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ABSTRACT In this paper, we propose a centroid similarity loss (CSL) with adaptive gradient blending
(AGB) (denoted asCSL-with-AGB) strategy to improve the generalization of a spoken language identification
(LID) system to unseen target domain conditions. Unlike most of the existing approaches, the proposed
CSL-with-AGB can improve the generalization even when the training dataset lacks domain-diversity.
Specifically, in this approach, the LID network first analyses the input at two different temporal resolutions
using a set of two embedding extractors, which allow them to generalize better by encoding complementary
contents.We then propose to use the CSL to further improve the generalization of the network by encouraging
the embedding extractors to learn discriminative and domain-invariant embeddings. However, application of
auxiliary loss like CSL can sometimes force the two embedding extractors of the network to learn in an
unbalanced way, diminishing their ability to encode complementary contents in the input. To overcome this
issue, we propose to include the AGB strategy with the CSL. With the help of two auxiliary classifiers
attached to the two embedding extractors, the AGB monitors and guides them to have a balanced learning,
leading to enhanced performance in unseen target domain conditions.

INDEX TERMS Spoken language identification, unseen target domain, domain-mismatch, adaptive gradient
blending, centroid similarity loss.

I. INTRODUCTION
Degradation in the performance of deep learning based
systems in real-world conditions is a long-standing prob-
lem. Spoken language identification (LID) systems are not
exceptional to this issue. Domain-mismatch, high interclass
similarities and high intraclass variations in the real-world
test samples are the main reasons for such degraded per-
formance. While domain-mismatch occurs due to mismatch
in channel, background conditions, etc., between training
and testing samples, interclass similarities between languages
arise mainly due to overlap in their phoneme set and
phonotactics [1], [2], [3]. Intraclass variations are the
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approving it for publication was Byung-Gyu Kim.

variations within a given language class, for which, the main
sources are the dialects and accents of the language [4],
[5]. In order to get a satisfactory performance in real-
world conditions, the LID system should be robust to these
challenges.

Note that, as the target domain conditions are unknown
a priori in real-world conditions, commonly used super-
vised/unsupervised domain adaptation [6], [7], [8], [9]
techniques cannot be used [10]. Instead, we need to
improve the generalization of the system, which reduces
its vulnerability to the challenges like domain-mismatch,
interclass similarities and intraclass variations in unseen
target domain conditions. In general, such improved gener-
alization will enhance the reliability of deep learning based
systems.
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II. RELATED WORK
Several approaches have been proposed in the past to improve
the generalization of the system to unseen target domain
conditions. For example, the domain attentive fusion based
strategy [11], adversarial multi-task learning (AMTL) [12],
[13] or meta-learning based [14] strategies, etc., are some
previously used approaches to improve the robustness of the
system to unseen target domain conditions by improving
its domain-invariance. However, all these state-of-the-art
approaches require training samples from multiple domains
with corresponding domain-labels for enforcing the domain-
invariance. Hence, these approaches [11], [12], [13], [14]
cannot be used in low-resource conditions in which the
training dataset contains all samples from only one domain,
lacking diversity. To address this issue, a ‘‘within-sample
similarity loss’’ (WSSL) based approach was proposed
in [10] and [15]. However, like the other approaches used
for improving the domain-invariance ([11], [12], [13], [14]),
the WSSL also does not explicitly encourage the network to
learn class-discriminative embeddings, which is essential to
boost the performance in case of high interclass similarities
and intraclass variations.

Several previous studies have shown that, learning class-
discriminative embeddings improve the robustness of the
system to high interclass similarities and high intraclass
variations [16], [17], [18], [19], [20]. In general, they use
an auxiliary loss during the training to increase interclass
sample distances and reduce intraclass sample distances in
the embedding space.

Motivated by all these, in this work, we propose a centroid
similarity loss (CSL) with adaptive gradient blending (AGB)
(denoted as CSL-with-AGB) strategy to improve the robust-
ness of a LID system to unseen target domain conditions.
Unlikemost of the existing approaches ([11], [12], [13], [14]),
the proposed CSL-with-AGB can improve the generalization
of the system even in low-resource conditions, as it does
not require training samples from multiple domains with
corresponding domain labels.

Specifically, in the proposed approach, the network first
performs a bi-resolution processing of the speech using a
set of two separate embedding extractors (which can be
treated as two branches of the network). Such analysis allows
them to encode complementary contents in the input, which
in turn improves the generalization of the system to some
extent [15]. We then propose to use the centroid similarity
loss (CSL) to further improve the generalization of the
system. Specifically, the CSL encourages the network to
minimise intraclass variations by reducing distance between
embedding of a given training sample and its class-centroid
(mean embedding), and simultaneously minimise the inter-
class similarities by suppressing similarities between the
embedding and centroids of all other language classes. Since
the interclass similarities suppressed by the CSL includes
the similarities due to language-specific contents, as well
as those due to domain-specific contents, this approach
improves both discriminative power and domain-invariance

of the embeddings. In our approach, the CSL is applied
separately on both branches of the network to improve their
discriminative ability.

However, application of CSL can sometimes force the
two branches of the network to learn at significantly
different rates, which results in an unbalanced learning from
them. Such unbalanced learning diminishes their ability to
encode complementary contents in the input and results in
degraded performance of the system in unseen target domain
conditions. To address this issue, we propose to include the
adaptive gradient blending (AGB) [21], [22] with the CSL.
Specifically, with the help of a set of auxiliary classifiers
attached to the two embedding extractors, the AGB monitors
their learning behavior and produces a set of dynamic weights
to combine the auxiliary losses from the two branches with
the primary loss. Such dynamic fusion of auxiliary losses
guides the two branches to have a balanced learning, leading
to improved robustness to unseen target domain conditions.

Our CSL based approach is motivated by the previous
works in [20], [23], [24], [25], and [26]. Specifically, the
CSL is similar to the work in [26], in which a class-wise
centroid distance metric learning has been used to improve
the discriminative ability of a deep neural network (DNN)
based acoustic event detector (AED). However, in our case,
we use CSL to improve the robustness of a LID system to real-
world conditions, where, high interclass similarities, high
intraclass variations and domain-mismatches are expected.
To the best of our knowledge, this work is the first one to
explore CSL for LID task. Furthermore, unlike the prevailing
approaches [20], [23], [24], [25], [26], we propose to use
a bi-resolution processing of the input along with adaptive
gradient blending (AGB) to improve the robustness of the
system to unseen target domain conditions.

III. CONTRIBUTIONS
The techniques presented in this work are aimed at improving
the generalization of a LID system to unseen target domain
conditions when the training dataset used to train the system
contains very limited diversity. Highlights of this work can be
listed as follows:

1) A CSL-based strategy used along with bi-resolution
processing of the speech for LID.

2) An AGB-based strategy to enhance the ability of the
two branches of the network to encode complementary
contents, leading to improved generalization.

3) Extensive experimentation using two different speech
corpora, which contain different level of domain-
diversity.

Rest of this paper is organised as follows. In Section II,
we first give details of the LID system which performs
a bi-resolution processing of the speech with the help of
two separate input branches, followed by details about the
proposed CSL. In Section III, we discuss the problem of
unbalanced learning from the two branches of the network
and a AGB-based solution to address it. The Section IV gives
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FIGURE 1. Block diagram of the bi-resolution processing based LID
system. Red coloured frames in sequence of feature vectors indicate the
frames selected as input within a given chunk.

details about the datasets used in the study. SectionV contains
details about experiments and results, followed by conclusion
in Section VI.

IV. CSL-BASED APPROACH TO IMPROVE THE
GENERALIZATION OF LID SYSTEM
As the first step in the proposed CSL-with-AGB strategy,
the network performs a bi-resolution processing of the
input speech sample. The block diagram of the network
performing bi-resolution processing of the speech is shown in
Figure 1. It contains a feature extractor block (with trainable
parameters θF) to produce an utterance-level embedding
(u-vector) [10], [15] of the speech, followed by a language
classifier block (with parameters θC ) to predict the language
label. The feature extractor block contains a pre-trained
bottleneck feature (BNF) extractor [27] at the front-end to
convert the input speech into a sequence of BNF features.
This sequence of BNFs is then analysed by a set of two
utterance-level embedding extractors to get two intermediate-
level embeddings (denoted as e1 and e2 in Figure 1).
Both embedding extractors have identical architecture.

They first process the sequence of BNF vectors by dividing it
into fixed-length chunks to produce LID-seq-senones [28],1

which are then combined into utterance-level embedding
(denoted as e1 or e2 in Figure 1) [10]. Unlike the traditional
LID systems [29], [30], [31] which analyse the input at single
temporal resolution, the two embedding extractors in our
network are designed to process the input at two different

1These LID-seq-senones are intermediate-level LID-specific features,
which compactly represent the contents in the given chunk of speech.

temporal resolutions [10], [15]. Specifically, the embedding
extractor-1 processes the input by dividing it into chunks of
Tc1 seconds, and embedding extractor-2 processes the same
input using chunks of Tc2 seconds. Furthermore, while the
embedding extractor-1 considers all BNF vectors as input
within the chunk of Tc1 seconds, the embedding extractor-
2 considers only alternate BNFs as input, within the chunk
of Tc2 seconds. The motivation for such kind of analysis is
the following. We visualize the given speech sample as a
combination of two components: a fast-varying component
related to the foreground speech, and a constant (or slowly-
varying) component related to the background (related to
speaker, channel, etc., that remain constant within a given
utterance) [32], [33]. Analysing the given speech at two
different temporal resolutions allows the two embedding
extractors to capture dissimilar contents about the foreground
(due to its fast-changing nature) and similar contents about
the background (as it remains almost constant) [10], [15].

The output of these two embedding extractors (e1 and e2)
are then combined together into the final utterance-level
representation called u-vector. As in [10], we use a self-
attention based fusion of embeddings e1 and e2 to get
the u-vector. Such arrangement allows the u-vector to
gather complementary LID-specific contents in the speech,
obtained by processing the speech in two different temporal
resolutions.

This u-vector is then fed to the language classifier (θC )
to form an end-to-end LID network (as in Figure 1). Let
Nl be the number of nodes in the output layer of this
classifier with softmax activation. For an input sample X =

(x1, x2, . . . . . . ., xT ), with T being the length of the input
sequence of feature vectors, let the output of the language
classifier be P(ŷl |X, θF, θC ); where ŷl ∈ {l1, l2, . . . ., lNl }
denote the predicted language classes. Let yl denote the true
language label in 1-hot encoded format. For the given training
sample X, we compute the cross entropy loss2 as:

Lp(θF, θC ) = −

Nl∑
l=1

yl log(P(ŷl |X, θF, θC )) (1)

We denote this end-to-end LID network as 2Arm-u-
vec-Net, which is trained using the cross entropy loss
in Eq.1. Note that, while such bi-resolution processing
allows the network to gather dissimilar contents in the
input, there is no explicit encouragement on the network
to improve discriminative power and domain-invariance of
the embeddings from the two input branches. Hence, this
approach can provide only a limited improvement in the
generalization. In order to address this limitations, we use the
CSL.

A. CENTROID SIMILARITY LOSS
The proposed centroid similarity loss (CSL) is a distancemet-
ric learning approach, which reduces the distance between

2The symbol p used as a suffix indicates that this is the primary loss used
in the training.
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FIGURE 2. Block diagram of the proposed CSL based approach. This
network is denoted as Lnet_CSL.

an embedding and its class centroid and simultaneously
increases the distance between the embedding and centroids
of other classes. Thus, it forces the network to minimize intr-
aclass variations and interclass similarities in the embedding
space. Figure 2 shows the block diagram of the proposed CSL
approach.

In the proposed approach, the CSL is applied separately
on both the embedding extractors of the network to improve
their discriminative power. In this approach, a normalized
similarity score for both the embeddings of a given training
sample is first computed as follows.

Snl(θF1) =
exp(Sc(en, cnl))∑Nl

m=1 exp(Sc(en, cnm))
where n ∈ {1, 2}, l = 1, 2, . . . .,Nl (2)

where cnl represents the centroid (mean) of embeddings in l th

language for the nth embedding extractor, Nl represents the
total number of classes, Sc is a similarity measure between
the nth embedding en and a given centroid, and θF1 represents
parameters of the feature extractor block of the network,
excluding the parameters of the attention network used for
fusion of the embeddings. We use the cosine similarity for
obtaining Sc in this work. Note that, ideally, an embedding of
a given training sample should have high cosine similarity
with corresponding class centroid, and should have low
similarities with centroids of other language classes. Hence,
in such situations, the normalized similarity score Snl(θF1)
will have a value close to ‘‘1’’ for intraclass similarity and
will have values close to ‘‘0’’ for other interclass similarities.
When the given training sample has high intraclass variation,
and/or high interclass similarities, the value of Snl(θF1) will
be significantly less that ‘‘1’’ for intraclass similarity, and

will be significantly higher than ‘‘0’’ for other interclass
similarities. Using this normalized similarity score, the CSL
is computed as follows:

Lcsl(θF1) = −

Nl∑
l=1

yl log(S1l) −

Nl∑
l=1

yl log(S2l) (3)

where yl indicates the true label of the given training
sample. With the CSL as an auxiliary loss, the LID network
(denoted as Lnet_CSL) is trained using the following total loss
function.

LT (θF, θC ) = Lp(θF, θC ) + αcslLcsl(θF1) (4)

where LT (θF , θC ) is the total loss, Lp(θF , θC ) is the primary
language classification (cross-entropy) loss, and Lcsl(θF1)
is the CSL. The scalar value αcsl represents the trade-off
parameter between the primary loss and the CSL. Note that,
when a given training sample has high intraclass similarity
and low interclass similarities (which should be the case
ideally), the magnitude of CSL will be small, indicating that
there will be less/no penalty on the network. When a training
sample has high intraclass variation and/or high interclass
similarities, the magnitude of CSL will be large, indicating
that there will be more penalty on the network. Due to
this combination of CSL with the primary classification loss
Lp(θF , θC ), the embeddings from both embedding extractors
(e1 and e2) ideally become more discriminative. This in
turn improves the discriminative capabilities of the u-vector,
which is obtained by combining the two embeddings.

Note that, as the utterance-level embeddings e1 and e2
of a given speech sample carry both language-specific and
domain-specific contents encoded in them, the interclass
similarities considered by the CSL includes the similarities
due to both language-specific and domain-specific contents.
Hence, apart from improving the discriminative power of
the embeddings, the CSL encourages the LID network to
suppress the domain-specific contents to some extent.

B. THE PROBLEM OF UNBALANCED LEARNING
Note that, the proposed CSL is applied independently on the
two embedding extractors of the network, and there is no
direct interaction between them. Since the CSL continuously
motivates the two embedding extractors to learn more and
more discriminative contents, and, due to the fact that
they process the input at different temporal resolutions,
application of CSL can sometimes force the two branches
(embedding extractors) of the network to learn/converge at
different rates. Sometimes, this difference in the rate of
learning can be very significant. Due to this, at the end
of training process, only one branch of the network learns
language-discriminative contents adequately, while the other
branch settles to a sub-optimal set of parameters.

Figure 3 demonstrates one such situation. In this Figure,
we have plotted the training and validation losses for
the primary language classifier and the two embedding
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FIGURE 3. Plot showing variation in training and validation losses,
computed on the (a) primary classifier, (b) embedding extractor-1 and
(c) embedding extractor-2, of CSL-based network. It is seen that, the two
embedding extractors learn at different rates, and only one of them
learns adequately (embedding extractor-2).

extractors3 of the Lnet_CSL. It is seen that, the embedding
extractor-2 of the network learns at a faster-rate and
efficiently encodes the language-discriminative contents.
However, the embedding extractor-1 learns at a significantly
slower pace. In such situations, the self-attention network
starts giving more importance to the fast-learning branch and
ignores the slow-learning branch, as it helps the network to
minimise the training loss. As a result, only fast-learning
branch of the network gets sufficient encouragement to
learn discriminative contents and moves quickly towards the
saturation (beyond which there is no reduction in the training
loss), leaving the other branch almost unattended. Due to this,
at the end of training process, only fast-learning branch learns
language-discriminative contents adequately, while the other
branch settles to a sub-optimal set of parameters.

The t-SNE plot in Figure 4 provides some more insight
on this issue. In this figure, we have plotted the embeddings
e1 and e2 of the CSL network (Lnet_CSL). These samples
belong to five different languages which are shown in
different colours. In this plot, it is seen that, the embeddings
e2 (denoted using ∗ symbol) have formed very distinct and
compact clusters. But, the e1 (denoted using • symbol) have
formed overlapping clusters with relatively lesser compact-
ness, indicating that they have relatively less discriminative
power.

Such unbalanced learning from the two branches of the
network limits its ability to encode complementary LID-
specific contents in the input, as it requires both embedding
extractors to learn language-specific contents adequately.

3Note that, the embedding extractors in the original CSL network
(Figure 2) does not have language classifiers directly attached to them.
Hence, after every training step, we approximate the losses on these two
embedding extractors by feeding their output directly to the primary language
classifier (without combining the two embeddings into u-vector).

FIGURE 4. t-SNE plot showing the effect of having unequal learning by
two embedding extractors of Lnet_CSL. Clusters from e2 (denoted using ∗

symbol) have very clear separation, whereas, clusters from e1 (denoted
using • symbol) have high overlap.

Because of this, the generalization of the LID system
degrades to some extent.

In such situations, we might naively think that continuing
the training process to few more epochs will force the slow-
learning branch of the network to learn sufficient language-
discriminative contents. However, once the fast-learning
branch reaches the saturation (which gives a reasonable
performance on the validation data), any further efforts to
continue the training process results only in overfitting of that
branch to the training data, and it does not actually encourage
the learning of other (slow-learning) branch. Hence, in order
to encourage both branches of the network to learn in a
balanced way, we need a sophisticated training strategy,
which is presented in the next section.

V. AGB FOR BALANCED LEARNING
To address the issue of unbalanced learning, we use
the adaptive gradient blending (AGB) strategy. This AGB
strategy is motivated by the previous works in [21], [22], and
[34], where, a multi-view learning approach is used to learn
complementary contents from different modes of input. For
example, the ‘‘XSleepNet’’ used in [22] for automatic sleep
staging, contains two subnetworks in the front-end to analyse
the raw input signal and its time-frequency representation.
Similarly, the network used in [21] (for audio and music
classification), contains four subnetworks at the front-end
to analyse the input in Mel-scale, Constant-Q transform
spectrogram, Gammatone, and raw signal forms respectively.

Unlike these approaches where multi-modal inputs are
used for obtaining complementary contents in the input [21],
[22], [34], our network processes the same input at two
different temporal resolutions. To the best of our knowledge,
AGB based strategy has been not used previously for
improving the robustness of a LID network to unseen target
domains.
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FIGURE 5. Block diagram of the proposed adaptive gradient blending
(AGB) approach. In addition to the primary language classifier, AGB uses
two auxiliary classifiers to monitor the learning behaviour of the
embedding extractors.

The block diagram of the proposed CSL with AGB
approach is shown in Figure 5. Compared to the original
CSL-based network shown in Figure 2, the CSL with AGB
approach contains two additional classifiers to monitor the
learning of two embedding extractors. During the training
process, the AGB dynamically assigns different weights to
the two embedding extractors (and primary classifier) of the
network depending on their learning behaviour, so that both
branches learn to encode language-discriminative contents
adequately.

Let L1 denote the auxiliary language classification loss,
computed using the output of the auxiliary classifier attached
to the embedding extractor-1. With ˆyc1 ∈ {l1, l2, . . . ., lNl } as
the predicted language classes, L1 is computed as:

L1(θF, θ1) = −

Nl∑
l=1

yl log(P( ˆyc1|X, θF, θ1)) (5)

where θ1 indicates the parameters of the auxiliary classifier 1.
Let L2 denote the auxiliary language classification loss,

computed using the output of the auxiliary classifier attached
to the embedding extractor-2. With ˆyc2 ∈ {l1, l2, . . . ., lNl } as
the predicted classes, L2 is computed as:

L2(θF, θ2) = −

Nl∑
l=1

yl log(P( ˆyc2|X, θF, θ2)) (6)

where θ2 indicates the parameters of the auxiliary classifier 2.
Using the equations Eq.1, Eq.5 and Eq.6, we first compute

the training loss and testing (approximated using validation
data) loss for the primary and two auxiliary classifiers, which
are then used to monitor their learning behaviour.

FIGURE 6. General plot showing variation of training and target losses
with respect to number of training steps.

We monitor the learning behaviour of classifiers in k th

branch of the network, k ∈ {1, 2, p},4 using generaliza-
tion parameter (Gk ) and overfitting parameter (Ok ) [21].
In general, Gk represents the information gained upon the
target domain through training process, and Ok represents
the gap between information gained on the training domain
and the target domain. For the given training step m, the
generalization and overfitting parameters can be estimated
as [21]:

Gk (m) ≈ L⋆
k(target) − Lk(target)(m) k ∈ {1, 2, p} (7)

Ok (m) ≈ (L⋆
k(train) − Lk(train)(m))

− (L⋆
k(target) − Lk(target)(m)) (8)

In Eq.7 and Eq.8, Lk(train)(m) and Lk(target)(m)5 denote
respectively the loss computed on training set and loss on
the target domain at the mth step. L⋆

k(train) and L
⋆
k(target) are

respectively some reference training loss and reference target
loss values.

Figure 6 indicates how training and target losses vary
typically with respect to training steps. In general, when a
branch (embedding extractor) is near saturation/overfitting,
the change in target loss, measured between a reference
point and given training step, will be very small compared
to change in training loss. Hence, a saturating branch of the
network will have large Ok and small Gk values. In contrast,
a branch which is away from saturation (which is learning
nicely) will have largerGk and smallOk , as both training and
target losses will be decreasing at a similar rate.

Note that, when a branch is generalizing well, both training
and target loss values will decrease at a similar rate, due to
which, it will have large Gk and small Ok values. In contrast,
a branch near its saturation will have large Ok and small Gk

4Here, k = 1 corresponds to branch-1 (embedding extractor-1), k =

2 corresponds to branch-2, and k = p corresponds to the primary language
classifier.

5Here, (train) and (target) are used just for indicating the domain on which
the loss is computed.
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values, as only the training loss reduces in this case, but target
loss remains almost constant.

Using Gk and Ok , the fusion weights for individual losses
are computed as:

wk (m) =
1
z
Gk (m)

O2
k (m)

, (9)

where z is a normalization factor.
During the training process, the total loss is computed by

combining the three cross entropy losses (Lp, L1 and L2)
and the CSL. However, unlike CSL, the three cross entropy
losses are combined dynamically. We compute the total loss
as follows:

LT (m) =

∑
k

wk (m)Lk (m) + αcslLcsl(θF), k ∈ {1, 2, p}

(10)

where LT is the total loss at training step m, and wk (m)
indicates the weight associated with the k th classifier at that
training step. The wk (m) is estimated dynamically depending
on the learning behaviour of k th branch.
The Gk and Ok values estimated using Eq.7 and Eq.8

require a reference training loss and a reference target loss
values. As the actual loss curves will be noisy in nature,
considering the loss values at a single preceding training step
as reference point may lead to sub-optimal results. Hence,
we take average of previous r values as the reference for both
train loss and target loss [21]. The Algorithm 1 shows the
overall process to obtain the weights wk (m).

The adaptive weights used in Eq. 10 as well as the loss
values used in their computation are updated after every mini-
batch of training samples. Since the actual loss curves will
be noisy in nature, we use a smoothed version of the loss by
taking themean values over awindow of length r , as indicated
in the Algorithm 1.

VI. DATASETS USED IN THE STUDY
In this study, we used the ‘‘IIT-Mandi Indian lan-
guage dataset’’(denoted as IIT-Mandi-DS) [15] and the
dataset used in cross-channel LID task of ‘‘AP20-OLR
Challenge’’(AP20-OLR-DS) [35].

A. IIT-MANDI INDIAN LANGUAGES DATASET
This corpus contains two parts: IIT-Mandi Read speech
and IIT-Mandi YouTube dataset.6 As shown in Table 1,
there are eight languages in this corpus. Among these
eight languages, Assamese, Bengali, Gujarati, Hindi and
Odia belong to Indo-Aryan language family. The south
Indian languages Kannada, Malayalam and Telugu belong
to Dravidian language family [36]. Hence, these languages
contain high interclass similarities.

The IIT-Mandi Read speech dataset (denoted as Read-
Speech-DS) contains audio files obtained from news broad-
casts in All India Radio.7 Each language in this dataset

6available online at https://speechiitmandi.github.io/air/
7https://newsonair.gov.in/

Algorithm 1 Adaptive Weight Calculation for mth Training
Step

procedure Adaptive weight(Ltrain,Ltarget ,L⋆
train,L

⋆
target , r)

Input: Ltrain[1, 2, . . . .,m]: list of training loss values
Ltarget [1, 2, . . . .,m]: list of target loss values
L⋆
train: current best training loss value
L⋆
target : current best target loss value
r : window length for computing mean

Output: w(m): weight at mth step of the training

L̄train(m) = mean(Ltrain[(m− r) . . . .,m])
L̄target (m) = mean(Ltarget [(m− r), . . . .,m])
G(m) = L⋆

target − L̄target (m)
O(m) = [L⋆

train − L̄train(m)] − [L⋆
target − L̄target (m)]

w(m) =
1

z
(G(m)/O2(m))

If L̄train < L⋆
train then L

⋆
train = L̄train

If L̄target < L⋆
target then L

⋆
target = L̄target

end procedure

contains around 4.5 hours of speech data from at least
15 speakers. In our experiments, we use around 75% samples
from this dataset for training and use remaining for validation.

The IIT-Mandi YouTube dataset (denoted as YouTube-
DS) contains audio files extracted from various YouTube
videos on online teaching, personal interviews, etc. Each
language contains samples from at least 10 speakers. Note
that, there is significant domain-mismatch between IIT-
Mandi Read speech and IIT-Mandi YouTube datasets in terms
of channel, type of speech, background conditions, etc. In our
experiments, we use the YouTube-DS only for testing. The
Table 1 shows details like number of hours of speech data,
number of utterances and speakers in each language in these
two datasets.

B. AP20-OLR CHALLENGE DATASET
Second one is the dataset used for task-1 (cross-channel LID)
of AP20-OLR challenge. In this task, the LID system has
to handle the test samples with channel-mismatch [35]. The
training dataset provided in the challenge includes the dataset
used in previous OLR challenges. It contains languages
from several language families like Austroasiatic languages
(e.g., Vietnamese), Indo-European languages (e.g., Russian),
Altaic languages (e.g., Korean, Japanese), etc. [35]. Most
of the training dataset is collected using Mobile channel.
However, there are some intra-domain variations present in
the corpus. For example, the samples for Russian, Korean and
Japanese are recorded in two different background condition:
quiet and noisy [35], [37]. Furthermore, the training dataset
used in AP20-OLR includes the samples used in AP19-
OLR cross-channel LID task. Hence, the dataset contains
samples from different channels. Due to these differences
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TABLE 1. Details about the IIT-Mandi Indian languages corpus used in this work.

TABLE 2. Details of the AP20-OLR corpus used in this work.

in background and channel condition, there are significant
intraclass variations in the AP20-OLR dataset.

Note that, the channel conditions of the test samples in
cross-channel LID task of AP20-OLR are different than
those in the training set (unknown to the user). Hence, there
is channel-mismatch between the train and test sets. The
training dataset contains 10 languages and testing dataset
contains 6 languages as shown in Table 2. In our experiments,
we use around 80% samples from the training dataset for
training and use remaining for validation.

VII. EXPERIMENTAL STUDIES AND RESULTS
In our experiments, we evaluate the performance of our
LID systems in seen and unseen test conditions. Here,
seen test set is the one whose domain (channel/background)
conditions are seen by the system during the training. In each
dataset, we use the respective validation set as the seen test
set. Unseen test set is the one whose domain conditions
are unseen by the system during the training. It represents
the unseen target domain condition for the system, which
is common in real-world applications. Specifically, for the
systems trained onRead-Speech-DS,we use theYouTube-DS
as the unseen test set. For the systems trained on AP20-OLR-
DS, the corresponding cross-channel test dataset forms the
unseen test set. We have not used any data-augmentation
techniques in this work. We have used the BNF features
obtained using pre-trained BNF extractor [27]. Note that, this
BNF extractor was not explicitly trained to handle domain-
mismatches [27], [38].
Performance of the systems are evaluated using two

different metrics: Accuracy (%) and Cavg (%) metric used in

NIST LRE evaluations [39]. Lower value of Cavg indicates
better performance. In each case, we run M trials (M = 10)
and take the average of obtained performances.

We first conduct the experiments on seen test sets
(validation datasets) to show the effectiveness of proposed
approaches in domain-matched conditions. Followed by this,
we conduct experiments on unseen test sets which represent
the real-world scenario.

A. BASELINE SYSTEM
We use the state-of-the-art x-vector based LID system [29]
as our baseline. The x-vector network uses time delay neural
network (TDNN) architecture at the front-end, followed
by a statistics pooling layer and a classification network.
Specifically, the network contains 5 TDNN layers, with
each layer having 512 nodes. The output of last TDNN
layer is processed using statistics pooling layer, to obtain
an utterance-level representation. This utterance-level rep-
resentation is then processed by a set of two dense layers
having 512 nodes. Final dense classification layer has Nl
(which equals the number of languages in the dataset) nodes.
We train the x-vector network using the cross entropy loss
function. We used Adam optimizer with 0.0001 as the
learning rate. We then use the pre-trained x-vector network
as an embedding extractor and use it to extract x-vectors of
all speech samples. These x-vectors are then processed by a
separate back-end classifier. Specifically, we use a logistic
regression classifier as suggested in [35]. Performance of this
system (denoted as x-vector-LR) is given in 1st row of Table 3.

B. PERFORMANCE OF BI-RESOLUTION PROCESSING
BASED APPROACH
Here, we give the performance of the networkwhich performs
bi-resolution processing of the input speech sample (denoted
as 2Arm-u-vec-Net). As shown in Figure 1, this network
contains a set of two identical embedding extractors. Each
embedding extractor contains a set of BLSTM layers to
process the input sequence of BNF vectors, by diving it
into a set of fixed-length chunks. The first embedding
extractor analyzes the input by dividing it into chunks of
0.61 sec (Tc1), whereas, the second embeddding extractor
uses 0.91 sec (Tc2) chunks. The output of BLSTM layers,
denoted as LID-seq-senones, are then combined into a fixed-
length utterance-level embedding (denoted as e1 or e2 in
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TABLE 3. Performance in accuracy (Acc) and Cavg (both given in %) of
LID systems in seen test sets.

Figure 1) using a statistics pooling layer [10]. In case of Read-
Speech-DS, the embedding extractor contains set of two
BLSTM layers, with 256 and 32 nodes respectively in first
and second layers. In case of AP20-OLR-DS, the embedding
extractor contains a set of three BLSTM layers, with 384,
256 and 64 nodes respectively in first, second and third layers.
The embeddings e1 and e2 are then combined together into
u-vector, which is then given to the output layer. The output
layer has Nl number of nodes with softmax activation.
Performance of 2Arm-u-vec-Net is given in 3rd row of

Table 3. It is seen that, compared to baseline x-vector
based system, the proposed bi-resolution processing based
approach gives better performance. This is because, unlike
the x-vector system which contains a single embedding
extractor, the 2Arm-u-vec-Net contains a set of two
embedding extractors operating at two different temporal
resolutions. Such arrangement allows the network to gather
dissimilar (which is complementary to some extent) informa-
tion about the speech, leading to better performance.

The 2nd row of Table 3 shows the performance of a LID
network that uses same number of BLSTM nodes as in 2Arm-
u-vec-Net, but does not use bi-resolution processing. In this
case, the network contains only one embedding extractor
(denoted as 1Arm-u-vec-Net). The network used for Read-
Speech-DS contains set of 2 BLSTM layers with 512 and
64 nodes respectively in first and second layers, and the
network for AP20-OLR-DS contains 3 layers with 768,
512 and 128 nodes respectively in first, second and third
layers. Chunk length of 0.61 sec is used in this case. From the
results, is seen that, the 2Arm-u-vec-Net performs better than
1Arm-u-vec-Net. This indicates that bi-resolution processing
indeed leads to better performance.

C. PERFORMANCE OF PROPOSED CSL-BASED APPROACH
In this case, we include the proposed CSL in the training
process and the network (denoted as Lnet_CSL) is trained
according to Eq. 4. The value of the trade-off parameter
αcsl is set empirically as 0.20. Note that, we train the
CSL network using only primary language classification
loss for first training epoch. This makes sure that the
network learns LID-specific contents to some extent before
the computation of first set of language centroids. (Without
this, the initial set of centroids would be computed with
randomly initialized weights, which will not contain any

language-specific information encoded in them. Computing
similarities with such centroids using CSL will adversely
effect the learning). For all subsequent epochs, we use a
two step procedure. First, the centroids for all languages
are updated using training samples in the given mini-
batch. During this step, the model parameters (obtained
after previous mini-batch) are kept unchanged. In the second
step, parameters of the model are updated by using the
loss function in Eq. 4. This two step procedure enables the
network to consider the interclass and intraclass similarities
efficiently during the parameter optimization.

The performance of Lnet_CSL is given in 5th row of
Table 3. It is seen that, the inclusion of CSL in the training
process has improved the performance of the network. As, the
CSL minimises the interclass similarities and the intraclass
variations in the embedding space, the network produces
discriminative embeddings, leading to better performance.

The box-plots in Figure 8 indicates how the performance
of Lnet_CSL varies when experimented with multiple (M =

10) trials. The variation in performances of 2Arm-u-vec-Net
is also given for comparison.

It is seen that, compared to the 2Arm-u-vec-Net, there is
significant variation in the performance of Lnet_CSL. This is
because, the CSL-based network has additional constraint on
the embedding extractors to learn discriminative embeddings.
We believe that, such additional constraint sometimes leads
to unbalanced learning from the two branches, resulting in
significant variation in performance. In order to motivate the
two branches to have a balanced learning, we include the
proposed AGB in the training process.

D. PERFORMANCE OF PROPOSED CSL-WITH-AGB
APPROACH
In this case, the network contains two auxiliary classifiers
attached to the two embedding extractors. Like the primary
classifier, each auxiliary classifier is a simple dense layer with
Nl nodes, having softmax activation. The whole network is
trained according to Eq. 10. The value of the normalization
factor z is set experimentally as 1.0, and the length of the
window (r) is set as 4. The 6th row of Table 3 summarises
the performance of CSL-network with the adaptive gradient
blending (denoted as Lnet_CSL+AGB). It is seen that, due
to inclusion of AGB, the CSL network provides better
performance compared to Lnet_CSL. This is because, the
AGB encourages both embedding extractors of the network
to learn language-discriminative contents in a balanced way,
which enables them to efficiently encode complementary
contents in the input. For comparison, the performance
of 2Arm-u-vec-Net trained with AGB (denoted as 2Arm-
u-vec-Net+AGB) is also given in 4th row of the Table.
Compared to 2Arm-u-vec-Net, the 2Arm-u-vec-Net+AGB has
given only slight improvement in the performance. This is
because, unlike the CSL-based network, the 2Arm-u-vec-
Net does not have any explicit constraint on the embedding
extractors. Hence, both branches of the network learn
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FIGURE 7. Plot showing variation in training and validation losses for
(a) primary classifier, (b) auxiliary classifier on branch-1, and (c) branch-2
of Lnet_CSL+AGB trained on Read-Speech-DS.

adequate language-discriminative contents in a balanced way,
even without the AGB.

The loss curves in Figure 7 shows some evidence for
the effectiveness of AGB on the CSL-based network. This
Figure shows the variation in training and validation losses
for the primary classifier and the two auxiliary classifiers
(attached to the two embedding extractors) of the network
(as shown in Figure 5). It is seen that, training and validation
losses on all classifiers reduce at a similar rate and reach
the saturation. Due to such balanced learning, both branches
of the network learn language-discriminative contents to
adequate level, which enable them to encode complementary
contents in the speech. This helps the network to perform
better.

The box-plots in Figure 8 provide some more evidence to
indicate the effectiveness of proposed AGB strategy. These
box plots indicate how the performance of systems trained
with AGB, are distributed for multiple trails (number of trails,
M = 10). Here, plot (a) corresponds to the systems trained on
Read-Speech-DS and plot (b) corresponds to AP20-OLR-DS.
The variation in performance of systems trainedwithout AGB
are also given for the comparison. Compared to the variation
in performance of CSL based systems trained without AGB,
the systems with AGB (Lnet_CSL+AGB) have significantly
less variation in the performance. Since the AGB guides
both embedding extractors to learn in a balanced way, the
performance of the network becomes more stable.

The impact of CSL (with AGB) on the output of two
embedding extractors can be visualized with the help of
2-dimensional scatter plots in Figure 9 and Figure 10. Here,
Figure 9 and Figure 10 respectively correspond to the t-SNE
plot of embeddings e1 and e2, collected using 2Arm-u-
vec-Net and Lnet_CSL+AGB, trained on Read-Speech-DS
(embeddings e1 are shown using • symbol and e2 using
∗ symbol). We have used samples from seen test set

FIGURE 8. Box-plots indicating the variation in the performance of
different LID systems trained with and without the AGB strategy.
Figure (a) corresponds to systems trained on Read-Speech-DS, and
(b) corresponds to AP20-OLR-DS.

FIGURE 9. t-SNE plot of embeddings e1 and e2, obtained from
2Arm-u-vec-Net, trained on Read-Speech-DS. Here, e1 and e2 are
represented using separate shapes. Samples from five languages from
the corresponding seen test set are used in the plot, which are shown in
different colours.

for obtaining these embeddings. These samples belong to
five different languages (Assamese represented in Magenta
color, Bengali in Cyan, Gujarati in Red, Hindi in Green
and Kannada in Blue). It is seen that, compared to the
language clusters of 2Arm-u-vec-Net (Figure 9), the clusters
of Lnet_CSL+AGB (Figure 10) are better separated from
each other. This is because, the CSL (with AGB) encourages
network to produce discriminative embeddings.

E. EXPERIMENTS IN UNSEEN TEST SETS
Here, we use test sets containing unseen type of domain-
conditions. Obtained results are given in Table 4. Compared
to the performance on seen test sets (given in Table 3),
performance of all LID systems have reduced significantly in
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FIGURE 10. t-SNE plot of embeddings e1 and e2, obtained from
Lnet_CSL+AGB, trained on Read-Speech-DS. Compared to the clusters in
Figure 9, the clusters in this plot are better separated due to CSL.

TABLE 4. Performance in accuracy (Acc) and Cavg (both given in %) of
LID systems in unseen test sets.

unseen test sets. This drop in the performance demonstrates
the challenges faced by the LID system in unseen target
domain conditions.

The 5th and 6th rows of Table 4 respectively show the
results obtained for the Lnet_CSL and Lnet_CSL+AGB.
Results of the baseline and 2Arm-u-vec-Net systems, are also
given in the same Table for the comparison. As in the case
of seen test set, the 2Arm-u-vec-Net system has provided
slightly better performance than the x-vector-LR system
and 1Arm-u-vec-Net. Both Lnet_CSL and Lnet_CSL+AGB
networks have provided reasonable improvement over the
baseline, where the later has given the better results. As the
proposed CSL encourages the network to minimise intraclass
variations and interclass similarities, it increases the ability
of the network to discriminate closely related languages.
Furthermore, it also improves the domain-invariance to some
extent. Like in the case of seen test sets, the inclusion of
AGB has improved the overall performance of the systems
in unseen target domain conditions. As mentioned earlier,
the AGB encourages both branches to learn discriminative
contents in the input efficiently, due to which, the network
becomes more robust to unseen target domain conditions.

F. COMPARISON OF EFFECTIVENESS IN LOW-RESOURCE
AND HIGH-RESOURCE CONDITIONS
In this section, we study how the proposed methods perform
in low-resource conditions when compared to high-resource

TABLE 5. Comparison of performance of LID systems in low-resource and
high-resource conditions when tested using seen test set.

TABLE 6. Comparison of performance of LID systems in low-resource and
high-resource conditions when tested using unseen test set.

conditions. While we can assume that the Reed-Speech-
DS represents a dataset with low-resource conditions (as
it has only around 5 hours of speech in each language)
and the AP20-OLR-DS represents high resource conditions,
the results obtained on these two datasets are not directly
comparable as the background and domain conditions in
these two are significantly different.

Hence, to have a fair comparison, we considered a subset of
AP20-OLR-DS by taking approximately 5 hours of speech in
each language for training (denoted as AP20-OLR-DS-5hr).
Results obtained in seen test set for different LID systems
trained on AP20-OLR-DS-5hr are given in Table 5. Results
obtained using the original training dataset (AP20-OLR-DS)
are also given in the table for easy comparison. Table 6 shows
the results obtained using unseen test set.

It is observed that, all systems trained in low-resource
condition (trained onAP20-OLR-DS-5hr) have given inferior
performance compared to their counterparts trained with
original dataset. This is because, with less training data,
the system achieves only limited generalization, which
results in inferior performance. The overall trend in the
improvement in performance due to inclusion of technique
like bi-resolution processing, CSL, and CSL-with-AGB is
similar in both low-resource and high-resource conditions.
Interestingly, when comparing the performances of Lnet_CSL
and Lnet_CSL+AGB in low-resource and high-resource
conditions, the latter has given significant improvement over
the former in low resource condition than in high-resource
condition. This indicates that the proposed combination of
CSL-with-AGB is relatively more effective in low-resource
condition than in high-resource condition.

G. LIMITATIONS AND ADVANTAGES OF THE PROPOSED
APPROACH
Note that, in spite of applying sophisticated techniques like
bi-resolution analysis, CSL and CSL-with-AGB, the amount
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of improvement in the performance obtained on unseen test
set is very limited. This is mainly because of the different
domain conditions present in the test samples that are unseen
by the system during the training process. This shows the
significance of domain-mismatch in real-world conditions.
However, using samples in the training domain only, all
the proposed approaches encourage the model to generalize
better, which otherwise would not have been possible.

VIII. SUMMARY AND FUTURE WORK
In this work, we first presented a bi-resolution processing
based approach to improve the robustness of a LID system
to unseen target domain conditions. Unlike the prevailing
approaches, the LID network in the bi-resolution processing
based approach contains a set of two embedding extractors to
process the input at two different temporal resolutions, which
allows the network to gather complementary contents in the
input. We then applied the centroid similarity loss (CSL)
to further improve the robustness of the network. The CSL
encourages the network to minimise interclass similarities
and intraclass variations in the embedding space, thereby
encouraging the system to learn discriminative embeddings.
Furthermore, the CSL improves the domain-invariance of
the network to some extent. However, application of CSL
sometimes leads to unbalanced learning from the two
branches of the network. To overcome this issue, we proposed
to include the adaptive gradient blending (AGB) strategy in
the CSL network. Obtained results indicate that the proposed
CSL, along with AGB, improves the performance of LID
network in both seen and unseen target domain conditions.

Note that, in the present work, we assumed that we
do not have access to the target (test) domain during the
training process. Hence, we applied the CSL-with-AGB
as a domain generalization technique. However, in some
cases, we can have access to samples from the target
domain for fine-tuning. In such cases, we can use domain
adaptation techniques like supervised domain adaptation or
unsupervised domain adaptation using adversarial multi-task
learning (AMTL) [6], [7], [8], [9]. We can also combine
these techniques with CLS-with-AGB to provide better
performance in the target domain. We will consider this as
a future work. Furthermore, in the present work, we applied
the CSL independently on the two embedding extractors.
In future, we would like to come up with a strategy to apply
a common CSL for both branches.
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