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ABSTRACT In this study, we present an innovative network intrusion detection system (IDS) tailored for
Internet of Things (IoT)-based smart home environments, offering a novel deployment scheme that addresses
the full spectrum of network security challenges. Distinct from existing approaches, our comprehensive
strategy not only proposes a model but also incorporates IoT devices as potential vectors in the cyber threat
landscape, a consideration often neglected in previous research. Utilizing the harmony search algorithm
(HSA), we refined the extra trees classifier (ETC) by optimizing an extensive array of hyperparameters,
achieving a level of sophistication and performance enhancement that surpasses typical methodologies. Our
model was rigorously evaluated using a robust real-time dataset, uniquely gathered from 105 IoT devices,
reflecting a more authentic and complex network scenario compared to the simulated or limited datasets
prevalent in the literature. Our commitment to collaborative progress in cybersecurity is demonstrated
through the public release of our source code. The system underwent exhaustive testing in 2-class, 8-class,
and 34-class configurations, showcasing superior accuracy (99.87%, 99.51%, 99.49%), precision (97.41%,
96.02%, 96.07%), recall (98.45%, 87.14%, 87.1%), and f1-scores (97.92%, 90.65%, 90.61%) that firmly
establish its efficacy. This work marks a significant advancement in smart home security, providing a scalable
and effective network IDS solution that is adaptable to the intricate dynamics of modern IoT networks. Our
findings pave the way for future endeavors in the realm of cyber defense, ensuring that smart homes remain
safe havens in an era of digital vulnerability.

INDEX TERMS Extra trees classifier, harmony search algorithm, hyperparameter optimization, Internet of
Things, intrusion detection system, machine learning, smart home.

I. INTRODUCTION

As we navigated through 2023, the landscape of cybercrime
underwent a dramatic transformation, reaching unprece-
dented levels of sophistication and impact. The stark
projection that the global cost of cybercrime could soar to
an astonishing $23.84 trillion by 2027, up from $8.44 trillion
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in 2022, serves as a sobering reminder of the escalating
challenge at hand [1]. This alarming trend underscores
the critical need for enhanced cybersecurity measures,
particularly in environments as integral to our daily lives as
our homes [2].

With the advent of smart home technology, the very
concept of home security has evolved [3]. No longer confined
to physical locks and alarms, the modern home’s defense
system must now contend with cyber threats — invisible,
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intangible, and far more insidious [4]. The adversaries in
this new era are not the traditional burglars of old but rather
faceless entities operating from the shadows of cyberspace,
exploiting the interconnected fabric of our digital existence.

At the core of safeguarding the digital integrity of smart
homes lies the intrusion detection system (IDS) [5], a critical
component designed to monitor network or system activities
for malicious actions or policy violations [6]. An effective
IDS serves as the digital immune system of a smart home [7],
constantly scanning for anomalies that signify potential
intrusions [8]. Its primary function is to identify both
known and novel threats, ensuring that any unauthorized or
suspicious activity is flagged and addressed promptly [9].
Traditional IDS have evolved from simple signature-based
detectors, which rely on known patterns of malicious
activity, to more sophisticated systems that employ advanced
strategies, including anomaly detection and heuristics [10].
Despite their advancements, traditional IDS often struggle
to keep pace with the complexity and novelty of modern
cyber threats, particularly in the interconnected ecosystem
of smart homes. Despite these advancements, traditional
IDS often struggle to keep pace with the complexity and
novelty of modern cyber threats, especially within the highly
interconnected and dynamic ecosystem of smart homes.
Signature-based IDS are inherently limited as they can only
detect attacks with pre-defined signatures, leaving them
vulnerable to zero-day exploits and previously unknown
threats. Anomaly detection systems, while more flexible,
often suffer from high false positive rates and require
extensive manual tuning to remain effective. Moreover, the
static nature of rule-based approaches in traditional IDS
hampers their ability to adapt to the rapidly evolving threat
landscape, necessitating frequent updates and maintenance
which can be both time-consuming and prone to human
error. This challenge underscores the necessity for innovative
approaches that enhance the adaptability and intelligence of
IDS, making them more adept at recognizing and neutralizing
threats in a dynamic digital environment [11]. It is here that
machine learning (ML) methods offer a beacon of hope [12],
promising to revolutionize the efficacy and adaptability of
IDS through intelligent, data-driven insights [13].

In the dynamic landscape of cybersecurity, ML methods
have emerged as a transformative force [14]. These methods,
harnessing the power of algorithms and data-driven insights,
offer unparalleled capabilities in detecting and adapting to
evolving cyber threats. At the heart of ML’s efficacy is
its ability to learn from data, discern patterns, and make
decisions with minimal human intervention [15]. This ability
is particularly crucial in the context of smart home security,
where the diversity and volume of data can be overwhelming
for traditional rule-based systems.

However, the true potential of ML in enhancing IDSs
is unlocked through optimization [16]. Optimization in
ML involves fine-tuning algorithms to maximize their
performance, ensuring that they not only accurately identify
genuine threats but also minimize false positives, which are
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a significant challenge in IDS [17]. This process involves
sophisticated techniques like hyperparameter tuning, model
selection, and feature engineering [18]. Among these, hyper-
parameter tuning, which involves adjusting the parameters
that govern the learning process of the model, is particularly
pivotal [19]. It’s akin to fine-tuning an instrument to ensure
it plays the perfect note — critical in the harmony of a smart
home’s defense strategy.

Our research capitalizes on this aspect of ML, employing
the harmony search algorithm (HSA) — a global optimization
technique inspired by the improvisation process of musicians
— to optimize the extra trees classifier (ETC) [20], a powerful
ensemble learning technique. This innovative approach not
only enhances the accuracy and efficiency of intrusion
detection but also embodies the adaptability required to
keep pace with the rapidly evolving cyber threat landscape.
Through this research, we aim to set a new benchmark
in smart home security, showcasing the synergy between
advanced ML methods and strategic optimization techniques.

Our main contributions to the field of Internet of Things
(IoT)-based smart home security through network IDS
deployment are summarized as follows:

o We propose a novel network IDS deployment scheme
specifically designed for the IoT smart home ecosystem,
a critical aspect often overlooked in existing literature.

o Through the use of the HSA, we optimize a comprehen-
sive set of hyperparameters for the ETC, enhancing the
model’s performance.

o Our research is underpinned by a unique and extensive
real-time dataset collected from 105 home IoT devices,
incorporating scenarios where IoT devices are used as
attack vectors.

o In an effort to foster transparency and collaborative
advancement, we make our code available in a public
GitHub repository,! encouraging further research and
development in the community.

« We conduct a thorough evaluation of our models across
2-class, 8-class, and 34-class configurations, using a
comprehensive suite of metrics including Accuracy,
Precision, Recall, and Fl1-score, ensuring a robust and
detailed assessment of model performance.

These contributions collectively mark a significant
advancement in IoT-based smart home security, setting new
standards for both the development and deployment of
network IDS in a rapidly evolving technological landscape.

The structure of this paper is meticulously crafted as
follows: Section II provides a critical comparison of our
groundbreaking contributions against the backdrop of the
existing body of work, setting the stage for the relevance
of our research. Section III delineates our methodological
framework, detailing the implementation of our proposed
network IDS for smart home security, the intricacies of the
ETC, the optimization prowess of the HSA, and the synthesis
into our novel Harmony-Enhanced Extra Trees (HEET)

1 https://github.com/TATU-hacker/Harmony-Enhanced-Extra-Trees.git
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model. This section also describes our stringent data pre-
processing protocols and the evaluation metrics employed.
Section IV reveals the empirical findings, documenting the
outcomes of hyperparameter optimization, and exploring
the depth and breadth of our model’s capabilities through
2-class, 8-class, and 34-class classification tests. Section V
delves into the discourse of our findings, dissecting the
nuances of binary and multi-class classification results,
juxtaposing our model’s performance with contemporaneous
works, and critically examining the study’s constraints
while positing future research trajectories. Conclusively,
Section VI coalesces our research journey, encapsulating the
paramount implications and affirming the contribution of
our work to enhancing cybersecurity within the smart home
paradigm.

Il. RELATED WORKS

In the evolving landscape of smart home security, the
integration of IoT devices has necessitated advanced IDS to
counteract the increasing sophistication of cyber threats [21].
The literature on this subject demonstrates a rich diversity of
approaches, each contributing unique insights and method-
ologies to enhance intrusion detection capabilities within
smart home environments.

A seminal study embarked on the challenge of mitigating
spam in IoT devices, introducing a ML-driven approach to
assign a ‘spamicity score’ based on time series analysis.
This methodology not only underscores the versatility of
ML in enhancing IoT security but also sets a precedent
for subsequent research in the domain [22]. Building on
this foundational work, another investigation presented a
double-layer ML system for intrusion detection that hones
in on statistical analysis for feature selection. This effort
highlights the critical role of efficient feature extraction
in maintaining high detection accuracy while minimizing
computational overhead [23].

The narrative progresses with the development of a
two-tiered ML-based intrusion detection framework, which
employs a suite of algorithms, including random forest
(RF), XGBoost, and decision trees (DT). This methodology
emphasizes the significance of data preprocessing and
feature reduction, showcasing the power of ML in detecting
and mitigating potential attacks [24]. Further enriching
this discourse, a three-layer hybrid model integrates RF
and principal component analysis (PCA), demonstrating
an effective strategy for minimizing information loss and
accelerating the detection process [25].

The exploration of artificial neural networks (ANN)
through the multi-tiered ANN model for intrusion detection
(MAMID) represents a pivotal moment in the journey
towards optimizing intrusion detection. This study fore-
grounds the importance of hyperparameter optimization,
setting a new benchmark for accuracy and transparency
in the field [26]. Complementing these approaches, the
EM-FEDE method emerges as a novel technique under
few-shot data conditions, employing feature and data
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enhancement to improve IDS model accuracy by addressing
data scarcity [27].

The narrative then shifts to a transformative approach
utilizing a Transformer-based architecture for network IDS,
which adeptly handles diverse data types through the self-
attention mechanism. This advancement not only highlights
the model’s efficacy in distinguishing between normal and
malicious network flows but also illustrates the advantage of
incorporating IoT telemetry data [28]. An edge computing-
based IDS further innovates by converting network traffic into
images for training a convolutional neural network (CNN),
demonstrating the potential of deep learning (DL) and data
augmentation in addressing privacy concerns and unbalanced
data [29].

A stacked recurrent neural network (SRNN) strategy
introduces a nuanced approach to combatting botnet attacks,
emphasizing the model’s ability to capture complex patterns
in network traffic. This technique illustrates the capacity
for detailed temporal data analysis, enhancing the detection
of sophisticated cyber threats [30]. Similarly, a hybrid
model that combines bidirectional long short-term mem-
ory (BiLSTM) and CNN offers a comprehensive solution
to intrusion detection, showcasing the synergy between
processing time-series data and extracting salient features
[31].

The narrative culminates with the introduction of a
long short-term memory (LSTM) network-based anomaly
detection system, tailored for the IoT devices’ security in
smart homes. This model exemplifies the LSTM’s adeptness
at learning from data over time, marking a significant
advancement in the proactive identification and mitigation
of cyber threats [32]. Finally, an innovative hybrid ML/DL
model integrates various algorithms to form a robust defense
mechanism against malicious network traffic. This model not
only exemplifies superior performance but also embodies the
dynamic evolution of IDSs in response to the ever-changing
cybersecurity landscape [33].

Together, these studies form a continuum of innovation,
each contributing to the overarching goal of optimizing smart
home intrusion detection. They collectively underscore the
pivotal role of ML and DL technologies in advancing our
ability to protect digital environments, paving the way for
more secure, resilient smart home ecosystems.

As we traverse the landscape of existing literature
(Table 1), a notable trend emerges in the transition from
simulated to real-world datasets. This shift underscores
a collective aspiration towards enhancing the practical
applicability and robustness of IDS solutions. Our method,
employing the CICIoT2023 dataset, epitomizes this evo-
lution, harnessing real data from an unparalleled array of
105 home devices. This leap in dataset realism and scope
addresses a critical gap in prior endeavors, offering a more
comprehensive understanding of the intricacies involved in
safeguarding smart homes.

Parallel to the diversification of datasets is the progression
towards more complex and hybrid detection models. This
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TABLE 1. Comparison of intrusion detection models in smart home.

Authors Year Dataset Detection Model Hyp crp grameter
optimization
Yuan et al. [29] 2020 UNSW-NB15 simulated, intrusion _0inarys CNN -
no IoT device multiclass
Zainab et al. [22] 2020 Weather Information real, . spam binary XGBoost -
1 home device
. real, . . binary,
Lietal. [23] 2020  collected by the authors 4 home devices intrusion multiclass DT -
Alghayadhetal. [24] 2020  CSE-CIC-IDS2018 simulated, intrusion  multiclass RF -
no IoT device
. simulated, binary,
Segun et al. [30] 2021 Bot-IoT 5 home devices botnet multiclass SRNN -
Elsayed et al. [31] 2021 IoT Intrusion real, . intrusion binary BiLSTM-CNN -
2 home devices
Azumah et al. [32] 2021 ToT Intrusion real, . intrusion binary LSTM -
2 home devices
Lingyun et al. [25] 2021 Bot-IoT simulated, - Gon PI0AY, N DTSVMLDT -
5 home devices multiclass
CIC-ToT 2022, 60 horl;leeaiievices
Butt et al. [33] 2022 imulated ’ intrusion binary KNN-DT-LSTM Keras Tuner
UNSW-NB15 simulatec,
no IoT device
Sohail et al. [26] 2022 T0TID20 real, infrusion _Dnat MAMID ANN
2 home devices multiclass
Wang et al. [28] 2023 ToN_IoT SImulated., intrusion bmg 1y FT-Transformer -
10 home devices multiclass
Hizal et al. [34] 2024 DS20S simulated, intrusion _Pinans RF -
8 home devices multiclass
real, . . binary, Harmony search
Our method 2024 CICIoT2023 105 home devices mntrusion multiclass ETC algorithm (HSA)

trajectory mirrors the research community’s pursuit of
higher detection accuracy and reliability against multifaceted
threats. Our approach, which introduces the HEET model,
distinguishes itself by marrying the advantages of ensemble
learning with the finesse of hyperparameter optimization.
This synergy not only elevates model performance but also
exemplifies a refined strategy to navigate the challenges
posed by evolving cyber threats.

The discourse on model sophistication would be incom-
plete without addressing the critical role of hyperparameter
optimization. Historically, this aspect has been somewhat
overlooked, despite its significance in unlocking the full
potential of IDS models. Our method’s adoption of harmony
search for hyperparameter tuning heralds a new era of
precision and effectiveness, paving the way for a systematic
and optimized approach to model configuration that had been
absent in earlier studies.

Moreover, the evolution from binary to multiclass detec-
tion models, coupled with an expanding coverage of home
devices, marks a significant advancement in the field. Our
method not only supports multiclass detection but also
showcases an exceptional scalability and adaptability to a
diverse array of smart home environments. This capability
is instrumental in crafting a more resilient and versatile IDS
that can cater to the nuanced demands of modern smart
homes.

In culminating our comparison, it becomes evident that
our proposed method stands at the confluence of several
evolutionary streams within the domain of smart home
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IDS. By leveraging a comprehensive dataset, pioneering
an advanced modeling technique, integrating innovative
hyperparameter optimization, and ensuring scalability across
a vast number of devices, our approach offers a holistic
solution to the challenges of intrusion detection in smart
homes.

This narrative not only situates our work within the
grand mosaic of IDS research but also highlights its novel
contributions and potential to shape future directions in smart
home security. As we gaze towards the horizon, the insights
gleaned from this comparative analysis inspire a vision for
further exploration and innovation, promising a safer and
more secure digital future for our homes.

lll. MATERIALS AND METHODS

A. PROPOSED NETWORK INTRUSION DETECTION
SYSTEM FOR SMART HOME SECURITY

As illustrated in Figure 1, the proposed architecture for the
network IDS is meticulously designed to bolster the security
framework of smart home networks. The infrastructure
is orchestrated to create a seamless yet secure web of
interconnected devices that collectively form the smart home
ecosystem.

At the heart of the network, the router serves as the gateway
between the smart home and the vast expanse of the internet,
facilitated by the service provider’s connection. A Cisco
switch, renowned for its reliability, is tethered to this internet
gateway, acting as the nerve center that orchestrates the flow
of digital communication within the home.
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FIGURE 1. Smart home network architecture.

Positioned strategically within the network topology is
the Gigamon Network Tap, a critical component tasked
with the surveillance of all IoT traffic. This device is
paramount in ensuring that a mirror image of the network’s
pulse — every packet, every byte — is relayed to the
network monitor. It is here, within the confines of this
dedicated monitoring system, where our proposed network
IDS comes to the fore, vigilantly capturing traffic with the
aid of Wireshark, a tool synonymous with network analysis
excellence.

The network IDS operates with a singular mandate:
to monitor, detect, and respond to anomalies within the
network traffic. By employing a network tap, we ensure
a dedicated and unobtrusive observation point that does
not hinder network performance. This passive, full-duplex
system allows for a comprehensive analysis of the traffic,
both incoming and outgoing, ensuring that any and all
discrepancies are promptly identified and addressed.

The subsequent layer of the network sees the Netgear
Unmanaged Switch in play, a device chosen for its capability
to facilitate unfettered communication among IoT devices
leveraging protocols such as Zigbee and Z-Wave — protocols
that are the lifeblood of IoT communication. Further
integrated into this layer is the VeraPlus controller, acting as
a conduit between the switch and the myriad of IoT devices
it governs.
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The unique characteristic of incorporating IoT devices as
malicious agents within smart home network architectures
distinguishes this approach from traditional IoT security
measures. This aspect is crucial for understanding and
combating the evolving landscape of loT-based cyber threats,
where compromised IoT devices are increasingly being
utilized as vectors for launching attacks. The deployment
of IoT devices as malicious agents within smart home
network architectures addresses a critical gap in existing
research and security practices. Traditionally, IoT security
approaches have focused on external threats targeting IoT
ecosystems. However, considering the architecture where
IoT devices themselves are compromised and turned into
sources of attack reflects a growing trend in cyber threats.
This approach provides a more comprehensive view of the
security vulnerabilities inherent in smart home environments
and other IoT ecosystems.

This innovative approach is well-reflected in the smart
home network architecture, as illustrated in Figure 1.
By incorporating IoT devices as sources of malicious
traffic, the smart home network architecture offers a unique
opportunity to develop and refine IDS capable of identifying
and mitigating threats originating from within the network.
This characteristic enables researchers and security profes-
sionals to simulate and study the behavior of compromised
IoT devices in a controlled environment, leading to the
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development of more effective detection algorithms and
security measures.

The proposed network IDS installation for smart homes is
a robust architecture that not only prioritizes the security of
the network but does so while maintaining the integrity and
performance of the home’s digital ecosystem. By capturing
and analyzing every nuance of network traffic, the system
ensures that the smart home remains a bastion of security,
safeguarded against the spectrum of cyber threats that loom
in the digital age.

B. EXTRA TREES CLASSIFIER

In the domain of predictive analytics for smart home
security, the ETC emerges as an exemplar of ensemble ML
methodologies [35]. This algorithm, standing for Extremely
Randomized Trees, is predicated on the principle of aggre-
gating the results of multiple de-correlated decision trees to
form a comprehensive predictive model [36]. Its inherent
robustness and accuracy make it an ideal candidate for the
complex task of intrusion detection within the intricate web
of smart home IoT devices.

The efficacy of the ETC lies in its construction of numerous
decision trees, which are grown on the entirety of the data
sample rather than a bootstrap subset, as is common in other
ensemble methods like Random Forests [37]. Each tree in
the extra trees ensemble is built from a randomly sampled
dataset of features, ensuring that the bias-variance trade-off
is navigated with finesse. This randomization goes further
in extra trees, extending to the splitting thresholds, which
are chosen completely at random, thereby increasing the
diversity among the individual trees within the ensemble
(Figure 2).

Adapting this classifier to the realm of smart home
security involves harnessing its capability to handle vast
and diverse datasets that are characteristic of smart home
environments. The ETC is adept at discerning patterns within
the noise of high-dimensional data, a skill that is paramount
in detecting anomalous behavior indicative of cybersecurity
threats.

The integration of the ETC into an IDS for smart
homes entails an analysis of network traffic data to identify
potentially malicious activity [38]. In this capacity, the
classifier serves as a guardian, sifting through the data
to detect outliers that may signify a security breach. The
nature of IoT devices, which frequently operate on limited
computational power, calls for efficient algorithms that can
deliver high accuracy without impeding system performance.
The ETC meets these requirements, offering a balance of
speed and precision.

In the context of smart home security, where decisions
may have direct implications on user privacy and safety, the
interpretability of the model is as crucial as its performance.
The ETC, while inherently a black-box model, can be
coupled with interpretability frameworks to elucidate the
decision-making process, thereby fostering trust among
stakeholders.
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The ETC, with its ensemble approach and randomized
decision-making, represents a powerful tool in the security
infrastructure of smart homes. Its deployment in IDS systems
exemplifies a sophisticated application of ML to safeguard
the digital sanctity of our living spaces. As smart home
technologies continue to evolve, the ETC will undoubtedly
remain a cornerstone in the development of advanced,
reliable, and user-centric security solutions.

C. HARMONY SEARCH ALGORITHM

The HSA is a music-inspired optimization technique devel-
oped by Geem et al. in 2001 [39]. The HSA, inspired by the
improvisational process of musicians in search of a perfect
harmony, encapsulates a novel approach to optimization [40].
It posits that the solution to an optimization problem can
be conceived as a harmony that resonates with the highest
degree of compatibility with the desired objectives [41].
This paradigm shift introduces a framework where solutions
are iteratively improvised, much like melodies, within the
constraints of the problem space, striving for an optimal
composition [42]. The algorithm is particularly known for
its simplicity and has been successfully applied to various
optimization problems [43].

Central to the HSA is the harmony memory (HM), an ana-
log to the collective musical memory, serving as a repository
of candidate solutions [44]. These solutions, akin to musical
chords, are represented as vectors of decision variables, each
reflecting a potential harmony within the solution space.
Below is a detailed mathematical representation of the key
elements and steps in the HSA [45].

KEY ELEMENTS
« Harmony Memory (HM): The HM is a matrix of
size HMS x D, where HMS is the HM size and D is
the number of decision variables in the optimization
problem. It can be represented as:

X11 X120 XID

X1 X22 v+ X2D
HM =

XHMS1 XHMS?2 * ** XHMSD

Each row in HM represents a solution vector (x;), and
each column represents a decision variable.

o Objective Function: The objective function to be
optimized (minimized or maximized) is denoted by
f(x), where x = [x1,x2,...,xp] is a solution
vector.

ALGORITHM PARAMETERS
« Harmony Memory Considering Rate (HMCR): Prob-
ability of selecting a value from the historical values in
HM, denoted by HMCR € [0, 1].
« Pitch Adjusting Rate (PAR): Probability of adjusting a
selected value, denoted by PAR € [0, 1].
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psh_flag_number = 1.22

gini = 0.911
samples = 44957

value = [8621, 4893, 453, 473, 2574, 822, 2848, 3097, 4902
2829, 2543, 1097, 113, 2618, 1791, 283, 1766, 668
1409, 243, 34, 175, 424, 11, 63, 119, 30, 21, 3

10, 5,2,12,5]

Triy

False

rst_flag_number = 2.125
gini = 0.904
samples = 42349

value = [8621, 4893, 453, 424, 2574, 822, 2848, 3097, 4902
2829, 2543, 1097, 110, 123, 1791, 276, 1729, 668
1409, 237, 31, 174, 424, 11, 63, 116, 30, 19, 3

Variance = 2.481
gini = 0.084.
samples 2608

syn_flag_number = -0.381
gini = 0.896

9,5,2,12,4] 0,1,000,1] \
syn_count = 0.166 Std = 0.933 Tot size = 1.111
gini = 0.257 gini = 0.024 gini = 0.7

samples = 40276
value = [8621, 4893, 453, 424, 2574, 822, 2831, 3082, 4902
2829, 2485, 1097, 87, 12, 9, 275, 1729, 668, 1409
208, 31, 161, 417, 11, 63, 102, 27,19, 3,9, 5
2,12,4]

samples = 2073

3,0,0,000,0,0]

value =[0,0,0,0,0,0,17, 15,0, 0, 58,
111,1782,1,0,0,0,29,0,13,7,0,0,

samples = 2525
value = [0, 0, 0, 20,0, 0,0,0,0,0,0,0, 0, 2495
0,1,3002200001,00
0,1,0,0,0,0]

samples 83

Fra

o Bandwidth (BW): The range of pitch adjustment,
controlling the degree of local search.

FIGURE 2. Extra trees classifier.

PROCESS
1) Imitialization: Generate HMS random solution vectors

within the decision variable bounds and evaluate them
using the objective function f (x).

2) New Harmony Improvisation: For each decision
variable x; in the new harmony vector:

« With probability HMCR, select a value from the
i-th column of HM .

o With probability PAR, adjust this value by =BW,
where the adjustment can be represented as:

x; = x; £ rand() x BW

x/ is the new value of the decision variable after
adjustment.

o With probability 1 — HMCR, generate a random
value for x; within its bounds.

3) Harmony Memory Update: If the new harmony
vector x” yields a better objective function value than
the worst harmony in HM, replace the worst harmony
with x’.

4) Termination: Repeat the improvisation and update
steps until a stopping criterion (e.g., a maximum
number of iterations) is met.

OPTIMIZATION GOAL

Find x* such that f(x*) is optimized (minimized or maxi-
mized), where x* is the best solution vector in HM after the
final iteration.

This mathematical framework encapsulates the core mech-
anisms of the HSA, highlighting its reliance on stochastic
processes for both exploration (generating new solutions) and
exploitation (refining existing solutions) within the search
space.

The pseudocode captures the essence of the HSA, empha-
sizing the balance between exploiting historical solutions
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stored in the HM and exploring new potential solutions
through random variation and adjustment (Algorithm 1).
The parameters HMCR, PAR, and BW play crucial roles in
dictating the behavior of the improvisation process, enabling
the algorithm to adaptively search the solution space for
optimal or near-optimal solutions.

The improvisation process underpinning the HSA is a
meticulous balance between exploration and exploitation.
Decision variables for new candidate solutions are either
drawn from the HM, embodying the exploitation of accu-
mulated knowledge, or randomly generated, symbolizing the
exploration of uncharted territories. The PAR mechanism
introduces a probabilistic fine-tuning of these variables,
mirroring the subtle modulations in musical improvisation
that can transform a melody. The algorithm’s iterative
nature ensures a continuous evolution of the solution space,
progressively leading to the emergence of an optimal or near-
optimal solution.

Upon the generation of a new harmony, its compatibility
with the objective function is assessed. Superior harmonies
are preserved within the HM, displacing lesser harmonies,
thus ensuring that the collective memory evolves towards
increasingly compatible solutions.

The algorithm advances towards convergence through a
series of improvisations, culminating once a pre-established
termination criterion is satisfied. The best solution within
the HM at the conclusion of the algorithm represents
the optimal harmony, analogous to the culmination of a
musical composition that achieves a resonant and satisfying
conclusion.

The HSA epitomizes the elegance of leveraging natural
and artistic principles for computational purposes. It stands
as a profound example of how the search for optimization
solutions can transcend traditional boundaries, embodying an
approach that is both methodical and inspired. Through its
adaptive and iterative exploration of the solution space, the
HSA offers a versatile and effective tool for addressing a wide
array of optimization problems, harmonizing the complexity
of decision variables into a symphony of optimal solutions.
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Algorithm 1 Harmony Search Algorithm
1: Initialize algorithm parameters:
HMS (Harmony Memory Size)
HMCR (Harmony Memory Considering Rate)
PAR (Pitch Adjusting Rate)
BW (Bandwidth)
NI (Number of Improvisations or iterations)
Initialize Harmony Memory (HM):
: fori=1to HMS do
Generate a random solution vector X;
Evaluate the objective function f(X;)
Insert X; into HM
12: end for
13: Improvise a New Harmony:
14: for k =1 to NI do

R e A A T

—_ =
—_ O

15: for each decision variable j in the solution vector do
16: if rand() < HMCR then
17: Select a value from HM for the j-th variable
18: if rand() < PAR then
19: Adjust the selected value by a random
amount within £BW
20: end if
21: else
22: Generate a random value for the j-th variable
within its bounds
23: end if
24: end for
25: Evaluate the objective function for the new harmony
26: if the new harmony is better than the worst harmony
in HM then
27 Replace the worst harmony in HM with the new
harmony
28: end if
29: end for

30: Termination:
31:  The algorithm terminates after completing NI impro-

visations.

32: Output:

33:  The best solution in HM is considered the optimal
solution.

D. PROPOSED HARMONY-ENHANCED EXTRA TREES
MODEL

In the evolving landscape of smart home security, the
paramount challenge lies in the development of robust IDSs
that can adapt to the nuanced and dynamic nature of threats.
This paper introduces an optimized model that harnesses the
synergy between harmony search optimization and the ETC,
coined as the HEET model, aimed at elevating the precision
and efficiency of smart home IDSs (Figure 3).

The HEET model is predicated on the ETC, renowned
for its efficacy in handling complex classification tasks
through the aggregation of multiple de-correlated trees. The
classifier’s performance is contingent upon the fine-tuning of
its hyperparameters, which include the number of estimators,
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FIGURE 3. Harmony-enhanced extra trees model.

the maximum depth of trees, the minimum samples split, the
minimum samples leaf, the maximum features to consider
for the best split, and the bootstrap option. The conventional
method of manually selecting these hyperparameters is both
time-consuming and prone to suboptimality.

To address this, we employ the HSA, an optimiza-
tion technique inspired by the improvisation process of
musicians, to autonomously and intelligently fine-tune the
hyperparameters of the ETC. The HSA iterates through a
solution space, guided by a HM that stores a set of high-
quality solutions, which are analogous to musical harmonies.
Through mechanisms akin to musical improvisation —
such as HM consideration, pitch adjustment, and random
selection — the HSA explores and exploits the solution
space to discover optimal or near-optimal hyperparameter
configurations.

The proposed HEET model integrates the HSA with the
ETC through a custom objective function. This function
evaluates the classification accuracy of the model on a
validation set, with the aim of maximizing accuracy (or
equivalently, minimizing the negative accuracy). The HSA
systematically adjusts the hyperparameters of the ETC,
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leveraging the objective function’s feedback to converge
towards an optimal set of hyperparameters.

The harmony search begins with the initialization of the
HM with random values within predefined ranges for each
hyperparameter. These ranges are chosen based on empir-
ical evidence and theoretical considerations to encompass
potential optimal values. As the search progresses, new
harmonies — representing candidate hyperparameter sets —
are generated and evaluated against the objective function.
The algorithm dynamically updates the HM with superior
harmonies, gradually refining the search towards the optimal
hyperparameter configuration.

Upon completion of the harmony search, the optimal set
of hyperparameters is utilized to configure the ETC, thereby
constructing the optimized HEET model. The model is then
trained on a dataset comprising smart home network traffic,
encapsulating a diverse array of intrusion scenarios alongside
normal behavior.

The efficacy of the HEET model is underscored by its
performance metrics, which exhibit significant improvements
in detection accuracy and computational efficiency over
conventional models. The training and testing times are
meticulously recorded, highlighting the model’s practicality
for real-time intrusion detection applications in smart home
environments.

By iteratively adjusting parameters through a balance
of exploration and exploitation, the HSA enhances the
ETC’s ability to accurately detect and classify network
intrusions in real-time. This optimization is crucial for
several reasons. First, it maximizes the model’s detection
capabilities, reducing false positives and false negatives,
which are critical in maintaining the integrity and reliability
of intrusion detection systems. Second, it ensures that the
model can adapt to the dynamic and complex nature of smart
home environments, where the diversity of IoT devices and
the variability of network traffic present unique challenges.
Lastly, the integration of HSA with ETC contributes to
the development of scalable and efficient security solutions,
capable of protecting against an ever-growing array of cyber
threats. This methodological innovation not only strengthens
the overall security framework of smart homes but also
sets a new benchmark for future research in Al-driven
cybersecurity.

E. DATA PREPROCESSING

The CICIoT2023 dataset emerges as a pivotal resource in
the domain of IoT security [46], offering an unparalleled
depth of insight into the dynamics of IoT-based cyber threats.
Distinctively characterized by its inclusion of IoT devices not
only as victims but also as perpetrators of cyber-attacks, this
dataset encapsulates a broad spectrum of malicious scenarios
across 33 distinct attack vectors, categorized into seven major
types. Engineered through meticulous simulations within an
IoT network comprising over 100 varied devices, the dataset
aims to mirror the complexity and diversity of real-world
IoT environments. It provides researchers and security
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professionals with a rich foundation for developing, testing,
and enhancing IDSs tailored to the nuanced vulnerabilities
of smart home ecosystems. The CICIoT2023 dataset’s
comprehensive coverage, realism, and focus on IoT devices
as malicious agents uniquely position it as a cornerstone
for advancing IoT security analytics and fostering the
development of robust, effective security solutions capable of
addressing the evolving landscape of IoT threats.

In the quest to harness the potential of the CICIoT2023
dataset for enhancing smart home intrusion detection, a com-
prehensive data preprocessing strategy was meticulously
crafted and executed. This dataset, a compilation of 169 csv
files representing a rich tapestry of IoT network interactions,
including 33 distinct attack types alongside benign traffic,
forms the foundation of our study. With a formidable
count of 46,686,579 entries, the preprocessing phase was
pivotal in refining and optimizing the dataset for analytical
rigor and computational efficiency. Herein, we delineate the
methodical steps undertaken in this critical phase of our
research.

In the foundational stage of optimizing the CICIoT2023
dataset for smart home intrusion detection, the preprocessing
began with the meticulous aggregation of csv files into pandas
DataFrames. A critical step in this phase was the conversion
of features from float64 to float32 data types during the initial
loading process. This strategic choice was driven by the dual
objectives of preserving the dataset’s numerical integrity and
significantly reducing its memory footprint.

Subsequent to the aggregation of the individual csv files
into a singular cohesive DataFrame, a further optimization
was undertaken. Features of the ‘object’ data type were
evaluated for conversion to the ‘category’ type, contingent
upon a uniqueness threshold set at 50% of the dataset’s
entries. This conversion, applied to features meeting this
criterion, served to further optimize memory usage while
maintaining the categorical nature of the data.

A critical observation noted was the presence of features
predominantly populated with zeros, exceeding a threshold of
99%. Such features were deemed to contribute minimal infor-
mational value to the analysis and were thus excised from
the DataFrame. This pruning of data not only streamlined the
dataset but also honed the focus onto more impactful features.

The pursuit of data integrity necessitated a thorough
examination for null values, ensuring that the analytical
foundation was devoid of gaps that could skew results. Addi-
tionally, the elimination of duplicate entries was imperative
to maintain the dataset’s integrity, ensuring that each data
point contributed uniquely to the analysis. This step was
instrumental in refining the dataset to 28,098,546 entries
across 36 features, a testament to the rigorous cleaning
process.

The processing of the CICIoT2023 dataset has yielded a
detailed taxonomy of network traffic, pivotal for informing
the development of IDSs (Table 2). This disparity in record
counts across attack types reflects the varied nature of IoT
security threats, from the most common to the rarefied,
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TABLE 2. Distribution of attack records.

Class Records
DDoS-UDP_Flood 5,412,287
DDoS-SynonymousIP_Flood 3,065,966
DDoS-SYN_Flood 1,933,447
DDoS-ICMP_Flood 1,809,173
DDoS-PSHACK_Flood 1,647,084

DDoS DDoS-TCP_Flood 1,569,605
DDoS-RSTFINFlood 1,071,959
DDoS-ICMP_Fragmentation 443,979
DDoS-UDP_Fragmentation 286,925
DDoS-ACK_Fragmentation 274,933
DDoS-HTTP_Flood 28,772
DDoS-SlowLoris 23,426
DoS-UDP_Flood 2,959,733

DoS DoS-TCP_Flood 1,778,908
DoS-SYN_Flood 1,629,596

Attack DoS-HTTP_Flood 71,786
Recon-HostDiscovery 134,345
Recon-OSScan 98,112

Recon Recon-PortScan 82,124
VulnerabilityScan 37,382
Recon-PingSweep 2,260
BrowserHijacking 5,859
CommandInjection 5,409
SqlInjection 5,245

Web-Based XSS 3.846
Backdoor_Malware 3,218
Uploading_Attack 1,252

Brute Force  DictionaryBruteForce 13,064

) MITM-ArpSpoofing 307,591

Spoofing  pNS Spoofing 178.873
Mirai-udpplain 890,576

Mirai Mirai-greeth_flood 673,232
Mirai-greip_flood 550,402

Normal Normal BenignTraffic 1,098,177

sophisticated attacks. Through this processing, the dataset has
been distilled into a refined resource, facilitating the training
of models to detect and classify the complex array of attacks
characteristic of today’s IoT security challenges.

The dataset’s categorical labels, representing a broad
spectrum of both benign and malicious network activities,
were systematically converted into numerical form. This
conversion was essential for enabling the ML algorithms
to process the data, as these algorithms inherently require
numerical input. By assigning unique numerical identifiers to
each category of network activity, we maintained the integrity
of the dataset’s classification diversity while rendering it
amenable to algorithmic analysis.

After segregating the features from the target variable,
the dataset underwent a strategic partitioning process. The
division allocated 70% of the data for training, allowing the
model to learn from a majority of the dataset. To ensure
robust model validation and testing, the remaining data
was divided into validation and test sets, receiving 10%
and 20% of the dataset respectively. This structured split
supports a comprehensive evaluation framework, where
model performance can be iteratively refined using the
validation set before final assessment on the test set.
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To address potential bias arising from variable scales
among features, a normalization process was applied to the
dataset. This process, crucial for preserving model fairness
across features, involved adjusting the data to a common
scale without distorting differences in the ranges of values.
By standardizing the feature set, we ensured that each feature
contributed equally to the analysis, eliminating skewness
towards variables with larger magnitudes.

The data preprocessing journey undertaken for the
CICIoT2023 dataset was both exhaustive and meticulous,
embodying the synthesis of computational efficiency and
data integrity. By optimizing data types, excising redundancy,
and ensuring the uniqueness of entries, the dataset was
transformed into a streamlined and potent resource for
intrusion detection analysis. This foundational work not only
facilitates the development of the HEET model but also sets a
benchmark for data preprocessing in the realm of IoT security
research. Through these painstaking efforts, the dataset stands
primed to unveil insights into the detection and classification
of IoT-based cyber threats, paving the way for advancements
in smart home security.

F. EVALUATION METRICS

The experimental evaluation was conducted on a high-
performance computing platform equipped with an Intel(R)
Core(TM) i19-9900KF CPU @ 3.60GHz, 16 CPU cores, and
32GB of RAM. The experiments were implemented using
Python, leveraging libraries such as Pandas and NumPy
for data manipulation, and Matplotlib and Seaborn for data
visualization. The scikit-learn library was employed for ML
tasks, including model training and evaluation.

In alignment with our commitment to transparency
and fostering collaborative research, we are pleased to
announce that the entire codebase supporting our experi-
ments, including the implementation of the HSA and the
optimized ETC, is openly available. Researchers, practi-
tioners, and enthusiasts are encouraged to access, utilize,
and contribute to our repository hosted on GitHub at the
following link: https://github.com/TATU-hacker/Harmony-
Enhanced-Extra-Trees.git (uploaded on 16 March 2024).

The evaluation of the HEET model’s performance in
identifying various attack vectors within the smart home IoT
environment is critical to establishing its efficacy. In this pur-
suit, we employ a suite of metrics, each providing a distinct
perspective on the model’s predictive capabilities [47]. Here,
we elucidate on four key metrics: Accuracy, Precision, Recall,
and the F-Score [48], [49].

1) Accuracy is the most straightforward metric for assess-

ing amodel’s overall performance. Itis calculated using
the formula:

TP + TN
TP+ TN +FP+FN’

Accuracy =

ey

where TP is true positives, TN 1is true negatives, FP is
false positives, and FN is false negatives.
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2) Precision measures the correctness of positive predic-
tions made by the model and is defined as the ratio
of true positives to the sum of true positives and false
positives. The formula for precision is:

. TP
Precision = ——. 2)
TP + FP
3) Recall assesses the model’s ability to identify all
relevant instances correctly and is calculated as the ratio
of true positives to the sum of true positives and false

negatives. The formula for recall is:

P
Recall = ——. 3)
TP + FN

4) The F-Score provides a balance between precision and
recall by taking their harmonic mean. It is particularly
useful when seeking a balance between recognizing all
positives and maintaining high precision. The F-Score
is calculated as:

(Recall x Precision)

(Recall + Precision)’

These metrics collectively offer a multifaceted view of the
HEET model’s performance, illuminating its strengths and
areas for improvement. Through the lens of these metrics,
we gain profound insights into the model’s operational capa-
bilities, guiding us towards refining its predictive prowess for
smart home intrusion detection applications.

F1 —score =2 x “)

IV. EXPERIMENTS AND RESULTS

In the forthcoming exegesis of our empirical findings,
we embark upon a layered exposition that traverses the
landscape of computational discernment facilitated by an
optimally tuned ETC. We commence with a discourse
on the meticulous calibration of the model’s parameters,
a process underpinned by the HSA’s adeptness at navigating
the multidimensional space of potential solutions. This is
followed by an analytical retrospection of the binary classifi-
cation trials, wherein the model’s sagacity in distinguishing
between the conventional and the aberrant is brought to
light. Thereafter, we transition to an exploration of the
model’s capacity to parse through an expanded categorical
schema, elucidating its competence in the stratification of
cyber threats. The culmination of our narrative arrives with
a granular investigation into the algorithm’s precision in
demarcating a comprehensive array of specific adversarial
incursions, demonstrating its acuity in the nuanced detection
of cybersecurity threats.

A. HYPERPARAMETER OPTIMIZATION RESULTS

In this subsection, we present an analytical narrative detail-
ing the fruits of the HSA’s rigorous quest to optimize
the ETC’s hyperparameters. Emphasizing the algorithm’s
systematic prowess, this subsection lays the foundation for
understanding the empirical enhancements achieved in the
model’s configuration. The results encapsulate a strategic
calibration of parameters that have been tuned harmoniously
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to resonate with the varying complexities and characteristics
of the dataset under study. These optimized parameters set the
stage for the ensuing empirical analyses, offering a prelude
to the depth and breadth of the classifier’s capabilities in
the subsequent testing phases for anomaly detection, attack
categorization, and specific attack identification.

TABLE 3. Optimized extra trees hyperparameters using harmony search
algorithm.

Hyperparameter ~ Type Range Class 2 Class 8 Class 34
n_estimators int [10, 200] 195 190 200
max_depth int [1,20] 17 18 19
min_samples_split filrcl)t;;t [2, 11] 3 5 5
min_samples_leaf filrcl)lz;t [1, 10] 3 2 3
max_features ﬁl:);t ls"q;” (01\;%11367) (01\17%11;7) (01\1305[334)
None ’ ’ ’

bootstrap bool E;lllsee True True True

Within the dichotomous framework, the HSA orchestrated
the hyperparameters to a state of equilibrium, concretizing at
195 estimators with an arboreal depth of 17 — a configuration
suggestive of both model complexity and generalizability.
The internal bifurcation of nodes and the minimal foliage
were each set at a trifecta, a delicate balance encouraging both
model depth and sufficient sample representation. Notably,
the max_features parameter resonated with the ensemble
at ‘None’, an indication that the totality of the feature
set contributes to the individual decision trees, with the
bootstrap modality affirmed, engendering sample diversity
with replacement.

In the octal classification paradigm, the algorithm finely
tuned the ensemble to consist of 190 estimators, permitting
them to mature to a depth of 18. The algorithm subtly
increased the min_samples_split to 5, enhancing the model’s
discriminative capacity. The min_samples_leaf parameter,
optimized to a duo, indicated a refined leafiness conducive to
model precision. The max_features parameter, while remain-
ing unbound, implicitly embraced a subset equivalence of
0.7937, a tacit nod to feature proportionality in the pursuit of
an optimal split. The bootstrap parameter, steadfast in its true
setting, corroborated the model’s preference for bootstrapped
sampling.

Navigating the thirty-four class terrain, the algorithm
discerned an optimal arboretum of 200 estimators with
the liberty to delve to a depth of 19 — a directive
pointing to the model’s intricate delineation capabilities.
The min_samples_split and min_samples_leaf were poised
at 5 and 3, respectively, a calibration that reflects an
astute balance between depth and breadth, ensuring sample
adequacy and representativeness. Here again, max_features
abided by its precedent of ‘None’, albeit with an implicit
proportionality factor of 0.8504, intimating a comprehensive
yet focused approach to feature selection. The consistent
endorsement of the bootstrap paradigm underscored a
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TABLE 4. Performance comparison of binary testing.

Model  Accuracy (%)  Precision (%) Recall (%) F1-Score (%) Training Time (s)  Testing Time (s)
ETC 99.58 96.67 97.86 97.26 923.394 39.658
HEET 99.87 97.41 98.45 97.92 1,105.328 45.744

commitment to sampling robustness across the classifiers’
architectural spectrum.

The detailed results of the HSA’s hyperparameter opti-
mization are summarized in Table 3, elucidating the tuned
parameters that culminated in the HEET models for each
class configuration.

B. 2-CLASS TESTING FOR ANOMALY DETECTION

In this subsection of our study, we meticulously com-
pare the performance of the baseline ETC against its
Harmony-Enhanced counterpart (HEET). This comparison
offers a lens through which we can discern the advantages
rendered by the intricate parameter adjustments afforded by
the HSA.

The critical task of distinguishing between ‘Normal’
and ‘Attack’ network traffic hinges upon the nuanced
capability of the underlying classifier. Through rigorous
testing, we have determined the performance of both ETC
and HEET models across several standard metrics: accuracy,
precision, recall, and f1-score.

Table 4 presents a succinct yet comprehensive comparison
of the two models. The HEET model, enhanced through
hyperparameter optimization, surpasses its ETC counterpart
with an admirable accuracy of 99.87%, an increment
indicative of the model’s robustness. Precision, a measure
of the model’s exactness, and recall, a measure of the
model’s completeness, both see ascensions to 97.41% and
98.45%, respectively, for the HEET model. This culmination
of meticulous optimization is further echoed in the enhanced
f1-score, a harmonic mean of precision and recall, registering
at 97.92%. Such improvements in the HEET model, however,
come with the trade-off of increased computational demand,
with training and testing times marked at 1105.328 seconds
and 45.744 seconds, respectively. This contrast with the ETC
model, which, while marginally less precise, is also less
computationally taxing, with training and testing times of
923.394 seconds and 39.658 seconds, respectively.

TABLE 5. ETC binary classification report.

precision  recall  fl-score support

Attack 1.00 1.00 1.00 5,399,632
Normal 0.94 0.96 0.95 220,078
accuracy 1.00 5,619,710
macro avg 0.97 0.98 097 5,619,710
weighted avg 1.00 1.00 1.00 5,619,710

The detailed classification reports, delineated in Tables 5
and 6, further accentuate the HEET model’s superior
discernment between the classes. The ‘Attack’ class, owing
to its clear signature in the data, sees perfect scores across

117772

TABLE 6. HEET binary classification report.

precision  recall  fl-score support

Attack 1.00 1.00 1.00 5,399,632
Normal 0.95 0.97 0.96 220,078
accuracy 1.00 5,619,710
macro avg 0.97 0.98 098 5,619,710
weighted avg 1.00 1.00 1.00 5,619,710

both models. However, the ‘Normal’ class, which requires
a more delicate handling due to its potential overlap with
‘Attack’ patterns, benefits significantly from the HSA’s
touch. The HEET model’s precision and recall in identifying
normal instances are enhanced to 0.95 and 0.97, respectively,
as opposed to the ETC model’s 0.94 and 0.96.
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FIGURE 4. ETC binary confusion matrix.
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FIGURE 5. HEET binary confusion matrix.

The insights gleaned from the confusion matrices pro-
vide a visual representation of the models’ performance
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TABLE 7. Performance comparison of octal testing.

Model  Accuracy (%)  Precision (%) Recall (%) F1-Score (%) Training Time (s)  Testing Time (s)
ETC 99.32 95.39 81.11 85.55 4,217.905 201.462
HEET 99.51 96.02 87.14 90.65 5,491.069 74.649

(Figures 4 and 5). For the ETC model, we observe a higher
incidence of false positives and false negatives compared
to the HEET model. The HEET model’s confusion matrix
indicates a decrease in false positives (from 14,656 to 11,811)
and false negatives (from 8,804 to 6,790), underscoring
an enhanced sensitivity and specificity. This signifies not
only the HEET model’s heightened aptitude in correctly
classifying ‘Attack’ instances but also its refined acuity in
preserving the ‘Normal’ class from misclassification.

These results collectively depict a vivid narrative of
the HSA’s capacity to amplify the ExtraTreesClassifier’s
detection capabilities. Through the meticulous optimization
of hyperparameters, the HEET model achieves a delicate
equilibrium between sensitivity and specificity, making it a
more formidable sentinel against network anomalies. It is
this very balance that is so coveted in the realm of anomaly
detection, where the stakes of misclassification are high,
and the precision of detection is paramount. The HEET
model, therefore, stands as a testament to the virtue of
harmony in the realm of algorithmic optimization, marrying
the sophistication of ML with the elegance of algorithmic
orchestration to create a bulwark against the spectral threats
that lurk within network traffic.

C. 8-CLASS TESTING FOR ATTACK CATEGORIZATION

In the nuanced theater of cybersecurity, the demarcation of
malicious intent into distinct categories of attacks is a task
of critical complexity. In this subsection delineates the com-
parative assessment of the ETC and its refined counterpart,
the HEET, in their abilities to categorize an array of cyber
threats. This exposition details the analytical examination of
the models’ performance through a multi-dimensional lens of
metrics, shedding light on the precision, recall, and the overall
accuracy of these predictive models.

TABLE 8. ETC octal classification report.

precision  recall ~ fl-score support

DDoS 1.00 1.00 1.00 3,513,485

DoS 1.00 1.00 1.00 1,287,718

Recon 0.91 0.82 0.87 71,339
Web-Based 0.95 0.48 0.63 4,929
Brute_Force 0.94 0.36 0.52 2,556
Spoofing 0.92 0.86 0.89 97,212
Mirai 1.00 1.00 1.00 422,393
Normal 0.91 0.98 0.94 220,078
accuracy 0.99 5,619,710
macro avg 0.95 0.81 0.86 5,619,710
weighted avg 0.99 0.99 099 5,619,710

In assessing the prowess of any classification model,
core metrics provide the essential barometer of success.
Table 7 presents these metrics as a testament to the
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TABLE 9. HEET octal classification report.

precision  recall  fl-score support

DDoS 1.00 1.00 1.00 3,513,485

DoS 1.00 1.00 1.00 1,287,718

Recon 0.92 0.87 0.89 71,339
Web-Based 0.94 0.61 0.74 4,929
Brute_Force 0.96 0.62 0.75 2,556
Spoofing 0.93 0.89 0.91 97,212
Mirai 1.00 1.00 1.00 422,393
Normal 0.94 0.98 0.96 220,078
accuracy 1.00 5,619,710
macro avg 0.96 0.87 091 5,619,710
weighted avg 1.00 1.00 1.00 5,619,710

models’ capabilities. The HEET model, having undergone the
HSA’s optimization process, manifests a superior accuracy
of 99.51%, a testament to its refined predictive abilities.
Precision and recall, key indicators of model reliability,
are notably higher in the HEET model, presenting a clear
indication of its superior discriminative power. The f1-score,
a synthesized metric of precision and recall, echoes this
narrative, with the HEET model achieving a commendable
90.65%. These metrics are not merely numbers; they are
reflective of a model’s efficacy in real-world applications,
where the distinction between attack types is not merely
academic but a matter of security.

The temporal dimensions of model training and testing
reveal the computational investments necessary for such
optimization. The HEET model demands more extensive
training time, yet this investment pays dividends in its
reduced testing time, emphasizing the HSA’s contribution not
only to the model’s acumen but also to its efficiency during
deployment.

The detailed classification reports, depicted in Tables 8
and 9, further reveal the performance nuances between the
two models. The ETC model, while showing a commendable
macro-average precision and recall, evidences certain weak-
nesses in categories like ‘Web-Based’ and ‘Brute_Force’
attacks, where the recall rates dip to 0.48 and 0.36,
respectively. This suggests a vulnerability in distinguishing
less frequent or more sophisticated attack types.

Conversely, the HEET model, imbued with the harmonic
balance of optimized hyperparameters, registers substantial
improvements in these very categories. For ‘Web-Based’
attacks, the precision surges to 0.94 with a recall of 0.61,
while ‘Brute_Force’ attacks observe a precision of 0.96 and
arecall of 0.62. These advancements in precision and recall,
leading to increased fl-scores, are indicative of the model’s
refined capability to differentiate between various attack
methodologies with greater accuracy.
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FIGURE 6. ETC octal confusion matrix.

The confusion matrices (Figures 6 and 7) serve as a
cartographic representation of the models’ classificatory
landscapes. For the ETC model, the rows of darker shades
along the matrix’s principal diagonal signal robust iden-
tification for dominant classes like ‘DDoS’ and ‘DoS’
However, the smattering of lighter cells within this main
diagonal, particularly for categories like ‘“Web-Based’ and
‘Brute_Force,” reveal areas where the model’s resolution
falters. Here, the matrix tells a story of occasional confusion,
where certain attacks masquerade effectively as benign or as
other types of intrusions.

In contrast, the HEET model’s matrix delineates an
enhanced level of clarity in classification. A darker and
more consistent diagonal, with fewer and lighter off-diagonal
elements, speaks to the model’s heightened acuity. Notably,
for categories such as ‘Recon’ and ‘Spoofing, the HEET
model exhibits a substantial reduction in false positives and
false negatives — crucial for cybersecurity systems where the
mislabeling of threats can have dire consequences.

In the distillation of these results, the HEET model
distinguishes itself as a paragon of cyber threat catego-
rization. It exemplifies the harmonious intersection of ML
prowess and algorithmic precision. Through the judicious
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optimization of the model’s parameters, the HSA has elevated
the ETC from a tool of detection to an instrument of
discernment — a crucial distinction in the realm of cyber
defense.

Thus, this subsection not only underscores the HEET
model’s superior performance but also celebrates the elegant
complexity of its optimization process. It is in this intricate
dance of algorithmic refinement that the HEET model’s
capabilities are fully realized, positioning it as an invaluable
asset in the ongoing battle against cyber threats.

D. 34-CLASS TESTING FOR SPECIFIC ATTACK DETECTION
As we embark on detailing this subsection, we present
a discerning analysis of the ETC juxtaposed with its
Harmony-Enhanced counterpart (HEET). The multiclass
classification challenge at hand is the identification and
categorization of 34 unique cyber attack vectors — a daunting
task for any automated system. This subsection evaluates the
two models across a comprehensive suite of performance
indicators, inclusive of accuracy, precision, recall, fl-score,
and the computational efficiency portrayed through training
and testing times, as elucidated in Table 10.
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TABLE 10. Performance comparison of thirty-four clas testing.

Model  Accuracy (%)  Precision (%) Recall (%) F1-Score (%) Training Time (s)  Testing Time (s)
ETC 99.02 93.88 80.86 84.59 4,390.942 383.223
HEET 99.49 96.07 87.10 90.61 15,381.743 170.556

The quantified performance metrics draw a stark contrast
between the ETC and HEET models. With an ascension
in accuracy to 99.49%, the HEET model underscores
its enhanced global classification capabilities. A notable
surge in precision to 96.07% is indicative of the model’s
ability to minimize false positives — a critical factor when
each misclassified attack can carry significant ramifica-
tions. Recall, at 87.10%, reflects the model’s robustness
in identifying true positives across all classes, and the f1-
score, which reconciles precision and recall, solidifies at a
laudable 90.61%.

However, these performance enhancements come at a com-
putational cost. The HEET model necessitates an extensive
training time of 15,381.743 seconds, an investment that
manifests in the complexity of tuning a model across a vast
multitude of classes. Yet, this investment yields a return in
the form of reduced testing time, down to 170.556 seconds,
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suggesting that the HS A not only refines the model’s accuracy
but also its inferential expediency.

The classification reports for the ETC and HEET models,
as presented in Tables 11 and 12, provide an exhaustive
account of the models’ discriminative abilities across a
multitude of specific attack categories. These reports offer a
fine-grained analysis of precision, recall, and f1-score metrics
for each class, collectively painting a comprehensive picture
of model performance.

Precision in classification reports quantifies the accuracy
of positive predictions. It reflects the proportion of true
positives among all instances labeled as positives for a par-
ticular class. For instance, the HEET model’s precision score
for ‘MITM-ArpSpoofing’ stands at 0.93, an improvement
over the ETC’s 0.92. This increment, though seemingly
modest, signals fewer false alarms and greater reliability
in flagging genuine instances of ‘MITM-ArpSpoofing.” The
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TABLE 11. ETC thirty-four classification report.

TABLE 12. HEET thirty-four classification report.

precision  recall  fl-score support

DDoS-UDP_Flood 1.00 1.00 1.00 1,082,923
DDoS-SynonymousIP_Flood 1.00 1.00 1.00 611,999
DDoS-UDP_Fragmentation 0.99 0.99 0.99 57,761
MITM-ArpSpoofing 0.92 0.85 0.89 61,591
DDoS-TCP_Flood 1.00 1.00 1.00 313,641
Mirai-greip_flood 0.99 1.00 1.00 110,497
DoS-TCP_Flood 1.00 1.00 1.00 355,509
DDoS-SYN_Flood 1.00 1.00 1.00 387,274
DoS-UDP_Flood 1.00 1.00 1.00 592,518
DDoS-ICMP_Flood 1.00 1.00 1.00 362,278
DoS-SYN_Flood 1.00 1.00 1.00 325,395
Mirai-greeth_flood 1.00 0.99 1.00 133,966
DoS-HTTP_Flood 0.98 0.98 0.98 14,296
DDoS-PSHACK_Flood 1.00 1.00 1.00 328,769
DDoS-RSTFINFlood 1.00 1.00 1.00 214,457
DNS_Spoofing 0.86 0.73 0.79 35,621
BenignTraffic 0.88 0.99 0.93 220,078
DDoS-ICMP_Fragmentation 0.99 0.99 0.99 89,061
Mirai-udpplain 1.00 1.00 1.00 177,930
Recon-HostDiscovery 0.88 0.85 0.86 27,099
DDoS-SlowLoris 0.86 0.97 0.91 4,654
Recon-OSScan 0.82 0.60 0.69 19,790
DDoS-ACK_Fragmentation 1.00 0.99 0.99 54,884
XSS 0.76 0.43 0.55 754

VulnerabilityScan 0.87 0.97 0.92 7,567
Recon-PortScan 0.84 0.60 0.70 16,449
DDoS-HTTP_Flood 0.99 0.96 0.97 5,784
DictionaryBruteForce 0.92 0.36 0.52 2,556
Uploading_Attack 0.94 0.29 0.44 257
BrowserHijacking 0.92 0.31 0.46 1,162
SqlInjection 0.91 0.38 0.53 1,053
Recon-PingSweep 0.83 0.18 0.29 434
CommandInjection 0.85 0.57 0.68 1,069
Backdoor_Malware 0.94 0.54 0.68 634
accuracy 0.99 5,619,710

macro avg 0.94 0.81 0.85 5,619,710

weighted avg 0.99 0.99 0.99 5,619,710

precision  recall  fl-score support

DDoS-UDP_Flood 1.00 1.00 1.00 1,082,923
DDoS-SynonymousIP_Flood 1.00 1.00 1.00 611,999
DDoS-UDP_Fragmentation 1.00 1.00 1.00 57,761
MITM-ArpSpoofing 0.93 0.88 0.91 61,591
DDoS-TCP_Flood 1.00 1.00 1.00 313,641
Mirai-greip_flood 1.00 1.00 1.00 110,497
DoS-TCP_Flood 1.00 1.00 1.00 355,509
DDoS-SYN_Flood 1.00 1.00 1.00 387,274
DoS-UDP_Flood 1.00 1.00 1.00 592,518
DDoS-ICMP_Flood 1.00 1.00 1.00 362,278
DoS-SYN_Flood 1.00 1.00 1.00 325,395
Mirai-greeth_flood 1.00 1.00 1.00 133,966
DoS-HTTP_Flood 1.00 1.00 1.00 14,296
DDoS-PSHACK_Flood 1.00 1.00 1.00 328,769
DDoS-RSTFINFlood 1.00 1.00 1.00 214,457
DNS_Spoofing 0.85 0.80 0.83 35,621
BenignTraffic 0.93 0.99 0.95 220,078
DDoS-ICMP_Fragmentation 1.00 1.00 1.00 89,061
Mirai-udpplain 1.00 1.00 1.00 177,930
Recon-HostDiscovery 0.88 0.89 0.88 27,099
DDoS-SlowLoris 1.00 1.00 1.00 4,654
Recon-OSScan 0.87 0.68 0.77 19,790
DDoS-ACK_Fragmentation 1.00 1.00 1.00 54,884
XSS 0.93 0.55 0.69 754

VulnerabilityScan 1.00 1.00 1.00 7,567
Recon-PortScan 0.82 0.72 0.77 16,449
DDoS-HTTP_Flood 1.00 1.00 1.00 5,784
DictionaryBruteForce 091 0.63 0.75 2,556
Uploading_Attack 0.94 0.52 0.67 257
BrowserHijacking 0.95 0.63 0.75 1,162
Sqllnjection 0.89 0.58 0.70 1,053
Recon-PingSweep 0.93 0.56 0.70 434
CommandlInjection 0.95 0.62 0.75 1,069
Backdoor_Malware 0.90 0.58 0.71 634
accuracy 0.99 5,619,710

macro avg 0.96 0.87 091 5,619,710

weighted avg 0.99 0.99 0.99 5,619,710

HEET model consistently showcases high precision across
the board, demonstrating its ability to produce a lower rate
of false positives, which is crucial in avoiding unnecessary
responses to benign activities mistaken for threats.

Recall, or the true positive rate, gauges the model’s
capacity to detect all actual positives. It’s especially telling
in the context of cybersecurity, where missing an attack can
have severe consequences. The HEET model’s recall for
‘DNS_Spoofing’ at 0.80 surpasses the ETC’s 0.73, indicative
of its heightened sensitivity in identifying this specific threat.
High recall scores across various classes, such as ‘Mirai-
greip_flood’ and ‘DoS-UDP_Flood’, underscore the HEET
model’s adeptness in capturing nearly all instances of these
attack types.

The fl-score is the harmonic mean of precision and
recall, offering a balanced metric that is crucial when we
require a nuanced understanding of a model’s performance,
particularly in classes where the cost of false negatives
and false positives is significant. In the case of ‘Recon-
HostDiscovery’, the HEET model achieves an fl-score of
0.88, revealing a balanced strength in both precision and
recall, a valuable trait for nuanced threat detection where
neither false positives nor false negatives can be tolerated.

When juxtaposed, the classification reports unveil
the HSA’s tangible impact on model performance. The
algorithm’s optimization process is particularly beneficial for
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attack categories with historically lower recall or precision
scores. For categories like ‘XSS’ and ‘Sqllnjection’, where
the ETC model’s scores may falter, the HEET model exhibits
marked improvements, reflecting the algorithm’s success in
attuning the model to these intricate attack patterns.

These detailed classification reports have far-reaching
implications. They suggest that the HEET model, guided by
the HSA, is not only generally more reliable than the ETC
model but also provides a more secure detection framework
by significantly reducing the chances of missed or false alerts.
In the grand tapestry of cybersecurity defense mechanisms,
the HEET model thus stands out as a finely woven thread,
providing a detailed and dependable barrier against the
myriad threats that characterize the digital age.

The confusion matrices are fundamental in evaluating the
models’ classification abilities, as they reveal not only the
successes but also the nuances of misclassifications.

For the ETC Model (Figure 8):

o The prominent dark cells along the diagonal reflect
high true positive rates for most attack types, indicating
that the model is particularly adept at identifying
prevalent attack categories such as ‘DDoS-UDP_Flood’
and ‘DDoS-SYN_Flood’.

« However, closer inspection reveals areas of concern.
Lighter cells, notably in rows for ‘MITM-ArpSpoofing’
and ‘DNS_Spoofing’, suggest instances where the
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FIGURE 9. HEET thirty-four class confusion matrix.

117778 VOLUME 12, 2024



A. Abdusalomov et al.: Optimizing Smart Home Intrusion Detection With HEET

IEEE Access

model confuses these attacks with others, reflecting
the intricate challenge of classifying attacks that share
similar characteristics.

o The cells corresponding to ‘BenignTraffic’ illuminate
the model’s efficacy in distinguishing normal network
behavior from malicious activity, despite a few instances
of misclassification.

For the HEET Model (Figure 9):

o The matrix for the HEET model shows a clearer, more
uniform dark diagonal, implying a general increase
in true positive rates and an overall enhancement in
classifying attacks correctly.

o Off-diagonal elements, particularly those for
‘DNS_Spoofing” and ‘CommandInjection’, are fewer
and fainter compared to the ETC matrix, suggesting the
HEET model’s improved specificity in detection after
hyperparameter optimization through the HSA.

o The ‘BenignTraffic’ classification is marked by a
substantial concentration of true positives, reinforcing
the HEET model’s proficiency in maintaining low
false positive rates while successfully detecting various
attacks.
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FIGURE 10. ETC binary normalized confusion matrix.

In a more granular analysis, we observe that for complex,
sophisticated attacks like ‘CommandInjection’ and ‘Back-
door_Malware’, the HEET model demonstrates a high degree
of accuracy, whereas the ETC model struggles comparatively,
as evidenced by the distribution of values in their respective
rows and columns.

For ‘Recon-OSScan’ and ‘DictionaryBruteForce’, which
are often challenging to classify due to their less pronounced
signatures, the HEET model shows a discernible improve-
ment in recall rates, indicating fewer missed detections.

The normalized confusion matrices provide additional
clarity by presenting the classification rates as percentages of
the total number of instances, allowing for a straightforward
comparison of classification performance relative to class
size. The normalization helps to highlight the precision in
classifying less frequent attacks, such as ‘Uploading_Attack’
or ‘BrowserHijacking’, where even a small number of
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misclassifications can significantly affect the percentage of
correct predictions.

The detailed exploration of the confusion matrices illumi-
nates the enhanced diagnostic power of the HEET model over
the ETC model, with the HSA proving to be an effective
method for hyperparameter optimization. The matrices tell
a story not just of improved classification accuracy, but of
a more profound understanding of the behavior underlying
each attack class. The results reflected in these matrices
demonstrate the critical importance of precision and recall in
the domain of cybersecurity, where the ability to accurately
identify and categorize a broad spectrum of attacks is of
paramount importance.

Normalized Confusion Matrix as Percentages
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FIGURE 11. HEET binary normalized confusion matrix.

ROC Curve

1.000

0.975 4

0.950 4

0.925 4

0.900 A

0.875 4

True Positive Rate

0.850

0.825 A —— Extra Trees AUC = 0.999

Optimized Model AUC = 1.000

0.800 T T T T T T T
0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200

False Positive Rate

FIGURE 12. ROC curve for ETC and HEET binary test.

V. DISCUSSION

Within the scholarly contours of this section, we engage in a
methodical deconstruction of the performance nuances man-
ifested by our models across binary, multi-class, and granular
classification tests. This critical examination juxtaposes our
empirical findings with the corpus of contemporary literature
and introspectively reflects upon the limitations intrinsic to
our investigative process.
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FIGURE 13. ETC octal normalized confusion matrix.

A. BINARY CLASSIFICATION: THE DUALITY OF NETWORK
TRAFFIC

The distilled essence of this precision is reflected in the
normalized confusion matrices, illustrated in Figures 10
and 11. The matrices for the ETC and the HEET models
convey a narrative of exceptional performance, with both
models demonstrating exceedingly high true positive rates —
99.73% for ETC and an even more impressive 99.78% for
HEET. Yet, the true distinction lies in the equally significant
true negative rates, where HEET’s 96.91% shines over ETC’s
96.00%. This marginal, yet critical, improvement illustrates
the nuanced edge that HEET holds over its non-optimized
counterpart, emphasizing its enhanced ability to accurately
classify normal traffic without succumbing to the trap of
overgeneralization.

Coupled with the confusion matrices, the Receiver Oper-
ating Characteristic (ROC) curve in Figure 12 serves as a
testament to the models’ diagnostic prowess. The graceful arc
of the HEET model’s curve, gravitating towards the upper-
left corner, denotes a near-perfect Area Under the Curve
(AUC) score of 1.000. In contrast, the ETC model, while
laudable in its own right with an AUC of 0.999, acknowledges
the fine sliver of space for enhancement that harmony
search optimization successfully captures. These curves
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embody the trade-off between sensitivity and specificity —
a balance that the HEET model navigates with astute
finesse.

B. MULTI-CLASS CLASSIFICATION: NAVIGATING THE
CYBER THREAT PANORAMA

The normalized confusion matrices, as depicted in Figures 13
and 14, offer a perspicuous representation of each model’s
classification finesse across multiple classes. The ETC model
demonstrates commendable acumen, discerning between
classes with high precision, as indicated by the dense, darker
hues along the diagonal. Yet, it is within the HEET model’s
matrix that we witness the subtle sophistication afforded by
harmony search optimization. With a discernible increase in
true positive rates for classes like ‘Recon’ and ‘Web-Based,’
alongside an enhancement in true negatives for the ‘Normal’
traffic, the HEET model stands as a paragon of precision,
capable of navigating the complex panorama of cyber threats
with aplomb.

Complementing the confusion matrices, the ROC curves
for multi-class classification encapsulate the trade-off
between sensitivity to true positives and the inevitability
of false positives. As illustrated in Figure 15, the curves
ascend towards the upper left, a trajectory symbolic of
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FIGURE 14. HEET octal normalized confusion matrix.
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FIGURE 15. ROC curve for ETC and HEET octal test.

excellent classifier performance. The AUC values for both
models are indicative of their robust capabilities, with
the HEET model, in particular, demonstrating a slightly
steeper ascent — a visual echo of its superior performance
metrics.
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C. GRANULAR CLASSIFICATION: THE INTRICACIES OF
ATTACK DETECTION

The normalized confusion matrices provide a comprehensive
view of each model’s performance in detecting various types
of cyber attacks. The ETC shows strong accuracy, particularly
highlighted by its high true positive rates for several attack
types. However, the HEET model, demonstrates even greater
precision and robustness. Key improvements are evident
in the detection rates for critical attacks. The following
table illustrates the True Positive Rate (TPR) obtained
from the normalized confusion matrices for both models
(Table 13).

From the table, the HEET model’s superior capability is
evident in various attack types, demonstrating significant
improvements in TPR across a wide range of cyber threats.
These enhancements underline the effectiveness of the HEET
approach, making it an advanced solution for network
intrusion detection in IoT-based smart homes.

The ROC curve in Figure 16 stands as a testament
to the HEET model’s precision. Mirroring the excellence
of the ETC with an Area Under the Curve (AUC) score of
1.000, the HEET model reiterates the potential of harmony
search optimization. This congruence of the curves, arching
towards the zenith of classifier performance, underscores the
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TABLE 13. Comparison of true positive rates between ETC and HEET
models.

True Positive Rate (%)

Attack Type
ETC HEET
DDoS-UDP_Flood 99.92 99.99
DDoS-SynonymousIP_Flood  99.91 99.98
DDoS-UDP_Fragmentation 99.12 99.98
MITM-ArpSpoofing 85.02 88.06
DDoS-TCP_Flood 99.77 99.99
Mirai-greip_flood 99.68 99.99
DoS-TCP_Flood 99.88 99.99
DDoS-SYN_Flood 99.75 99.98
DoS-UDP_Flood 99.87 99.97
DDoS-ICMP_Flood 99.84 100
DoS-SYN_Flood 99.83 99.99
Mirai-greeth_flood 99.46 99.98
DoS-HTTP_Flood 97.90 99.90
DDoS-PSHACK_Flood 99.88 100
DDoS-RSTFINFlood 99.78 100
DNS_Spoofing 72.91 80.38
BenignTraffic 98.83 98.51
DDoS-ICMP_Fragmentation ~ 99.43 99.99
Mirai-udpplain 99.92 99.99
Recon-HostDiscovery 84.54 88.86
DDoS-SlowLoris 96.82 99.81
Recon-OSScan 60.44 68.48
DDoS-ACK_Fragmentation 99.07 99.98
XSS 43.37 54.51
VulnerabilityScan 97.46 99.81
Recon-PortScan 59.86 72.07
DDoS-HTTP_Flood 95.56 99.78
DictionaryBruteForce 35.88 63.15
Uploading_Attack 28.79 52.14
BrowserHijacking 31.15 62.56
Sqllnjection 37.70 57.64
Recon-PingSweep 17.51 55.99
CommandInjection 56.88 61.93
Backdoor_Malware 53.63 58.20
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FIGURE 16. ROC curve for ETC and HEET thirty-four class test.

HEET model’s exceptional ability to maintain an equilibrium
between sensitivity and specificity, even when faced with the
formidable task of 34-class differentiation.

Granular classification is the crucible within which the
HEET model’s robustness is both tested and proven. It is
one thing to discern between a binary notion of threat

117782

versus non-threat, and another to navigate the intricate
web of 34 unique attack classifications. The normalized
confusion matrices offer not only a quantitative assessment
but also a qualitative glimpse into the HEET model’s granular
intelligence, providing confidence in its deployment in
environments where such detailed discernment is paramount.

D. COMPARATIVE PERFORMANCE: STANDING AMONG
PEERS

In the scholarly discourse of this subsection, we engage
in a meticulous evaluation of our HEET model against the
backdrop of current research. This comparative analysis is
pivotal, for it situates our achievements within the continuum
of cyber defense innovations and underscores the HEET
model’s standing in the academic fraternity.

Table 14 serves as the compass guiding our comparison.
It encapsulates a constellation of methodologies, each
with unique hyperparameter optimization strategies and
performance metrics. Our model is juxtaposed with a
tapestry of contemporary methods, ranging from RF to
deep neural networks (DNN), each applied to datasets of
varying scope and granularity. This rich tableau of approaches
offers a multifaceted perspective on model performance in
cybersecurity.

Amidst this diverse landscape, the HEET model, har-
monized through harmony search optimization and tested
across a full dataset, demonstrates its prowess. In binary
classification, our model achieves an impressive 99.87%
accuracy, outperforming the RF benchmark set by Neto et al.
[46]. Moreover, in the nuanced realm of 34-class catego-
rization, our model’s precision and fl-score outshine those
of the same RF approach. The HEET model stands as a
testament to the precision that harmony search optimization
imparts, particularly when confronting a spectrum of cyber
threats.

Our model’s performance in 8-class categorization also
warrants particular attention. With a notable fl-score of
90.65%, it surpasses the RF’s performance and provides a
compelling alternative to the blending approach by Le et al.
[51], which, while high in accuracy, operates on a smaller
dataset. This distinction is crucial, as the capacity to
maintain high performance metrics across extensive datasets
is emblematic of a model’s robustness and scalability.

The superior performance of our HEET model, even when
applied to the full dataset, can be attributed to several key
factors. First, our approach incorporates meticulous data
processing techniques, ensuring that the input data is of
the highest quality and free from noise and inconsistencies
that could otherwise degrade model performance. Second,
the ETC employed within our model demonstrates excellent
classification capabilities, benefiting from the ensemble
learning approach which leverages multiple de-correlated
decision trees to enhance prediction accuracy. Finally, the
extensive hyperparameter optimization method, facilitated by
the HSA, plays a crucial role. By systematically tuning the
hyperparameters, the HSA ensures that the ETC operates at
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TABLE 14. Comparative performance metrics.

Hyperparameter

Authors Year Method Obtimizati Dataset Class  Accuracy Precision Recall  Fl-score
ptimization
Neto et 2 99.68 96.54 9652  96.53
al. [46] 2023 RF y full 8 99.44 7054  91.00 7193
: 34 99.16 70.45 83.16  71.40
:}'af‘sgo? 2023  DL-BiLSTM Optuna small 8 93.13 91.80  93.13  91.94
Le et .
al [51] 2023 Blending - small 8 99.51 98.51 99.63  99.07
Ebuka et 2 99.10 99.10 : 99.10
al. [52] 2024 DNN - small 70.53 70.00 - 63.00
Khan et 99.56 99.56 9956  99.56
al. (53] 2024 RF y small 8 95.55 9556 9555 9552
: 34 96.33 9628 9633 9626
Abbas et Grid
al. [34] 2024 RNN1 Somch small 8 98.61 98.55 98.61  98.57
ﬁsag]ﬂ 2024 RNN y small 34 96.52 96.25 96.52 9573
510?22111 2024 EnsAdp_CIDS - small 2 98.93 9950  99.40  99.45
Aswaniet ), mGRU . small 2 98.48 98.54  98.15 9857
al. [57]
2 99.87 97.41 9845  97.92
Ourmodel 2024 HEET HSA full 8 99.51 96.02  87.14  90.65
34 99.49 96.07 87.10  90.61

its optimal configuration, thereby maximizing its efficacy in
detecting a wide range of intrusion types. These combined
efforts result in a robust and highly effective intrusion detec-
tion system that outperforms many contemporary models in
the field.

The dialogue within this subsection is not confined to
a mere comparison of metrics. It is, rather, a reflective
contemplation of our model’s place within the academic
narrative. Each method in Table 14 contributes uniquely to
the collective pursuit of cyber resilience. The HEET model’s
narrative is one of holistic performance and innovative
optimization, contributing a new chapter to the story of ML
in cyber defense.

In conclusion, our comparative analyses are not merely
an exposition of the HEET model’s empirical triumphs. It is
an academic homage to the continuous quest for precision,
accuracy, and reliability in cybersecurity. Our discussion is
conducted with a graceful acknowledgment of our model’s
strengths and a humble appreciation for the collective
advancements within the field. Through this comparison,
we reiterate our commitment to pushing the boundaries of
cyber defense technologies, with the HEET model paving the
way for future exploration and development.

E. REFLECTIONS ON LIMITATIONS: CHARTING THE PATH
FORWARD

At the heart of our model’s success is the esoteric art of
hyperparameter optimization, a process where the harmo-
nious tuning of parameters can dramatically elevate a model’s
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performance. This fine-tuning, however, necessitates a depth
of specialist knowledge, often derived from an intimate
familiarity with both the model architecture and the HSA.
The requirement for such expertise is a double-edged sword
— it ensures that our model is optimized with precision,
yet it places a barrier to entry that may preclude broader
engagement and iterative experimentation by the wider
community.

The instrumentation required to perform this computa-
tional concerto is not insignificant. A powerful micropro-
cessor and substantial RAM are the conductors of this
orchestra, orchestrating the symphony of data through the
model’s neural pathways. The absence of such computa-
tional resources could stymie the HEET model’s training,
presenting a challenge to its adoption in environments that
are resource-constrained or where computational democrati-
zation is a guiding principle.

Training time stands as one of the most tangible limitations
of our approach. The intricate tapestry of ML is one that
is woven over time, with each thread of data interlacing
under the guidance of the algorithm. The span of time
required to train our model is invariably linked to the
device’s capabilities, creating a temporal limitation that can
impact the model’s applicability in scenarios demanding
rapid deployment.

In charting the path forward, these limitations are not
insurmountable obstacles but waypoints guiding our journey
of iterative enhancement. The need for specialist knowl-
edge catalyzes a push towards more intuitive, user-friendly
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optimization processes. The quest for powerful computa-
tional resources fuels innovation in algorithmic efficiency,
driving the development of models that balance performance
with accessibility. The time-intensive nature of training
impels us toward innovations in expediting learning, perhaps
through transfer learning [58] or more sophisticated parallel
processing techniques [59].

VI. CONCLUSION

In the realm of cybersecurity, where the digital and physical
converge, the sanctity of our smart homes hinges on the
vigilance of network IDS. Our study heralds a significant
stride in this direction. We have meticulously designed a net-
work IDS deployment scheme specifically for the loT-based
smart home environment, which is not only cognizant of
the conventional threats but is also astute in recognizing
the potential of home devices being commandeered as
instruments of attack.

The crux of our contribution lies in the bespoke
optimization of the ETC’s hyperparameters. Employ-
ing the HSA, we have fine-tuned the sinews of this
model — n_estimators, max_depth, min_samples_split,
min_samples_leaf, max_features, and bootstrap — to orches-
trate a system attuned to the subtleties of network traffic
within the IoT milieu. This fine-tuning is akin to crafting
an exquisite lock, responsive to the slightest tamperings yet
seamless in its daily function.

Our experimental rigor extended to the utilization of a
comprehensive, real-time dataset amassed from 105 home
IoT devices — a dataset unique not only in its scope but
in its reflection of an emerging reality where IoT devices
themselves may be conscripted into the ranks of cyber threats.
This inclusion presents a prescient understanding of the
evolving threat landscape, positioning our research at the
forefront of practical, applied cybersecurity.

In our commitment to the democratization of knowledge
and the advancement of collective cyber defense capabilities,
we have made our code available in an open GitHub
repository. This gesture of academic generosity paves the
way for further innovation, allowing peers and practitioners
to build upon our foundations.

The empirical heart of our study lies in the rigorous testing
across binary, 8-class, and 34-class configurations, critically
evaluated through a suite of metrics including Accuracy,
Precision, Recall, and F1-score. Accompanying these were
the nuanced insights provided by classification reports, con-
fusion matrices, their normalized counterparts expressed as
percentages, and ROC Curves. These instruments of analysis
have not merely quantified the model’s performance but have
illustrated the depth and breadth of its understanding.

In conclusion, our research presents a confluence of
innovation, experimentation, and application. The network
IDS scheme we propose is more than a theoretical construct;
it is a testament to what is achievable when ingenuity meets
practicality. It stands as an edifice in the digital landscape,
a beacon of security for the smart homes that cradle our
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modern lives. With the detailed results we provide, we extend
an invitation to the academic and professional communities
to partake in this journey, to critique, to enhance, and to
ultimately forge new paths forward in the collective quest for
cybersecurity in an loT-integrated world.
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