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ABSTRACT This review paper addresses the research question of the significance of explainability in AI
and the role of integrating KG and RL to enhance Explainable Recommender Systems (XRS). It surveys
articles published from January 2015 to March 2024 on XRS, focusing on knowledge graphs (KGs) and
reinforcement learning (RL) for achieving explainability in recommender systems. Employing a systematic
methodology, it introduces a custom Python-based web scraper to efficiently navigate and extract relevant
academic research papers from IEEE, ScienceDirect (Elsevier), ACM, and Springer online databases. The
study encompasses the PRISMAmethodology to conduct a thorough analysis and identify pertinent research
works. This systematic literature review aims to provide a unified view of the field by reviewing eight
existing XRS literature reviews and 29 pertinent XRS studies involving KG and RL from the specified
period. It categorizes and analyses relevant research papers based on their implementation methodologies
and explores significant contributions, encompassing perspectives on model-agnostic and model-intrinsic
explanations.

INDEX TERMS Explainable artificial intelligence (XAI), explainable recommender systems (XRS),
knowledge graph (KG), PRISMA, reinforcement learning (RL), systematic literature review (SLR), web
scraper.

I. INTRODUCTION
In today’s digital world, recommender systems (RSs) are
pivotal in delivering personalized content recommendations
across various domains. However, these systems often func-
tion as opaque black boxes, making it difficult for users
to understand the reasoning behind receiving particular rec-
ommendations. Explainable Recommender Systems (XRS)
address this transparency problem by providing accurate rec-
ommendations besides explaining decision-making processes
to users [1], as depicted in Fig. 1.

This review paper aims to explore the XRS and their
approaches, particularly utilizing knowledge graph (KG) and
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reinforcement learning (RL). The objective of the paper is to
address the following specific research questions:

• RQ1: What contributions do existing survey or review
papers make to the field of XRS when utilizing KG
and RL?

• RQ2: What defines explainability in artificial intelli-
gence (AI), and why is it important for RS?

• RQ3: How does KG contribute to achieving explainabil-
ity within RS?

• RQ4: How does RL contribute to achieving explainabil-
ity within RS?

• RQ5: How important is it to integrate KG and RL to
enhance the effectiveness of the XRS?

Before initiating the detailed review process to address the
aforementioned research questions, the paper surveyed the
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FIGURE 1. Explainable recommendations.

existing literature in the field, summarizing the findings in the
RelatedWorks section. The thorough analysis of prior studies
underscored the need for a specific review paper focusing on
XRS implementation employing both KG and RL.

This review paper provides an overview of RS and explain-
ability in AI, KG, and RL, highlighting their roles in
developing effective XRS. It systematically examines the
advancements in XRS utilizing KG and RL by reviewing the
pertinent research works from Jan 2015 to Mar 2024. Addi-
tionally, it introduces a custom web scraper tool designed
to streamline the retrieval and organization of research
papers from prominent platforms like IEEE, ScienceDirect,
ACM, and Springer online databases. The web scraper tool,
developed using Python, Microsoft EDGE web driver, and
Selenium for automated web scraping, enhances access and
organization of academic content. The effectiveness of the
retrieved academic content relies on accurately crafted search
queries that serve as the primary filter and meticulously ana-
lyze that in titles, abstracts, or keywords.

The review procedure follows the process outlined in
the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) methodology [2]. It conducts
a thorough examination of selected papers, encompassing
four sub-stages. Each sub-stage eliminates irrelevant articles
based on specific criteria. The PRISMA approach ensures
a curated collection of relevant research papers. It allows
systematic quantitative and qualitative analyses of candi-
date research articles, summarising their findings, including
chronological categorization of research papers, platform-
wise distributions, and in-depth analyses of significant
contributions.

Finally, the review paper delves into a detailed review and
discussion of the prominent articles relevant to the objectives
of this review paper. These articles provide a comprehensive
view of the trends and advancements in the field of XRS uti-
lizing KG and RL. This in-depth examination aims to extract
valuable insights, highlight significant research trends, and
contribute to a nuanced understanding of the state of XRS.

Thus, this review paper contributes with the following
contributions:

• It offers an overview of existing reviews on XRS, sum-
marizing their contributions and areas of focus.

• A tailored web scraping tool crafted to efficiently gather
and organize research papers from leading platforms

like IEEE, ScienceDirect, ACM, and Springer online
databases.

• It conducts a comprehensive analysis and discussion
of the research questions, exploring the need for
explainability in RS and investigating implementation
approaches with KG and RL.

• The review paper delves deeper into research advance-
ments in XRS utilizing KG and RL by examining
relevant research papers.

• The paper offers an overview of trends in XRS, recom-
mends methods for XRS, and suggests future directions
to address current challenges based on the studies
reviewed.

The paper’s structure is designed to offer a comprehen-
sive exploration of XRS utilizing KG and RL. Section II
examines related surveys and review papers, summarizing
their contributions. Section III offers foundational knowledge
on relevant concepts. Section IV details the methodologi-
cal approach employed for this review paper, including the
custom web scraper and PRISMA methodology. Section V
analyzes the identified research papers. Section VI discusses
the chosen research papers, shedding light on the current
state, challenges, and prospects. Finally, Section VII con-
cludes the paper by summarizing key findings, contributions,
and implications, paving the way for future advancements in
transparent and interpretable RSs.

II. RELATED WORKS
The quest for explainability in RSs has spawned numer-
ous research efforts. Given the extensive literature on XRS,
a systematic literature review (SLR) mechanism is essential
to understand the research paradigm. Multiple surveys and
reviews are ongoing to delve deeper into this topic. This
section addresses the first research question and delves deeper
into the existing surveys and reviews on this topic.
RQ1: What contributions do existing survey or review

papers make to the field of XRS when utilizing KG and RL?
This section thoroughly examines eight recent surveys and

reviews on the topic, emphasizing the scarcity of reviews
focusing on research conducted on XRS using KG and RL.
Table 1 summarizes these survey and review papers, pri-
marily identified through the scraper process outlined in the
ReviewMethodology under section IV. Additionally, manual
searches on Google Scholar were conducted using the search
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TABLE 1. Summary of XRS literature reviews.

query enlisting the keywords ‘‘survey or review explainable
recommender systems by applying knowledge graphs and
reinforcement learning.’’ Table 1 provides the publication
year of the identified survey or review papers, their contri-
butions, focused areas, and the number of articles and review
papers reviewed.

Most existing reviews and surveys focus on XAI, with
some exploring implementation variations involving KG and
RL. Specifically, Chen et al. [3] presents a survey paper on
XRS, primarily focusing on approaches employing deep RL
techniques. Guo et al. [4] offers a survey paper on the detailed
examination of KG incorporation and a few approaches uti-
lizing RL for XRS development.

Despite the extensive literature on XAI, there remains a
noticeable absence of review papers addressing implemen-
tation approaches for XRS using KG and RL. Therefore,
there is a clear need for a dedicated review paper on this
subject. This review paper focuses on providing a compre-
hensive SLR on XRS using KG and RL. Our approach shares
similarities with the work of Pesovski et al. [5], as both
studies involve reviewing the literature on XRS. However,

instead of using an NLP-powered toolkit, we opted for a
Selenium and Python-based web scraper to programmatically
extract articles from major online digital libraries, including
IEEE, ScienceDirect, ACM, and Springer. Our review aims
to comprehend the broader spectrum of XRS.

III. BACKGROUND
This section provides conceptual knowledge before diving
deep into the review methodology.

A. RECOMMENDER SYSTEMS
RSs are algorithmic frameworks designed to predict and sug-
gest items or content that users may perceive as pertinent
or appealing. These systems leverage various data sources,
including user preferences, historical interactions, and item
attributes, to generate tailored recommendations [6]. With
widespread application across diverse domains such as e-
commerce, streaming services, and social media, RSs aim to
enrich user experiences, boost engagement, and drive desired
outcomes like sales or user interactions [7]. As digital plat-
forms continue to evolve, RSs play a pivotal role in
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shaping user experiences by dynamically predicting and
delivering personalized content recommendations. From their
origins in content-based and collaborative filtering-based
models, RSs continuously adapt to accommodate the multi-
faceted preferences of users [14], [15].

B. EXPLAINABILITY IN RECOMMENDER SYSTEMS
RQ2: What defines explainability in artificial intelligence
(AI), and why is it important for RS?

RSs are extremely helpful and assist users in their tasks.
However, concerns arise about user trust due to the preva-
lent use of opaque algorithms, prompting a demand for
transparency. In response, XRS has emerged, focusing on
accurate recommendations and providing understandable
justifications. This justification addresses users’ need for
comprehension and trust in algorithmic decision-making
processes. This context forms the basis for thoroughly explor-
ing XRS intricacies, where transparency and interpretability
intertwine with RS dynamics [1]. The subsections below
provide an overview of explainability.

1) WHAT IS EXPLAINABILITY?
Explainability involves clarifying the functionality of amodel
and its predictions, recommendations, and suggestions to
users and decision-makers. It aims to answer questions like
‘‘How does the AI system work?’’ and ‘‘Why are spe-
cific recommendations made?’’ It illuminates the rationale
behind recommendations and helps with suitable explana-
tions. It also helps identify biases and weaknesses in the
system, boosting user confidence and trust [16].

Fig. 2 illustrates the XAI process, which begins with users
receiving initial predictions or recommendations from the AI
model. At this stage, users form an initial mental model of
both the task and the AI system, which may include mis-
trust towards the model’s predictions. However, subsequent
experiences, including explanations provided by the system,
allow users to refine their mental model over time, potentially
leading to improved performance and a greater sense of trust
and reliance on the AI system [16].

In this process, explainability is crucial in fostering trans-
parency and trust among users. Effective and satisfactory
explanations assist users in developing amore comprehensive
and accurate mental model of the AI system and its pre-
dictions. This well-formed mental model leads to increased
trust in the AI system. As trust strengthens, users will
interact with the system more adeptly. Consequently, bet-
ter explainability enhances transparency and contributes to
users’ evolving understanding, enabling them to make more
informed decisions and effectively utilize the capabilities of
the AI system [16].

2) THE NEED FOR EXPLAINABILITY
The significance of explainability in AI systems stems from
various factors, including ethics, regulatory compliance, and
transparency, to infuse trust in the minds of the end-users and

business stakeholders. This emphasis arises from concerns
about transparency, accountability, bias mitigation, and eth-
ical considerations.

AI ethics advocates for fairness and accountability in AI
systems, ensuring stakeholders can identify biases, errors,
or unethical behaviour. This accountability promotes respon-
sible AI development [17]. Regulations like GDPR [18],
the European Union AI Act 2023 [19], and the California
Consumer Privacy Act of 2018 [20] emphasize the ‘‘right
to explanation’’ in algorithmic decision-making, highlight-
ing the importance of AI system explainability. Providing
explanations enhances user trust by offering insight into
decision-making processes and fostering confidence in criti-
cal domains like healthcare or finance [21]. The combination
of these reasons underscores the need for transparent, ethical,
and regulated AI systems, marking the advent of responsi-
ble AI.

C. KNOWLEDGE GRAPH
While the concept of an intelligent model encoding
real-world entities and their relationships has been present
in literature since the 1980s [22], the term KG gained popu-
larity following Google’s announcement in 2012. Since then,
various KGs have emerged, including Freebase [23], DBpe-
dia [24], YAGO [25], and Google’s own KG [26], facilitating
the construction of KGs for RS. Despite its widespread use,
a precise definition of KG remains elusive [27]. However,
there is a general understanding of its key characteristics.

Formally, a KG Gknow = (V ,E) is a directed graph
with V vertices (nodes) and E edges (relationships).
Nodes represent entities, while edges denote subject-
predicate-object triplet facts. Each edge of the form <

eh (headentity) ,r(relation),et (tailentity > indicates a rela-
tionship r , from the head entity eh to the tail entity et [4].
A KG serves as a structured representation of information,
portraying relationships between real-world entities through
a directed graph. Nodes symbolize entities, and edges depict
relationships between these entities, often labelled to offer
context or additional information [22]. Furthermore, the KG’s
structure may include an ontological schema, organizing
entities and relationships hierarchically or categorically to
provide a more structured view of the information within the
graph [28].
A KG has two fundamental components [29]:
• Terminology Box (T-Box) – A KG includes a set of
concepts, categories, and properties that establish the
foundational framework for understanding the entities
and relationships within the graph.

• Assertion Box (A-Box) – A KG includes a set of state-
ments or assertions about individual entities, specifying
their attributes, relationships, and other relevant infor-
mation. These statements, known as the A-Box, contain
specific data instances that align with the concepts and
relationships defined in the T-Box.

A KG aims to provide a semantically rich and interconnected
representation of data. It is used to enhance search engines,
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FIGURE 2. A conceptual model of explaining in the XAI context.

facilitate machine reasoning, support question-answering
systems, and more by enabling a deeper understanding of the
relationships between various entities and concepts in the real
world.

D. REINFORCEMENT LEARNING
The RL framework comprises core elements: Environment-
State, Agent, Actions, and Rewards. An autonomous agent
improves its performance by interacting with its environment.
As described by [30], an agent with sensors and actua-
tors evaluates its performance based on a reward function.
It navigates through states, selecting actions and receiving
rewards periodically. The agent’s primary goal is to learn
a policy that maximizes cumulative rewards over time and
balances exploration and exploitation. It exploits current
knowledge while exploring new possibilities [31]. Key com-
ponents include states, actions, rewards, value functions,
and Q-functions, all integrated within the Markov Decision
Process (MDP) framework. Primary RL algorithms include
Q-learning, REINFORCE, and Actor-Critic.

1) MARKOV DECISION PROCESS
MDP is considered the de facto standard when formalizing
sequential decision-making problems involving an RL agent,
in which actions affect the current short-term rewards, the
subsequent states, and future rewards [32]. An MDP repre-
sents a tuple < S,A,T ,Rw, γ >, where S is the set of all
possible states, which is the generalization of the environ-
ment, A is the set of all possible actions of the agent that can
be adopted in the states, T is a transition function, Rw is a
reward function, and γ is a discount factor [33].

2) Q-LEARNING
Q-learning [34] is an off-policy and Temporal Difference
(TD) learning algorithm. It operates by updating values
within a Q-table using a target policy to attain the optimal pol-
icy. Meanwhile, a separate behaviour policy, often employing
the ε-greedy strategy, facilitates semi-random exploration of
the environment. The primary objective of Q-learning is to
approximate the optimal action-value function, q∗, through
direct estimation, representing the highest expected cumula-
tive reward achievable for actions in specific states.

3) REINFORCE
REINFORCE [35] is an on-policy algorithm that directly
learns a parameterized policy using the Monte Carlo method.
It updates policy parameters based on estimated returns and
full traces. This method employs neural networks to construct
a policy, with states as inputs and outputting probability
distributions in the operational space.

4) ACTOR-CRITIC
The Actor-Critic algorithm [36] in RL combines a param-
eterized policy (Actor) and a value function (Critic) to
improve learning efficiency and stability. The Critic esti-
mates the expected cumulative reward for a state-action pair,
guiding policy optimization through policy gradient meth-
ods, enabling the Actor to make more informed decisions.
By integrating policy-based and value-based techniques, the
algorithm balances exploration for maximizing rewards with
an accurate assessment of state-action desirability.

This review paper conducts an SLR encompassing all
related articles applying KG and RL. Sections IV, V, and VI
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offer a comprehensive overview of the review process and
discussions, comprehend the research paradigm surrounding
KG and RL in the context of XRS, and address the research
questions RQ3, RQ4, and RQ5.

IV. REVIEW METHODOLOGY
This section outlines the review methodology, covering the
use of a web scraper and the PRISMA methodology.

A. WEB SCRAPER – SCRAPE THE ARTICLES
In the vast realm of academic research, obtaining research
papers from reputable online databases poses a considerable
challenge and requires manual human effort. This study intro-
duces a custom web scraper, as depicted in Fig. 3, to simplify
accessing and organizing research papers from respected
online databases like ACM, Springer, IEEE Xplore, and Sci-
enceDirect. Built with Python, the scraper uses the Microsoft
EDGE web driver and Selenium for automated web scraping.
It helps researchers efficiently find and manage academic
content. The custom web scraper framework is available on
the GitHub link shared on the first page.

The efficacy of the web scraper is contingent upon the pre-
cision of the search query, which acts as the primary filter for
article retrieval and inclusion. It systematically evaluates arti-
cle titles, abstracts, and keywords for specific search terms,
ensuring comprehensive data retrieval across multiple pages.
By adapting its operations based on the number of pages,
the scraper meticulously reviews the results of each page and
selectively stores those that meet the specified criteria.

The extracted results contain essential information, includ-
ing the article’s web link (URL), title, author, publication
year, journal or conference name, online database source,
citation count, accessibility status, original search query, and
other search criteria. This comprehensive set of results offers
a detailed overview of the identified articles, making it easier
to analyse and explore these relevant publications.

Table 2 presents the queries used in this study to identify
relevant articles. These queries yielded 130 articles from
ACM, 257 articles from Springer, seven research papers from
IEEE, and five articles from ScienceDirect. This compre-
hensive search process returned 399 articles, providing the
foundation for further refinement.

B. PRISMA – PRIORITISE THE SCRAPED ARTICLES
PRISMA methodology, or ‘‘Preferred Reporting Items for
Systematic Reviews and Meta-Analyses’’, serves as a stan-
dardized framework for systematic reviews and surveys,
improving practices for researchers conducting literature
reviews and enabling the unbiased study of published arti-
cles [2]. The process begins with identifying articles based
on specific criteria, such as keywords, followed by screen-
ing, eligibility assessment, and inclusion of articles aligned
with the survey paper’s objectives. This systematic approach
ensures the thorough selection and processing of relevant
articles for this review paper on XRS utilizing KG and RL.

The methodology illustrated in Fig. 4 was employed to
refine the article selection process. Initially, our search cri-
teria yielded 399 articles from reputable databases such as
ACM, Springer, IEEE Xplore, and ScienceDirect. Following
a thorough screening, 354 articles, accounting for 88.7% of
the total, were retained. Subsequently, 10.7% of the articles
met the eligibility criteria, resulting in 38 articles. Further
refinement during the final inclusion stage led to 29 articles
alignedwith the specified search criteria and filtering options.

1) STEP 1: IDENTIFICATION OF ARTICLES
The study examined research papers across major online
databases, including ACM, Springer, IEEE Xplore, and Sci-
enceDirect, focusing on the explainability of RSs utilizing
KG and RL. The search query ‘‘Explainable AND (Recom-
mendationORRecommender) ANDKnowledgeGraphAND
Reinforcement Learning’’ was employed to identify relevant
research papers from January 2015 to March 2024. Only
research papers written in English, with the query keywords
in the document title, abstract, and keywords, were included.

2) STEP 2: SCREENING OF IDENTIFIED ARTICLES
The next step involves refining the candidate articles from the
previous identification phase. Since the articles are collected
from various online database sources, there is a chance of
duplicate entries or irrelevant articles unrelated to the review
objective. The articles undergo manual screening to identify
duplicity or irrelevance to the core subject, such as articles
with prefaces or editorial content, resulting in the identifica-
tion of 354 articles.

3) STEP 3: ELIGIBILITY OF SCREENED ARTICLES
This step involves identifying eligible articles from the pre-
vious screening phase. We review all the previously screened
articles to determine their purpose and underlying technolo-
gies. We refine the list of potential papers by identifying the
articles focusing on developing XRS using KG and RL and
exclude those confined to review or survey purposes. This
process yields 38 core articles.

4) STEP 4: INCLUSION OF ELIGIBLE ARTICLES
In the concluding step, we further refine the candidate papers
to align them precisely with the core objective of the review
paper. We exclude articles from the eligible list of research
that predominantly address temporal research and counter-
factual studies or are unrelated to the core development of
XRS using both KG and RL. Additionally, we include any
other relevant research that may have been overlooked during
the scraping process. This last step ensures a focused set of
29 research papers for the further review process.

V. RESULTS ANALYSIS
During this phase, a thorough analysis of the scraped articles
obtained in the previous stage is conducted, aiming to observe
patterns in research related to explainable recommenders
across various platforms within the research community. This

92004 VOLUME 12, 2024



N. Tiwary et al.: Review of Explainable Recommender Systems Utilizing KGs and RL

FIGURE 3. Web scraper framework.

TABLE 2. Search queries used for different online databases.

analysis contributes to a deeper understanding of trends and
insights within the realm of explainable recommenders across
diverse research platforms.

A. QUANTITATIVE ANALYSIS
This section conducts the quantitative analysis of the scraped
articles.

1) ANALYSIS OF THE PUBLISHED SCREENED ARTICLES BY
YEAR
Fig. 5 illustrates the proliferation of published articles
retrieved using the search query used in the previous section
across all four reputable online databases from January
2015 to March 2024. These articles underwent screening
to eliminate irrelevant ones. Notably, the search query only

returned articles from 2017 onwards, as no relevant articles
were found for 2015 and 2016 based on our search criteria.
Over the years, the rising number of published articles under-
scores the increasing interest within the research community
in XRS utilizing KG and RL. In 2023, for instance, 125 arti-
cles were published, showing the community’s interest in
XRS and related topics.

2) ANALYSIS OF PUBLISHED ELIGIBLE ARTICLES BY ONLINE
DATABASES
Fig. 6 depicts the distribution of eligible articles across
different online databases, highlighting the results of a man-
ual critical review process to assess their relevance to the
research objectives. Springer and ACM stand out as the
primary online databases, containing a substantial number of
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FIGURE 4. The PRISMA methodology of identifying the research papers for reviewing.

published articles relevant to the review objectives. Despite
initially identifying only a few articles from IEEE and Sci-
enceDirect, these sources remained relevant throughout the
eligibility process.

3) ANALYSIS OF PUBLISHED SCREENED ARTICLES BY YEAR
BY OPEN-ACCESS STATUS
Fig. 7 illustrates the prevalence of open-access status among
the screened articles, showing a gradual increase since
2018 and a significant surge from 2020 onwards. There was
a notable increase in 2023, with 51 articles published as

open access compared to 76 as non-open access. The years
2022, 2023, and 2024 witnessed a considerable rise in the
proportion of open-access articles, exceeding 40%. As of
2024, open-access articles represent 43.6% of the total. This
trend underscores the importance of freely sharing research
findings to enhance accessibility and collaboration in the
research community.

B. QUALITATIVE ANALYSIS
This section conducts the qualitative analysis of the articles
included in the review process.
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FIGURE 5. Screened articles published by year.

This sub-section highlights 29 seminal research works in
XRS utilizing KG and RL. Table 3 provides a comprehensive
overview of these selected studies, detailing their publishing
platforms, explainability methodology, applied technolo-
gies, experimental domains, datasets, and approaches. The
selection process of these 29 articles involves the scraper
framework and the PRISMA methodology, resulting in the
25 pertinent articles, and the manual search mechanisms
contribute to including the remaining four articles.

The final selection of review articles covers XRS using
KGs and RL across diverse domains, spanning major online
databases like IEEE, Springer, ACM, and ScienceDirect. The
distribution includes 10 ACM articles, eight from Springer,
eight from IEEE, and three from ScienceDirect. KGs and RL
are pivotal technologies enabling model-intrinsic or embed-
ding explainability for recommendations. As outlined in the
discussion section, the approaches vary in algorithmic adop-
tion and implementation.

VI. DISCUSSIONS
This section delves into a detailed discussion of the included
research works and relevant methods for XRS development
and addresses research questions RQ3, RQ4, and RQ5.

A. METHODS OF EXPLAINABLE RECOMMENDER
The rising interest in XRS stems from its potential to
enhance user acceptance of recommendations by providing

transparent explanations. Fig. 8 outlines various approaches
to implementing XRS, aiming for XAI. These approaches
are categorized into model-agnostic or post-hoc and
model-intrinsic or embedded methods. KG-based and
RL-based approaches are the primary strategies. KG-based
methods include embedding-based, path-based, and hybrid,
while RL-based methods comprise value-based, policy-
based, and hybrid approaches. While explainability can be
achieved without KG and RL, those methods are mostly
model agnostic. Integrating KG and RL techniques presents
new methodological advancements. These integrations lever-
age structured knowledge representation (KG) and learning
through interaction (RL) to enhance the transparency and
effectiveness of RSs. This section conducts a comprehensive
analysis of the scraped articles.

B. EXPLAINABILITY METHODOLOGY
The explainability of the XAI can be categorized into
model-agnostic and model-intrinsic.

1) MODEL-AGNOSTIC OR POST-HOC METHODOLOGY
Post-hoc methodology involves generating explanations after
the recommendation process, often relying on previously
identified sets of candidates, such as ‘‘people also bought’’
or ‘‘7 of your friends like this.’’ While these explanations are
typically persuasive and easy to understand, they overlook the
inner workings of the RS.
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FIGURE 6. Eligible articles published by online databases.

Ai et al. [66] employ a CF approach over KGE, using a
soft matching algorithm to find explanation paths between
users and items, resulting in a post-hoc explanation method.
However, this approach overlooks the inner workings of
the recommendation model. Valdiviezo-Diaz et al. [67]
demonstrate the effectiveness of leveraging the Naïve Bayes
Classifier to enhance RS design, improve recommendation
quality, and provide transparent justifications. Their NBCF
approach involves developing a probabilistic model using
the Naïve Bayes Classifier and adopts a post-hoc method-
ology for explainability. Jung and Nardelli [68] introduce a
model-agnostic explainability model by explicitly modelling
user-specific knowledge. They propose a probabilistic model
for data and user background, measuring the quantitative
effects of explanations through mutual information. Unlike
other model-agnostic approaches, this method employs a
probabilistic model for predictions and user knowledge, con-
sidering personalized explanations.

While post-hoc methods are model agnostic, they are not
preferable because they do not consider model explainability
when generating diversified results.

2) MODEL-INTRINSIC OR EMBEDDED METHODOLOGY
Embedded methods integrate the explanation process into
RS construction, deriving explanations from item-side

information to emphasize factors contributing to recom-
mendation accuracy. While these methods produce diverse,
model-tied explanations, ensuring readability and consis-
tency may be challenging. KG-based and RL-based solutions
are prominent implementation approaches, detailed in the
following sections.

C. KG-BASED XRS
This section provides an overview of various methodologies
focusing on KG-based approaches for XR, tackling research
question RQ3. These methods are classified into embedding,
connectivity, and hybrid.

1) EMBEDDING-BASED METHODS
Embedding-based methods typically leverage KG informa-
tion to enhance item or user representations. KGE algorithms
encode KGs into low-rank embeddings. These algorithms
fall into two categories: translation distance models (e.g.,
TransE [69], TransH [70], TransR [71], TransD [72]) and
semanticmatchingmodels (e.g., DistMult [73]). KGEmodels
determine entity similarity by computing their representation
distance [74].

Several embedding-based methods [75] construct KGs
with multiple item side information to enrich item repre-
sentations, forming item graph-based KGs that improve user
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FIGURE 7. Screened articles published by year by open-access status.

modelling. Some models [66] incorporate user preferences
through user-item KGs by integrating users into the graph
design. Entity embedding is fundamental to these meth-
ods, with few studies refining embeddings using techniques
like GAN [76] or BEM [77] to improve recommendations.
The problem with these methods is overlooking multi-hop
relational paths.

2) CONNECTIVITY OR PATH-BASED METHODS
Path-based recommendation within KGmethodologies lever-
ages user-item graphs to enhance recommendations by
exploiting connectivity patterns, thereby improving recom-
mendation quality.

Prominent research works on path-based methods include
Hete-MF [78], Hete-CF [79], HeteRec-p [80], MCRec [81],
and RKGE [82], which utilize meta-paths and their varia-
tions for different users. Zhao et al. [83] introduced FMG,
replacing the meta-path with the meta-graph. Additionally,
Wang et al. [84] proposed KPRN, which constructs the
extracted path sequence with entity and relation embeddings,
encoding it with an LSTM layer.

Path-based methods utilize meta-paths to match item
or user similarity, enhancing interpretability. Recent

advancements employ deep learning models to extract sig-
nificant traversal paths for user-item pairs.

3) HYBRID OR UNIFIED METHODS
Embedding-based methods utilize the KG’s semantic repre-
sentation of users/items, while path-based methods rely on
semantic connectivity information. However, each approach
only utilizes one aspect of KG information. Unified methods
integrate both semantic entity representation and connec-
tivity information, leveraging embedding propagation. This
approach refines entity representation with KG’s connective
structure guidance.

The prominent unified-based methods, including Rip-
pleNet [85], AKUPM [86], RCoLM [87], KGCN [88],
KGAT [89], IntentGC [90], and AKGE [91], leverage pref-
erence propagation. Ryotaro [92] introduces an enhanced
KGAT model, reducing computational costs by compressing
extensive side information while preserving high accuracy
and explainability. Thus, the unified methods blend KG
semantic embedding and path patterns, refining item or
user representation through multi-hop embedding propaga-
tion. They inherit interpretability from path-based meth-
ods, revealing user preference patterns akin to connectivity
patterns.
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TABLE 3. Comparison of xrs research works utilizing KG and RL.
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TABLE 3. (Continued.) Comparison of xrs research works utilizing KG and RL.
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FIGURE 8. Methods of explainable recommender.

TABLE 4. KG-based XRS research works.

Table 4 summarizes the KG-based research works men-
tioned in this review paper. This subsection discusses
various KG-based implementation approaches comprising
embedding-based, path-based, and hybrid methods.

Embedding-based methods harness the semantic represen-
tations of users/items in the KG, while path-based methods
utilize semantic connectivity data. Unified methods combine
both aspects, fully exploiting KG information by integrating
entity and relation semantic representations with connectivity
data. They leverage embedding propagation, refining entity
representations based on KG connective structures.
RQ3: How does KG contribute to achieving explainability

within RS?
KGs contain relationships between entities, enabling the

utilization of related information to explain recommenda-
tions. They comprehend user interests by understanding
entity semantics and relations, providing rich data beyond

user-item interactions. KGs alleviate cold-start issues in
RS. Recommendation reasoning is categorized as Ante-hoc
or Post-hoc. Ante-hoc involves model-intrinsic explainabil-
ity, while Post-hoc solutions are model agnostic, providing
explanations after recommendations. While KGs provide
recommendation reasoning, several challenges remain in
developing robust solutions that accurately capture user pref-
erences.

D. RL-BASED XRS
This section provides an overview of various methodologies
focusing on RL-based approaches for XR to address research
question RQ4. These methods are classified into value-based,
policy-based, and hybrid.

1) VALUE-BASED METHODS
Value-based RL involves the agent learning tomake decisions
by estimating the value of different actions in various states.
This estimation creates a value function, assigning values
to states or state-action pairs. The agent’s objective is to
maximize cumulative rewards over time by choosing actions
leading to states with higher estimated values. Algorithms
like Q-learning and DQN update these estimates iteratively
through interaction with the environment, adjusting based
on observed rewards and state transitions. The aim is for
the agent to learn an optimal policy specifying the best
action in each state for maximum long-term reward. Notable
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TABLE 5. RL-based XRS research works.

works leveraging DQN include DRN [93], SADQN [94],
UQDN [95], and FeedRec [96]. These studies utilize DQN
and its variants to enhance the effectiveness of RS.

2) POLICY-BASED METHODS
Policy-based RL directly learns a policy, mapping states to
actions without explicitly computing value functions. Instead
of estimating action values, these methods parametrize
and optimize the policy to maximize expected cumula-
tive rewards. Policy-based approaches are preferred for
continuous or high-dimensional action spaces where com-
puting action values are impractical. Examples include
REINFORCE [35], PPO [97], and Trust Region Policy
Optimization (TRPO) [98]. Notable works in this approach
utilize REINFORCE and its variants, including PGCR [99],
PPG [100], and RML [101], while optimization techniques in
DPG-FBE [102].

3) HYBRID METHODS
Hybrid-based RL methods blend value-based and policy-
based approaches, aiming for enhanced performance. They
leverage both a value function to estimate action quality and
a policy to guide action selection. This combination enhances
sample efficiency and stability. Actor-critic algorithms [36]
exemplify hybrid methods, using separate networks for pol-
icy and value function representation. Notable works utilize
Actor-Critic and its variants to enhance effectiveness in XR,
including LIRD [103], DeepPage [104], and SLC [105].
Table 5 summarizes the RL-based research works men-

tioned in this review paper. This subsection discusses various
RL-based implementation approaches comprising value-
based, policy-based, and hybrid methods.

Value-based RL learns the value function to estimate
the expected cumulative reward in a state, often employing
algorithms like DQN to optimize the action-value func-
tion. In contrast, policy-based RL directly learns the policy
mapping states to actions, which is suitable for continuous
or stochastic environments. Hybrid RL methods combine
aspects of both approaches, integrating value function esti-
mation with policy optimization to enhance performance and
stability in learning.
RQ4: How does RL contribute to achieving explainability

within RS?
RL enhances explainability in RS by providing a trans-

parent framework for decision-making. It learns optimal

recommendation strategies through user interactions, gener-
ating trajectories of state-action pairs that reveal the reasoning
behind recommendations. Stakeholders can understand why
certain recommendations are prioritized by analyzing reward
signals and inspecting model parameters, enhancing over-
all system explainability. Despite RL’s contributions to
XRS development through value-based, policy-based, and
hybrid approaches, challenges persist in achieving robust
model-intrinsic explainability for generated recommenda-
tions.

E. INTEGRATED APPROACH OF KG AND RL-based
METHODS
KG enriches RSs with semantic data, aiding in better user-
item reasoning. Integrating KGs into RL enables informed
item recommendations by considering user preferences and
contextual factors. This section outlines KG and RL-based
approaches for explainability in RSs, addressing RQ5. These
methods are categorized into KG-RL-value-based, KG-RL-
policy-based, and KG-RL-hybrid streams, as shown in Fig. 8.

1) KG-RL-VALUE-BASED METHODS
KG-RL-Value-based methods improve XRSs by combin-
ing a value-based RL framework, such as DQN, with KGs
to enhance the explainability of recommendations. Notable
works in this area includeDPAO [39], RMS [41], KGQR [46],
KGDQN [54], CDARL [64], and KPRLN [60], as listed in
Table 3.
Jung et al. [39] introduce DPAO, employing dual pol-

icy learning with two deep Q-network models to determine
high-order connectivity for aggregating users and items fol-
lowing an MDP. Ning et al. [41] propose RMS, an RL-based
meta-path selection framework, utilizing a policy network
to identify high-quality meta-paths and constructing a pol-
icy π maximizing the reward through an MDP and DQN.
Zhou et al. [46] present the KGQR model, utilizing GCN
to transform KG information, generating state representa-
tion, and recommending the highest-scored item from the
candidate set through the Q-network. Xu et al. [54] propose
KGDQN, combining KG and RL with a TransE embedding
algorithm for KG and multi-layer Deep Q-learning for RL to
predict rewards from reasoning paths. Wu et al. [60] propose
KPRLN, extracting fine-grained user preference features
from the KG and constructing a path network of user his-
torical interaction items in the KG using deep RL, exploring
the KG via cluster expansion with a double DQN model, and
designing an attention mechanism to propagate higher-order
user interests and aggregate user and item representations
for prediction. These studies illustrate how KG integration
in the value-based RL framework enhances recommendation
explainability.

2) KG-RL-POLICY-BASED METHODS
KG-RL-Policy-based methods enhance XRSs by integrating
policy-based RL algorithms like REINFORCE and pol-
icy optimization with KGs to improve recommendation
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explainability. Unlike DQN, these methods directly optimize
the policy π . Key works in this area include PGPR [44],
UPGPR [37], IP-PGPR [56], MES [55], SAPL [45],
CERec [47], REKS [48], TMER-RL [49], PPO [51],
Mcore [52], TN [57], RSL-GRU [58], HINRL4Rec [62], and
HR-RL-KG [65], as listed in Table 3.
Xian et al. [44] introduce PGPR, integrating recom-

mendation and interpretability through KGs. It formulates
recommendation as a deterministic MDP over the KG uti-
lizing RL with the REINFORCE algorithm and features,
like soft reward strategy, user-conditional action pruning,
and a multi-hop scoring function. The soft reward strategy
employs amulti-hop scoring function utilizing heterogeneous
KG information. Frej et al. [37] extend PGPR to UPGPR,
allowing path patterns of any type and length and intro-
ducing a new reward mechanism to broaden exploration
and enhance generalizability. Balloccu et al. [56] extend
PGPR with in-processing and post-processing optimization
techniques, generating substantially higher-quality reasoning
paths. Tiwary et al. [55] extend PGPR to evaluate the explain-
ability of recommendations with MES, a max explainability
score based on rules, probability, entropy value, and reward
from chosen traversal paths. Park et al. [45] propose SAPL,
learning an RL policy to generate item recommendations and
reasoning, enriching the KG with sentiment-related labels.
Wang et al. [47] propose CERec, a counterfactual explainable
recommendation method, generating item attribute-based
counterfactual explanations, reducing the search space with
an adaptive path sampler, and enhancing recommendation
with the explanation policy. Vo [62] propose HINRL4Rec,
integrating heterogeneous network embedding with a policy-
guided path-based searching mechanism using RL. Other
similar approaches adopting the REINFORCE algorithm
with MDP include REKS [48], TMER-RL [49], Mcore [52],
TN [57], RSL-GRU [58], and HR-RL-KG [65]. A few mod-
els adopted different policy optimization algorithms, such
as PPO [97] and TRPO [98]. Feng et al. [51] introduce
a proximal policy optimization XR model and utilize PPO
to optimize recommendations. These studies illustrate how
KG integration in the policy-based RL framework enhances
recommendation explainability.

3) KG-RL-HYBRID-BASED METHODS
KG-RL-Hybrid-based methods improve XRSs by combin-
ing a hybrid-based RL framework, such as actor-critic, with
KGs to enhance the explainability of recommendations. The
actor-critic method combines value-based and policy-based
methods by using two different networks, where an actor
network uses a policy-based, and the critic uses a value-based
to evaluate the policy learned by the agent. Prominent works
in this area include ReMR [40], AnchorKG [42], ADAC [43],
KGRL [53], KRRL [59], MEUR [63], RCENR [38], RKGR-
RNS [50], and IMRL [61], as listed in Table 3.
Wang et al. [40] introduce ReMR, a model for multi-level

recommendation reasoning over KGs, leveraging both
ontology-view and instance-view KGs to capture multi-level

TABLE 6. KG-RL-based XRS research works.

user interests. They employ abstract MDP using cascading
Actor-Critic for multi-level reasoning, adopting a top-down
strategy to prune the search space and ensure that high-level
KG knowledge guides low-level reasoning policies to a sat-
isfying solution. Liu et al. [42] propose AnchorKG, which
generates a compact anchor KG to enhance article latent
representation. They frame anchor graph generation as a
deterministic MDP and use RL techniques, specifically the
actor-critic algorithm, for optimization. Zhao et al. [43] pro-
pose ADAC, leveraging human demonstrations to improve
path searching. ADAC adopts adversarial imitation learning
and expert paths to facilitate the search process for optimal
paths in the KG. Chen et al. [53] introduce KGRL, utilizing
KGs to enhance the critic’s evaluation of generated policies.
Unlike previous studies, KGRL embeds the KG into the
actor-critic network, guiding the actor to find better recom-
mendation policies by measuring proximity from the optimal
path. Lin et al. [59] propose KRRL, a multi-level representa-
tion learning method enhancing semantic representation and
relations in the KG. They adopt an RL approach, specifically
the actor-critic algorithm, to guide path reasoning. Other sim-
ilar approaches adopting the actor-critic algorithm with MDP
include MEUR [63], RCENR [38], RKGR-RNS [50], and
IMRL [61]. These studies illustrate how KG integration in
the hybrid-based RL framework enhances recommendation
explainability.

Table 6 summarizes the KG-RL-based research works
listed in this review paper. This subsection discusses various
RL-based implementation approaches comprising value-
based, policy-based, and hybrid.

KG-RL-Value-based methods focus on learning the value
function and estimating the expected cumulative reward of
actions in a given state under the KG. Algorithms like
DQN are commonly employed to determine the optimal
action-value function. On the other hand, KG-RL-Policy-
based methods directly learn the policy mapping states
to actions without explicitly computing a value func-
tion with the underlying KG. This approach is beneficial
for continuous action spaces and stochastic environments.
KG-RL-Hybrid methods combine elements of value-based
and policy-based approaches along with KG, aiming to lever-
age their respective strengths. They often incorporate value
function estimation alongside policy optimization techniques
to achieve better performance and stability in learning.
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RQ5: How important is it to integrate KG and RL for
enhancing the effectiveness of the XRS?

KG and RL are indispensable in developing effective XRS.
KG acts as a knowledge base, enabling the generation of
explanations or reasoning for recommendations. RL, on the
other hand, helps create a robust ML algorithm that cap-
tures user behaviour. Integrating these techniques results
in a robust XRS, capturing embedded reasoning in model
decisions and enabling effective traversal over the KG for
model-intrinsic explainability. The research works discussed
in section VI-E underscore the significance of integrating KG
and RL in XRS.

F. KEY INSIGHTS
This section explores insights and discusses influential
research in this domain. It highlights a few case studies
demonstrating the advantages of KG and RL integration in
XRS alongside the challenges associated with implementing
such models in practice.

1) INFLUENTIAL RESEARCH
The review paper emphasizes several influential research
papers that utilize both KG and RL in the context of
XRS. Specifically, it mentions PGPR [44], KGQR [46],
ReMR [40], and MES [55] as studies that continue to explore
various RL approaches applied to KGs.

Xian et al. [44] introduced PGPR, which combined MDP
and RL to navigate multi-hop paths in a KG for making
recommendations. This research was pivotal as it was the
first published research to apply RL over KG for developing
RSs. It used the policy-based RL algorithm, REINFORCE,
and formulated recommendations as a deterministic MDP
over the KG to identify the optimal recommendation policy.
It adopted a soft reward strategy and employed a multi-hop
scoring function that utilized heterogeneous KG informa-
tion. The approach faced challenges related to computational
costs, personalization, optimal product suggestions, and the
associated reasoning. The approach prioritized reasoning
path selection based solely on path probability, overlooking
other factors.

Later, research began to explore the effectiveness of
value-based RL algorithms. Zhou et al. [46] developed
the KGQR model, which replaced policy-based RL with
value-based methods and implemented an RS using deep
Q-networks. They leveraged prior knowledge of item cor-
relations learned from the KG to guide candidate selection
for improved item retrieval. They enhanced item and user
state representations, propagated user preferences across cor-
related items in the KG to address user feedback sparsity and
utilized GCN to transform KG information and generate state
representations. Themodel recommended the items by select-
ing the highest-scored item from the candidate set through the
Q-network.

There is a growing need to combine the advantages of both
policy-based and value-based RL methods. Wang et al. [40]
introduced ReMR, a model designed for multi-level

recommendation reasoning across KGs. This model lever-
ages both ontology-view and instance-view KGs to capture
diverse user interests at multiple levels, thereby enhancing
the accuracy of recommendations. The approach integrates
RLmethods, specifically employing a cascading Actor-Critic
framework within an abstract MDP. This enables effective
multi-level reasoning by applying a top-down strategy to
streamline the search process, ensuring that higher-level
KG knowledge guides lower-level reasoning policies toward
optimal solutions. Additionally, the framework includes a
method for extracting multi-level reasoning paths, automat-
ically selecting between high-level concepts and low-level
details to construct paths that effectively reveal user interests.

Recently, Tiwary et al. [55] expanded their research by
focusing on explainability metrics to assess the clarity of
generated recommendations. They introduced MES, a met-
ric designed to evaluate the effectiveness of explainability
in their recommendations by providing the max explain-
ability score. This metric utilizes fundamental evaluation
parameters within the RL framework, including the number
of hops the agent takes to generate recommendations, the
traversal path’s transition probabilities, associated entropy,
and rewards received during the path. These foundational
parameters are leveraged to derive an evaluation metric that
quantifies the quality of explainability provided by the rec-
ommendations.

2) CASE STUDIES
The integration of KG and RL contributes significantly to
enhancing the quality of generated recommendations and
facilitates achieving explainability for these recommenda-
tions. Research combining KG and RL has shown that
integrated models are more effective in generating recom-
mendations than those relying solely on KG. For instance,
Wang et al. [40] demonstrated the superiority of his devel-
oped model, ReMR, by comparing it to various baseline
models that utilized different variations of KG. His results
indicated that ReMR outperformed the baseline models.
Similar findings have been observed in other experiments
where RL variations were applied to KGs. The experiments
have demonstrated consistent performance across various
datasets from different domains, such as movies (MovieLens,
DoubanMovie), e-commerce (Amazon - Book, Clothing,
CDs & Vinyl, Cellphones, Beauty), and music (Last.fm,
KKBox), among others.

3) CHALLENGES WITH APPLYING KG AND RL IN XRS
Applying KG and RL in XRS presents intricate challenges.
One significant hurdle is ensuring the interpretability of the
knowledge representation derived from KGs. While KGs
offer a structured framework of entities and their relation-
ships, the decision-making processes of RL models trained
on these graphs can be complex and opaque to end-users.
This complexity undermines the system’s ability to provide
clear explanations for recommendations, potentially leading
to user mistrust or dissatisfaction. Additionally, handling

VOLUME 12, 2024 92015



N. Tiwary et al.: Review of Explainable Recommender Systems Utilizing KGs and RL

uncertainties and incompleteness within KGs poses another
critical challenge. RL algorithms must navigate these
nuances effectively to generate reliable recommenda-
tions while transparently communicating the limitations
or uncertainties to users. Moreover, the dynamic nature
of KGs requires continuous adaptation of RL models,
necessitating robust mechanisms to update and main-
tain the knowledge base without compromising system
performance or interpretability. Addressing these chal-
lenges requires advancements in AI algorithms and
user-centric design to ensure that XRS effectively bal-
ances complexity with transparency, fostering user trust and
acceptance.

G. EVALUATION METRICS
The effectiveness of the XRS model’s recommendations is
evaluated using four distinct metrics: Normalized Discounted
Cumulative Gain (NDCG), Hit Rate (HR), Recall, and Preci-
sion. These metrics provide quantitative measures to assess
the model’s performance and effectiveness. NDCG captures
the relevance and ranking of recommended items, HR quan-
tifies the model’s ability to suggest relevant items, Recall
measures the model’s capability to retrieve relevant items,
and Precision gauges the accuracy of the recommended items.
This range of evaluation metrics aims to provide a compre-
hensive and multifaceted assessment of the proposed XRS
model’s performance.

The quantitative evaluation of explainability is an advanced
area, and various research efforts, including MES [55], are
ongoing.

H. FUTURE WORKS
Future research may focus on making KG-RL-based RSs
more interpretable by developing clear explanations for
recommendations derived from complex KG interactions.
Integrating diverse data types into KGs will enrich rec-
ommendations while ensuring dynamic adaptability and
addressing privacy concerns will be crucial. Given the
promising nature of the field and the significant interest
within the research community in responsible AI, it is antic-
ipated that the field of XRS will continue to pose new
challenges and inspire further research endeavours. This will
be essential to meet the demand for AI systems that are
ethical, trustworthy, responsible, reliable, fair, transparent,
secure, accountable, and explainable. Establishing standard-
ized evaluationmetrics will further enhance the reliability and
transparency of these systems across different domains.

VII. CONCLUSION
In conclusion, this review paper provides a comprehensive
overview of the current landscape of XRS, emphasizing the
critical role of explainability and the contributions of KG
and RL techniques in advancing RSs. The paper begins by
summarizing existing reviews on XRS, outlining their con-
tributions and areas of focus. It then describes a tailored
web scraping tool developed to efficiently gather and orga-

nize research papers from leading platforms such as IEEE,
ScienceDirect, ACM, and Springer online databases, facili-
tating the compilation of relevant research works for analysis.
Through a systematic examination of research questions, the
paper explores the necessity of explainability in RSs. It delves
into various implementation approaches leveraging KG and
RL, drawing insights from relevant research papers. By ana-
lyzing these studies, the paper sheds light on the significance
of integratingKG andRL techniques to enhance the effective-
ness and interpretability of RSs. It identifies emerging trends
in the field and recommends methods for developing XRS
based on the insights gleaned from the reviewed studies.

Overall, the review paper offers valuable insights into the
evolving landscape of XRS, highlighting the importance of
explainability and the pivotal role played by KG and RL
techniques.
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