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ABSTRACT The capability of a process is its ability to produce products that meet predefined requirements
in industry and it is measured by capability indices. If data are not normally distributed, other techniques for
capability estimation should be taken into consideration. One of frequently usedmethods are transformations
to normal data distribution like Abbasi-Niaki, Box-Cox and Johnson transformation. In this paper,
we propose modified power transformation method for non-normal process capability estimation. Proposed
method is compared to Box-Cox, Johnson and Abbasi-Niaki transformation method using simulation studies
under several theoretical non-normal distributions. Proposed modified transformation method finds optimal
power to reduce data skewness in case of negatively and positively skewed data. In case the optimal power
is not found, power to achieve minimal skewness is estimated. In case of negatively skewed data, algorithm
transforms data to positively skewed. After applying each transformation, capability indices were estimated
and then compared with theoretical indices by calculating relative bias. Proposed transformation method
showed better performance than other methods in reducing skewness of negatively and positively skewed
data. Study showed that performance of the proposed power transformation method was either better or
comparable in estimating capability indices.

INDEX TERMS Box-Cox transformation, non-normal process, power transformation, process capability.

I. INTRODUCTION
Process capability analysis is part of quality control in the
industry with the goal of supplying information on product
design and process quality improvement for engineers and
designers. The benefits from process capability control are
to ensure that product is in its validated state and to
ensure that the manufactured batches are conforming to the
specifications and that there is no adverse trend which could
lead to batch rejection. Having a good tool and statistical
methods for estimating process capability is essential, as they
have influence on business decisions and consumers.

Process capability is measured by capability indices,
assuming six sigma approach ( [1], [2]):

Cp =
USL − LSL

6s
, (1)
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and

Cpk = min
{
x̄ − LSL

3s
,
USL − x̄

3s

}
, (2)

where USL and LSL represent upper and lower specification
limit, x̄ is the estimate of the mean value µ and s is the
estimate of the process standard deviation σ . Indices Cp in
Cpk can be reliably used to assess the ability of the process
only in the case of normal data distribution. When the data
do not follow the normal distribution, the calculation of the
indices need to be adjusted.

Theoretically, three approaches are possible in the case
of non-normal data distribution: calculation of process
variability using percentile estimation, data transformation
and adjusted index calculation.

In estimating percentiles, the goal is to estimate the
0.135 percentile (x0.00135), the 99.865 percentile (x0.99865)
and the median (x0.5), which are necessary for calculating Cp
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and Cpk indices:

Cp =
USL − LSL

x0.99865 − x0.00135
, (3)

and

Cpk = min
{

x0.5 − LSL
x0.5 − x0.00135

,
USL − x0.5
x0.99865 − x0.5

}
. (4)

Author in [3] described two methods to estimate 0.135 per-
centile (x0.00135), 99.865 percentile (x0.99865) and median
(x0.5): Exact method and Clement’s method [4]. Authors
in [5] also discussed about Clement’s method, although
they assumed distribution of data is known. In case the
data distribution is not known, the Chebycheff inequality
is suggested as alternative way for calculating capability
indices [5]:

p(| X − µ |< kσ ) ≥ 1−
1
k2

, k > 1. (5)

According to Chebycheff inequality, when we use x̄ to
estimate µ in Equation 5, at least 100(1 − 1

k2
)% of the

observed values will fall within µ ∓ kσ regardless of the
distribution. However, we should use intervals definition
µ ∓ kσ carefully, as they could exceed specification limits
USL and LSL. For example, if we want 99.865% of the
observed values to fall withinµ∓kσ according to Equation 3
and Equation 4, k should be larger than 28, which is
far too conservative for the distributions usually associated
with processes. Therefore, the Chebycheff inequality is not
applicable in practice.

Using data transformation technique, the goal is to trans-
form the data to normal distribution, which then allows us to
estimate the indices according to Equation 1 and Equation 2.
Authors in [6] suggest transforming data to normal by
Johnson transformation based on Johnson curves [9] or Box-
Cox transformation [8]. According to [1], approach based
on Johnson curves should be regarded within considerable
caution as not every data distribution can be described by
Johnson curves and can yield unstable or inefficient curve
parameters in some cases. Another power transformation
method is outlined in [29], aiming to minimize skewness
and kurtosis for the Jarque–Bera test. In the case data
can't be transformed to normal and data distribution is
unknown, Clement’s method is proposed [6]. Burr method
for percentile estimation is proposed by Ahmad et al.
[10], who compared Burr based parameters, introduced
by Burr [7], with Clement’s and Box-Cox transformation
methods. Another method for estimating percentiles without
statistical tables and easy to use was given in [11]. Authors
in [30] investigated non-normal process capability indices
utilizing fuzzy information, developing a general type of
process capability indices based on a proposed triangular
fuzzy distance to address imprecise observations, fuzzy
limits, and targets, with the proposed method performing
effectively in real applications according to a simulation
study. As the Box-Cox transformation is applicable only for

positive data, Yeo and Johnson [13] introduced a new family
of transformations that covers the entire real line. Rivera et al.
[14] proposed transformation by using continuous monotoni-
cally increasing functions called logarithmic transformation,
square root transformation, inverse transformation, inverse
square root transformation, arcsin square root transforma-
tion and power transformation. A study in [14] showed
that power transformation gives better results than other
transformations. Somerville and Montgomery [15] used a
square-root transformation to transform a skewed distribution
into a normal distribution. The transformation method
using the root transformation is proposed by Hosseinifard
et al. [12], who showed that root transformation techniques
have better performance than the Box-Cox transformation
method.

Many authors went one step further and redefined new
indices for non-normal data, as percentile estimation tech-
niques did not provide accurate results for heavily skewed
distributions: the weighted variance method [16], Gini’s
mean difference [17], Wright’s index [18], flexible index
by Johnson [19], index by Chen and Pearn [20], indices
by Albing and Vännman [21], generalized new indices [28]
and ranked probability score index [22]. In [31], authors
delve into the utilization of gauge R&R studies as a tool for
uncovering the sources of non-normality in data distributions.
Among the methods which were already mentioned, other
quantile transform approaches, distribution-free tolerance
intervals approach and superstructure capability indices
for process capability estimation can be found in [23]
and [24].

In this paper, a modification of root transformation pro-
posed by Hosseinifard et al. [12] is presented and compared
with Box-Cox and Johnson transformation methods.

II. METHODS
Box-Cox transformation method identifies appropriate expo-
nent λ for transforming into data which has the highest
likelihood and takes the following form ( [8], [26]):

f (Y ) =


Yλ
− 1
λ

ifλ ̸= 0,

Log(Y) ifλ = 0,
(6)

where parameter λ is estimated by employing the maximum
likelihood estimator (MLE) [26].

Johnson system of distribution uses Johnson curves
(SB, SU , SL) to transform the data ( [9], [27]). Distributions
(SB, SU , SL) of Johnson curves have two shape (γ and η),
one location (ϵ) and one scale (λ) real parameters. SB cover
bounded distributions as gamma, beta and other distributions.
It is bounded on the lower end by ϵ, the upper end by ϵ+λ or
both [27]. SB covers bounded distributions, SU is unbounded
and SL covers distributions which are bounded only on the
lower side [27]. These three distributions are generated by
transformations of the form [27]:

z = γ + ηki(x;λ, ϵ), i = 1, 2, 3, (7)
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where ki(x;λ, ϵ) are chosen as follows [27]:

k1(x;λ, ϵ) = ln
(

x − ϵ

λ+ ϵ − x

)
in the case of SB distribution,

(8)

k2(x;λ, ϵ) = sinh−1
(
x − ϵ

λ

)
in the case of SU distribution,

(9)

k3(x;λ, ϵ) = ln
(
x − ϵ

λ

)
in the case of SL distribution.

(10)

In this study, parameters of Johnson system will be estimated
by quantile estimation method described in [27].

Niaki and Abbasi [25] first mentioned root transformation
technique for skewness reduction in multi-attribute process
monitoring. One year later, Hosseinifard et al. [12] discussed
same method for skewness reduction for univariate process
parameters. The idea is based on knowing standardized
central moments of the third and fourth order, named
skewness and kurtosis respectively. The standardized central
moment of the third order β1 and fourth order β2 of normally
distributed random variable X ∼ N (µ, σ ) are given as
follows:

β1 =
E[(X − µ)3]

σ 3 =
0
σ 3 = 0, (11)

and

β2 =
E[(X − µ)4]

σ 4 =

4!σ 4

222!

σ 4 = 3. (12)

In the root transformation method proposed by authors
in [12] and [25], when sample Y is taken from non-normal
data distribution, we search for the power r such that
skewness of Y r equals 0 as shown in Equation 11. To find
power r , bisection method is used on predefined initial
interval (a0, b0) ∈ IR such that f (a0)f (b0) < 0, where
function f (a), a ∈ IR is defined as skewness value of Y a. After
the initial interval and tolerance ϵ are determined, the well
known bisection method is applied in [12] to find the root r
such that f (r) = 0.
For positively skewed data, bisection method is trying

to find a root r in the interval (0, 1), however, when data
distribution is heavily negatively skewed, algorithm proposed
in [12] is no longer applicable. For that reason Abbasi et al.
[26] proposed modified root transformation technique such
that skewness of Y r equals 0 also in case of heavily negative
skewed data by using transformation U = Y − min(Y ) and
then finding root r using bisection method such that

f (U
1
r ) = 0. (13)

Abbasi et al. [26] also proposed that in case skewness of
Y r is positive should be used as transformation function.
Moreover, authors suggest that power should be found within
interval (0, 1).

A simulation study of modified root transformation
method performed in [26] showed good performance in
all right-skewed, left-skewed and logarithmic distributions.
Moreover, authors in [26] showed that transformationmethod
efficiently transforms non-normal data to normal data in
almost all cases. However, Box-Cox method does slightly
better than the procedure described in [25] for small sample
sizes and in general has higher p-values of Shapiro-Wilk
normality test.

A. PROPOSED POWER TRANSFORMATION METHOD
Applying described method by Abbasi et al. [26] on data
simulated from different distributions revealed two types of
data for which appropriate power can’t be found:

1) Predefined initial interval (a0, b0) ∈ IR such that
f (a0)f (b0) < 0 (function f (a), a ∈ IR is defined as
skewness value of Y a) doesn’t always exist. To demon-
strate this type of data, sample was simulated from
positively skewed Gamma distribution with sample
size 30, and parameters 5 and 7. For simulated sample,
function f (a), a ∈ IR always gives skewness larger than
zero. Therefore, bisection method described in [25] can
not be applied.

2) The best root for data transformation can be found
outside interval (0, 1). To demonstrate this type of data,
sample was simulated from positively skewed Gumbel
distribution with sample size 210, location parameter
5 and scale parameter 0.5.
For simulated sample, function f (a), a ∈ IR equals zero
within interval (-4,-2), which is outside (0,1) interval.

In this paper we propose modified power transformation
method for both positively and negatively skewed data. In the
case when data are positively skewed, we find initial interval
(a, b) from bisection method within entire IR. In case such
interval doesn’t exist, interval with minimum skewness value
is taken as initial interval for bisection method. If acceptable
power can’t be found by using bisection method based on
skewness, kurtosis criteria is used for finding power r such
that kurtosis value of Y r equals 3 (according to Equation 12).
Last, if appropriate power can’t be found within initial
interval, then initial interval should be redefined. Moreover,
when searching for initial interval (A,B) ∈ IR, it should be
considered that value 0 /∈ (A,B), as it can lead algorithm
to find optimal power which equals zero. When data are
negatively skewed, we propose transformation to positively
skewed data as follows:

Y = −Y + 2 max(Y ). (14)

The linear transformation Y = −Y + 2max(Y ) is utilized to
convert negatively skewed data into positively skewed data,
as negative and positive skewed data can’t be transformed
to normal distribution by applying the same algorithm. The
general approach to reverse the distribution of data involves
applying a linear transformation of the form Y = c − bX ,
where c and b are constants. In this study, X = Y , c =
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FIGURE 1. Flowchart of proposed method.

2max(Y ) and b = 1. The constant c can take any value that
converts negative values −Y to positive values to facilitate
transformation methods. Thus, c > max(Y ). The authors’
choice is c = 2max(Y ) but the transformation would function
similarly if c = 3max(Y ). Notably, altering the constant c
does not affect the capability indices since both the Upper
Specification Limit (USL) and Lower Specification Limit
(LSL) undergo the same transformation.

Flowchart in Figure 1 describes each step in proposed
transformation method, along with pseudocode provided in
Section V.
If we again take simulated data described in 1 and 2

and apply algorithm proposed in Figure 1, we get following
results:
• For a sample simulated from positively skewed Gamma
distribution with sample size 30, location parameter

5 and scale parameter 7, in Figure 2 can be seen that
optimal power for transformation to normally distributed
data is 0.525. As algorithm couldn’t find power such
that skewness of transformed data are below acceptance
limit 0.05, kurtosis was used as criteria function to
find optimal power. Kurtosis values based on different
power transformations compared to optimal power
transformation can be found in Figure 3. P-value of
Shapiro-Wilk normality test before transformation was
0.01, and after transformation calculated Shapiro-Wilk
p-value was 0.45.

• For sample simulated from positively skewed Gumbel
distribution with sample size 210, location parameter
5 and scale parameter 0.5, the proposed transformation
method described in Figure 1 gives optimal power
−3.575. Skewness values compared to power values
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FIGURE 2. Skewness and optimal solution.

FIGURE 3. Kurtosis and optimal solution.

and optimal power are given in Figure 4. P-value
of Shapiro-Wilk normality test before transforma-
tion was < 0.001, and after transformation calculated
Shapiro-Wilk p-value was 0.1904.

III. RESULTS
In order to compare performance of proposedmethod to other
transformation methods, data were simulated in statistical
software R using functions for generating random samples
from Beta and Gamma distribution, for which density
functions are defined as follows:
• Beta(a, b) distribution

f (x) =
0(a+ b)
0(a)0(b)

xa−1(1− x)b−1, (15)

for a > 0, b > 0 and 0 ≤ x ≤ 1,
• Gamma(a, b) distribution

f (x) =
ba

0(a)
xa−1e−xb, (16)

for a > 0, b > 0 and x ≥ 0.
To perform that evaluation, 32 different data distributions
were chosen: Beta(1,2), Beta(1,4), Beta(1,7), Beta(2,2),

Beta(2,1), Beta(2,4), Beta(2,5), Beta(2,7), Beta(4,1),
Beta(4,2), Beta(4,4), Beta(4,5), Beta(4,7), Beta(5,2),
Beta(5,4), Beta(5,7), Beta(7,1), Beta(7,2), Beta(7,4),
Beta(7,5), Gamma(0.5,0.5), Gamma(0.5,2), Gamma(0.5,7),
Gamma(1,0.5), Gamma(1,2), Gamma(1,7), Gamma(2,0.5),
Gamma(2,2), Gamma(2,7), Gamma(5,0.5), Gamma(5,2) and
Gamma(5,7). The goal of having 32 different data distribution
is to ensure that wide enough range of skewness and kurtosis
values were taken. For each distribution sample with size 10,
30 and 90 was generated 30 times to obtain representative
sample. An overview of sample skewness, kurtosis and
Shapiro-Wilk p-value before transformation is given in
Figure 5. To reflect situation in practice, only non-negative
simulated values were taken into account.

Results of simulation study are organized in two groups:
transformation results and capability estimation. Statistical
analysis of simulated data was performed in statistical soft-
ware R using additional package jtrans for implementation of
Johnson transformation.

A. TRANSFORMATION RESULTS
For each sample, proposed power transformation, Abbasi-
Niaki, Box-Cox and Johnson transformation were conducted.
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FIGURE 4. Skewness and optimal solution.

FIGURE 5. Simulated data.

Furthermore, for each sample and for each transformation
method, sample standard deviation, sample mean, sample
skewness, sample kurtosis and p-value of Shapiro-Wilk
normality test were recorded before and after transformation.
To obtain representative sample, average sample skewness,
kurtosis and p-value of Shapiro-Wilk normality test were
calculated for each distribution and sample size, which
gave 96 average values. Difference between Shapiro-Wilk
p-value before and after transformation was calculated
and displayed in Table 4. Johnson transformation was the
most successful compared to other methods as p-value of
Shapiro-Wilk test before transformation was on average
increased by 0.54. Proposed power transformation method
increased p-value by 0.35 on average, which lead us to
the conclusion that performance of the proposed power
transformation method has better performance in terms of
p-values increase than method by Abbasi-Niaki and Box-Cox
transformation.

In terms of Shapiro-Wilk normality test, for data trans-
formed by Johnson method null hypothesis on normality
was rejected in 1.7 % of cases. Both, the proposed power

TABLE 1. Difference between Shapiro-Wilk p-values before and after
transformation.

transformation and Abbasi-Niaki transformation had better
performance than Box-Cox transformation, as only for 7.2 %
samples had null hypothesis of Shapiro-Wilk test rejected in
the case of the proposed power transformation (Figure 6).

For the proposed power transformation, 2.1 % of
2880 samples were transformed by using optimal kurtosis
approach and 0.7 % of samples were transformed using
minimum skewness approach as described in Figure 1.
Remaining 97.2 % of samples where transformed using zero
skewness approach. For Johnson transformation, 78 % of
samples were transformed using SB Johnson curve according
to Equation 8. As the proposed transformation method
has different approach in the case of negative skewness
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FIGURE 6. Normality test results.

compared to Abbasi-Niaki method, mean difference in
p-value was compared for average sample with negative
skewness: Abbasi-Niaki method on average increases p-value
by 0.10 and proposed transformation method increases
p-value by 0.19. For that reason, we can agree that proposed
transformation method has better performance in the case
of negatively skewed data. Overview of average sample
skewness before and after transformation is provided in
Figure 7. It can be seen that Box-Cox transformation method
has the lowest performance in case of negatively skewed
data and proposed power transformation has the lowest
performance in case of data with skewness close to 0, but not
lower compared to Box-Cox and Abbasi-Niaki method.

Median skewness and kurtosis value after transformation
are also important indicators of transformation performance.
According to Equation 11 and Equation 12, ideal skewness
after transformation is 0 and ideal kurtosis after transfor-
mation is 3. In Figure 7 it is clear that proposed power
transformation reduces skewness to zero better than any other
method, as median value is closest to zero. Median kurtosis
value is closest to 3 in the case of Johnson transformation and
in case of other transformation methods, kurtosis values after
transformation are comparable (Figure 8).

B. CAPABILITY ESTIMATION
Lower and upper specification limits in industry are usually
defined by regulatory agencies and do not rely on theoretical
data distribution of specific parameter. For that reason, for
generated sample upper specification limit (USL) and lower
specification limit (LSL) were chosen to reflect situation in
practice. List of specification limits by distribution is given
in Table 2.

For each sample 99.865, 50, and 0.135 percentiles were
calculated using quantile function in R. Equation 3 and
Equation 4 were then applied to calculate indices Cp and Cpk
(target indices). After data transformation is performed and
null hypothesis of normality test isn’t rejected, transformed
data were used to estimate process capability indices
after transformation C ′p and C ′pk according to Equation 1
and Equation 2. Mean value and standard deviation were

TABLE 2. Specification limits.

estimated from transformed sample, while USL and LSL
were transformed in a same way as sample was transformed.
For some samples transformation of USL and LSL couldn’t
be performed from mathematical reasons. For example,
in case of Johnson transformation for 76.5 % of samples USL
and LSL couldn’t be transformed by Equation 8 as x > λ+ϵ,
which made most of samples fitted to SB not successfully
transformed. For Johnson transformation, authors in [27]
used percentiles approach to estimate Cp and Cpk , which
won’t be discussed in this paper.
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FIGURE 7. Skewness after transformation.

FIGURE 8. Kurtosis after transformation.

In order to identify the method which gives the most
accurate capability estimation, differences Cp − C ′p and
Cpk − C ′pk were observed. If calculated differences were
bigger than 5, transformation was identified as unsuccessful.
After samples for which transformation wasn’t successful
were excluded, it has been shown that proposed power
transformation and Box-Cox method gave the most samples
for which capability indices can be estimated according
to Equation 3 and Equation 4 (23%, 67%, 84% and 87%
of successful transformations for Johnson transformation,
Abbasi-Niaki transformation, proposed power transforma-
tion and Box-Cox transformation, respectively).

In order to compare estimated capability indices, C∗pk and
C∗p were calculated according to Equation 3 before data
transformation was performed. Calculated differences are
then interpreted as follows:
• Differences between target indices (Cp and Cpk ) and
estimated indices before data transformation (C∗pk and

C∗p ) are showing the risk of estimating capability of
the process in case transformation is not preformed
when data are not normally distributed. Difference was
calculated for every data distribution, having in total
32 values. For extreme negatively skewed data there is a
risk to underestimate Cpk index and overestimate the Cp
index (Figure 9). Expected difference between estimated
indices and target indices are decreasing as p-value of
Shapiro-Wilk test is increasing (Figure 9).

• Differences between target indices (Cp and Cpk ) and
estimated indices after data transformation (C ′pk and
C ′p ) are showing how accurate process capability
is estimated after data transformation is performed.
Differences were calculated for every data distribution,
having in total 32 values. In Figure 10 and Figure 11 it
is clear that capability indices after transformation are
closer to target indices compared to indices before data
transformation.
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FIGURE 9. Difference between target indices and indices before transformation.

FIGURE 10. Difference between Cpk estimated true indices and indices after transformation.

• To identify which method performs best, differences
between target capability indices and estimated capabil-
ity indices after transformation were compared for each
distribution separately by calculating relative bias (RB)
according to [27]:

RBCpk =
1
r

r∑
i=1

C ′pk − Cpk

Cpk
, (17)

RBCp =
1
r

r∑
i=1

C ′p − Cp
Cp

, (18)

where r denotes number of successful transformations
for data generated from specific data distribution.
We define µX = ¯RBCp, where X ∈ {Abbasi-
Niaki (A), Box-Cox (B), Johnson (J), Proposed power

transformation (P)}. For each distribution, difference of
relative bias for each method was tested by ANOVA. For
example, in case of Beta(1,2) distribution hypothesis of
statistical test for Cp index are defined as follows:

H0 : µA = µB = µJ = µP
H1 : mean relative bias is different at least for one

method.
In the case ANOVA revealed statistical difference
between methods, Tukey HSD test was conducted
to decide which method performs differently than
others. Results are provided in Table 3. Transformation
methods with comparable relative bias are grouped in
parentheses, which are sorted by mean relative bias,
starting with minimal value. For example, in the case
of Beta(1,2) distribution p-value of ANOVA test for
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FIGURE 11. Difference between Cp estimated true indices and indices after transformation.

testing differences of Cpk mean relative bias defined in
Equation 18 was < 0.05. Conducting Tukey HSD test
revealed that Box-Coxmethod hasminimal relative bias.
Mean relative bias of Abbasi-Niaki and proposed power
method were comparable whereas Johnson method had
the biggest relative bias. Those results were then written
in Table 3 as (B)(A-P)(J).

In almost all cases, Johnson method performed the worst.
Proposed power transformation method performed better
or equal to Box-Cox and Abbasi-Niaki in most cases.
In other cases, proposed power transformation method was
comparable to Box-Cox or Abbasi-Niaki method. In case
of data generated from Beta(7,1) distribution, Abbasi-Niaki
method was unsuccessful and couldn’t provide estimate of
Cp nor Cpk . Results of ANOVA analysis of relative bias of
Cp in relation to skewness and kurtosis value is displayed in
Figure 12. Proposed power transformation method showed
significantly better or comparable performance in estimating
Cp and Cpk in cases of positive skewness and kurtosis bigger
than 3. In case of negative skewness and kurtosis lower
than 3, proposed power transformation method showed better
performance in estimating Cpk index.

IV. EXAMPLE
The example for capability analysis was taken from [32].
The data shows an example for the production of a polymer,
based on an actual scenario. A catalyst is required for
the chemical reactions to occur to produce the polymer
and contains a chemical that can create an impurity in
the polymer. For this purpose, we consider the reaction
time as main variable for capability analysis. Suppose
the impurities need to be analyzed within the predefined
limits of 80 and 100. The Shapiro-Wilk test (p-value
0.01774) and probability plot indicated that we cannot

TABLE 3. Results of ANOVA test of relative bias.

rely on standard capability analysis assuming normally
distributed data. Figure 13 shows the data histogram along
with the assumed specification limits. After applying all
four algorithms—proposed power transformation, Abbasi-
Niaki transformation, Box-Cox transformation, and Johnson
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FIGURE 12. Performance of proposed power transformation compared to other methods.

FIGURE 13. Impurities reaction time data.

TABLE 4. Shapiro-Wilk p-values after transformation.

transformation—a Shapiro-Wilk test was performed on the
transformed data, as shown in Table 4. Since only the
proposed power transformation and Johnson transformation
yielded successful results, capability indices were calculated
for these two methods only, utilizing the transformed upper
and lower specification limits. The Cp index after the power
transformation is equal to 4.533, and Cpk is equal to 1.143.
However, determining the Upper Specification Limit (USL)
and Lower Specification Limit (LSL) after the Johnson
transformation was not possible, as x > λ + ϵ. Out
of the four transformation methods considered, only the
proposed power transformationmethod yielded usable results
for capability estimation. The other methods—Abbasi-Niaki,
Box-Cox, and Johnson transformations—did not provide
reliable outcomes for this purpose.

V. CONCLUSION
In this paper, we introduce a modified power transformation
method and compare it to three other transformation methods
for non-normal distributed data. We conducted simulations
on data from 32 different distributions and found that the
Johnson and the proposed power transformations performed
better than the Box-Cox and Abbasi-Niaki methods, resulting
in larger reduction in skewness. However, in some cases, the
Johnson transformation led to unrealistic results, making the
Box-Cox and the proposed power transformation methods
more practical.

The proposed algorithm offers the advantage of consid-
ering both skewness and kurtosis values for transformation,
ensuring effectiveness even when skewness reduction is
limited. The proposed transformation method demonstrated
significant performance, particularly in cases of negatively
skewed data. Although the analysis revealed that the capabil-
ity index estimation using the proposed power transformation
method is superior or comparable to the Box-Cox and
Abbasi-Niaki methods, the Johnson transformation method
performed theworst in this context. However, it’s important to
note that all transformation methods may yield unsuccessful
results in the case of extreme skewness. Additionally,
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Algorithm 1 Power Transformation Function
0: function=0 PowerTransform(A, B,ϵ, data, iterations,

flag, step)
0: if shapiro.test(data) returns p >

0.5and |skewness(data)| < ϵ then ▷ Data is
already approximately normal

0: return
0: end if
0: Initialize variables and data structures
0: a = A, b = B, r = 1
0: for ak in sequence from A to B by 0.01 do
0: bk ← ak + step
0: if skewness(dataak ) · skewness(databk ) <

0andak · bk > 0 then
0: Update a = ak and b = bk
0: Store parameters and output related to

skewness
0: end if
0: end for
0: if multiple solutions available then
0: Select a and b based on minimum skewness
0: end if
0: if skewness is positive then
0: Perform bisection on interval (a, b) until conver-

gence ϵ for skewness
0: else
0: Invert data to positively skewed: data ←

−data + 2max(data) and recursively call
PowerTransform ϵ, data, iterations, flag, step

0: end if
0: if power isn’t found then PowerTransformKurtosis

A, B, ϵ, data, iterations, flag, step
0: end if
0: return result
0: end function=0

when dealing with data that are already close to normally
distributed, the proposed transformation may yield poorer
results. Further analysis showed that the estimation of
capability indices of the proposed power transformation
method is better or comparable to the Box-Cox and Abbasi-
Niaki methods, while the Johnson transformation method
performed the worst in this regard. For future investigations,
it is recommended to conduct a comparison of capability
indices through the implementation of the proposed trans-
formation technique with percentile estimation and adjusted
index methodology.

When demonstrating the performance of each method
using a real example, it became evident that only the
proposed power transformation method was viable for
capability estimation among the four transformation methods
considered.

APPENDIX
See Algorithms 1 and 2.

Algorithm 2 Power Transformation Function With Kurtosis
0: function=0 PowerTransformKurtosis(A, B, ϵ, data,

iterations, flag, step)
0: Initialize variables and data structures
0: a = A, b = B, r = 1
0: for ak in sequence from A to B by step do
0: bk ← ak + step
0: if (kurtosis(dataak )−3) · (kurtosis(databk )−3) <

0andak · bk > 0 then
0: Update a = ak and b = bk
0: Store parameters and output related to

kurtosis
0: end if
0: end for
0: if skewness is positive then
0: Perform bisection on interval (a, b) until conver-

gence ϵ for kurtosis
0: else
0: Invert data to positively skewed: data ← −

data+ 2max(data) and recursively call Pow-
erTransformKurtosis A, B, ϵ, data, iterations,
flag, step

0: end if
0: return result
0: end function=0
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