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ABSTRACT Homomorphic encryption (HE) is a promising method in privacy-preserving cloud computing.
Applying HE on feedforwad neural networks has been frequently reported recently but the research on
recurrent neural networks is still insufficient. In previous studies, HE-based GRU is built with bootstrapping
due to the changeable input length and large number of required multiplications, which is not time-efficient.
In this study, we give a guideline of building bootstrapping-free HE-based GRU for text classification tasks.
We discuss themethods of pre-processing of texts to decrease the input sequence length but keep the accuracy
in a comparable level as the original GRU. The architecture of GRU is designed with flexibility to process the
input sequence with different lengths while fixing the number of recurrent steps. At last, the HE parameter
selection is discussed. We analyze the noise raised from HE operations and select the parameters that ensure
the results from encrypted data are the same as that on plaintexts. The proposed model is evaluated on
6 popular text datasets, and the results show that the accuracy is only lower than the original GRU by at most
4.2%. Despite the complicated calculations in GRU, the proposed model is light-weighted and the fastest
inference among our implementation costs only 10 minutes. We show the potential of applying HE schemes
on complex models without bootstrapping to achieve fast encrypted computations.

INDEX TERMS CKKS, gated recurrent unit, homomorphic encryption, privacy-preserving technique.

I. INTRODUCTION
During past decades, deep learning has been applied across a
wide range of scenarios. While the deep learning models are
becoming powerful and precious, their complex architecture
and heavy computation cost make it hard to run on personal
computers. The development of cloud computing, where
users upload data and cloud server performs the deep learning
computations, enables more people to enjoy the benefits
of deep learning. However, in some scenarios, such as
genetic analysis, smart city and financial forecasting, user
data is sensitive and cannot be exposed to external servers.
Besides, the parameters of a well-trained deep learning
model may also be protected by the model provider. Several
privacy-preserving cloud computing schemes have been
proposed to address concerns regarding data privacy, such
as Virtual Machine (VM), Multi-Party Computation (MPC)
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and Homomorphic Encryption (HE) [1]. In VM, a part of
the server is isolated and allocated to one user. The user can
only access the data on the allocated part, but it does not
block the attacks from untrusted servers or through internet
communication. MPC is to complete one computation
by several independent parties. As long as the private
communication among these parties is not allowed, the data
is never exposed to other parties. However, this method
relies on stable communications among participants, making
computing speed highly dependent on internet speed. In HE
schemes, additions and multiplications on ciphertexts are
supported, which enables encrypted calculations. Compared
to the twomethods above, HE is a promising solution because
of its high security and relaxed communication requirements.

A. HOMOMORPHIC ENCRYPTION
HE is a cryptographic solution that protects the data privacy
by encrypting all data, including that from cloud service
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users and deep learning model providers, into ciphertexts.
All the calculations as well as the results are encrypted
and the security is guaranteed by the HE scheme. Besides,
during 1 deep learning computation, only 2 communications
between user and server are required: one for uploading the
encrypted data and another for downloading the encrypted
results. However, the largest drawback of HE is its slow
speed. Typically, computations on ciphertexts are slower than
those on plaintexts by 3-4 orders of magnitude. Therefore,
developing efficient HE algorithms and HE-based calculating
schemes has attracted much research attention.

Since the first lattice-based HE algorithms proposed in [2],
faster andmore efficient HE algorithms, including BGV, BFV
and CKKS, are developed and utilized in privacy-preserving
deep learning applications [3], [4], [5]. Among these
algorithms, CKKS (Cheon-Kim-Kim-Song) algorithm shows
the advantage for deep learning applications because the
encryption is designed for floating-point numbers, which
can be directly applied on calculations. In this paper, the
privacy-preserving deep learningmodel is designed onCKKS
algorithm.

B. HE-BASED DEEP LEARNING
The first attempt of HE-based neural network (NN) is
proposed in [6]. In recent years, HE is applied on more
complex and deeper NN structures, such as Convolutional
Neural Networks (CNNs) [7], [8], [9], [10], [11], [12].
However, we notice that most implementations focus on
Feedforward Neural Networks (FNNs), while the HE-related
research on another widely used architecture, Recurrent
Neural Networks (RNNs), is still insufficient. As a result,
the evaluations of HE-based NNs are almost on image
recognition tasks, and only limited literature reports the HE
applications on time series processing.

Compared to FNNs, there are several difficulties when
applying HE schemes on RNNs. First, as the number of
supported multiplications is decided by HE parameters,
dealing with the changeable input sequence lengths poses
an challenge in the design of HE-based RNNs. In FNNs,
the number of multiplications remains constant for a given
model, making it simple to determine HE parameters.
However, the number of multiplications needed for an
RNN inference depends on the lengths of input time series.
To support the inference on potential long input sequences,
large HE parameters must be set, which leads to slow
computing speed. While bootstrapping, an HE operation to
refresh the ciphertext, can be used to increase the number
of supported multiplications, its slow speed always makes
HE-based applications impractical [8], [14]. Second, RNNs
are less robust to computing errors compared to FNNs.
Since only additions and multiplications are supported in
HE schemes, non-linear functions in RNNs are substituted
with polynomials in HE-based NNs, which introduces
error into calculations. Besides, the precision of HE-based
calculations may degrade depending on the selected HE
parameters. These calculating errors may accumulate

through RNN inference, resulting in a low accuracy
performance.

There are some research focusing onHE-based RNNs [15],
[16]. However, the implementation is on simple RNN
structure, which is reported as inadequate for completing
complex tasks. Gated Recurrent Unit (GRU) is a popular
variant of RNNs showing improved performance, particularly
when handling long input sequences [13]. Nevertheless, its
complex architecture increases the difficulty on building with
HE. We find that the previous designs of HE-based GRU
models mainly focus on the implementing techniques at HE
scheme side, while the discussion on GRU architecture is
limited [14], [17]. In this paper, we present several techniques
for designing the GRU architecture to be friendly with HE,
including pre-processing techniques, GRU core design and
HE parameter selection strategies to achieve efficient and
accurate privacy-preserving GRU inference.

C. OUR CONTRIBUTIONS
This study proposes a guideline for building bootstrapping-
free HE-based GRUs. We point out that bootstrapping is
one of the main bottlenecks in improving the speed of
the HE-based GRU inferences. We avoid bootstrapping
by employing pre-processing techniques and adjusting the
GRU architecture. The number of required multiplications
during a GRU inference is significantly reduced, while
the long input sequences are still supported. The proposed
model is evaluated on text classification tasks, which is one
of the main GRU applications. The selected text datasets
encompass a wide range of lengths, from short sentences
to long paragraphs. The key contributions of this study are
summarized below:

1) We provide a guideline of building HE-friendly GRU
architectures for text classification tasks. We show
the effectiveness of the proposed methods on the text
datasets in different scales and classifying difficulties.

2) The pre-processing of texts is discussed in this
study. Different from setting a common parameter,
we optimize pre-processing procedure for each dataset.
The necessary information for inference is remained
and the accuracy is preserved.

3) We discuss the HE parameter selection and ana-
lyze the noise introduced by HE-based calculations.
An optimized scaling factor is selected to support more
multiplications while maintaining precision equalling
to that on plaintexts.

4) We demonstrate a lightweight HE-based GRU imple-
mentation to achieve fast encrypted inference. Despite
the complex calculations in GRU, the running time is
reduced compared to other HE-based RNN designs.

II. RELATED WORK
Techniques for applying HE on NNs are frequently reported
in recent years. These techniques include implementations
of deep NNs [8], [19], accelerated bootstrapping [7], [20],
[21], and hardware accelerations [22], [23], [24], [25],
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TABLE 1. Overview of HE-based RNN implementations.

[26], [27]. In [8], a very deep model is implemented
using HE, demonstrating the feasibility of HE on large-
scale NNs. However, bootstrapping is frequently performed
to support the large number of required multiplications,
which consumes 31.5% of the computing time. As a
result, the latency is very high that only one inference
costs about 3 hours, which is not practical for real-world
applications.

Compared to HE-based FNNs, there are fewer designs
on RNNs. In [17], an HE-based GRU is developed for
text classification and regression tasks. However, in addition
to HE schemes, garbled circuits (GCs) are utilized to
achieve encrypted activation functions, which requires a large
amount of communications between client and server before
calculations. Despite this, bootstrapping is still required to
support long recurrent steps. Authors in [15] implement
an RNN model using only HE schemes and reduce the
recurrent steps by a similar splitting method described in this
paper. However, the implementation is based on the simple
RNN structure and suffers from low accuracy on complex
tasks. In [14], the authors design an HE-based GRU with
high-precision approximation of the original model. High-
order polynomials are used to replace non-linear activation
functions in the original GRU. However, bootstrapping is
frequently performed to support the multiplications in evalu-
ating polynomials, which results in slow speed. We compare
the previous work in Tab. 1 to provide an overview of
HE-based RNN implementations.

In our previous work, a bootstrapping-free HE-based
GRU structure is proposed [18]. By modifying the original
GRU architecture, we significantly reduce the number of
required multiplications. Two key techniques are intro-
duced: rearrangement of input sequences and applying layer
normalization before activation. The proposed model is
evaluated on MNIST and AG_NEWS datasets, on which
image recognition and text classification tasks are performed,
respectively. Additionally, a ciphertext packing technique is
employed to enable encrypted inference performing in a
Single-Instruction-Multiple-Data (SIMD) way. As a result,
the speed and throughput are greatly improved compared
to [14]. However, MNIST and AG_NEWS datasets consist
of sequences with short lengths, and the evaluation on more
complex texts is lacking. In this paper, we propose new
techniques in HE-based GRU design and present evaluations
on large-scale text sequences.We also analyze the calculating
errors through encrypted GRU inferences and discuss HE
parameter selection.

III. PRELIMINARIES
A. CKKS SCHEME
CKKS, as well as other popular HE schemes such as
BGV and BFV, relies on a NP-hard problem known as
ring learning with error (RLWE). The basic concept is
to introduce slight noise in encryption to make it hard
to decrypt without the secret key. However, the noise
in each ciphertext accumulates through HE operations,
particularly multiplications. A decryption failure happens
when the noise reaches a threshold value. The maximum
multiplicative depth, indicating the number of maximum
supported multiplications, is determined by the selected HE
parameter set.

CKKS is designed for the encryption of floating-point
numbers [5]. Compared to other HE schemes designed on
integers, CKKS shows several advantages for NN appli-
cations. Firstly, the procedure of converting floating-point
numbers to integers before encryption is avoided in CKKS-
based implementations. In other HE schemes, this conversion
is typically achieved by multiplying the data with a
constant scaling factor. However, through calculations, the
scaling factor accumulates and must be carefully controlled
to prevent overflow. This step introduces extra design
in HE-based NNs and increases computational difficulty.
Secondly, CKKS supports approximate encryption. Through
calculations in CKKS, the increasing noise in a ciphertext
gradually degrades the computing precision. In contrast, the
increasing noise results in a total decryption failure whe
exceeding a threshold noise level in other HE schemes.
To prevent this, large HE parameters must be set to increase
the noise tolerance range. In CKKS, smaller HE parameters
can be used compared to other HE schemes, which enhances
the computing speed.

The encryption/decryption andHE operations in CKKS are
summarized as below. For a positive integer M , let 8M (X )
be the M -th cyclotomic polynomial of degree N = 8(M ).
Let R = Z[X ]/(8M (X )) be the ring of integers of a number
field Q[X ]/(8M (X )). Rq = R/qR is the residue ring of R
modulo an integer q.

• Encode(z; 1): Encode the vector z ∈ CN/2 to a
polynomial m(X ) ∈ R for encryption. 1 is the scaling
factor to preserve the accuracy in HE operations.

• KeyGen(1λ): Generate the secret key sk for decryption,
the public key pk for encryption and ensure the security
level as λ.

• Enc(m; pk): Encrypt the plaintext message m into a
ciphertext c ∈ Rk

qL , where k is a fixed integer and qL is
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FIGURE 1. Architecture of a GRU cell.

the modulus of ciphertext decided by the multiplicative
depth L.

• Dec(c; sk): Decrypt the ciphertext c into plaintext
message m ∈ R using secret key sk .

• Decode(m): Decode the plaintext message m ∈ R into a
vector z ∈ CN/2.

• Add(c1, c2): Let c1 and c2 be the encryptions of the
plaintexts messages m1 and m2 with the same scaling
factor. Output the encryption of m1 + m2.

• Mult(c1, c2): Let c1 and c2 be the encryption of the
plaintexts messages m1 and m2 with rescaling factors
11 and 12. Output the encryption of m1m2 with
rescaling factor of 1112.

• LeftRotate(c, k): Let the corresponding plaintext mes-
sage be m(X ) = a0 + a1X + · · · + aN−1XN−1. Rotate
the coefficients to the left side and output the encryption
ofm′(X ) = ak+ak+1X+· · ·+ak−1XN−1. k is an integer
and k > 0.

• RightRotate(c, k): Similar to LeftRotate but rotate the
coefficients to the right side.

• Rescaling(c, δ): Rescale the modulus q and scaling
factor 1 of ciphertext c to q/δ and 1/δ, respectively.

B. GRU NETWORK
GRU is a variant of RNNs, with enhanced ability to process
long-term dependencies in input sequences compared to
the original RNNs. Compared to another popular variant,
LSTM, GRU has a simplified structure while maintaining
a comparable performance as LSTM, which is important
in HE schemes for reducing computational complexity and
increasing speed. The structure of one GRU cell is illustrated
in Fig 1, with the calculations expressed as follows:

rt = σ (Wrhht−1 +Wrxxt + br ),

zt = σ (Wzhht−1 +Wzxxt + bz),

h̃t = tanh(Wh̃h(rt · ht−1) +Wh̃xxt + bz),

ht = (1 − zt ) · ht−1 + zt · h̃t , (1)

where σ is the Sigmoid function. The output of a GRU
network is derived by a linear layer

yL = WyhhL + by, (2)

where L is the length of the input sequence.
To perform text classification tasks, first the input texts

are converted into numbers for GRU computation. This

TABLE 2. Datasets used for GRU evaluation.

conversion includes 2 steps: translation and embedding.
Translation is tomap eachword, phrase and punctuationmark
to a unique number based on a pre-established vocabulary,
which derives an 1-d sequence. Then embedding is performed
to project each element in the 1-d sequence to a vector with a
fixed length known as the embedding size. This projection is
achieved by a matrix multiplication, where the matrix is also
trained during GRU training.

IV. HE-BASED GRU DESIGN
The total available multiplications for one ciphertext are
determined by HE parameters. Without bootstrapping, larger
HE parameters allow for more multiplications but also result
in significantly higher computational costs. To make the
HE-based GRU practical in both accuracy performance and
speed, we have 2 strategies: 1) to reduce the required
multiplications in a GRU inference and 2) to optimize
HE parameters to increase the supported multiplications.
For the first strategy, let Nmul denote the number of total
multiplications in one inference, then

Nmul = Nre × L + Nlin, (3)

where Nre and Nlin represent the number of multiplications
required in one recurrent step and one linear layer (output
layer), respectively. L denotes the number of recurrent steps,
which is depended by the length of input sequences. From
Equ. 3 we can know that the required multiplications in
one inference is mainly decided by Nre and L. In Sec. IV-A
and Sec. IV-B, we discuss the method to decrease L and in
Sec. IV-C we show how to decrease Nre. The second strategy
of optimizing HE parameters is addressed in Sec. IV-D.

We evaluate the text classification tasks on 6 text datasets
containing English sentences (Tab. 2). The complexity of
classification task varies in datasets due to the differences
in sentence length and number of classes. For the GRU
parameters, we set embedding size and hidden size to
64 in the following experiments, which is a typical setting
in practical GRU applications. The experiments for GRU
architecture design are performed on plaintexts, and in
Sec. IV-D we demonstrate that the accuracy on ciphertexts
is kept the same as that on plaintexts.

A. PREPROCESSING OF TEXTS
1) REMOVE OF FUNCTION WORDS AND PUNCTUATION
MARKS
In an English sentence, words can be categorized into content
words, which include nouns, verbs, adjectives, and adverbs,

VOLUME 12, 2024 94011



Z. Wang, M. Ikeda: Toward Bootstrapping-Free HE-Based GRU Network for Text Classification

FIGURE 2. Average text length and GRU accuracy before and after
removing punctuation marks / punctuation marks and function words.
After removing the input text length is highly decreased while accuracy is
preserved.

as well as function words, such as prepositions, pronouns,
and conjunctions. From human’s perspective, we believe that
content words play a more important role than most function
words in classifying a paragraph based on its meaning.
If using only content words is sufficient in GRU inference,
the input sequence length can be greatly reduced. However,
in the tasks involving people’s reviews or emotions, such as
classifying texts in AmazonReview, YelpReview and IMDB
datasets, function words with negative meanings such as ‘no,’
’not,’ and ‘nothing’ may totally alter the sentence’s meaning.
In our design, we remain the function words with negative
meaning but remove the others. Furthermore, in original
GRUs, punctuation marks are usually embedded as other
words and used for inferences. Similarly to function words,
punctuation marks lack inherent meaning but help readers
to segment and comprehend the text. Therefore, we also test
removing punctuation marks to decrease the input text length.

The average lengths of the texts in each dataset before and
after removing punctuation marks, or both function words

and punctuation marks are shown in Fig. 2. After removing
both function words and punctuation marks, the length is
significantly reduced by 40%-66%, especially for the dataset
with long texts. This preprocessing step highly reduces the
difficulty of processing long sequences.

We evaluate each dataset in 3 conditions: without removal,
only removing punctuation marks, and removing both punc-
tuation marks and function words. The results are shown in
Fig. 2b. It can be observed that there is no obvious difference
in accuracy before and after removing punctuation marks or
both punctuation marks and function words. Even though
after removal, the sentence structures are not preserved and
become difficult for humans to understand, content words
and function words with negative meanings still contain
essential messages for GRU to provide accurate classification
results. The sacrifice in accuracy after removal is only 2.9%,
which is acceptable considering the decrease in input text
length. Through this method, the required recurrent steps are
significantly reduced while the accuracy is almost preserved.

2) EARLY TRUNCATION
In addition to removing punctuation marks and function
words, early truncation is another method to reduce the
input text length. We believe that for some long texts,
the information contained in the first several words may
be sufficient for GRU classification. Different from simply
truncating at fixed lengths, in our experiments the texts are
truncated at specific lengths determined by the statistical
features of each dataset to find the optimized value. The
statically features are derived after removing punctuation
marks and function words (Sec. IV-A1), and the truncation
is also applied on the shortened sentences.

Fig. 3 illustrates the truncating lengths used in our exper-
iments for each dataset. These lengths are determined by
q/100-quantiles, where q is set to (99, 95, 90, 80, 75, 50, 25).
The GRU is evaluated on each dataset with each truncating
length, and the results are shown in the solid lines in Fig. 3b
and Fig. 3c (solid lines in the 2 figures are identical). It can be
observed that with the truncating length decreasing, there is
only slight accuracy degradation until the input text becomes
too short. Specifically, truncating at the 75/100-quantile only
degrades the accuracy within 2% for each dataset. Especially
for AG_NEWS, DBpedia and YahooAnswers datasets, even
truncating at the 25/100-quantiles is sufficient to keep the
accuracy degradation around 1%. From Fig. 3, we know that
truncating at 75/100-quantiles or shorter lengths obviously
decreases the text length. Particularly for the datasets
containing long texts, such as IMDB, YelpReview, and
YahooAnswers, truncating at the 75/100-quantiles reduces
the length by around 70%, thereby significantly reducing the
input sequence length to GRU.

The specific truncating lengths for each dataset are not
determined here but discussed in Sec. IV-B. Optimized
truncating lengths for each dataset are selected based on the
experiments of rearranging input sequences.
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FIGURE 3. Truncating length at q/100-quantiles
(q = 99, 95, 90, 80, 75, 50, 25). GRU is evaluated at these truncating
lengths on each dataset.

B. REARRANGEMENT OF INPUT SEQUENCE
The rearrangement of input sequence makes GRU flexible
for handling long input sequences. By rearranging the input
sequences, inference can be completed within fixed and
limited recurrent steps. This method is used in [15] on RNN,

FIGURE 4. GRU inference with rearranged input sequences.

TABLE 3. Truncating length, corresponding dividing part and packing slot
for each dataset.

while in [18], a different rearranging scheme is proposed and
evaluated on GRU. Here, we employ the same procedure
in [18], as illustrated in Fig. 4. Suppose the original length
of an input sequence is l, and the dividing part is n, then
the length of the new input sequence after rearrangement is
⌈l/n⌉, which significantly reduces the number of recurrent
steps required for inference.

We fix the maximum number of recurrent steps L and
determine the dividing part n based on the maximum length
lmax of input sequences in a dataset. This is because in the HE-
based GRU, the number of recurrent steps is predetermined
by the HE parameters. To test the rearrangement method with
different numbers of recurrent steps, we prepare 2 parameter
sets with L = 5 and 11, respectively. The reason of
selecting these 2 values is discussed in IV-D. The evaluation
is performed at each truncating length shown in Fig. 3 on
each dataset, and the results are shown by the dashed lines
in Fig. 3b and Fig. 3c.

From Fig. 3b and Fig. 3c, it can be observed that
after rearranging the input sequences, the performance is
similar to that without rearranging. Although there is some
accuracy degradation, it is acceptable if the truncating
length is carefully selected. Comparing these 2 figures, it is
also found that the GRU supporting more recurrent steps
shows slightly better accuracy performance on most datasets.
It indicates that while rearrangement makes it possible to
process long input sequences in limited recurrent steps, it is
still expected for GRU designs to support more recurrent
steps. Additionally, we find that for very long sequences, such
as those in the IMDB dataset, the accuracy when truncating
at a large length is lower than that at a shorter length. This
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suggests the possibility that too many dividing parts may
destruct the inside logic of input sequences and degrade
accuracy.

From the results in Fig. 3, we select the truncating length
according to the following rule. We set the tolerance range
of accuracy degradation as 3% compared to the results in
Fig. 2b and find the minimum truncating length within this
range. If no truncating length exists in this range we select
the one with the least accuracy degradation. For each dataset,
the truncating length and corresponding dividing part number
are summarized in Tab. 3 for L = 5 and 11. These 2 parameter
sets are referred as Set-A and Set-B, respectively in the
following contents.

C. POLYNOMIAL APPROXIMATION OF ACTIVATION
FUNCTIONS
As only addition and multiplication are supported in HE
calculations, all non-linear functions must be replaced by
polynomials. Approximating with high-order polynomials
improves precision but introduces extra multiplications,
which contradicts our design strategy of decreasing Nre
in Equ. 3. Low-order polynomials can only approximate
the non-linear function within a narrow range. When the
input falls out of the expected range, significant error is
introduced by the polynomial, resulting in a substantial
degradation in inference accuracy. Performing normalization
before polynomial activation shows the effectiveness in
preventing divergence, as demonstrated in [8], [15], and [18].
With performing layer normalization before each activation
to narrow the input range to activation functions, even the
2-order polynomial is shown to be sufficient to preserve the
accuracy comparable to non-linear functions in [18]. Addi-
tionally, the coefficients in each polynomial are trainable,
allowing them to be optimized through GRU training to
improve accuracy. We evaluate the GRUs with polynomial
and original non-linear activation functions, respectively. The
other parameters are set as Set-A and Set-B in Tab. 3.

The evaluation results are shown in Fig. 5. Here, despite
the more recurrent steps and more complex tasks compared
to [18], the 2-order polynomial is still sufficient to preserve
accuracy. For both Set-A and Set-B, replacing the non-linear
functions with polynomials does not exhibit obvious accuracy
degradation. The largest difference is only 2% on IMDB
dataset, and on most datasets the differences are below 0.5%,
which is almost negligible.

D. HE PARAMETER SELECTION
The selection of HE parameters involves determining the
polynomial degree N , the modulus q, the scaling factor 1

and the security level λ. Here we set λ to 128, while N
and q are chosen to meet the 128-bit security level. There
are 3 objectives in parameter selection: 1) to support more
multiplications, 2) to reduce calculation time and 3) to
preserve accuracy the same as that on plaintexts. For objective
1), the number of multiplications is constrained by q and
1. This is because after multiplying two ciphertexts with

FIGURE 5. The evaluation results of GRU accuracy with original and
polynomial activation function.

scaling factor 1, the new ciphertext’s scaling factor becomes
12. A rescaling operation is then performed to reduce the
scaling factor back to 1, simultaneously decreasing the
modulus q by 1. Eventually, the ciphertext is not available
for multiplication when the modulus is too small to support
another rescaling operation. Setting a large q can increase the
number of multiplications, but a large N must be selected to
meet the λ requirement, leading to slow computation speed.
On the other hand, setting a small 1 also increases the
number of multiplications but degrades the precision of HE
operations. To achieve objective 3), 1 must be selected in a
way such that the noise from HE calculations remains small
enough compared to the data for computation.

To summarize, the HE parameter selection flow is as
follows:

• Select λ to determine the security level (here λ = 128).
• Select 1 to ensure that HE-based GRU inference gives
the same results as those on plaintext.

• Select the maximum q and minimum N under the
limitation of security level and computational feasibility.

1) NOISE ANALYSIS
The HE calculations are not totally precious but introduce
some error in each operation, which is called noise. Here,
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FIGURE 6. Noise from encrypted computations after each recurrent step.

TABLE 4. HE parameters for Set-A and Set-B.

we examine the noise through HE-based GRU inference
to decide 1. We set log1 to 15, 20 and 25 and evaluate
the GRU with Set-A. After each recurrent step, we decrypt
the ciphertext and compare it with the result from plaintext
calculations. The noise of decrypted ciphertexts compared to
plaintexts is shown in Fig. 6. The result of log1 = 15 is
not included because the noise is as significant as data itself,
resulting that the calculations are completely incorrect.

Fig. 6 shows that the noise is not accumulating through
recurrent steps. While a quantitative analysis is beyond the
scope of this paper, a qualitative explanation can be provided.
At each recurrent step, input data and GRU parameters are
encrypted into fresh ciphertexts. The noise from the last
recurrent steps is only contained in the encrypted hidden
state. Since the calculations on the hidden state involve fresh
ciphertexts, the noise does not accumulate rapidly. As the
noise when log1 = 20 is always lower than the data by
1 magnitude of degree, it can be ensured that the results from
HE calculations are equivalent to those on plaintexts. We also
verified the noise when L = 11 (Set-B) and the results show
that log1 = 20 is still sufficient for maintaining precision.

2) PARAMETER SELECTION FLOW
We use the HE-based matrix multiplication algorithm pro-
posed in [18], which requires 2 ciphertext multiplications.
By reorganizing the calculations in Equation 1, each recurrent
step requires 7 multiplications on 1 ciphertext. We consider
setting polynomial degree N to 215 and 216, which are both
typical in HE-based NNs. To meet the λ = 128 requirement,
the modulus q cannot exceed 2800 and 21600, respectively.
With setting log1 = 20, at most 39/79 multiplications
are available, supporting 5/11 recurrent steps. The selected
parameters are summarized in Tab. 4.

TABLE 5. Accuracy performance of encrypted GRU and original GRU on
each dataset.

V. EVALUATION AND RESULTS
We employ the same encrypting scheme described in [18],
where the packing technique is used to perform inference
in a SIMD way. Similarly, the translation and embedding of
texts are completed by users and encryption is performed on
the embedded sequences. The number of packing slots are
exponents of 2 and depended by the input and hidden size of
GRU, which varies across different datasets (Tab. 2).

We evaluate the HE-based GRU on each dataset with Set-A
and Set-B shown in Tab. 3. The experiments are performed
on an Apple M2 Max CPU with 32 GB memory. Both data
and GRU parameters are encrypted by CKKS scheme. The
accuracy of the encrypted GRU, as well as the original GRU,
is shown in Tab. 5. After employing the proposed methods
for building HE-friendly GRU and performing encrypted
calculations, the accuracy degradation is at most 4.2%
compared to the original GRU. Notably, for AG_NEWS,
DBpedia and YahooAnswers datasets, the degradation is
even around 1%. These results proves the effectiveness of
our proposed techniques in achieving bootstrapping-free HE-
based GRUs while preserving accuracy. The last 2 rows in
Tab. 5 shows the results from [15], where an HE-based RNN
is implemented. While we train the GRU on each dataset
independently, in [15], the results for the IMDB dataset are
tested using the GRU trained on the AmazonReview dataset.
Our approach demonstrates an 10% accuracy improvement
in average, primarily attributable to the more powerful GRU
architecture compared to RNN. Given that the architecture of
GRU is much more complex than RNN, our results show the
availability of building complex models without relying on
bootstrapping.

The runtime performance for Set-A and Set-B on each
dataset is shown in Tab. 6. The time is not same for all
datasets because the complexities of matrix multiplications
are different for different packing slot sizes. On Set-A, the
runtime is 10-13 minutes for one encrypted GRU inference,
while on set-B it is 88-136 minutes. Although on set-B one
ciphertext can holdmore samples, the throughput is still lower
than that on Set-A due to the rapidly increased computing
cost. We also compare the runtime results with those reported
in [15], where similar parameter sets to Set-A and Set-B are
used. Despite the higher complexity of calculations in GRU
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TABLE 6. Runtime performance of encrypted GRU on each dataset (unit: sec).

compared to RNN in [15], our implementations show a speed
improvement of 2.5 to 3.6 times on Set-A and 1.3 to 2.0 times
on Set-B. In addition, our memory utilization is significantly
lower. In [15], over 100 GB and 200 GB ofmemory is utilized
for performing one inference on Set-A and Set-B, whereas
in our experiments, the memory utilization is only 6 GB
and 24 GB, respectively.

The runtime can be further improved by parallel com-
puting techniques. While it is challenging to parallelize
computations across recurrent steps in a GRU inference
due to data dependencies, parallelization within each step
is available. For example, computations for rt and zt in
Equ. 1 can be performed independently and simultaneously
at each step. Furthermore, each matrix multiplication com-
prises several independent ciphertext multiplications and
rotations [18]. Given that more than 95% of the runtime
in our implementation is attributed to matrix multiplication,
parallelizing these computations is expected to significantly
enhance computing speed. This parallelization strategy can
be particularly effective in optimizing the performance of
HE-based GRU inference.

VI. SUMMARY
In this paper, we present a guideline to build bootstrapping-
free HE-based GRU for text classification tasks. As the
number of multiplications supported in HE-schemes is highly
restricted, we introduce several techniques aiming to reduce
the required multiplications. First, the text pre-processing
techniques are demonstrated. We prove that by removing
punctuation marks and function words in texts, the remaining
words still possess essential information and the accuracy
is almost preserved. Compared to the original texts, the
lengths are decreased by 40%-66%, which highly decreases
the required recurrent steps. The early truncation is also
discussed, which shortens the long sequences to fixed length.
The optimized truncating lengths are selected for each dataset
to achieve the best accuracy. Second, the rearrangement of
input sequences is introduced to enable GRU to process
long sequences within fixed recurrent steps. We also show
the effectiveness of using 2-order polynomials as activation
functions, nearly achieving the minimum polynomial degree.
Each recurrent step in GRU only requires 7multiplications on
one ciphertext. At last, we outline an HE parameter selection
flow, which ensures the precision of encrypted computations
while enabling more multiplications. We analyze the noise

level in ciphertext with different rescaling factors, and
decide an optimized one to ensure the encryption does
not degrade the computing precision. The proposed HE
parameter selection flow is not only available on GRU but
any other HE-based applications.

Our evaluation results indicate that the accuracy of our
proposed HE-based GRU models is slightly lower than that
of the original GRU, with a maximum difference of 4.2%.
The runtime for one encrypted inference is only 10-13
minutes on a lightweight parameter set, despite the complex
computations in GRU. Our work provides a guideline
for building HE-friendly GRU architecture and shows the
availability of applying HE to achieve fast and accurate
inferences on complex models.
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