracy and longer processing time when
compared to other methods. Therefore, the Chi-squared
test is the most suitable statistical feature selection method
among the compared methods regarding processing time
and accuracy. When the highest accuracy among all feature
combinations is examined, it has been determined that the
highest accuracy can be achieved by training CatBoost
(F1,rχ2+F2,C4) model. Themodel’s class value performance
metrics have been analyzed in Table 11. It has been noticed
that the column has the lowest F1 score of only 23.85%,
while the floor class has the highest F1 score, impressively
coming in at 98.49%. According to the results in Table 7,
the F1 scores for columns, desks, and windows are very
low when using CatBoost. However, the F1 scores for
column, desk, and window presented in Table 11 for the
CatBoost are significantly better. The reason for such an
increase could be due to the fact that Table 7 deploys
19 features, whereas Table 11 uses the best ten features
selected statistically. Hence, removing these nine features,
such as intensity, anisotropy, and the sum of eigenvalues,
significantly improved the classification results within the
CatBoost model.

The confusionmatrix of themodel is shown in Fig. 6. There
were misclassifications during the training, where particular
beams, columns, and other classes were predicted as walls,
and some desk and window classes were mixed with other
classes.

A visual comparison of the results obtained by training the
CatBoost model with the reference data is presented in Fig. 7.
Fig. 7.a includes the general view of the predictions, Fig. 7.b
the general view of the ground truth, Fig. 7.c the predictions
without ceilings and lightings so that the inside of the building
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TABLE 8. The accuracy values (%) of feature combinations for F1,ropt
+ F2.

TABLE 9. Training times (second) of F1,ropt
+ F2 features.

TABLE 10. Testing times (second) of F1,ropt
+ F2 features.

TABLE 11. Precision (%), Recall (%), and F1 scores (%) of classes
obtained CatBoost (F1,r

χ2
+ F2, C4) model.

can be seen, and Fig. 7.d the general view of the ground truth
data without ceilings and lightings.

D. MODEL INTERPRETATION WITH EXPLAINABLE
MACHINE LEARNING
The Shapley values were used to examine the impacts of
the feature for the trained model in each class. The average
impacts of features on the predictions are illustrated in Fig. 8.

The average impact of the Z coordinate and verticality feature
on the model is relatively high. In contrast, the contribution
of the linearity feature to the model prediction values is
relatively low.

Examining the confusion matrix in Fig. 6, it is clear that
the wall and column classes have been mixed up. Hence,
examining the impacts of the features used in model training
on the wall and column classes is necessary. In this context,
after examining Fig. 9, it is seen that low and high values
of verticality and Z coordinate, which have high impacts on
column and wall classes, show similar behavior. Therefore,
the accuracy of the wall and column classes decreases.

After analyzing the confusion matrix in Fig. 6, it becomes
apparent that the desk and other classes are mixing. In order
to comprehend this situation, it is essential to examine how
the characteristics utilized in the training of models can affect
these categories. Upon examining Fig. 10, it is seen that the Z
coordinate, which is the most impactful feature representing
the column and wall classes, shows similar behavior for both
low and high values. As a result, the accuracy of the desk and
other classes decreases.

According to the achieved results, although the floor and
floor classes are geometrically similar, they are classified
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FIGURE 7. Inference of CatBoost (F1,r
χ2

+ F2, C4) model: (a) General view according to predicted values. (b) General view of ground truth.

(c) General view without lighting and ceiling according to predicted values. (d) General view without lighting and ceiling regarding ground truth.

FIGURE 8. Average impact of features on predictions for the CatBoost
(F1,r

χ2
+ F2, C4) model.

with high success rates. When Fig. 11 is examined, the
two most important features are identical for both classes.
However, the high and low values of Z coordinate, which is
the most important feature, are the opposite of each other.
Thus, this has ensured that the two classes do not mix with
each other.

FIGURE 9. Impact of the features on wall class and column class for
CatBoost (F1,r

χ2
+ F2, C4) model.

When using the Random Forest model and the CatBoost
model for different applications, it is crucial to consider
their accuracy and time consumption and the number
of hyperparameters and supported processing units. The
Random Forest model has fewer hyperparameters than the
CatBoost model. The CatBoost model may take longer to
process in studies where hyperparameter optimization is
essential. However, it is more advantageous than the Random
Forest model when customizing the model according to
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FIGURE 10. Impact of the features on desk class and other class for
CatBoost (F1,r

χ2
+ F2, C4) model.

FIGURE 11. Impact of the features on ceiling and floor class for CatBoost
(F1,r

χ2
+ F2, C4) model.

the dataset. Both models support a central processing unit
(CPU) and graphics processing unit (GPU). In this study,
calculations were made on the CPU, but using the GPU
calculation unit can significantly reduce processing time.
In addition, when evaluating the results, it is also essential
to consider factors such as the dataset used, the dimensions
of the classified objects, their spatial relationships, the
environment’s lighting conditions, the type of objects present,
and surface roughness. These factors are specific to the
dataset used. The parameters used in the pre-processing
and feature extraction phases are determined based on the
hardware capacity and not just the dataset. To achieve similar
accuracies in different studies, all these conditions must
be considered, especially for datasets containing objects
of different sizes. Object size and spatial relationships are
critical factors in radius selection, especially for eigenvalue-
based features. Model training and pre-processing steps
were performed in a high-capacity grid computing system.
Hardware capacity can be a potential limitation when dealing
with larger data sets. To overcome this limitation, the method
and parameter selection in subsampling applied to the data
are very important to maintain the model accuracy. Here, it is
necessary to determine the appropriate subsampling method
and parameters in a way that will least affect the geometric
structure of the data.

IV. CONCLUSION
This study successfully applied machine learning methods
to classify structural components from 3D point clouds in
indoor environments. A proposed novel framework consists

of four stages: pre-processing, geometric feature extraction,
feature selection, and interpretation of the classification
results. Six machine learning models, namely XGBoost, Cat-
Boost, LightGBM, Random Forest, Gaussian Naïve Bayes,
and Support Vector Machine, were used to evaluate classifi-
cation performance regarding their accuracy and processing
time. The Chi-squared test is the most appropriate statistical
method for selecting the optimal local neighborhood radius.
The same statistical method is proposed for feature selection
as well. According to the classification results, the CatBoost
model has the highest accuracy, and the Random Forest is
the most suitable model for a good balance between accuracy
and calculation efficiency. Hence, the Random Forest model
is well-suited for practical applications. The Shapley values
are used to interpret model classification results, where the
CatBoost model has the highest accuracy. According to
the model interpretation, among 19 features, Z coordinate,
and verticality features have a relatively high impact on
classification. The blue color and linearity feature has the
lowest impact on classification results. Overall, the findings
offer valuable insights for future studies in indoor building
environments and could ultimately contribute to advancing
indoor 3D point cloud analysis and applications. The most
appropriate processing time, geometric features, and models
are obtained without data loss, and structural components
from 3D point clouds are automatically classified. Hence,
following the framework described, this study could be
replicated successfully for further indoor environments.
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