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ABSTRACT Computer vision has emerged as a promising tool for improving safety at construction sites
through automatic scene recognition. However, traditional approaches require significant labor-intensive
and time-consuming efforts for annotations. Although weakly supervised learning has the advantage of
localizing objects without location information, the conventional class activation map (CAM) technique
struggles with small and linear object localization and background noise at construction sites. For effective
scene recognition related to construction safety, the spatial relationships between precisely localized objects
are crucial. Due to the limitations of traditional CAM techniques in localizing small and linear objects,
using CAM for construction safety monitoring remains inaccurate. Therefore, this study proposes a weakly
supervised learning approach with an improved CAM for enhancing object detection in construction sites.
The improved CAM localizes objects of various scales and is robust against background interference. Spatial
relationships between localized objects are employed to determine the status of scenes for construction
safety monitoring. Experiment using datasets associated with falls from ladders (FFL) demonstrates that
the improved CAM surpasses the traditional CAM in mIoU (mean intersection over union) for the object
localization performance as well as in the accuracy and F1-Score for recognizing unsafe scenes. This
demonstrates the robust potential of employing CAM as a weakly supervised learning strategy, underlining
its substantial feasibility for preventing hazards in construction sites. The proposed framework can minimize
annotation efforts, demonstrating the potential of CAM as a viable computer vision technique for efficiently
detecting hazards at construction sites.

INDEX TERMS Computer vision, weakly supervised learning, class activation map, scene recognition,
safety monitoring.

I. INTRODUCTION
Computer vision has great potential for preventing accidents
at construction sites through automatic scene recognition.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mingbo Zhao .

Following significant advancements in deep learning, com-
puter vision methods have been applied to effectively identify
and recognize unsafe behaviors and conditions [1]; detec-
tion speed and accuracy have greatly improved in recent
years. Object localization and classification are fundamental
computer vision tasks that are required for implementing
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subsequent tasks at construction sites, such as object tracking
and action recognition, and for scene-based identification of
unsafe conditions and behaviors (missing safety equipment,
failure to wear personal protective equipment (PPE)) [2].
Deep learning-based computer vision applications require
datasets to accomplish such tasks. Customized datasets fea-
turing objects specific to construction sites are required to
train deep-learning models for object detection, including
localization and classification, in the construction indus-
try [3]. However, accumulating datasets is labor-intensive
and time-consuming. The requirement for a large amount
of annotated data, including location annotations such as
segmentation and bounding boxes, is a major challenge in
the application of computer vision [4]. Given the distinct
challenges inherent in industrial applications, annotation of
specialized datasets tailored to specific domains is impera-
tive [5]. In the construction industry, the characteristics of a
given scene tend to vary significantly from one construction
site to another. Thus, computer vision applications used at one
site cannot be assumed to translate seamlessly to other sites.
This is particularly evident for construction safety monitor-
ing; a large custom dataset is necessary to address unique
requirements to ensure safety in diverse construction envi-
ronments. In addition, determining the standards for labeling
objects (e.g., annotating range and method, and processing
occlusion) is challenging because the diverse shapes and
rules in construction sites make it difficult to establish clear
definitions [6], potentially affecting the performance of the
computer vision model [7].
Weakly supervised learning has garnered significant inter-

est in computer vision research owing to the time- and
labor-intensive processes of accumulating datasets. Weakly
supervised learning is a type of deep learning in which the
model is trained by leveraging weaker forms of labels to gen-
erate annotated data, and is less costly and time-consuming
than using fully annotated data. The annotated data used in
weakly supervised learning may be noisy or incomplete and
may not contain all information required for accurate classi-
fication or regression [8]. The class activation map (CAM)
technique has been extensively applied to images in weakly
supervised learning. A CAM enables localization of image
regions relevant to a specific class [9], [10]. It can be used
for visualization where a neural network is ‘‘looking’’ at an
image to make a classification decision. As the CAM can be
generated only using image-level annotations, it is frequently
utilized in weakly supervised learning method for capturing
location of objects. The CAM can be used to generate a heat
map of an image that highlights the regions most relevant
to the predicted class, showcasing its potential for object
detection problems.

Despite its promising potential, CAM technique remains
a challenge for site safety monitoring in the construction
industry. For recognizing the hazards at construction sites,
the spatial relationship between multiple objects is a primary
correlation required to detect the hazards in a scene [11], [12].

The location information of an object has a major influence in
determining the status of the scene (safe or unsafe) using spa-
tial relationships (correlations between objects); thus, precise
object localization is required. However, applying CAM tech-
nique to small-object detection remains challenging and often
results in visualization with over-highlighted backgrounds
rather than the target objects [13]. Moreover, localization of
small and linear objects at construction sites is often inter-
rupted by unrelated backgrounds. Because CAM is based on
weak label information (a dataset without location informa-
tion), object detection in a complex (cluttered) background
or a background with a shape and texture similar to that
of a target object (light-gray scaffolding in front of light-
gray concrete) becomes even more difficult. Developing a
sophisticated, CAM architecture tailored to construction sites
is imperative for exploiting the full benefits of aweakly super-
vised learning approach for construction safety monitoring.
Such an architecture should be capable of localizing objects
with precision, while effectively addressing the challenges
of extracting small and linear objects at construction sites.
Moreover, a strategy for identifying hazardous status through
the utilization of spatial relationships among detected objects
must be formulated to operationalize this architecture in real-
world cases.

This study proposes a weakly supervised learning
approach with an improved CAM (small and linear objects
in construction sites, SOS-CAM) using only image-level
labels for construction safety monitoring while addressing
the aforementioned gaps. Since the SOS-CAM can pro-
vide more precise location information, spatial relationships
to recognize the scene can be leveraged to monitor con-
struction safety. To validate the feasibility of the proposed
approach, this study investigated previous research that used
spatial relationships to recognize scenes, prepared a specific
ladder-related dataset composed of image-level labels, and
evaluated it through quantitative and qualitative analyses.
This study makes the following contributions: (1) To the best
of our knowledge, this study represents the first attempt to
exploit the location information of detected objects using a
weakly supervised learning approach for scene recognition at
construction sites. Owing to the improved performance of the
SOS-CAM in detecting objects, (2) application of spatial rela-
tionships in scene recognition is more seamless, establishing
the potential applicability of the CAM. (3) Attention can be
revitalized with the use of the CAM for recognizing scenes on
the application of computer vision to detect small and linear
objects at construction sites, and (4) this approach enables
the use of a large number of web images without requiring
bounding boxes, and can improve model generalization.

The remainder of this paper is organized as follows.
Section II reviews the current state of computer vision
technology for construction safety and weakly supervised
learningmethods. The SOS-CAM architecture and process of
applying spatial relationships are presented in Section III. The
dataset preparation, model training procedures, and results
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are described in Section IV. Section V presents the discussion
points, significant contributions, and limitations. Conclusions
and future research are presented in Section VI.

II. RELATED WORKS
A. CURRENT COMPUTER VISION APPROACHES FOR
CONSTRUCTION SAFETY MONITORING
The construction industry is widely recognized as being the
most hazardous due to its complex and dynamic environ-
ment [1], [2], [14], [15]. According to the Occupational
Safety and Health Administration (OSHA), approximately
20% of worker fatalities occur in the construction indus-
try [16]. Site monitoring to assess rule compliance is crucial
and frequently utilized in construction to assess the potential
risks associated with ongoing work and the current state
of the site [2]. However, such observational methods can
be costly and time-consuming because they require manual
observations by supervisors or managers [16], [17]. Manual
observation is hindered by untimely and inaccurate ormissing
information [18]. The severity of the construction industry’s
challenges has prompted extensive research on computer
vision to prevent various accidents and incidents.

Object detection, including object localization and classi-
fication, provides one of the most basic pieces of information
for various tasks of computer vision [19], [20]. Many stud-
ies have sought to detect specific objects, such as PPE
and workers, in construction site monitoring using computer
vision’s object detection capabilities as a means to miti-
gate construction accidents [21], [22], [23], [24]. Beyond
the object detection, there were considerable efforts to use
spatial relationships, which means the correlation between
detected objects, to recognize the scene status [11], [12].
Mneymneh et al. [21] coordinated a bounding box to identify
workers wearing PPE. Chern et al. [25] used the overlap
ratio of detected PPE and workers as the primary logic to
verify whether a worker was equipped with proper PPE,
including a hardhat, safety harness, safety strap, and safety
hook. Fang et al. [26] combined computer vision algorithms
with ontology to construct relationships between objects
and automatically identify hazards using the coordinates of
the detected objects. Khan et al. [12] proposed a hand-
crafted rule-compliance algorithm based on the coordinates
of bounding boxes using a Mask R-CNN for mobile scaf-
folding. Anjum et al. [27] used an SSD for object detection
and the coordinates of bounding boxes to check for rule com-
pliance during ladder operations. The spatial relationships
in previous studies that used bounding box coordinates can
be summarized as follows: (a) WITHIN; (b) OVERLAP; (c)
AWAY [26] [12]; (d) calculating size [27], as shown in Fig. 1.
Most studies have used the coordinates of detected objects
to leverage spatial relationships, reporting successful scene
recognition.

Meanwhile, in order to apply spatial relationships between
objects, the foremost prerequisite is the successful implemen-
tation of object detection. To achieve this, specific datasets

tailored to construction domain to training the model on
the objects related to construction safety is imperative [3].
Domain-specific dataset plays a crucial role in enabling
the object detection process and subsequently, facilitating
the application of spatial relationships among the detected
objects. Several studies have accumulated datasets for the
construction industry. Xuehui et al. [7] released a dataset
that included moving objects at construction sites with poly-
gon and bounding-box annotations. In their dataset, 41,668
images comprising workers and heavy equipment includ-
ing tower cranes, excavators, and loaders were collected;
four experts performed precise annotations. To overcome the
challenges of detecting hardhats, Wu et al. [28] proposed a
benchmark dataset for hardhats with bounding box annota-
tions composed of numerous small-scale instances less than
32 × 32 pixels.

However, the methods of accumulating datasets used in
previous studies were labor-intensive and time-consuming
[29], [30]. Large-scale datasets require precise annotation
for object localization [31], [32]; annotation accuracy affects
training and model performance [32]. Although precise
annotation is important, establishing a standard of loca-
tion annotations for objects at construction sites is difficult
due to ambiguity resulting from missing information and
complexity.

B. LEVERAGING WEAKLY SUPERVISED LEARNING FOR
ADDRESSING CHALLENGES IN ANNOTATING DATASETS
To address difficulties in annotating datasets, researchers
have exploited scene- or image-level tags as weak supervision
tools for localizing objects in images, enabling detection
of objects without location annotations [33]. Weakly super-
vised learning uses training data with incomplete annotations
(inexact information, image-level labels) to learn detec-
tion models [34]. Since Zhou et al. [35] first proposed
a CAM technique for localization of objects with weakly
labeled images, it has become a common method for weakly
supervised object localization [34] that can be used for
approximate object detection.

Li et al. [36] used Grad-CAM [37] and Grad-CAM++

[38] to create a heatmap that could localize infrastructure
damage in an image and quantify its severity. They verified
the feasibility of weakly supervised learning for assessing
disasters resulting from infrastructure damage. Park et al. [39]
proposed use of CAM technique to classify images conveying
material and human factors into nine classes: an outrigger on
temporary equipment, PPE, and working conditions. These
studies focused on creating a CAM to classify the import
of an image and succeeded in demonstrating the potential
of weakly supervised learning for object localization and
classification in the construction industry.

However, extending localization information to recognize
the image was overlooked. Information on localized objects
applied to the spatial relationships of multiple objects is
essential for detecting construction hazards in an image [26],
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FIGURE 1. Spatial relationships identified in previous studies.

[40]. Moreover, objects related to construction hazards are of
many sizes and shapes, including linear and small objects,
limiting what the CAM can detect. As a CAM focuses on the
most discriminating features of an object, less discriminating
features may be ignored or not identified [41], [42]. Various
attempts [13], [43] have been made to improve CAM and
accurately detect small objects by overcoming noise, but
adapting it to construction safety monitoring is challenging
due to the characteristics of construction sites where similar
and complex objects are present in the background. A few
studies have been conducted tomitigate the problem of focus-
ing on incorrect objects in construction sites. These include
incorporating additional object size information from build-
ing information modeling (BIM) to aid weakly supervised
segmentation in indoor environments [6], and integrating
CAM techniques to enhance fully supervised learning-based
object detection models in indoor environments [44].

C. POINT OF DEPARTURE
Despite the considerable achievement of previous studies
on CAM, it still requires additional efforts, such as mak-
ing BIM models or using other object detection models,
to detect/recognize the objects/scene. Relying solely on
image-level labels for CAM is challenging due to potential
confusion caused by objects with similar shapes and textures,
which are difficult to accurately locate and distinguish. As a
result, it is not entirely accurate to claim that annotation
efforts have been mitigated.

To overcome the challenges associated with annotation
efforts and fully harness the potential of CAM, there is a
need for the development of a new CAM architecture, that
should possess to accurately localize small and linear tar-
get objects with complex backgrounds at construction sites,
relying solely on image-level labels. Also, the utilization of
correlation of localized object to recognize the scene would

be instrumental in enhancing construction site safety moni-
toring.

III. METHODOLOGY
This study proposes the SOS-CAM as a weakly super-
vised learning-based object localization method using only
image-level labels, overcoming the challenges of complex
backgrounds in extracting precise location information for
small and linear target objects.

This section describes the approach for adapting CAM
to recognize images and determining the status of a scene
(i.e., safe or unsafe) on construction sites by defining spatial
relationships between target objects. Additionally, the archi-
tecture of SOS-CAM, and the process of applying spatial
relationships for construction safety monitoring is presented.
SOS-CAM employs the utilization of multiscale feature maps
to effectively capture and discern small and linear objects
within the images. This methodology enhances the feature
extraction of small and linear objects. Furthermore, a refined
module is integrated into the architecture to ameliorate noise-
related challenges. The extracted location information from
SOS-CAM is applied to the spatial relationships between
target objects to determine the status of a scene.

A. APPROACH OF APPLYING WEAKLY SUPERVISED
LEARNING
As shown in Fig. 2, the process of applying spatial rela-
tionships to determine status consists of three steps: (a)
preprocessing: preparing a dataset with image-level labels;
(b) object detection: localizing target objects and generating
bounding boxes with classification using SOS-CAM, and
(c) post-processing: applying established logic to the spatial
relationship between target objects, as shown in Fig. 1.
The SOS-CAM is constructed by training on an

image-level labeled dataset and generating a CAM for each
class. Images for training the model must be captured in
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FIGURE 2. Leveraging weakly supervised learning approach for construction safety monitoring.

construction site environments where hazards often occur.
Thereafter, only image-level labels that represent the class
names of the target objects are annotated on the images to
train the network.

The trained network can focus on target objects and gen-
erate bounding boxes to extract localization information.
Localization information is applied to logic (spatial rela-
tionships) to determine scene status. To generate accurate
bounding boxes for extracting the localization information
of target objects, SOS-CAM concatenates low-level features
and applies a refining process, as described in Section III-B.

From the object detection results (after generating the
bounding boxes), the logic from the spatial relationships [24],
[25], [26], [27] is executed to recognize the image status as
safe or unsafe. The spatial relationships can be summarized
as follows:

(1) The WITHIN case may cover the following examples:

• Worker (A) is located in front of equipment (B), such as
the scissor lift.

• Worker (A) is located at the back of transparent equip-
ment (B), such as scaffolds.

• Worker (A) wears PPE (B), such as a safe vest.
• Worker (A) is located on the deck plate (B).

(2) The OVERLAP case may cover the following exam-
ples:

• Worker (A) rides equipment (B), such as a step ladder.
• Worker (A) holds equipment (B), such as a hand saw.
• Worker (A) is close to an opening (B), such as a hole in
a slab.

• Worker (A) is equipped with PPE (B), such as a safety
harness.

(3) The AWAY case may cover the following examples:

• Worker (A) is located near equipment (B), such as the
guardrails on the edge.

• Worker (A) does not use equipment (B), such as scaf-
folds.

• Worker (A) fastens safety hook (B) to the safety line at
a distance.

(4) ESTIMATING how close workers are to hazardous
equipment and calculating the height or distance are required.

• The bounding box height for a hole (A) is defined as
0.8 m; the distance to the worker (B) can be estimated
via a proportional expression.

As the coordinates of the bounding boxes including
the centroid, bottom, and top of the bounding box are
used in the spatial relationship, accurate localization of
bounding boxes is essential for implementing weakly super-
vised learning-based scene recognition. Consequently, the
performance of determining status is related to the perfor-
mance of object localization; thus, the performance evalu-
ation should encompass both object localization and status
determination.

B. SOS-CAM FOR LOCALIZING AND CLASSIFYING
OBJECTS
Weakly supervised learning methods that use image-level
labels use a CAM to detect object locations. The trained
network produces a CAM as a localization map by aggregat-
ing deep feature maps using a class-specific fully connected
layer [35]. The major obstacle in using the CAM technique
for object detection is capturing the entire object region rather
than its most discriminating part [9]. This makes it difficult to
use a CAM, as it cannot provide accurate location informa-
tion required to recognize risks through spatial relationships.
Moreover, because only the last convolutional layer is used
to obtain the spatial feature with the smallest dimensions
for generating the CAM, it may result in coarse visualiza-
tion, with an over-highlighted background and missing small
objects [13].
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FIGURE 3. SOS-CAM architecture.

1) EXTRACTING MULTISCALE FEATURE MAPS
SOS-CAM is inspired by the Feature Pyramid Network
(FPN) [45], which detects multiple objects and provides
accurate location information; it is used to apply spatial
relationships for recognizing scene status in construction
sites while mitigating the limitations of conventional CAM
technique. High-level features in the deep layer have more
semantic meaning and low resolution; low-level features in
the shallow layer are more content-descriptive and high-
resolution [46]. Thus, high-level features are more beneficial
for detecting textures with the most discriminating features;
low-level features contain spatial information (edges and
curves), making them beneficial for detecting small and linear
objects.

SOS-CAM uses ResNet-50 with an FPN to learn
scale-invariant representations using featuremaps of different
spatial information. The SOS-CAM architecture is illustrated
in Fig. 3.

(1) From the convolutional network, a feature map with
twice the resolution size difference was extracted from each
level. In ResNet-50, four feature maps with twice the reso-
lution size difference were extracted using the output of the
last layer of each stage. Accordingly, four feature maps Pi(i
in {1,2,3,4}) of different sizes were obtained (i is the index of
the feature map; the number decreases as the layer becomes
deeper).

(2) The spatial size of the feature map was upsampled at
each level to increase the resolution and match it with that
of the feature map at the lower level. For example, through
upsampling, P4 matches the resolution of P3, P3 matches
the resolution of P2, and P2 matches that of P2. For P1,
a feature map of the original size without upsampling was
used. The nearest-neighbor upsampling method, which is
generally used as a parameter-free operation [47], was used.
As P1 was obtained from the lowest level, it had the same
resolution as the original image; thus, it was not upsampled.

(3) All feature maps were passed through a 1 × 1 con-
volution layer to reduce the channel size to 256 pixels.
To aggregate the information on the feature maps at different

levels, an element-wise summation was performed on feature
maps of the same resolution. Four aggregated feature maps
were input into a 3 × 3 convolutional layer. Through these
processes, feature map Ci of each level includes information
on objects of different sizes.

Feature maps of different resolutions were extracted from
the network layers and integrated. These feature maps contain
information on both low- and high-level features, and are
beneficial for capturing small objects in an image.

2) REFINING MULTISCALE FEATURE MAPS
However, using low-level features has an adverse effect in
that it increases noise and can interrupt object localization.
The integrated feature map contains information from multi-
ple network layers. This means that the integrated low-level
features include low-level attributes (e.g., texture and edge) in
the image, which are unrelated to the class labels. To effec-
tively remove information that is irrelevant to these classes
and accurately capture objects, a refined module is applied to
the integrated feature maps.

The refined module consists of a refined convolutional
layer for feature refinement, and an extra convolutional layer
that is used to reduce the number of channels to align with
the desired number of classes for prediction. The refined
and extra-convolutional layers employ a 1 × 1 convolutional
filter. The refined module results in an integrated feature map
containing rich semantics and aggregates the class-relevant
attributes. Thus, the activation in the feature map that is
irrelevant to the target labels is suppressed. The CAM can
be obtained using this additional refinement process.

Upsampling and downsampling were performed based on
the intermediate-resolution feature map to utilize the infor-
mation on the four feature maps in a balanced manner. For
example, if the reference feature map is C3, the resolution is
upsampled four and two times for C1 and C2, respectively,
whereas C4 is downsampled by half the number of times
through maximum pooling.

After all feature maps had the same resolution, an element-
wise summation was performed for all feature maps and
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averaged according to the number of levels. However,
an aggregated feature includes a large volume of spatial
information because it contains a feature map obtained from
a lower layer, which may cause a relatively large amount of
noise. It is impossible to capture an object’s location accu-
rately by generating a noisy activation map.

To alleviate noise, SOS-CAM adds a refined module after
element-wise summation, and a more discriminatory feature
with semantic information can be extracted. The refinedmod-
ule consists of a convolutional layer that performs refinement
and a 1 × 1 convolutional layer that reduces the number of
channels to match the number of classes to be predicted.

Global average pooling (GAP) was performed on the
refined feature map to obtain a class logit ŷ. A localization
map was generated based on the obtained activation map.
If the activation value of the CAMwas equal to or less than the
threshold, 0 was allocated. For classification, the multi-label
soft margin loss (L) in (1) is obtained from class label y
and the predicted logit. pc is the prediction for the cth class,
σ (·) denotes the sigmoid function, and C represents the total
number of class labels.

L = −
1
c

∑C

c=1
yclogσ (pc) + (1 − yc) log [1 − σ (pc)]

(1)

As the conventional CAM [35] utilized only the output of
the final layer, it failed to identify small and linear objects in
an image by learning a scale-variant feature. The SOS-CAM
can effectively capture objects of different scales by extract-
ing and integrating the features of different layers. Thus,
small and linear objects such as hardhats and outriggers can
be detected in a scene, and an accurate activation map is
generated, overcoming the challenges resulting from complex
backgrounds.

3) GENERATING BOUNDING BOX
A CAM is an active region generated using a trained clas-
sification network and is a coarse prediction of the location
of an object based on the active region of the CAM. After
resizing the image to several scales {480, 640, 768} to obtain
a relatively scale-invariant prediction, it was fed into a trained
network. The final localization map results from aggregating
the activation maps obtained from the input images of differ-
ent scales.

To generate bounding boxes from the final localization
map and apply spatial relationships, the localization map
should be segmented. In this study, the threshold value was
set to be above 50% of the maximum value in the localization
map. The bounding boxes covering the connected compo-
nents of the segmented localization map were generated.

IV. EXPERIMENTS
This section describes validation of the SOS-CAM. The
dataset preparation and logic for checking rule compliance
were described according to the defined scenario. The results
of the experiments are presented in three steps: (1) generating

the CAMs, (2) creating bounding boxes and determining the
scene status, and (3) comparing qualitative and quantitative
evaluations from the previous CAM and SOS-CAM.

A. TARGET SCENARIO
Falls from height (FFH) are the most frequent and impactful
type of accidents at construction sites [48], [49]. The leading
cause of trauma fatalities during construction is FFH, which
accounts for 35.8% of all incidents [50]. Despite continuous
efforts over the past few decades, FFH remain the main
cause of accidents in the construction industry. Halabi et al.
[51] reported that approximately 23,000 FFH accidents have
occurred at construction sites over the past 20 years; this
number is projected to increase significantly.

Of the types of FFH, falls from ladders (FFL) are responsi-
ble for a large proportion. Ladders are among the most widely
used tools for accessing vertically distant surfaces. Accord-
ing to a statistical survey of construction companies [52],
ladders are a leading cause of FFH, second only to roofing.
Between 2011 and 2015, over 23% of fatal falls occurred
on ladders [50]. In Korea, detailed guidelines for using step
ladders [53] have been established and transmitted to workers
and managers at construction sites to prevent ladder-oriented
FFHs. The essential guidelines are presented as follows:

• Outriggers: A ladder should be installed with outriggers
to prevent collapsing.

• Buddy system: If a worker is located at more than 1.2 m
(height), coworkers should be able to grab the ladder.

• PPE: Workers should wear a hardhat.

To determine whether the scene shown in an image related
to FFL is compliant, detecting small (hardhat) and linear
objects (ladder and outriggers), and adopting several spatial
relationships from Section III-A (e.g., overlap and within
relationships for determining whether a worker is located
on a ladder and estimating height for dependent rule com-
pliance) are required. As mentioned in Section II-B, the
previous CAM encountered challenges in detecting small
objects and handling complex backgrounds at construction
sites. Thus, scenarios for rule compliance when using a ladder
can facilitate object localization and classification to validate
SOS-CAM and are adequate for adapting spatial relation-
ships.

B. DATASET PREPARATION
In this study, 3,615 images with image-level labels were
prepared as datasets. The images were extracted from video
clips collected at the Chung-Ang University and a construc-
tion site in South Korea. As shown in Fig. 4, videos were
collected from indoor locations that had features similar to
those of finishing works at construction sites, and outdoors
covering complex backgrounds, including scaffolding and
exterior walls. Furthermore, to prevent overfitting and obtain
reasonable results, the authors ensured diversity in distances
and viewpoints while collecting videos and checked for sim-
ilarities in the extracted images. The annotations for each
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FIGURE 4. Examples of FFL dataset with image-level labels.

TABLE 1. Dataset distribution.

object were only given as class names, as shown in Fig. 4;
thus, the SOS-CAM was able to train with image-level labels
that had multiple classes on an image.

After annotating the image-level labels, the dataset was
randomly divided into training, validation, and test sets in
a ratio of 7:2:1, corresponding to 2,526 images for train-
ing, 720 images for validation, and 369 images for testing
as presented in Table 1. The dataset distribution ratio was
followed to previous computer vision studies [54], [55], [56]
that, on small datasets, have demonstrated successful results
using same ratio.

To evaluate the performance of object localization, bound-
ing box annotations for each object were provided only in the
test set images. Additionally, the ground truth of the images
for the scenario was divided into two classes (safe and unsafe)
to evaluate the prediction of scene status.Maintaining balance
in the dataset distribution is important for preventing biased
results. However, the types of unsafe scenarios are diverse,
such as missing worker’s and co-worker’s hardhats, a miss-
ing co-worker when the worker Is at a height of more than
1.2 m (buddy system), and missing outriggers. In addition,
these unsafe situations can occur simultaneously; thus, the
proportion of unsafe scenes in the dataset is higher than that
of safe scenes. Although the dataset may appear to have an

imbalanced distribution, significantly more images related to
unsafe situations were expected when considering the diverse
types of unsafe scenarios.

The number of classes for objects annotated in the dataset
was six excluding background, as listed in Table 2. Accord-
ing to the fundamental rules in Section IV-A, the outrigger,
ladder, worker, coworker, worker’s hardhat, and coworker’s
hardhat were defined as object classes that served as the main
items for checking rule compliance. In addition, background
images that did not contain target objects related to FFL
were set as the background class to improve the focus on
the essential features of the target object rather than irrelevant
background features [57].
As the FFL is the target scenario, a ladder and worker

appear inmost images. As the other objects (coworker, outrig-
ger, and hardhat) are dependent objects that can appear when
a worker and ladder are present, the number of instances of
co-workers and ladders has an imbalanced ratio.

C. DEPLOYING SPATIAL RELATIONSHIPS FOR
FFL-RELATED RULE COMPLIANCE
After extracting the bounding boxes and their coordinates,
logic for adapting the spatial relationships between the target
objects is required to extract the meaning of the scene

in the image (safe or unsafe). According to the KOSHA
guidelines, spatial relationships (WITHIN, OVERLAP,
AWAY FROM, and ESTIMATION) can be used to check
hardhat use, ensure that workers, co-workers, and outriggers
are present, and to estimate height. However, this study
annotated these rules as objects and aimed to detect the
spatial features of objects, including small ones, without
manual effort. The height at which a worker is located is
crucial information because a co-worker is required if the
height exceeds 1.2 m, according to the guidelines. Moreover,
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the co-worker hardhat is another dependent variable that
becomes relevant only when a co-worker appears in the
image. Regarding the importance of a specific factor (height
location), height estimation was used as a spatial relationship
to determine the image status.

To estimate the height at which a worker was located,
the bounding box coordinates for the worker, ladder, and
outrigger were applied to determine the spatial relationships
between OVERLAP and ESTIMATION. The OVERLAP
relationship was checked before estimating the height loca-
tion. The coordinates of the bounding box were used to
verify that the worker and ladder objects overlapped before
performing height location ESTIMATION.

The angular points of the bounding boxes of the worker
(Xw1 , Y

w
1 , X

w
2 , Y

w
2 ) and ladder (X l1, Y

l
1, X

l
2, Y

l
2) were used

to calculate the width overlap (W overlap in (2)) and height
overlap (Hoverlap in (3)) with respect to their minimum and
maximum values. The overlap ratio in (6) was calculated by
considering the area of the ladder in (5) and the overlap in (4).

W overlap
= min

(
Xw2 ,X l2

)
− max

(
Xw1 ,X l1

)
(2)

Hoverlap
= min

(
Yw2 ,Y l2

)
− max

(
Yw1 ,Y l1

)
(3)

overlap_area = W overlap
∗ Hoverlap (4)

ladder_area = W l
∗ H l (5)

ratio = overlap_area/ladder_area ∗ 100 (6)

If the conditions of ratio > 0 and Yw2 < Y l2 are satisfied,
the height is estimated by comparing the number of pixels
between the lowest points of the worker bounding box Yw2
and the ladder bounding box Y l2 and considering the number
of pixels on the y-axis of the ladder bounding box.

ladder ′sheight : HL
= working height : d

(
Y l2,Y

w
2

)
Then,

working height =

(
ladder ′sheight ∗ d

(
Y l2,Y

w
2

))
/HL (7)

Algorithm 1 presents the pseudocode of Eqs. 2–7, which
are proposed to adopt the spatial relationships, OVERLAP
and ESTIMATION. To avoid unnecessary height calculations
when the worker is not on the ladder, OVERLAP is checked
by considering the bounding-box area when related objects
(the worker and ladder) are detected. For height estimation,
the ladder height as a hyperparameter was set to the height
of 1.8 meters used in the dataset. Additionally, if the ladder
is not detected by the CAM, the outrigger is utilized as an
indicator for height estimation in the same manner.

D. TRAINING AND RESULTS
1) TRAINING SETUP
For training and validation, a pretrained ResNet-50 model
with ImageNet was used as the classification network. The
input image was resized to a resolution of 768 × 768, and
random horizontal flipping, color jittering, and random crop-
ping to 640 × 640 augmentations were implemented. The

FIGURE 5. Loss and accuracy of training and validation.

batch size, initial learning rate, weight decay, and momentum
were set as 5, 0.001, 0.005, and 0.9, respectively. Stochastic
gradient descent was used as the optimizer, and the network
was trained for 20 epochs. Because batch normalization was
applied, the dropout rate was set to zero due to dishar-
mony [58]. Training was executed on a server equipped with
an i9 × 10940X CPU and a single NVIDIA RTX 3090.

2) VALIDATION AND RESULTS
The performance of the proposed SOS-CAM was validated
using object localization andmulti-label classification (object
classification) for status determination. Spatial relationships
were adopted to determine the status of the scene and to val-
idate the feasibility of the SOS-CAM for construction safety.
Object localization, classification, and status prediction were
performed based on quantitative and qualitative evaluations.

The quantitative evaluation used themean intersection over
union (mIoU), also known as the mean Jaccard index, which
is commonly used to evaluate the localization accuracy and
F1-Score for classifying object and scene status. The scene
status was divided into two categories: safe and unsafe. All
quantitative evaluation results were the averages of five ran-
dom runs. The training ended at epoch 20 due to theminimum
validation loss, as shown in Fig. 5; the dotted line represents
accuracy and the solid line depicts loss.

Table 3 presents the mIoU measurement results for object
localization associated with the six classes related to FFL.
SOS-CAM exhibited an improvement of 0.0478 mIoU com-
pared to the conventional CAM [35], indicating an overall
enhancement in the localization performance of the target
objects. In particular, SOS-CAM, which incorporates an
FPN, demonstrated superior localization capabilities for lin-
ear objects (e.g., ladders and outriggers) and small objects
(e.g., hardhat), overcoming the challenges posed by complex
backgrounds.

As presented in Table 4, although SOS-CAM showed a
slight decrease in accuracy for object classification, the F1-
score increased by 0.0027, and is considered a more crucial
factor [59], especially with imbalanced datasets. Further-
more, for FFL, because the status of the scene is dependent
on the worker location (working height) and the proposed
technique applies bounding box information from SOS-CAM
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TABLE 2. Instances in image.

Algorithm 1 Pseudocode for overlap and estimation
Input: Bounding box of worker, ladder, and outrigger, extracted top-left bounding box coordinates
Output: Working height of worker relative to ladder and outrigger, overlapping ratio of worker and ladder to ladder

1 worker_bbox = (Xw1 , Y
w
1 , X

w
2 , Y

w
2 ) \\ bounding box of worker

2 ladder_bbox = (X l1, Y
l
1, X

l
2, Y

l
2) \\ bounding box of ladder

3 outrigger_bbox = (Xo1 , Y
o
1 , X

o
2 , Y

o
2 ) \\ bounding box of outrigger

4 Ww
= Xw2 − Xw1 ;Hw

= Yw2 − Yw1 \\ width and height of worker

5 W l
= X l2 − X l1;H

l
= Y l2 − Y l1 \\ width and height of ladder

6 LADDER_HEIGHT =1.8
7 if ladder_bbox is exist:

8 ladder_area = W l
∗ H l

9 overlap_area = calculate_overlap_area(worker_bbox, ladder_bbox) // find overlapping area (worker & ladder)

10 overlap_ratio = overlap_area / ladder_area ∗ 100

11 if overlap_ratio > 0 and Yw2 < Y l2: \\ lower end of the worker is higher than the lower end of the ladder

12 // ladder_height: H l
= working_height: working_height_pixel

13 working_height_pixel = ladder_lower - Yw2
14 working_height = (working_height_pixel ∗ LADDER_HEIGHT) / H l

15 elif outrigger_bbox is exist:

16 if Yw2 < Y o2 : \\ lower end of worker is higher than the lower end of outrigger

17 working_height_length = outrigger_lower - Yw2
18 working_height_outrigger = (working_height_length ∗ WORKER_HEIHGT) / Hw

19 return working_height, working_height_outrigger, overlap_ratiod

to recognize an image, determining the status of the scene
can be considered as an indicator of localization perfor-
mance and feasibility of using SOS-CAM for construction
safety monitoring. The experimental results demonstrated
that SOS-CAM achieved a 0.0092 increase in accuracy and
a 0.0079 increase in F1-Score, as presented in Table 4. The
increase of 0.0448 in the precision metric, indicating that
the model correctly determined the status, coincided with
a small decrease in the recall metric, reflecting a trade-off
relationship between the two measures.

In Fig. 6, the points of focus of the CAMs for comparison
with the previous CAM [35] and SOS-CAM were extracted
from the test images. The results of creating the bounding
boxes are compared in Fig. 6. Although both CAM techniques
succeeded in classifying the object in the images, the sizes of
the bounding boxes, which have an important influence on
the height estimation, differed. The sky blue, blue, light blue,
red, light green, and green bounding boxes represent ladders,
co-workers, co-worker hardhat, worker hardhat, workers, and

outriggers, respectively. As shown in Fig. 6(a), the SOS-CAM
created a precise bounding box for the worker and outrigger,
whereas the previous CAM created a larger bounding box
with the wrong focus. Moreover, the previous CAM tended
to misfocus the ladder, as shown in Fig. 6(b), (c), and (d),
whereas the SOS-CAM succeeded in maintaining focus with
complex backgrounds. Given that the backgrounds of the
images used in this study were scaffolds or finished with
a grid pattern that resembled a ladder, a linear object, the
SOS-CAM can presumably detect target objects better than
the previous CAM. Furthermore, the SOS-CAM can detect
small objects such as the outrigger and hardhat more accu-
rately, as shown in Fig. 6(c) and (d).

The image recognition and status determination results are
shown in Fig. 7. After extracting the coordinates from the
generated bounding boxes, a spatial relationship was adopted
to determine the status of the scene. As shown in Fig. 7(a),
the SOS-CAM method exhibited enhanced object localiza-
tion capabilities, resulting in more accurate estimation of the
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TABLE 3. Performance for localizing objects.

TABLE 4. Performance in classifying objects and determining status.

worker’s position and correct status determination. Although
both CAM techniques successfully assessed the status in
Fig. 7(b) and (d), SOS-CAM effectively addressed the chal-
lenges posed by complex backgrounds such as scaffolds
and grid-patterned finishes, enabling more precise height
estimation. Additionally, the SOS-CAM demonstrated supe-
rior performance in localizing small and linear objects (e.g.,
hardhat and outriggers), as shown in Fig. 7(c) and (e), com-
pared with the conventional CAM technique. The SOS-CAM
achieved a close estimation of the ground truth for height
estimation owing to its improved ladder detection capabil-
ity. However, in Fig. 7(c) and (e), both CAM techniques
inaccurately localize the ladder. Nevertheless, the SOS-CAM
yielded a height estimation that was closer to the ground truth
than the conventional CAM technique.

Although the SOS-CAM exhibited improved object local-
ization performance, resulting in a more accurate status
determination, challenges in precise object detection per-
sisted. The bounding box was not perfectly extracted to fit the
ladder, including the worker, leading to inaccurate detection,
even though the size and location of the bounding box for the
ladder in the SOS-CAMwere more accurate than those in the
previous CAM. The results were attributed to the dataset used
in this study, which was constructed to determine the status of
the FFL. Thus, the presence of ladders was nearly ubiquitous
across most images within the dataset, as shown in Table 2.

These results suggest that the proposed SOS-CAMexhibits
better performance in detecting target objects related to FFL
at construction sites. SOS-CAM has considerable potential
for localizing objects at construction sites because it improves
the localization of linear and small-sized objects in complex
backgrounds.

V. DISCUSSION AND LIMITATIONS
The weakly supervised learning method using image-level
labels effectively reduces annotation costs by approximating
the locations of objects based on the CAM. This study pro-
posed weakly supervised learning approach using SOS-CAM
and spatial relationships for construction safety monitoring.

SOS-CAM, in the proposed approach, utilizes both low- and
high-level features to generate CAM and identifies small-size
and linear objects without highlighting complex background
regions. SOS-CAM uses an FPN to generate a CAM by con-
catenating both low- and high-level features. Concatenating
low-level features can have an adverse effect, causing noise
in the activation map and leading to incorrect localization and
sizing of bounding boxes. To alleviate noise, a refinedmodule
was adopted after concatenating the low-level features before
GAP. Thus, a bounding box was generated from a refined
feature and leveraged for predefined spatial relationships.
A case study using 3,615 image-level labeled images related
to the FFL was conducted to validate the SOS-CAM for
qualitative and quantitative analyses. The validation results
revealed that creating the CAM and bounding boxes using
the proposedmethodology yieldedmore accurate localization
information. The experimental results revealed an accuracy
of 0.2948 mIoU for object localization, 0.9746 F1-Score,
0.9345 accuracy for object classification, and 0.9349 F1-
Score and 0.9507 accuracy in determining whether the scene
was safe or unsafe. The SOS-CAM achieved a classification
accuracy comparable to that of the conventional method, but
exhibited superior localization performance, confirmed by
the status accuracy. Thus, SOS-CAM for object localization
and applying spatial relationships to determine the scene sta-
tus has sufficient potential for use in detection of construction
hazards.

This study highlights achievements in the following areas.
1) This study made initial attempts to use a CAMwith only

image-level labels to assist in checking rule compliance using
spatial relationships. Although meaningful research on the
CAM has been undertaken in the construction industry, using
only image-level labels for object localization and aiding in
compliance determination is highly uncommon. This study
succeeded in using only the CAM technique, without any
other tools or techniques to check for rule compliance.

2) The performance of the SOS-CAM facilitated smoother
integration of spatial relationships into scene recognition
tasks, reinforcing the potential practicality of CAM. SOS-
CAM uses an FPN to overcome complex backgrounds for
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FIGURE 6. Object localization results of conventional CAM and SOS-CAM.

small and linear object localization in construction sites; a
refined module is used to reduce noise resulting from use of
low-level features, improving the accuracy of object location
information and reinforcing the effectiveness of spatial rela-
tionship applications in scene recognition.

3) Application of the CAM to localize and classify small
and linear object at construction sites, has great potential.
This study indicates the feasibility of using image-level labels
for weakly supervised learning in construction safety moni-
toring and lays the foundation for expanding computer vision
research beyond fully supervised learning to include weakly
supervised learning methodologies.

4) The dataset can be accumulated through image-level
labels; images on the web can be used more effectively
without creating bounding boxes or polygons. Use of a large

number of images can generalize computer vision models for
construction sites.

The objective of this study is to pioneer an innovative
approach using CAM as a weakly supervised learning ded-
icated to construction safety monitoring. To enhance the
robustness and practicality of the proposed methodology,
conducting a meticulous comparison with contemporary
advanced CAM techniques is necessary in future research.
Although the SOS-CAM has improved object localization
performance and allows for accurate determination of sta-
tus, precise object detection still poses challenges. The
SOS-CAM successfully extracted the bounding box and
determined the status more accurately than the previous
CAM; however, the bounding box was fitted to the ladder and
included the worker. There were also incorrect detections of
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FIGURE 7. Prediction results of conventional CAM and SOS-CAM.

hardhats, possibly attributed to similarities in body parts or
clothing colors. The dataset used in this study was limited;
incorrect localization may have been resolved by training
with larger amounts of data. It is anticipated that the use
of large-scale benchmark datasets such as MOCS [7] and
SODA [3] will improve the performance of the proposed
CAM, specifically by enhancing its ability to localize objects.
Furthermore, the dataset used in this study was limited to the
already installed step ladder, which is opened and transparent;
thus, the trained SOS-CAMas IP(Image Processing) is able to
recognize the scene related to only the trained type of ladder.
Given the constrained nature of the experiment, additional
research including more scenarios such as verifying secure
attachment of safety hooks to scaffolds where spatial rela-
tionships can be applied, is necessary to fully demonstrate
the robustness of the SOS-CAM, ensuring that the proposed
methodology can be effectively used across a broad spectrum
of construction safety management contexts.

In addition, to further enhance the performance and appli-
cability of the SOS-CAM, the feature aggregation method
should be improved. The SOS-CAM integrates the low- and
high-level features of a network in a one-way manner, which
limits the flow of information from different layers. More-
over, feature maps of all levels are aggregated with the same
weight; the importance of each level of the feature map
is ignored. In future research, integration of feature maps

at multiple levels in different directions by considering the
weight of each resolution can overcome the limitations of this
study.

VI. CONCLUSION
Computer vision has significant potential in automatic scene
recognition to enhance safety measures and prevent accidents
at construction sites. Computer-vision applications for con-
struction safety still require accumulation of datasets, despite
the emergence of weakly supervised learning methods. Due
to the limitations of conventional CAM in overcoming com-
plex backgrounds and effectively capturing small and linear
objects, research on utilizing CAM to recognize unsafe
scenarios such as FFL at construction sites by leveraging
the spatial relationships between detected objects has been
limited. In this study, SOS-CAM, as a weakly supervised
learning method, was designed to localize small and linear
objects while overcoming complex backgrounds at construc-
tion sites; extracting multiscale feature maps to use low- and
high-level features for capturing small and linear objects in
an image, and the refined module addresses the problem
of noise. Spatial relationships were used to determine the
scene status to validate the feasibility of the SOS-CAM for
construction safety monitoring. To train, validate, and test
the SOS-CAM, a dataset comprising 3,615 images associ-
ated with FFL was prepared using only image-level labels.
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The SOS-CAM demonstrated precise localization of tar-
get objects, yielding improvements in performance metrics,
including a 0.0478 increase in mIoU, a 0.0092 increase in
scene status determination accuracy, and a 0.0079 increase in
the F1-score. The proposed SOS-CAM enables more precise
localization of objects, making it a potential computer vision
monitoring technique in challenging environments such as
construction sites, where dataset annotation remains a chal-
lenge.

To overcome the limitations of this study, the authors plan
to improve SOS-CAM in terms of object detection perfor-
mance at construction sites by comparing existing models.
It can mitigate the limitations of CAM technique, which
focuses on local features, and enhance the weakly supervised
learning method for monitoring construction sites. Moreover,
through the CAM of images used in this study, currently
commercialized detectors can be improved, and monitoring
systems can be facilitated as it allows the object detection
reasoning of the detector to be understood. In addition, the
proposed method can evolve to assist or replace fully super-
vised learning-based detectors. The code for SOS-CAM is
available at https://github.com/EJLEE5826/SOS-CAM.
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