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ABSTRACT This paper aims to enhance the Analytic Hierarchy Process (AHP)-based path planning
algorithm by addressing some of its shortcomings. Existing algorithms both struggle to identify optimal paths
and lack a systematic approach for constructing relative importance matrices (RMs). To remedy this, the
proposedAAHPmethod integrates the A∗ algorithm to enhance path efficiency and incorporates robot sensor
detection to systematically determine the optimal RM, unlike the existing AHP method. The performance
of the proposed algorithm was evaluated by comparing the navigation performance of the existing AHP
method, AAHP without A∗, and AAHP in various scenarios. Simulation results demonstrate the AAHP’s
superiority over existing methods in terms of distance and rotation, ultimately highlighting its efficiency in
path planning.

INDEX TERMS Mobile robot navigation, analytic hierarchy process, optimal path planning, relative
importance matrix.

NOMENCLATURE
On Value of objective that sub-

script (n) indicates
n = {distance, rotation,
safety, . . .}

Onorm Normalized value of objec-
tives

Oldist, Ol ang, Ol safety Value of local objective for
distance, rotation, and safety

Wm Weight that subscript (m)
indicates
m = {object, candidate, . . .}

Wobj, W cand Weight for each objective and
candidates

Wo1, Wo2, Wo3 Weight for each objective
Wo1ortho, Wo2ortho Weight of 2D projected

objectives
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approving it for publication was Chen Chen .

Wodist, Worot , Wosafety Weight of each objectives
X(xi, yi, θ i)

X : robot pose, pose compo-
nent that subscript (i) indi-
cates
i= {A∗, cand, goal, robot}

Ravg, Rmax Average measurement range
of the LiDAR, Maximum
range of the LiDAR

I. INTRODUCTION
Autonomous driving technology is expected to be used in
all areas of our lives with the ushering in of the era of
the 4th Industrial Revolution [1], [2]. This innovative tech-
nology is currently going through the process of maturing
within numerous production areas, such as self-driving cars
as well as various services using mobile robots [3], [4].
The technologies required to implement autonomous driving
include cognitive technology to obtain information about
the surrounding environment using sensors; decision-making
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technology, including localization, map building, and navi-
gation; and control technology that moves the robot along
the planned path [3]. Navigation, which belongs to the field
of decision-making technology and includes path planning,
is the part that involves planning the robot’s driving path,
and it is being actively researched as one of the fundamental
technologies in implementing autonomous driving [5].
Path planning algorithms include global path planning and

local planning, and they are selected depending on the path
planning scope and the scope of information used for path
planning [6]. Global path planning is a method of finding the
optimal path using information about the driving environment
as a whole. This can find the optimal path from the starting
position to the destination, but it is necessary to have accurate
and sufficient information about the work environment to find
the optimal path, and it also requires a lot of calculations [7].
This makes it difficult for global path planning to avoid
dynamic obstacles such as moving people and changes in the
environment.

A representative global path plan is the Dijkstra
algorithm [8]. The Dijkstra algorithm was designed to find
the two nodes with the shortest distance between them in a
working space. By finding the shortest path by connecting
all nodes in the environment, the Dijkstra algorithm has the
advantage of always being able to find the optimal path, but
it also has the disadvantage of requiring a large amount of
calculation. To overcome this shortcoming, the A* algorithm
was developed [9]. The A* algorithm is similar to the Dijkstra
algorithm, but it does not compute paths to all nodes. Instead,
the optimal path is calculated by introducing a heuristic
estimate h(x) to estimate the best path for each node. This
has the advantage of reducing the calculation load, which is a
disadvantage of the Dijkstra algorithm. However, if the user
fails to properly set the heuristic estimate h(x), it is possible
that the optimal path will not be derived.

Meanwhile, the D* algorithm [10] was developed to
improve the dynamic obstacle avoidance ability of the A*
algorithm. To calculate a more natural path for the algorithm,
the Field D* algorithm [11] and Theta* algorithm [12] were
developed sequentially.

Another global path planningmethod is the sampling-based
global path method. This approach randomly forms points to
find the optimal sampling set; an algorithm of this type is
the RRT algorithm [13]. The RRT algorithm creates nodes
in random empty space until it reaches the destination, and
it uses the set of nodes at that time. The RRT algorithm has
proven its performance in the DARPA Urban Challenge [14].
However, the RRT algorithm suffers from disadvantages in
that it does not guarantee an optimal path and that the gener-
ated path is not smooth. To solve these shortcomings of the
RRT algorithm, the RRT* algorithm was proposed [15], [16].
The informed RRT* algorithm has also been proposed for
faster calculation of RRT* [17]. Another random sampling
algorithm is the Probabilistic Roadmap Method (PRM). The
PRM algorithm creates nodes throughout the terrain, then

finds the optimal set of nodes and uses a path based on that
set [18]. Meanwhile, in contrast to global path planning, there
is also local path planning, which uses information from the
robot’s surroundings to plan its path.

Unlike global path planning, local path planning repeatedly
calculates short-distance paths in sections within the robot’s
sensing area to ultimately move to the final destination. Local
path planning has the disadvantage of having a high possi-
bility of not finding the optimal path because it plans paths
based on limited environmental information. However, since
it calculates the path for each short path, it can avoid dynamic
obstacles.

A representative algorithm used for local path planning is
the DynamicsWindowApproach (DWA) algorithm [19]. The
DWA algorithm is an algorithm that generates the path while
considering the kinematic constraints of the robot and then
selects the optimal path among the dynamic windows, which
are valid paths that can move at linear speeds and angular
speeds. When evaluating a dynamic window, an objective
function is created by considering the distance from static
obstacles, the distance to the target point, and the difference
from the current speed, based on which the optimal solution
is selected. The DWA algorithm is a widely used algorithm,
but it suffers from the disadvantage of having to modify
parameters appropriately.

The Vector Field Histogram (VFH) algorithm [20], which
is another local path planning method, calculates different
forward costs depending on the location of obstacles in each
direction. The goal direction is determined by calculating the
balance function according to the calculated forward cost.
The VFH algorithm achieves advantages in real-time per-
formance and accuracy. However, the VFH algorithm has a
limitation that may make it inappropriate for actual applica-
tion because it does not consider the dynamics and kinematics
of the robot. The VFH+ algorithm has been proposed to over-
come this limitation [21]. The VFH+ algorithm has been used
in various studies because it solves existing shortcomings by
determining the optimal movement direction by considering
both the rotation speed and width of the robot [22], [23].

A widely used local path planning algorithm is Artificial
Potential Field (APF) [24]. The APF algorithm is a method
of finding the optimal movement direction by defining that an
attractive force acts in the destination direction and a repul-
sive force acts in the obstacle direction. The APF algorithm
shows good performance in real-time driving because it uses
a simple mathematical model. However, the APF algorithm
also suffers from disadvantages such as a local minimum
in which the sum of repulsion and attraction becomes 0,
as a result of which it cannot move and therefore does not
reach its destination. Various algorithms have been presented
in attempts to solve this problem, and they have yielded
promising results. One such algorithm involves changing the
repulsive potential function [25]. Another one involves set-
ting up a virtual obstacle around the robot to draw a repulsive
force [26].
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The focus of the present study is on improving one of the
local path planning algorithms, i.e., the Analytic Hierarchy
Process (AHP)-based path planning algorithm. AHP is an
evaluation technique that was designed by T. L. Saaty in the
1970s, and it can be used in multi-criteria decision-making
that includes qualitative elements [27], [28]. AHP stratifies
complex problems and performs quantitative pairwise com-
parisons of each factor to derive their importance and produce
optimal results. Due to these advantages, it has been used
in various situations, such as determining the location of
power plant construction and the construction location of
social facility infrastructure [29], [30]. It has also been used
to determine rescue targets in disaster situations or improve
line keeping systems [31], [32].

In AHP-based path planning, the locations where the robot
can move are comprehensively and quantitatively evaluated
against various factors while applying the user’s preference
to select the optimal location and repeating this process to
calculate the path from the current location to the final des-
tination [33]. The factors considered here are the distance
to the destination, the angle at which to turn, and collision
safety. Moreover, candidates for selection, i.e., the robot’s
moving position, were defined as points on the robot’s lidar
sensing boundary. The existing AHP-based path planning
algorithm has shown results that can find an appropriate path.
The advantage of AHP-based route planning is that it makes
navigation possible while simultaneously considering various
factors, and that the user’s preferences can be reflected in
each factor. For example, in tasks where a short driving
distance is most important, the highest weight is given to
the driving distance, which allows the robot to travel the
shortest distance. Meanwhile, in cases where collision safety
is most important, the greatest weight is given to the aspect
of collision safety and AHP plans the safest route. This
has been confirmed in previous works [33], [34], [35], [36].
However, in the AHP framework, it is necessary to define a
pairwise comparison matrix between each criterion consid-
ered in the part that reflects the user’s preference. However,
the existing AHP suffers from a limitation in that it cannot not
systematically design parts that reflect user preferences. The
user has to arbitrarily define a pairwise comparison matrix
between objectives, and there is also a problem wherein an
appropriate path cannot be drawn if the pairwise comparison
matrix between objectives is not defined appropriately for
the environment. To solve this problem, the current study
improved upon this existing algorithm to secure globality of
AHP-based path planning, which is a local path planning
method.

The local solution determined through the robot’s local
information was also reevaluated from a global perspective
and designed to find the optimal path despite changes in the
environment.

The rest of this paper is structured as follows. Section II
explains the detailed application method and limitations of
the existing AHP-based path planning method. Section III
explains the details of the Adaptive Analytic Hierarchy

FIGURE 1. Structure of AHP.

Process (AAHP)-based path planning algorithm, which
was designed to overcome the limitations of the existing
AHP-based path planning algorithm. The results of a simu-
lation applying the AAHP-based path planning algorithm are
summarized in Section IV. Finally, Section V concludes the
paper.

II. PROBLEM DESCRIPTION
A. PRELIMINARY STUDY ON AHP-BASED PATH
PLANNING
In many field applications involving the use of autonomous
mobile robots (AMR), path planning is a very important
factor in improving productivity. In this context, changes in
the work environment, such as the appearance of other work-
ers or obstacles that were not previously defined, increase
the need for dynamic environmental response capabilities in
mobile robot-based services. For example, in a smart factory,
workers, obstacles, or other robots may frequently appear in
the path of the moving robot. To respond to such situations,
efficient path planning and modification of the path plan
based on local sensor information are essential. Accordingly,
the current study proposes a route planning algorithm that
integrates global route planning and local route planning
methods.

AHP is a multi-objective decision-making method that
finds the optimal solution (goal) among multiple candidates
by simultaneously considering multiple factors (objectives).
Figure 1 depicts the decision-making structure of AHP.
Various studies have been conducted to plan the path

of a mobile robot while reflecting these characteristics of
AHP [34], [35], [36]. In AHP-based path planning, among
the points on the sensing boundary measured through the
robot’s sensors, points where the robot can move are defined
as candidates. Each defined candidate is evaluated based on
the distance from the point to the destination (Odist ), the angle
between the robot and the point (Oang), and the safety when
moving to the point (Osafety).

In AHP-based decision making, the optimal solution is
determined based on the relative importance (RM) matrix
between objectives. This RM is defined as equation (1)
according to the decision-maker’s specific preferences and
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priorities.

RM =

O1/O1 O1/O2 O1/O3
O2/O1 O2/O2 O2/O3
O3/O1 O3/O2 O3/O3

 =

 1 a b
1/a 1 c
1/b 1/c 1

 , (1)

where O1, O2, and O3 represent the 1st , 2nd , and 3rd objec-
tives, respectively. AHP uses integers from 1 to 9 to define
relative importance. Once RM is determined according to the
user’s preference, it is normalized as shown in equation (2) to
obtain a weighted objective matrix.

Onorm =

[
Oi1∑n
i=1 Oi1

,
Oi2∑n
i=1 Oi2

, · · ·, Oin∑n
i=1 Oin

]
, (2)

where i=1, 2, · · ·, n, and n is the number of objectives.
By calculating the average of each column in equation (2),
the following weighted objective matrix can be obtained. The
focus of this study is on improving one of the local path
planning algorithms, i.e., the Analytic Hierarchy Process.

Wobj =

[ ∑n
j=1 Onorm(1,j)

n ,

∑n
j=1 Onorm(1,j)

n , · · ·,

∑n
j=1 Onorm(1,j))

n

]
,

(3)

where Wobj is a 1 × n row matrix. Finally, Wobj refers to the
weight of each objective that is considered in the decision-
making process. The next procedure is to evaluate what value
all candidates have for the considered objective. Equation (4)
evaluates the value of a candidate through the ratio of the
value of each candidate to the i− th objective.

E(Oi)lm =
Oi (Cl)
Oi (Cm)

, (4)

where l and m represent the l th and mth candidates. Once the
evaluation matrix for each objective is obtained, weighted
candidate matrices are obtained through the same proce-
dure used in equations (2)-(3). First, the normalized form of
equation (4) is defined as follows.

E(Oi)norm =

[
E(Oi)l1∑γ
l=1 E(Oi)l1

,
E(Oi)l2∑γ
l=1 E(Oi)l2

, · · ·,
E(Oi)lγ∑γ
l=1 E(Oi)lγ

]
.

(5)

The weighted candidate matrix for each objective can be
found as follows

Wcand (Oi) =

[∑γ

m=1 E(Oi)norm(1m)
γ

,

∑γ

m=1 E(Oi)norm(2m)
γ

,

· · ·,

∑γ

m=1 E(Oi)norm(γm)
γ

]
.

(6)

All the functions are then considered to obtain the follow-
ing weighted candidate matrix:

Wcand =
[
Wcand (O1)

T , Wcand (O2)
T , · · ·, Wcand (On)T

]
.

(7)

FIGURE 2. AHP-based path planning with an inappropriate RM.

This process allowed for the weight for each objective to
be determined, and the final selection was made according to
the following equation.

Function∗
= argmax(Wcand ×W T

obj), (8)

where Wcand is a k × l matrix, where k is the number of
objectives and l is the number of candidates.Meanwhile,W T

obj
is a weighted objective vector. In AHP-based path planning,
as the robot moves to its destination, the next location that it
will move to is determined from the robot’s current location
based on an AHP-based decision-making method; this pro-
cess is repeated until the robot reaches its final goal.

B. LIMITATIONS AND CORRESPONDING IMPROVEMENTS
OF AHP-BASED PATH PLANNING
As explained earlier, AHP is a method of deriving optimal
results by reflecting the user’s preferences for various criteria
under consideration. However, there is no systematic way
to determine which RM is most appropriate in a specific
environment. Therefore, relative importance was set based on
the user’s arbitrary preference, and the same RM was applied
to all sections of the robot’s driving. However, this method
fails to reflect changes in the work environment, and if an
appropriate RM is not set, an inappropriate path is created,
as shown in Figure 2; this is an example of a robot failing to
reach its destination because it is making infinitely repeated
movements in a specific area due to an incorrectly defined
RM. In other words, the existing AHP has the disadvantage
of not being able to reflect the robot’s work environment. It is
therefore necessary to use an algorithm that generates an RM
suitable for the environmental situation in which the robot is
located.

Moreover, the existingAHP-based path planning algorithm
is a local path planning method that uses only the robot’s
sensing information. Because local path planning plans the
robot’s path based on environmental sensor information that
is acquired as the robotmoves, it is possible that the robotmay
fall into a local minima situation or create an inefficient path.
Therefore, in this study, we propose Adaptive AHP-based
path planning, which is an AHP-based path planning that
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FIGURE 3. Adaptive AHP algorithm.

improves upon the limitations of the existing AHP-based path
planning.

In summary, the limitations of existing AHP-based path
planning are, first, that there is no systematic method with
which to suggest the optimal RM for the various driving
environment, and secondly, as a limitation of the local path
planning method, the optimality of the planned path cannot
be guaranteed.

Therefore, the main contributions of the AAHP proposed
in this study are as follows: It analyzes the robot’s driving
environment and proposes a method to derive RM that can
make optimal decision in each situation. Further, to overcome
the limitations of local route planning, the A* algorithm,
which is a global path planning method, was included in the
AHP-based decision-making process.

III. METHODOLOGY
In this section, we elaborate upon the proposed path planning
algorithm. The structure of the proposed AAHP is shown in
Figure 3. The proposed algorithm follows the procedure pre-
sented in Figure 3. The implementation of sub-functions such
as RM reduction technique, getting local solution, and getting
global solution are also explained in detail through pseudo
code. Considering all RMs defined in the AHP framework
would reduce computational efficiency, so the reduced RM is
obtained first. Next, candidates are defined through external
environmental information measured by the robot’s sensors.

Then, candidates based on local sensor data are eval-
uated based on the reduced RM set and the con-
sidered objectives, after which a final optimal solu-
tion set (RM , Cand)∗local =

{(
RM1, Cand∗

RM1

)
,(

RM2, Cand∗
RM2

)
, · · ·,

(
RMi, Cand∗

RMi

)}
is obtained.

The final optimal solution, (RM , Cand)∗global , is obtained
using (RM , Cand)∗local and global information-based objec-
tives.

FIGURE 4. Original RMs in Wo1Wo2Wo3 space.

The process of moving the robot to the derived solution
position is repeated until the final destination is reached.

A. RELATIVE IMPORTANCE MATRICES
As the robot moves from its current location to its final
destination, it is placed in various environments. The most
intuitive way to find an RM appropriate for each environment
is to apply AHP to all RMs that can be created. However, this
method is not appropriate because it requires huge amounts
of computations. Therefore, this study proposes a method to
reduce the set of RMs that can be created.

RM is defined by forming a pairwise comparison matrix
using an integer relative comparison scale ranging from 1 to 9.
Based on the AHP decision-making process,Wobj, a weighted
objective vector, is finally calculated as shown in equation (3).
Ultimately, Wobj refers to the weight for each objective

being considered. In this study, three objectives are con-
sidered for route planning, so a total of 93 RMs must be
considered. In fact, excluding matrices with the same ratio,
637Wobj = (Wo1, Wo2, Wo3) are expressed in Wo1Wo2Wo3
space, as shown in Figure 4, and the sum of each component
can be expressed as follows:

Wo1 +Wo2 +Wo3 = 1. (9)

Figure 4 is a schematic representation of Equation 9. Because
three objectives are considered for path planning of a mobile
robot, they are expressed in the form of a 3D graph. The coor-
dinates of each point represent the weight for the objective
being considered.

However, considering 637 weights results in decreased
calculation efficiency, so if equation (9) is projected onto the
WO1orthoWO2ortho

plane using equations (10)-(11),

WO1ortho = WO1 cos θ, (10)

WO2ortho = WO2 cos θ, (11)

then we can get the following relationship

WO1ortho +WO2ortho≤1, (12)
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FIGURE 5. Reduced RMs in Wo1Wo2Wo3 space.

where θ= 45◦, and WO1ortho , WO2ortho > 0. That is, for each
RM, eachWobj is projected onto the area within equation (12)
on the WO1orthoWO2ortho plane. This area is divided into
0.1 intervals, the weights included in each area are designated
as the median of the area, and the final 46 weight pairs(
WO1ortho , WO2ortho

)
are obtained. Finally, equations (9)-(10)

are used to obtain two weight pairs (WO1 , WO2 ) in the
Wo1Wo2Wo3 space are obtained, while equation (8) is used
to obtain WO3. Figure 5 shows Wobj with the final reduced
RM applied. To verify the effectiveness of the proposed
RM reduce technique, a decision was made regarding the
case of applying and not applying the RM reduce technique
in an environment simulating a smart factory, which is the
most complex case among the simulation scenarios tested
in Section IV of this paper. The average time required was
calculated. When the RM reduce technique was not used, the
calculation time at each decision-making step was 1021 ms,
and when the RM reduce technique was applied, the time
required was 21 ms. These results confirm the effectiveness
of the proposed RM reduce technique.

B. LOCAL OPTIMAL SOLUTION
After obtaining Wobj to which the reduced RM is
applied, each candidate is evaluated through objec-
tives based on local information to obtain the optimal
solution set (RM , Cand)∗local =

{(
RM1, Cand∗

RM1

)
,(

RM2, Cand∗
RM2

)
, · · ·,

(
RMi, Cand∗

RMi

)}
for each RM.

Figure 6 shows the area detected by the mobile robot’s lidar,
candidates on the detection boundary, and the A* path.

To find the local optimal solution, it is necessary to evaluate
each candidate, and the objectives for this are the distance
between the A* path and the candidate (Oldist ), the rotation
angle to face the candidate in the robot’s current orientation
(Olang), and the collision risk (Olsafety ) based on the distance to
the obstacle, which is defined as follows.

Oldist =

√
(yA∗ − ycand )2 + (xA∗ − xcand )2, (13)

FIGURE 6. AHP decision making for local optimal solution.

Olang = |θcand − θrobot | , (14)

Olsafety =


0, (distobs ≤ r)

3

r
√
2π

e
−

1
2

(
3(x−2r)

r

)2
, (r < distobs≤2r)

100, (distobs > 2r)

(15)

where distobs is the distance between candidate and obstacle,
r is the radius of the mobile robot.
The robot considered in this study can detect in the forward

direction through a lidar sensor. Points on the lidar sens-
ing boundary were divided into equal intervals and defined
as candidates among which the robot could move. For the
46 reducedRMs, a set of 46 pairs of local solutions that satisfy
equation (8) is obtained by evaluating the objective defined in
equations (13)-(15) among all candidates.

(RM , Cand)∗local =
{(
RM1, Cand∗

RM1

)
,

(
RM2, Cand∗

RM2

)
,

· · ·,
(
RM46, Cand∗

RM46

)}
.

In particular, the optimality of the local information-based
solution was secured by considering A*, the global optimal
path generation algorithm, and the distance to candidates.

C. GLOBAL OPTIMAL SOLUTION
Forty-six local optimal solutions were obtained through local
environmental information obtained through the robot’s sen-
sors. In other words, in the process of finding the local optimal
solution, each of the 46 reduced RMs derives a corresponding
optimal solution. Note that there may be overlapping optimal
solutions among the 46 RMs. Figure 7 depicts the situation
of searching for the global optimal solution. As depicted in
Figure 3, the AAHP framework uses the AHP framework to
optimize the planned path, and it evaluates up to 46 candidates
according to the global objective given below.
Ogdist represents the distance between each candidate and

the goal position, Ogang represents the rotation angle required
for the robot to face the candidate, and Ogsafety represents the
obstacle density within the detection area when the robot
moves to a specific candidate:

Og_dist =

√(
ygoal − ycand

)2
+

(
xgoal − xcand

)2
, (16)

Og_ang = |θcand − θrobot | , (17)

Og_safety =
Ravg
Rmax

, (18)
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FIGURE 7. AHP decision making for global optimal solution.

where Ravg is the free space with in lidar detection area and
Rmax is the total lidar detection area. Once the final solution is
determined according to equation (8), the robot moves to the
corresponding location using motion control, and the same
trial is repeated until the robot reaches the final destination.

IV. SIMULATIONS AND RESULTS
To demonstrate the performance of AAHP, MATLAB sim-
ulations were conducted in robot driving environments of
various complexity. The characteristics of AAHP are that it
is a method that can be used to suggest an RM that is suitable
for the driving environment without using a uniform RM, and
that it secures the optimality of the route by simultaneously
considering the A* path, which is a global path planning
algorithm. Two types of simulation scenarios were designed
depending on the number of obstacles, and one type was
designed in a smart factory environment. In the simulation,
it was compared with the existing AHP and APF as local
route planning methods. Additionally, the effect of including
A* path planning in the proposed path planning algorithm
was compared. Lastly, the superiority of AAHP was shown
through comparison between the integrated version of APF
and A* and AAHP (A* integrated version) proposed in this
study. Further, in the scenario where the existing AHP was
applied, changes in the path were confirmed by applying
different RMs to the three objectives. Typically, the shortest
distance driven and the small average rotation of the robot are
used as measures of superiority in navigation performance.
Therefore, to compare the performance of each method, the
distance traveled by the mobile robot to reach the destination
and the average rotation amount of the robot were investi-
gated. For all simulation scenarios, it was assumed that the
robot was given a mission to move across obstacles from the
bottom left to the top right.

A. SCENARIO 1: FOUR OBSTACLES
The first simulation is a scenario in which a mobile robot
moves to a destination within an environment in which there
are four obstacles.

To apply the existing AHP, the following three cases
were considered: Wobj =

(
Wodist , Worot , Wosafety

)
to

Wobj1 = (0.2, 0.2, 0.6), Wobj2 = (0.2, 0.6, 0.2), Wobj3 =

(0.6, 0.2, 0.2). For eachWobj, different weights were applied

FIGURE 8. Navigation performance: conventional AHP-based path
planning.

FIGURE 9. Navigation performance: AAHP without A∗

consideration-based path planning.

to each objective in the mobile robot’s navigation, and AHP
was applied to examine the differences in navigation perfor-
mance. Figure 8 shows the simulation results for different
Wobj based on the existing AHP and APF. An interesting
aspect of the APF results is that, although similar paths are
planned as shown in Figure 8, the oscillations that occur
during movement result in a greater final travel distance
and average rotation amount of the robot. This highlights a
weakness of the APF.

Figure 9 shows the navigation performance when using
AAHP but not considering the global path, while Figure 10
shows the performance of AAHP while considering A* com-
paring APF with A*. From the simulation results, it can be
seen that each method takes a different path.

The evaluation criteria were defined as the distance the
robot needs to travel to reach its destination and the perfor-
mance of maintaining the robot’s straight motion.

The driving performance was confirmed by calculating the
average value of the robot’s driving distance and the total
rotation for each simulation case. Table 1 lists the simulation
results based on the existing AHP, APF and the proposed
AAHP. Because the location where the robot moves through
AHP is one of the points on the robot’s sensing boundary,
it moves the same distance every step. Therefore, the robot’s
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FIGURE 10. Navigation performance: AAHP-based path planning.

TABLE 1. Simulation results of 4 obstacle scenario.

moving distance is proportional to the number of steps the
robot moves to reach the destination.

First, when examine the existing AHP results, it was con-
firmed that the simulation results of Wobj3, which placed the
greatest weight on the moving distance, showed the shortest
distance, whileWobj2, which placed the greatest weight on the
robot’s ability to go straight, showed the minimum average
rotation. It was confirmed that the navigation characteristics
were displayed well. In the APF scenario, oscillation, which
is the limit of the potential field, was discovered, and it was
confirmed that unnecessary paths were calculated or rotated
due to this. Additionally, it should be noted that, as expected,
it was confirmed that the APF algorithm, designed to follow
the A* path, calculates an improved path in terms of traveling
distance, the average rotation of the robot, and improved
safety compared to the original APF. In the AAHP-based
navigation results, it can be seen that it successfully allows
the robot to move the shortest distance, and in terms of the
robot’s straightness, it shows similar performance to Wobj2,
which places the greatest weight on the robot’s rotation.

B. SCENARIO 2: NINE OBSTACLES
The second scenario is when a mobile robot moves to its
destination in an environment with nine obstacles. The per-
formance of the proposed algorithm was evaluated when
the complexity of the environment increased compared to

FIGURE 11. Navigation performance: Conventional AHP-based path
planning.

FIGURE 12. Navigation performance: AAHP without A∗

consideration-based path planning.

FIGURE 13. Navigation performance: AAHP-based path planning.

the first case. Figures 11 shows the navigation results of
existing AHP and APF. Figure 11 shows the limitation of
local path planning especially the artificial potential field
method. Figure 12 displays the importance of A* to improve
the path planning performance. Figure 13, finally, shows the
superiority of AAHP comparing with AAHP without A*,
APF with A*, and AAHP. The quantitative performance of
the simulated methods is summarized in Table 2.
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TABLE 2. Simulation results of 9 obstacle scenario.

FIGURE 14. Hyundai smart factory.

The simulation results in the second scenario showed
excellent performance in both aspects of securing the shortest
distance and straightness, showing similar trends to the first
scenario, thus demonstrating the superiority of the proposed
AAHP algorithm. The results of simulations of the first
and second scenarios confirm that the proposed algorithm
derives the optimal solution by reflecting the driving
environment.

C. SITUATION 3: FACTORY-BASED MAP
A scenario was assumed to plan the path of a logistics robot
operating in a smart factory environment [37]. As shown
in Figure 14, the same simulation was performed in a sce-
nario where production materials were transported between
racks. We tested the proposed algorithm in a factory environ-
ment, which is a simplified production environment shown in
Figure 14. Figures 15-17 show the simulation results obtained
in this factory scenario.

By comparing the quantitative results presented in Table 3,
the performance of the proposed algorithm showed that,
among the existing AHP methods, the case that placed the
greatest weight on distance actually moved the shortest dis-
tance, but it did not show superior performance in other
cases. However, it was confirmed that the navigation based
on the proposed AAHP algorithm generally provided excel-
lent performance in terms of moving distance and rotation
amount.

FIGURE 15. Navigation performance: Conventional AHP-based path
planning.

FIGURE 16. Navigation performance: AAHP without A∗

consideration-based path planning.

FIGURE 17. Navigation performance: AAHP-based path planning.

D. SUMMARY OF RESULTS
Through simulations, we aimed to demonstrate the supe-
riority of the proposed algorithm by comparing it with
existing path planning methods. To this end, we compared
the well-known local path planning method APF and the tra-
ditional AHP-based path planning. Additionally, we validated
the superiority of our proposed method by comparing the
APF with A* and AAHP.
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TABLE 3. Simulation results of a smart factory scenario.

To compare the performance of AAHP, simulations were
performed for the existing AHP while applying a different
relative importancematrix, the casewhereA*was not applied
in AAHP, APF with A*, and the proposed AAHP. The exist-
ingAHP path plan defined different simulation scenarioswith
varying weights applied as CASE 1, CASE 2, and CASE 3.
CASE 1 placed the highest weight on safety and, as expected,
calculated a driving path away from each obstacle. CASE
2 gave the highest weight to rotation of the robot, and the
results showed that the average angle change was actually
relatively low. CASE 3 set the highest weight for distance.
Accordingly, it was confirmed that the distance traveled
tended to be the shortest as the weight for distance was the
highest. However, in Simulation 2, contrary to expectations,
CASE 3 was observed to travel a longer distance than CASE
1 and CASE 2. This can be said to be an example that exposes
the limitations of local path planning, which shows that even
when the greatest weight is placed on travel distance in AHP,
the shortest path travel is not guaranteed. To improve this,
AAHP utilized A* for path planning. To check the perfor-
mance of AAHP, a simulation comparing it with the AAHP
without A* algorithm was also performed simultaneously.
As can be seen in Table 2, it was confirmed that there is
a limit to achieving the shortest distance performance when
neglecting to consider the path of the A* algorithm.

The A* algorithm is a global path planning method that
calculates the shortest distance from the starting point to the
goal and ensures the optimality of the planned path. The
AAHP algorithm proposed in this study was designed to
follow the A* algorithm to compensate for the inability to
guarantee optimality of the route, which is a limitation of
AHP-based route planning, one of the existing local path
planning methods. However, due to the decision-making
nature of AHP, there is no guarantee that the shortest distance
will be calculated because multiple factors are considered
simultaneously. Nevertheless, as can be seen in Tables 1, 2,
and 3, the AAHP algorithm shows good performance not only
for the driving distance but also for the angle change. Refer-
ring to Table 2, AAHP’s results do not always provide the
best results, but when considering overall aspects, AAHP’s
excellent performance could be confirmed.

V. CONCLUSION
This study improved upon the existing AHP-based path
planning algorithm. There are certain disadvantages to the
existing AHP-based path planning. One is that it is difficult
to find the optimal path because it is a local path planning
algorithm. The other is that, when applying AHP, there is no
systematic method to set RM suitable for the robot’s driving
environment. When performing AHP-based path planning,
the first weakness was overcome by considering the optimal
path planning algorithm, A∗ path, and reevaluating the opti-
mal point that was calculated using local information around
the robot from the perspective of the entire terrain. The second
weakness was solved by suggesting a method for propos-
ing optimal RM while considering the driving environment.
Based on the simulation results, it was confirmed that the sug-
gested AAHP-based path planning showed overall superior
performance and optimal driving performance compared to
the existing AHP-based path planning. This study conducted
simulations, and the results were able to determine the appli-
cability of the proposed algorithm. In future research, we plan
to conduct studies aiming to confirm the effect of improving
navigation performance in driving environments of various
complexity through actual robot hardware.
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