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ABSTRACT We propose a novel deep learning architecture, called XcelNetl7, for image classification in
remote sensing. Comprising fourteen convolutional and three fully connected layers, XcelNetl7 outperforms
several benchmark architectures available in the literature in terms of classification accuracy. Additionally,
we present BA-ABC, a new hybrid feature selection algorithm that inherits the strengths of the Bat Algorithm
(BA) and the Artificial Bee Colony (ABC) algorithm. Together these contributions significantly enhance
the performance and accuracy of remote sensing image classification tasks. The proposed framework is
thoroughly trained and verified using five benchmark datasets typically used for remote sensing image
classification, namely AID, RSSCN7, SIRI-WHU, UC Merced, and WHU RS-19. Our simulation results
suggest that in terms of classification accuracy, XcelNet17 outperforms most of the well established networks
including AlexNet, VGG16, VGG19, ResNet50, and DarkNet19 by obtaining accuracy values in the range
of 94.6% and 99.9%. Furthermore, the proposed features selection method, when integrated with XcelNet17,
yields much improved classification accuracy in comparison to various benchmarks including WOA, GWO,
BA, ABC, and ACO algorithms. For example, an 8% superior performance on WHU-RS 19 dataset has been
observed. The attained results are further validated by an in-depth statistical analysis.

INDEX TERMS Artificial bee colony, bat algorithm, bio-inspired feature selection, CNN architecture, image
classification, remote sensing.

I. INTRODUCTION

Remote Sensing (RS) is the acquisition of data about a phe-
nomenon or object without direct physical contact. It relies
on sensors to detect and capture electromagnetic radiation
emitted or reflected by the target. RS is mainly classified into
two categories: active and passive. While the former requires
the source, such as a radar or a lidar, to emit its own energy to
illuminate the target, the passive relies on sunlight to acquire
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the target’s characteristics, such as color and temperature.
Remote sensing finds extensive applications across a diverse
array of disciplines such as agriculture, forestry, meteorology,
geology, and environmental monitoring, serving as a pivotal
tool in the acquisition and analysis of data pertinent to these
fields [1].

Image classification, which is a common task in computer
vision for assigning a label or class to an image based on
its visual content, becomes non-trivial in RS. One of the
many reasons behind this predicament is the complexity
and diversity of aerial/satellite images, which are affected
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by parameters like resolution, illumination, noise, occlusion,
and seasonal changes [2]. The traditional approaches for
RS image classification rely either on handcrafted features,
such as color, texture, shape, and edge, or on machine
learning algorithms, like decision trees, neural networks,
and support vector machines. The latter have shown good
performance on small-scale and low-resolution datasets,
but they have limitations in capturing high-level semantic
information and dealing with high-resolution and large-
scale datasets that have become more available in recent
years [3]. Feature selection (FS) methods are a critical step in
image classification and have shown effectiveness in various
scenarios. This is particularly true for RS images, which
often contain a mix of spatial, spectral, tactile, and contextual
information; these features are not always relevant, and
can be redundant and noisy. Therefore, FS methods usually
aim to reduce feature dimensionality, boost classification
efficacy, and enhance interpretability of the results [4]. There
are different types of FS methods such as wrapper, filter,
embedded, and hybrid [5], which use different criteria and
strategies to evaluate and select the optimal subset of features.
While, some of the common criteria are correlation, mutual
information, entropy, Fisher score, and sparsity; the more
recent strategies employed in FS are genetic algorithm [6],
backward elimination, and forward selection [7]. FS tech-
niques can also be classified into supervised, unsupervised,
and semi-supervised methods [8], depending on whether they
use the class labels or not.

The nature-inspired FS methods have recently received
a lot of attention and praise in this context. Their inherent
ability to mimic the behavior of various organisms to search
for optimal solutions, has made them the de-facto choice for
FS in RS image classification in recent years. Some common
nature-inspired algorithms, such as ant colony optimization
(ACO) [9], artificial bee colony (ABC) [10], bat algorithm
(BA) [11], firefly algorithm (FA) [12], grey wolf optimization
(GWO) [13], particle swarm optimization (PSO) [14], and
whale optimization algorithm (WOA) [15], simulate the
behavior of ants, bees, bats, fireflies, grey wolves, birds
and whales respectively. The most recent of the lot to
gain fame in this context are the BA and ABC algorithms.
The former aims to find the loudest solution (feature
subset) by adjusting the frequency and velocity of each bat
(individual) according to the current best solution and a
randomization factor. ABC, on the other hand, aims to find
the optimal solution by applying three processes: employee
bees, onlookers, and scouts. The employee bees exploit the
current solutions (feature subsets) by generating new ones
from which the onlookers select the best solutions based on a
probabilistic rule and generate new ones (feature subsets) in
their neighborhood. The scouts abandon the worst solutions
and randomly generate new ones in the search space. Certain
distinct capabilities of each of these two algorithms give them
an edge over one another, and it rather becomes needless
to advocate for one. For example, the BAT algorithm, due
to its echolocation-inspired mechanism, is renowned for its
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effective exploration of the search space, the ABC algorithm,
on the other hand, enjoys better exploitation of promising
regions in the search space. We believe that hybridizing the
two algorithms will not only promise us improved exploration
but will allow us to strike a balance between exploration and
exploitation - resulting in a more robust FS method, which is
the primary contribution of this work.

In recent years, significant advancements have been
made in RS image classification through the utilization
of Deep Convolutional Neural Network (DCNN) models,
facilitated by advancements in deep learning. Convolution
operations are adept at capturing local image information
effectively. Studies such as [16] have demonstrated that
convolutional layers of varying depths can extract distinct
features. To incorporate global features, neural networks
leveraging convolution operations require the stacking of
multiple layers. AlexNet [17], for instance, is the first
deep CNN model applied for image classification and
recognition. Similarly, ResNet [18] aims to deepen CNNs
for enhanced training ease. Motivated by the same, in this
work we propose a novel deep learning architecture called
XcelNetl7, which comprises fourteen convolutional and
three fully connected layers. When integrated with the
proposed BA-ABC algorithm for FS, and thoroughly trained
using five benchmark datasets including AID [19], RSSCN7
[20], SIRI-WHU Dataset [21], UC Merced [22], and WHU-
RS19 datasets [23], [24], XcelNet17 outperforms most of the
existing models such as AlexNet [17], VGG16 [25], VGG19
[25], ResNet50 [18], and DarkNetl9 [26] by obtaining
accuracy values in the range of 94.6% and 99.9%. On the
other hand, the BA-ABC algorithm, when integrated with
XcelNetl7, yields much improved classification accuracy in
comparison to various benchmarks including WOA, GWO,
BA, ABC, and ACO algorithms.

The rest of the manuscript is organized as follows: Sect. 11
and Sect. III provide an overview of related work and
enumerate major contributions respectively. Sect. IV provides
a brief overview of the datasets used, followed by the
proposed architecture XcelNetl7. It also presents details of
the proposed BA-ABC hybrid FS algorithm. Sect. V presents
the simulation results and statistical and convergence curve
analyses. Finally, Sect. VI concludes the manuscript.

Il. RELATED WORK

In the past decade, significant efforts have been devoted to
developing numerous methods for categorizing scenes using
satellite or aerial images. The process of image classification
typically involves two stages: (i) feature extraction and (ii)
classification. Various conventional as well as deep learning
approaches have been developed. A new architecture, Hydra
is introduced in [27], which creates an initial coarsely
optimized CNN while fine-tuning of obtained weights is per-
formed several times with various augmentation techniques,
class weights, and crop styles. An ensemble of CNNs is
created using ResNet & DenseNet and reduction in training
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time is the main advantage with state-of-the-art performance.
The efficacy of deep learning based discriminative CNNs
(ADSSM, CNNs-WD and Hydra) is reviewed in [28]. More
than two dozen algorithms are evaluated on three benchmark
data sets.

A novel recurrent attention structure, inspired by the
human visual system is proposed in [29]. The scene is
classified using the attention recurrent convolutional network
(ARCNet). This method empowers classifiers to focus on key
areas, accelerates convergence rate, and improves accuracy.
Experiments depict that ARCNet outperforms most of the
methods available in the literature, and this research portrays
the effectiveness of attention mechanism for RS scene
classification. A Hierarchical Wasserstein Distance (HWD)-
based CNN is introduced in [30] which models interclass
relationship as an arrangement of categories. Information
from three CNNs is merged to form category trees and
distance among two distributions is measured in data space,
which is hierarchically organized via HWD. A multiscale
CNN (MCNN) is developed for object scale variation
problem in [31]. This network trains CNN using multiple
scales (F-net and V-net). For the training stage, a fixed scale
is used for the F-net, while a random scale is used for the
V-net, which is altered in every n' iteration. For performance
enhancement, MCNN is added on with a similarity measure
layer. Fang et al. [32] have used space—frequency joint
representation for RS scene classification problems. In space-
domain, the relation between various local areas and the
interactions between various global features are encoded.
Band-pass filter network is used to extract statistical and
stable frequency-domain features. Circular convolutional
module (CCM) fuses the attained space and frequency-
domain features. In fact, CCM represents relation of the
features of diverse domains and obtains a discriminative and
robust representation.

Wang et al. [33] have proposed a Representation-enhanced
Status Replay Network (RSRNet) to address the issues of
saturated network performance and the limited effective use
of complementary data. These are caused by representation
and classifier biases accumulation and the imbalance of
fusion information among multisource images. To address
these issues, First, dual augmentation, including modal and
semantic augmentation, enhances the transferability and dis-
creteness of feature representation, reducing representation
bias. Then, a status replay strategy (SRS) is introduced
to mitigate classifier bias and maintain decision boundary
stability. Finally, a novel cross-modal interactive fusion
(CMIF) method is employed to enhance the interactivity of
modal fusion, optimizing the parameters of different branches
by integrating multisource information.

FS has been a vibrant and productive domain within
the research communities of machine learning, data min-
ing, pattern recognition, and statistics [34], [35]. The
fundamental goal of FS is to streamline data by retain-
ing only those features that contribute positively to the
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accuracy of classification. This approach has demonstrated
effectiveness both in theoretical frameworks and practical
applications [36].

Researchers employ various FS methods; some of those
favor conventional approaches such as chi-square and
information gain [46], [47], [48]. On the other hand, heuristic
methods like genetic algorithms (GA) [49], ACO [37], and
memetic FS [39] are adopted by others to address specific
challenges like noisy data, spam emails, and binary variables.
Several FS techniques can also be employed to enhance
the typical performance of algorithms, as described in [50].
Various enhanced techniques have been proposed to achieve
better results compared to the original ones. For instance, the
authors in [38] and [51] have introduced an improved version
of GWO called Random-GWO. Similarly, [52] and [53]
are improved versions of the original Salp Swarm and
Chaotic Dragonfly algorithms, respectively. Furthermore, the
literature presents enhanced methodologies like the improved
GA [54] and the improved PSO, where the authors have
exploited parallelism to ensure efficient computing.

Rodrigues et al. [55] have introduced a wrapper FS
method that combines BA and optimum path forest (OPF)
algorithms. This approach conceptualizes FS as a binary
optimization method. The authors have used six datasets
for experimentation, revealing that the suggested technique
yields more compact and statistically significant sets with
improvement in classification accuracy in some instances.
The binary version of BA (BBA) has been designed to
identify the most relevant features within a search space [40].
BBA assigns a set of binary coordinates to each bat,
indicating whether a feature is included in the final set or
otherwise. By combining the capabilities of BA and OPF,
it seeks to identify a feature set that maximizes accuracy
in validating sets. The proposed technique has demonstrated
superiority over various established methods such as PSO,
GSA, and FFA. Following in the same line, Manchala et al.
introduce a binary version of the ABC algorithm, and apply
it to the problem of intrusion detection [56]. They exploit a
hybrid fitness function that combines information gain and
correlation-based FS to measure relevance and redundancy of
the features. For the same application of intrusion detection,
the ABC algorithm has been adopted once again in [42],
and the results are compared with other methods including
genetic algorithm, PSO, and ACO. The paper uses a wrapper
strategy and support vector machine (SVM) classifier to
evaluate the features.

In another study [41], the authors have presented a
bio-inspired approach called BANB, which is a hybrid of the
BA algorithm and Naive Bayes Classifier. Experimentation
with twelve benchmark datasets from various domains reveal
BANB’s performance, in terms of the count of the selected
features, against three well-established FS techniques (PSO,
GA, and GPSO). The results indicate BANB’s superiority
over the rest, further leading to improved classification accu-
racy. Similarly, Modified-BA (MBA) algorithm incorporates
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TABLE 1. Overview of existing techniques.

Method Dataset Classes/S  Perf (%) Ref
functional map of world (FMOW) 62 78.73
Hydra (ensemble of ResNet & DenseNet) NWPU-RESISC45 45 0451 [27]
UC Merced 21 98.93
Discriminative CNNs AID 30 96.19 [28]
NWPU-RESISC45 45 91.89
UC Merced 21 99.12
AID 30 93.10
ARCNet-VGGNetl16 RS19 19 99,50 [29]
OPTIMAL-31 31 92.70
. . . AID 30 93.27
Hierarchical Wasserstein (HW) CNN NWPU-RESISC45 45 0438 [30]
UC Merced 21 74.60
Multiscale CNN (MCNN) AID 30 73.10 [31]
SIRI- WHU 12 72.60
Sydney 7 97.36
.. . UC-Merced 21 97.21
Space-Frequency joint representation SVM WHU-RS19 19 97.48 [32]
AID 30 96.18
Representation-enhanced Status Replay Network (RSRNet) Three Datasets - - [33]
Ant Colony Optimization (ACO) for Feature Selection UCI Datasets 2-26 94.80 [37]
Improved Grey Wolf Optimizer (IGWO) CEC2018 benchmark suite 50 94.20 [38]
. S . Ionosphere 27 96.21
Bare-bones Particle Swarm Optimization for Feature Selection Sonar 24 96.08 [39]
Breast Cancer 2 77.25
Australian 2 96.31
Binary Bat Algorithm (BBA) for Feature Selection German Numer 3 83.02 [40]
DNA 2 70.24
Mushroomsl| 2 99.95
M-of-N 1000 98.90
BA with a Naive Bayes classifier (BANB) 5222:32 1888 2228 [41]
UCI datasets 294-8124  87.90
Modified Bat Algorithm (MBA) xgg;“ég’ngj‘(g\‘;?];‘]; o 2 96.00 [42]
Nature-inspired Algos (GA,BFOA,GBF,KHA,WCA,SOSA)
in scheduling tasks - A Review - - - [43]
Classical methods and Nature-Inspired Algos (NIAs)
for Optimization - A Review - - - [44]
Hybrid Artificial Bee Colony (ABC) and
Genetic Algorithm (GA) UCI Datasets 2-7 86.30 [45]

a simple random sampling technique for selecting random
instances from the dataset [57]. The method prioritizes the
ranking of features based on their global significance to
identify the most prominent features within the dataset. The
chosen features are then utilized in training of the random
forest classifier. In another attempt, the authors [58] have
come up with a FS method for analyzing data based on ABC
which can be applied to various domains. The technique
utilizes a wrapper strategy and a forward selection technique
in evaluating the selected features quality.

Nayak [43] have examined the incorporation of nature-
inspired algorithms in scheduling tasks. This paper introduces
task scheduling utilizing various types of nature-inspired
algorithms such as genetic algorithms, water cycle algo-
rithms, etc. Mandal [44] provide an overview of the latest
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application of nature-inspired algorithms and traditional tech-
niques for addressing single and multi-objective optimization
issues. This paper categorizes nature-inspired algorithms
into three groups: swarm intelligence-based, evolutionary
algorithm, and other metaheuristics. Evolutionary algorithms
and swarm intelligence-based nature-inspired algorithms can
be categorized into five subcategories. This study offers a
thorough view for choosing the most suitable approach for
addressing various optimization problems based on their level
of complexity. Much closer to our proposed work is a hybrid
method for FS that combines ABC and GA to exploit the
advantages of both works [45]. The method uses a filter
strategy and a mutual information criterion to evaluate the
features. A summary of the most relevant works is presented
in Table 1.
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Ill. PROBLEM STATEMENT AND CONTRIBUTIONS

The studies summarized in section II highlight the effective-
ness of DL architectures and FS techniques in improving
the performance of learning algorithms. Specifically, they
demonstrate how classifier accuracy can be enhanced
through the elimination of insignificant features. However,
it is a well-known fact that simple yet effective archi-
tectures and high-quality features contribute to accurate,
comprehensible classification processes, yielding improved
results. Consequently, this research aims to experimentally
analyze and identify superior architectures and algorith-
mic techniques among both conventional and heuristic
approaches.

In this research, we introduce a new architecture for
image classification, XcelNetl7. This architecture, despite
its simplicity, exhibits outstanding performance. Exhaustive
simulations are carried out for performance evaluation
of XcelNetl7 with state-of-the-art models like AlexNet,
ResNet, VGG, and DarkNet on five popular RS datasets,
which confirm its superior efficacy. In addition, an opti-
mization algorithm called BA-ABC is proposed, which
aims for optimal FS in RS image classification. Through
simulation cases, we compare BA-ABC with other estab-
lished methods like WOA, GWO, ACO, BA, and ABC,
confirming its ability to mitigate premature convergence
and improve classification accuracy significantly. The main
contributions of this research work are enumerated as
follows:

1) For RS image classification, a novel and cutting-
edge deep-learning architecture XcelNetl7 is proposed,
which addresses the problems of over-fitting, high
computing cost, and the curse of dimensionality.

2) We hybridize the BA algorithm with a leadership
hierarchy approach, and incorporate the upgrading
strategy of an employed bee from the ABC algorithm.
This integration facilitates the sharing of information
among group members, enhancing exploitation while
preserving the essential features of the conventional BA
algorithm.

3) A chaotic mapping population initialization method is
utilized in the BA-ABC algorithm, which ensures a
diverse set of initial solutions.

4) We benchmark XcelNetl17 and the BA-ABC algorithm
on five RS yardstick datasets with diverse characteris-
tics, and compare them against five established CNN
models, and algorithms, respectively. The effectiveness
is validated via comprehensive simulations using the
Monte-Carlo approach. The evaluation includes rank-
ing on accuracy, F1 score, sensitivity, precision, and
specificity.

IV. MATERIALS AND METHOD

This section presents the datasets used in this research work
followed by details of the proposed architecture and the FS
algorithm.

91978

FIGURE 2. Sample images from RSSCN7 dataset.

A. DATASETS

In this study we have utilized the following datasets:
AID [19], RSSCN7 [20], SIRI-WHU Dataset [21],
UC Merced [22], and WHU-RS19 datasets [23], [24]. The
AID dataset [19] consists of a wide range of aerial images
obtained by extracting images from Google Earth. The
images are then processed using RGB rendering based
on actual aerial optical images. This dataset has aerial
scenes of 30 types: storage tanks, viaduct, stadium, sparse
residential, school, square, river, railway station, resort,
pond, port, parking, playground, mountain, park, medium
residential, industrial, meadow, forest, desert, farmland,
dense residential, commercial, center, church, beach, bridge,
baseball field, bare land, and airport. The total number of
images in this dataset is 10,000 arranged in 30 different
classes. The spatial resolution varies from =~ 8 meters to &~
0.5 meters. The RS image interpretation experts have labeled
all the images. Figure 1 shows examples of some of the
classes.

The RSSCN7 dataset, as described in [20], consists of a
diverse array of scene images captured in various seasons
and under different weather conditions. The dataset includes
seven distinct image classes with a total of 400 images in each
class. The image size is 400 x 400 pixels and are distributed
across four different scales. This results in 100 scenes per
scale. Figure 2 illustrates examples from the dataset.

The third dataset is the SIRI-WHU [21] dataset, which con-
sists of 2400 images. The dataset is categorised into 12 dis-
tinct scene classes with each class containing 200 images. The
image resolution and size are 2m and 200 times 200 pixel
respectively. Figure 3 shows examples from the dataset.

The UC Merced dataset [22] is the fourth dataset used in
this work. It contains 2100 images distributed equally across
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FIGURE 5. Sample images from WHU-RS19 dataset.

21 classes. These classes encompass urban, agricultural, and
natural landscapes. The images in the dataset are extracted
from the National Map Urban Area Imagery collection of the
USGS, showcasing a variety of urban locales across the USA.
The images have a pixel resolution of 0.3 meters and a size of
256 x 256 pixels, except for 44 images that differ in shape and
dimensions from the mentioned metrics. Figure 4 provides
examples from this dataset.

The final dataset is the WHU-RS19 [23], [24]. The dataset
is a compilation of satellite images sourced from Google
Earth, providing high-resolution visuals with a granularity of
up to 0.5 meters. The dataset encompasses 19 distinct classes
representing scenes captured using high-resolution satellite
imagery.

These classes include airport, bridge, beach, desert,
commercial area, farmland, forest, football field, industrial
zone, meadow, mountainous terrain, parking area, park, port,
pond, railway station, residential zone, viaduct, and river.
Approximately 50 samples are available for each class.
Images from the same class are sourced from diverse regions
within satellite images of varying resolutions, resulting in
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TABLE 2. Datasets description.

Dataset Imag Classes  Images/ class Size Resol
AID 10000 30 334 600x 600 8-0.5
RSSCN7 2800 7 400 400 x 400 -
SIRI-WHU 2400 12 200 200 x 200 2
UC Merced 2100 21 100 256 x 256 0.3
WHU-RS19 1005 19 50 600 x 600 0.5

potential differences in scales, orientations, and illumina-
tions. Figure 5 showcases examples from the dataset.
Pre-processing imbalanced remote sensing datasets is
essential to ensure that the subsequent machine learning
models perform well. In this research, we have utilized
random data splitting in the initial phase, normalization,
and feature selection for this purpose. Random data split
ensures that no specific weightage is given to either the
majority or minority classes, thus increasing the probability
of a balanced sample set. We have used normalization to
scale the feature values to a standard range or distribution
to ensure that all features contribute equally to the model’s
performance. Furthermore, a novel nature-inspired feature
selection algorithm, BA-ABC is used to select the most
relevant features for the classification task. These steps are
designed to mitigate the challenges posed by imbalanced
datasets, such as the model’s bias towards the majority
class, and to enhance the predictive accuracy of the machine
learning algorithms used for remote sensing data analysis.
Table 2 presents an overview of the five datasets. In the next
section, we discuss the proposed architecture - XcelNet17.

B. PROPOSED ARCHITECTURE - XCELNET17

In this study, we have developed XcelNetl7, a new architec-
ture for RS image classification. It addresses the challenge
of a multi-class classification problem involving diverse
categories. XcelNetl7 is intended to achieve high-precision
RS image classification based on extracted features and to
evaluate the influence of Deep Learning models in the field of
image classification. It has a total of 48 layers, with 14 layers
of convolution, 3 fully connected, 3 max-pooling layers,
as well as relu and cross-normalization layers. A combination
of simple and residual blocks is implemented, where the
residual block comprises five residual stacks. The network
is structured to benefit from the strengths of both simple as
well as residual themes, yielding excellent performance even
with less computational complexity.

The convolution layers employ filter sizes of 3 x 3, 5 x
5, and 11 x 11. Utilizing diverse filter sizes enables the
network to efficiently gather features compared to using a
single size, thus enhancing computational efficiency. This
design promotes a balanced receptive field, facilitating the
collection of elements with varying sizes and complexities.
Each convolution layer is configured with 96, 256, and
384 filters, in various layers. A stride value of 1 is utilized,
along with padding values of 0, 2, and 1. Additionally, ReLU
activation functions are applied. For XcelNet17 initialization,
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55x55x96

27x27x96

Conv-1: 11 x 11 Max Pool-1: 3 x3 Conv-2:5x5

6x6x256

Fully Connected Lave

Max Pool-3:3x3

FIGURE 6. Architecture of the proposed network XcelNet17.

the He method is used as it considers the size of the
previous layer in the network to maintain a variance that
allows the signal to flow well in the forward and backward
pass. This method scales the initial weights based on the
number of input and output neurons, thus avoiding the core
problems of exploding and vanishing gradients. Figure 6
depicts XcelNet17 architecture.

The XcelNetl7 is trained on the five selected datasets.
After network training, feature extraction is performed
utilizing the trained model. The features are extracted from
the fully connected layer, and are fed to the classifier.
Several classifiers are applied to the extracted features and
it has been observed that Cubic SVM, Medium Neural
Network, and Cubic KNN yield the best classification
accuracy. Utilization of multiple classifiers provides valuable
insights into the effectiveness of the extracted features and
the robustness of the XcelNet17 architecture. These findings
underscore the adaptability and generalization capabilities of
the trained model across diverse datasets and classification
tasks. Furthermore, the observed high accuracy attained
by the Cubic SVM, Medium Neural Network, and Cubic
KNN classifiers highlight their suitability for RS image
classification, affirming their effectiveness in leveraging the
extracted features for accurate classification.

C. PROPOSED ALGORITHM: BA-ABC

The proposed FS algorithm, BA-ABC, enhances search
efficiency by modifying solutions with inferior fitness
to introduce diversity into the population. The BA-ABC
algorithm is developed by combining the Bat and ABC
algorithms. The former is a meta-heuristic algorithm inspired
by nature. It was introduced by Yang [11] in 2010, and it
draws inspiration from the bats’ echolocation behavior, which
they use to sense distances. During nocturnal hunting, bats
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27x27x256 13x13 x256 13x13 x384 13x13x384

Max Pool-2:3x3 Conv-3:3 x Conv-4:3x3

Conv-5: 3 x }
>

13x13 x256

13x13x384

emit short-duration loud sound pulses and listen for the echo
rebounding from obstacles or prey. Through their specialized
auditory mechanism, bats can discern the size and position
of objects. The BA algorithm has found extensive use in
various applications, including pattern recognition [59], and
engineering optimization [60], [61].

The ABC algorithm, on the other hand, is based on swarm
intelligence inspired by the honey bee’s behavior [62]. The
algorithm generates an initial population of N solutions
(referred to as food sources), distributed randomly, with N
representing the swarm size.! Let X; be the iy, solution and n
be size of the dimension. Every employee bee X; produces a
new possible solution X* in its current neighbor as follows:

vik =@k Xjk — Xj.i) + Xjk (D
here X is a random possible solution (i # k),k depicts a
randomly chosen dimension index from the set 1,2, ..., n,
and ¢ has a range of [—1, 1] and is randomly generated.
A greedy selection method is used as the new possible
solution v; is generated. If v; is fitness-wise superior to its
parent x;, then v; replaces x;; otherwise, there is no change.

Once the search process is finished for all employee
bees, they do a waggle-dance to communicate food source
information to the onlooker bees. The nectar information
collected from all employee bees is assessed by every
onlooker bee which chooses a source of food utilizing the
amount of nectar it contains. This selection process follows
a probabilistic approach, similar to roulette wheel selection.
The process is detailed as follows:

Sfit;

(2)
Z§v=1ﬁtj

bi =

IRefer to Table 3 for the algorithmic parameters description.
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TABLE 3. Algorithmic parameters’ description.

Algorithm 1 BA-ABC Algorithm

. Seern 1. Input: N, n, fuin, fmax, Bu, - - - 81), ihmax, ViaAhri»Xij
arameter escription
N Population size and random numbers (a, b, r1, r2, B, @)
n"f'”” Max iterAation.s ] 2: Output: Xb
i Current iteration, in the range [1, N]
Xp Global best position (solution)
X Current best position (solution) 3. Initialization:
Xij Neighbor Search Agent . . . .
X, Position in iteration & 4: - Generate initial bat population X; using chaotic
V4 Velocity in iteration 4 : .
fi Pulse frequency in iteration 7 and has range from f,,in 0 frnaz mapplng. a
i Pulse rate of agent (bat) 4 X(k + 1) = mod (b =+ X(k) =+ . SIH(ZTFX(]()), 1)
Aj; Loudness of agent (bat) 7 . *
«a Constant parameter in [0, 1] range for updating loudness A Evaluate fitness and select current best X

¥ Constant parameter in [0, 1] range for updating pulse rate r
[0u,..., 0] Upper and lower bounds
a,b,r,m1,72,58,¢ Random Numbers

n Number of dimensions, 1,...,d

where fit; represents the fitness of the iy, swarm solution.
As observed, the higher the quality of the solution i, the
greater the probability of selecting the i, food source.

A food source is abandoned if it can’t be enhanced for the
maximum iteration number, and is discarded. If the discarded
source is denoted as x;, then the scout bee looks for a new
source of food to update x; using the following process:

Xij =8+ 1, —5) 3)

where r is a number that is randomly generated using a
normal distribution in the range [0, 1].

Generally, the BA algorithm excels at search space
exploitation, however, it may become captivated in local
optima, hindering its ability to conduct effective global
searches. Since the BA algorithm relies solely on random
walks, rapid convergence is not ensured. To address this
limitation, we introduce a key enhancement in our proposed
algorithm to augment the population’s diversity and mitigate
the risk of being trapped in local optima. This enhancement
involves integrating the mutation operator from ABC,
which accelerates convergence. By doing so, the BA-ABC
algorithm becomes more suitable for a broader array of
practical applications while retaining the favorable traits of
the fundamental BA algorithm. Thus, the distinction between
BA-ABC and BA algorithms lies in the utilization of the
mutation operator to refine the BA algorithm by producing
a new solution for each bat. Consequently, this methodology
enables the exploration of novel search spaces through
ABC’s mutation mechanism while leveraging population
information with the BA algorithm, thereby circumventing
the pitfalls of local optima in the BA algorithm.

In the BA-ABC algorithm, all stages involve additional
steps to initialize the population and exchange information
within the swarm. Initially, key parameters such as the
population size N, the solution space dimensions 7, and the
max number of iterations it,,,, as the termination criteria are
defined. Subsequently, other parameters like f;, v;, A;, and
r; are computed. The flowchart, given by Figure 7, consists
of three phases: population initialization, BA phase, and
ABC phase. The population initialization phase is executed
once in start while the BA and ABC phases are executed
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5
6
7: while it < ity do
8 Adjust Frequency and Update Velocities:
9

fi = (fmax - fmin) X ,3 + frnin
10: VIt = VI 4 (X — X*) x f;
11: Update Positions/Solutions:
12: Xt = xt 4 vit
13: if r; > r; then
14: - Move agents using updated f;, v;, and x;
15: end if
16: Evaluate Fitness:
17: Accept or reject X! !
18: ifry < A; & f(X;) < f(X*) then
19: -1r; and | A;
20: end if
21: Evaluate fitness:
22: Select current best X*
23: Calculate r using logistic chaotic mapping:
24: XG4+ 1) = a x X(j) x (X(j) — 1), while X(0) = X*
25: Select X;; using r
26: Mutate Search Agents:
27: Vi =X + ¢ x (Xj; — Xi)
28: Apply Greedy Selection
29: Find New Solution, Evaluate Fitness & select X*

30: end while
31: Return the Best Solution X, = X*

repeatedly, in sequence. In the population initialization phase,
chaotic mapping is employed to produce initial possible
solutions from a broader search space, aiming to enhance the
fitness of the initial population. The strategy for population
initialization is elaborated in Algorithm 1.

The initial population X is generated using the logistic
chaotic mapping within the bounds of the search space. The
logistic chaotic function, utilized here is expressed as:

xp+D)=x(p)x@p—-1) =4 @)

where, p is the iteration number, and the initial value x(0) is
randomly chosen.

After generating the initial population, the algorithm fol-
lows the standard BA procedure, updating its parameters and
the current positions of search agents using the steps 9, 10 and
12 given in the algorithm, and Equations 5-7. As mentioned
earlier, both employed and onlooker bees in ABC share
information about the possible solutions in the swarm and
adjust previous solutions using Equation 1. To enhance
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FIGURE 8. Work flow of the proposed framework.

random behavior and prevent repetition, logistic chaotic random neighboring solutions and positions for information
mapping defined in Equation 4, is utilized to determine the exchange.
X;; term in Equation 1. This approach provides enhanced

_ t
exploitation possibilities by allowing for the selection of Xu=Xo+ €A ©)
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here X, is the new position, X,, is the previous position, €
is a randomly generated number in the [—1,1] range, and A’
denotes the bat’s average loudness at time t.

If f(X;) < f(X*) and the randomly generated number r, <
Aj;, then consider the new solution valid. Further update A;
and r;, as below:

1
AT = x Al (6)
rf=rl[1—e7"] ©)

here A§+1 and A; are loudness at times t+1 and t, respectively;
r? and r/ are the pulse rates initially and at time t. As 1 — oo,
A? — 0 and rl.t — r?.

The entire exploration and exploitation process, compris-
ing the BA, and ABC phases, iterates for a specified number
itmax, after which the best solution is returned as a result.
Through the search equation of ABC, i.e., Equation 1 in BA,
the search capability is enhanced globally as each member
of the swarm has the chance to exchange information with
others. This fosters the maintenance of necessary exploration
and exploitation, mitigates the issue of diversity, and prevents
premature convergence. Moreover, it provides a greater
chance to escape local optima and find the global best
solution. Figure 8 presents the detailed workflow of the
process utilizing the proposed XcelNet17 architecture and the
BA-ABC algorithm.

V. RESULTS

In this section, we assess the performance of XcelNetl7 and
the BA-ABC algorithm for RS image classification. This
assessment is accomplished in two phases through a series
of experiments. In the first phase, we assess the XcelNetl7
performance while BA-ABC is evaluated in the next.
To ensure a fair comparison of execution times, the entire
experimentation is conducted on a Windows-11 PC, equipped
with Core i7 6700 (Intel processor) functioning at 3.4 GHz,
16GB RAM, and NVIDIA GeForce GTX 1050 Ti GPU for
both training and testing processes. This implementation is
performed on MATLAB R2022b.

A. PERFORMANCE METRICS

Several variables are used in the evaluation process, including
Overall Accuracy (OA), F-1 Score, Recall, Specificity (Spe),
and Precision. These metrics provide a comprehensive
evaluation of the prediction performance of a model.

1) OVERALL ACCURACY (OA)

OA is an important metric when evaluating the effectiveness
of classification models. It is especially useful in the context
of image classification or other predictive modeling appli-
cations. It is calculated as the ratio of accurate predictions
to the total number of predictions. Mathematically, it can be
expressed as:

Tp + TN

OA =
Tp+Ty +Fp+Fn

®

VOLUME 12, 2024

where Tp represents correct positive predictions, Ty repre-
sents correct negative predictions, Fp represents incorrect
negative predictions, and Fy represents incorrect positive
predictions. The importance of Overall Accuracy lies in
its clear explanation. It shows the percentage of correct
predictions generated by the model out of all predictions. This
makes it a straightforward way to determine a model’s ability
to predict outcomes.

2) F-1 SCORE
The F-1 Score is an important measure when assessing
the performance of image classification models, particularly
in situations with unevenly distributed data. It is the harmonic
mean of precision and recall, two metrics that evaluate the
accuracy and completeness of model predictions. Here’s the
formula for the F-1 Score:

Fl=2x ErxRo) ©)

Pr + Re

where Pr (Precision) is the ratio of true positive predictions
to total predicted positives, and Re (Recall), also called
Sensitivity or True Positive Rate, is the ratio of true
positive predictions to actual positives. The F-1 Score is
significant because it balances recall and precision. It is
useful in situations when you need a single measurement for
model comparison or where the costs associated with wrong
positives and incorrect negatives are comparable. Because the
F-1 Score is unaffected by a large number of true negatives,
it is a better solution than accuracy for problems with uneven
class distribution.

3) PRECISION
It plays a crucial role in evaluating the performance of
image classification models, especially when false positives
could have a major impact. It evaluates how well the model
predicts positive outcomes by calculating the accuracy of
those predictions. Here’s the formula for precision:
. Tp
Precision = —— (10)
Tp+Fp

where Tp (True Positives) refer to correct positive predictions,
while Fp (False Positives) are incorrect positive predictions.
The Precision is significant since it emphasizes how well
the model predicts the positive class. A high degree of
accuracy indicates that there are few false alarms and that the
model can be relied upon to forecast a positive result. This
is particularly important in scenarios where false positives
might have serious repercussions, such as spam detection or
medical diagnosis.

4) RECALL

Recall, also referred to as Sensitivity or True Positive Rate,
is a key measurement in assessing the effectiveness of image
classification models. It calculates the percentage of true
positive cases correctly identified by the model. Here’s the
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TABLE 4. Performance evaluation of XcelNet17 on the AID.

Data Set  Network Classifier OA F-1 Recall Spe Prescision  Acc
SVM 96.100 0.960 0.961 0.997 0.961 0.961
AlexNet Med NN 94900 0948 0.949 0.998  0.948 0.949
KNN 91.500 0914 0.912 0.997 0.922 0.915
SVM 94.100 0.939 0.939 0.998  0.940 0.941
VGG16 Med NN 93.900 0937 0.937 0.998  0.937 0.939
KNN 92.200 0922 0918 0.997 0.922 0.922
SVM 93.200 0930 0.932 0.998  0.930 0.932
VGG19 Med NN 92.200 0919 0.920 0.997 0.919 0.922
AID KNN 91.600 0913 0913 0.997  0.917 0.917
SVM 93.800 0938 0.939 0.998  0.939 0.938
ResNet-50 Med NN 92.700 0925 0.925 0.997  0.926 0.927
KNN 93.000 0928 0.928 0.998  0.930 0.930
SVM 91.300 0911 0.909 0.997 0913 0.913
DarkNet-19  Med NN 91.300 0910 0911 0.997 0.910 0.913
KNN 91.800 0916 0.915 0.997 0919 0.919
SVM 96.300 0.963 0.963 0.999  0.963 0.963
XcelNetl7 Med NN 95.200 0952 0.952 0.998  0.952 0.952
KNN 94700 0947  0.947 0.998  0.947 0.947
TABLE 5. Performance evaluation of XcelNet17 on the RSSCN7.
Data Set  Network Classifier OA F-1 Recall  Spe Prescision Acc
SVM 89.900 0.899 0.899 0.983  0.899 0.899
AlexNet Med NN 89.000 0.890  0.890 0.982  0.890 0.890
KNN 86.200 0.860 0.862 0.977  0.862 0.862
SVM 93.000 0.930 0.930 0.988  0.930 0.930
VGGI16 Med NN 91.200 0912 0.913 0.985 0913 0.913
KNN 92.100 0921 0.921 0.987  0.921 0.921
SVM 90.700  0.907  0.907 0.985 0.907 0.907
VGG19 Med NN 91.800 0918 0.918 0.986 0.918 0.918
RSSCN7 KNN 90.400 0.904 0.904 0.984  0.904 0.904
SVM 93.800 0.937 0.938 0.990  0.937 0.938
ResNet-50 Med NN 92900 0.928  0.929 0.988  0.929 0.929
KNN 93200 0932 0.932 0.989 0.932 0.932
SVM 76.100 0.806  0.806 0.968 0.811 0.806
DarkNet-19  Med NN 77700 0777 0.777 0.963 0.778 0.777
KNN 75700  0.758  0.757 0.959 0.760 0.757
SVM 96.400 0.964 0.964 0.994  0.964 0.964
XcelNet17 Med NN 95400 0.954 0.954 0.992 0.954 0.954
KNN 94.600 0.946 0.946 0.991 0.946 0.946
formula for recall: by the model. The importance of recall is centered on how
Tp well the model can identify all given examples. A high
Recall = m an recall indicates that the model is efficient in identifying

where Tp refers to correctly identified positive cases and
Fy refers to positive cases incorrectly classified as negative

91984

the positives and does not overlook many genuine positive
instances. This is especially crucial in scenarios where not
detecting positives could result in significant consequences.
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TABLE 6. Performance evaluation of XcelNet17 on the SIRI-WHU.

Data Set Network Classifier OA F-1 Recall Spe Prescision Acc
SVM 90.800 0.908 0.908 0.992  0.908 0.908
AlexNet Med NN 87.300 0.872  0.873 0988 0.873 0.873
KNN 87.500 0.874  0.875 0989 0.875 0.875
SVM 92.100 0921 0.921 0993  0.921 0.921
VGG16 Med NN 92.300 0.922 0.923 0.993 0.923 0.923
KNN 92.700 0.927 0.927 0.993  0.927 0.927
SVM 94400 0944 0.944 0.995 0.944 0.944
VGG19 Med NN 95400 0954 0.954 0.996 0.954 0.954
KNN 94400 0943 0.944 0.995 0.944 0.944
SIRI-WHU SVM 93.800 0938 0038 0994 0038 0.933
ResNet-50 Med NN 94.600 0946 0.946 0995 0.946 0.946
KNN 95.000 0.950 0.950 0.995 0.950 0.950
SVM 83.600 0.836 0.836 0985 0.836 0.836
DarkNet-19 Med NN 82.600 0.825 0.826 0984  0.826 0.826
KNN 80.300 0.803  0.803 0982 0.803 0.803
SVM 97.100 0971 0971 0997 0971 0.971
XcelNet17 Med NN 96.900 0.969 0.969 0.997  0.969 0.969
KNN 97.600 0976 0976 0998 0.976 0.976

TABLE 7. Performance evaluation of XcelNet17 on the UC Merced.
Data Set Network Classifier OA (Val) F-1 Recall  Spe Prescision Acc

SVM 94.570 94590 95.010 99.780 94.570 94.570
AlexNet Med NN 92.690 92750 93380 99.700  92.690 92.690
KNN 93.400 93.350 93.870 99.730  93.400 93.400
SVM 94.570 94,600 95.010 99.780 94.570 94.570
VGG16 Med NN 94.800 94.850 95480 99.770 94.800 94.800
KNN 94.350 94320 95.000 99.780 94.350 94.350
SVM 94.810 94860 95210 99.740 94.760 94.760
VGG19 Med NN 93.640 93770 94350 99.750 93.640 93.640
UC Merced KNN 95.040 95.120 95420 99.790 95.040 95.040
SVM 93.860 93.790 94.030 99.690 93.810 93.810
ResNet-50 Med NN 92.450 92400 92980 99.690 92.450 92.450
KNN 93.630 93.550 93980 99.740  93.630 93.630
SVM 89.810 89.900 90.520 99.490 89.760 89.760
DarkNet-19  Med NN 89.120 89.370 90.320 99.520 89.120 89.120
KNN 88.140 88.110 89.090 99.450 88.140 88.140
SVM 99.750 98.480 98.900 99.960 98.600 99.750
Proposed Med NN 98.470 97.190 97.140 99920 97.210 98.470
KNN 97.690 96.430 97.140 99.900 96.030 97.690

For example, in medical assessments, overlooking an illness
could have more severe impacts than incorrectly identifying
one.

5) SPECIFICITY

Specificity, which is also referred to as the True Negative
Rate, is a measurement used to assess how well an image
classification model performs. It assesses the accuracy
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of identifying actual negative outcomes by the model.
Specificity is calculated by:

Tn
Tn + Fp
where Ty represents correctly identified negative instances
and Fp represents negative instances mistakenly identified
as positive. The specificity is a very important metric as
it prioritizes the model’s accuracy in detecting negative

Specificity = (12)
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TABLE 8. Performance evaluation of XcelNet17 on the WHU-RS19.

Data Set Network Classifier OA F-1 Recall  Spe Prescision  Acc
SVM 95.595 95509 95.662 99.804  95.696 95.595
AlexNet Med NN 94.619 94.666 95325 99.764 94.706 94.619
KNN 93.639 93.741 94.611 99.720 93.711 93.639
SVM 95.595 95.673 96.201 99.804  95.696 95.595
VGG16 Med NN 96.570  96.687 97.148 99.844  96.638 96.570
KNN 95.610 95728 96.419 99.819  95.663 95.610
SVM 92.624 92712 93506 99.640 92.666 92.624
VGG19 Med NN 92.609 92.615 94.042 99.627 92.746 92.609
KNN 93.589  93.549 94.075 99.670  93.566 93.589
WHU-RS19 SVM 80.743  82.652 89.681 98.989  80.608 80.743
ResNet-50 Med NN 95.580 95566 95974 99.789  95.537 95.580
KNN 94.619 94593 94921 99.764 94.610 94.619
SVM 96.585 96.571 96.772  99.858  96.645 96.585
DarkNet-19  Med NN 96.095 96.088 96.488 99.836  96.084 96.095
KNN 95.125 95251 95945 99.801 95.051 95.125
SVM 99.900 98.245 98.734  99.890  98.296 99.900
XcelNet17 Med NN 98.665 96.886 97.258 99.850  96.907 98.665
KNN 99.155 98.249 98.709 99.873 97.769 99.155

TABLE 9. Results of ANOVA with classifiers on AID for XcelNet17.

Source of Variance  SS df MSE F-statistic p-value
Inter-groups 5.001 2 2.500  0.639 0.559
Intra-group 23451 6 3.908

Total 28.452 8

TABLE 10. Results of ANOVA with classifiers on RSSCN7 for XcelNet17.

Source of Variance  SS df MSE F-statistic p-value
Inter-groups 3.369 2 1.684  0.189 0.833
Intra-group 53.547 6 8.925

Total 56916 8

TABLE 11. Results of ANOVA with classifiers on SIRI-WHU for XcelNet17.

Source of Variance  SS df MSE F-statistic p-value
Inter-groups 0.837 2 0.418  0.088 0.917
Intra-group 28.608 6 4768

Total 290445 8

instances. This is especially significant in situations where
false negatives are less expensive than false positives. In a
security system utilizing facial recognition for access control,
high specificity ensures that unauthorized persons are seldom
mistaken for authorized ones, thus upholding the system’s
integrity.

B. XCELNET17 PERFORMANCE EVALUATION

In the first phase of experiments, we ascertain the effi-
ciency and accuracy of the XcelNetl7, against some
well-established networks including AlexNet [17], VGG16
[25], VGG19 [25], ResNet50 [18], and DarkNetl9 [26].
We have utilized five datasets including AID, RSSCN7,
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TABLE 12. Results of ANOVA with classifiers on UC Merced for XcelNet17.

Source of Variance SS df MSE F-statistic p-value
Inter-groups 3.128 2 1.564  0.403 0.685
Intra-group 23257 6 3.876

Total 26385 8

TABLE 13. Results of ANOVA with classifiers on WHU-RS19 for XcelNet17.

Source of Variance SS df MSE F-statistic p-value
Inter-groups 0.040 2 0.020  0.0057 0.994
Intra-group 21.102 6 3.517

Total 21.142 8

SIRI-WHU, UC Merced, and WHU RS-19 as mentioned in
Sect. IV-A. During the experiments, we utilize a mini-batch
size of 16 and employed the Stochastic Gradient Descent
with Momentum (SGDM) as the optimizer. We apply a decay
(drop) factor of 0.5 and a drop period of 7 parameters while
maintaining a learning rate of ¢~*. Each model undergoes
training for 500 epochs, with the dataset randomly divided
into 20% for testing and 80% for training. It is clarified that
this refers to the initial dataset splitting which is used for
model training. Once the features were extracted, we utilized
10-fold cross-validation to train the classifiers in MATLAB,
which is the actual step in training-testing. The reported
accuracies in the manuscript refer to the output yielded after
this whole process.

Tables 4, 5, 6, 7, and 8 show results for the five selected
datasets. The list of classifiers is shown against the metric
chosen for evaluations.

These results show how various combinations of network
models and classifiers work on the datasets. The evaluation
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TABLE 14. Results of Bonferroni test with classifiers on AID for XcelNet17.

Group A Group B Lower Limit Difference  Upper Limit P-value
SVM-Cubic  Medium NN  -3.886 1.067 6.019 0.793
SVM-Cubic =~ KNN-Cubic  -3.136 1.817 6.769 0.535
Medium NN KNN-Cubic  -4.203 0.750 5.703 0.890
TABLE 15. Results of Bonferroni test with classifiers on RSSCN7 for XcelNet17.
Group A Group B Lower Limit  Difference  Upper Limit P-value
SVM-Cubic = Medium NN  -6.484 1.000 8.484 0.913
SVM-Cubic =~ KNN-Cubic  -6.017 1.467 8.951 0.825
Medium NN KNN-Cubic  -7.017 0.467 7.951 0.980
TABLE 16. Results of Bonferroni test with classifiers on SIRI-WHU for XcelNet17.
Group A Group B Lower Limit Difference  Upper Limit P-value
SVM-Cubic  Medium NN  -5.202 0.268 5.738 0.988
SVM-Cubic =~ KNN-Cubic  -5.940 -0.470 5.000 0.963
Medium NN KNN-Cubic  -6.208 -0.738 4.732 0911
TABLE 17. Results of Bonferroni test with classifiers on UCM for XcelNet17.
Group A Group B Lower Limit Difference  Upper Limit P-value
SVM-Cubic = Medium NN  -3.990 0.943 5.875 0.832
SVM-Cubic =~ KNN-Cubic  -3.514 1.419 6.351 0.670
Medium NN KNN-Cubic  -4.456 0.476 5.408 0.953
TABLE 18. Results of Bonferroni test with classifiers on WHU-RS19 for XcelNet17.
Group A Group B Lower Limit Difference  Upper Limit P-value
SVM-Cubic = Medium NN  -4.574 0.124 4.823 0.996
SVM-Cubic =~ KNN-Cubic  -4.729 -0.031 4.668 1.000
Medium NN KNN-Cubic  -4.853 -0.155 4.543 0.994

process makes use of several factors, including Overall
Accuracy (OA), F-1 Score, Recall, Specificity (Spe) and
Precision. These indicators help in a thorough assessment of
a model’s predictive performance.

From the results, we can see that the SVM performs
best, when compared to other classifiers. When handling
the features extracted by deep learning architectures for
classification, SVM has proven to be most robust and
effective. Among the five datasets, XcelNetl7 emerges as
the superior neural network architecture especially when
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paired with the SVM classifier. This shows its ability to
achieve high precision in similar tasks. All the models
have consistently high specificity scores, demonstrating how
well they can identify negative cases. Furthermore, the
balanced distribution of F-1, Recall, and Precision scores
highlights their overall effectiveness in preserving accuracy
and precisely recognizing true positives.

Tables 4 through Table 7 demonstrate that XcelNetl7
performs exceptionally well on all datasets especially when
paired with the SVM classifier, as mentioend earlier.

91987



IEEE Access

B. Ahmed et al.: Novel Deep Learning Framework With Meta-Heuristic Feature Selection

99
—
98 - q
R
97 - _ 4
96 - h
95 - h
94 - — 4
93 h
J

SVM-Cubic

100 -
_
99 -
98 -
97 -
96 -
95 P

SVM-Cubic

KNN-Cubic

7

KNN-Cubic

Medium NN
Classifier

(a) Based on AID

Medium NN
Classifier

(c) Based on SIRI-WHU

100 ]
99 - 8
98 - 8
97 8
96 - 8
95 - 8
94 4
93 - 8
i .
92 L ]
o1 8

SVM-Cubic

Medium NN KNN-Cubic

103 F

102

101

100

99

98

97

|
|
96

Classifier
(b) Based on RSSCN7
101 F R
100 g
99 g
98 | g
i
97 - —— ,
i
96 | g
i
95 - — B
SVM-Cubic Medium NN KNN-Cubic
Classifier
(d) Based on UC Merced
T 4
J

SVM-Cubic

Medium NN
Classifier

KNN-Cubic

(e) Based on WHU-RS19

FIGURE 9. Accuracy box-plots of different Classifiers for XcelNet17.

The combination manages to achieve an OA rate of
94.6% ~ 99.9% over all configurations tested. This high-
lights XcelNet17’s remarkable efficiency as a FS method.

1) STATISTICAL ANALYSIS OF XCELNET17 RESULTS

The essence of conducting statistical analysis is to provide a
degree of assurance in the selected network and to determine
the general validity of the obtained results. To achieve this,
we employ the analysis of variance (ANOVA) [63] method
with Bonferroni post-hoc testing [64]. This approach allows
us to assess whether the selected framework demonstrates
significant improvement. ANOVA performs a comparison of
the means of multiple distributions by evaluating variances
with-in and between the groups.
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Before proceeding with ANOVA, it’s essential to verify the
equality and normality of variance assumptions. The Shapiro-
Wilk test [65] is employed to accomplish the assumption of
normality and the Bartlett’s test [65] is employed to determine
whether variances are homogeneous. The value of 0.01 is
used for the significance level («).

Let X1, X2, and X3 represent the means of XcelNetl7 (OA
with three different classifiers). X; = x; = X3, is the null
hypothesis (Hp), while x; # x;, is the alternative hypothesis
(Hy), where (i, j) belongs to 1, 2, 3. If the calculated p-value is
lesser than o, i.e., p < o, the null hypothesis is rejected. This
indicates significant differences among the means. In such
cases, the Bonferroni posthoc technique (also known as the
multiple comparison technique) is applied to validate all
pairwise means and find which ones are significantly apart.
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TABLE 19. Accuracy Comparison of BA-ABC with 5 cutting edge algorithms.

Data Set Classifier WOA GWO BA ABC ACO BA-ABC
SVM 82.500 87.500  82.500 80.000 82.500  95.000
WHU-RS19 KNN 77.500  90.000 92.500 87.500  77.500  97.500
Med NN 87.500  87.500 90.000 90.000 77.500  97.500
SVM 96.100 94.600 96.100 97.900 96.400  98.200
UC Merced  KNN 95.500 95.800 97.300 97.900 95.500  97.900
Med NN 94.000 96.700 94900 96.400 95.500  96.700
SVM 97.300 96.700 97.800 96.200 96.700  98.700
RSSCN7 KNN 97.100  96.900 96.700 96.900 95.100 98.700
Med NN 97.300 96.900 97.300 96900 96.400  98.900
SVM 97.900 97.700 98.200 97.900 98.200  99.000
SIRI-WHU KNN 97.900 97.900 97.500 97.700  94.500  99.000
Med NN 96.600 97.700 97.300 96900 97.400  97.700
SVM 84.000 83.000 87.200 85.200 88.200  88.300
AID KNN 82.500 82.800 87.800 85.200 86.200  88.500
Med NN 81.500  79.800 82.800  80.200 82.500  85.200
TABLE 20. F1 Score Comparison of BA-ABC with 5 cutting edge algorithms.
Data Set Classifier WOA GWO BA ABC ACO BA-ABC
SVM 0.800  0.875 0.700 0.900 0925 0.935
WHU-RS19 KNN 0.750  0.900 0.875 0925 0.800 0.941
Med NN 0.950  0.900 0.925 0900 0.900 0.950
SVM 0.964  0.962 0.967 0935 0958 0.971
UC Merced  KNN 0.970  0.958 0.961 0944 0.955 0977
Med NN 0.947  0.963 0.935 0952 0979 0.985
SVM 0.978  0.982 0982 0984 0978 0.986
RSSCN7 KNN 0.969  0.984 0.975 0973 0975 0.985
Med NN 0.984  0.963 0.969 0971 0969  0.985
SVM 0.984  0.987 0981 0974 0974 0.989
SIRI-WHU KNN 0.966  0.982 0.984 0.975 0964 0.985
Med NN 0.958 0.966 0959 0974 0976 0.995
SVM 0.853  0.882 0.861 0.820 0.870  0.885
AID KNN 0.810  0.848 0.861 0.829 0.855 0.870
Med NN 0.771 0.812 0.814 0.782 0.791  0.820

In the first set of experiments, the three classifiers (SVM,
Medium NN, KNN) are employed separately for each of
the five datasets. The Shapiro-Wilk test yields p-values of
0.787, 0.720, and 0.973 for AID; 1.0, 1.0, and 0.795 for
RSSCN7; 0.975, 0.978, and 0.997 for SIRI-WHU; 0.030,
0.531, and 0.819 for UC Merced, and 0.012, 0.704, and
0.410 for WHU-RS19 datasets. All of these values are above
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the « value. We are unable to reject the null hypothesis (Hp)
on the basis of these results of equality and normality of
variances and come to the conclusion that we have data that
has normal distribution and has a variance of homogeneous
kind.

In Tables 9, 10, 11, 12, and 13 statistical results are
provided for the five selected datasets using the ANOVA test.
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TABLE 21. Comparison of BA-ABC with 5 state-of-the-art methods on Sensitivity.

Data Set Classifier WOA GWO BA ABC ACO BA-ABC
SVM 0.800  0.875 0.700 0.900 0925 0.935
WHU-RS19 KNN 0.750  0.900 0.875 0.925 0.800 0.941
Med NN 0.950  0.900 0.925 0900 0.900 0.950
SVM 0.964  0.964 0976 0935 0958 0.979
UC Merced  KNN 0.970  0.958 0.962 0949 0955 0.982
Med NN 0.947  0.963 0.935 0952 0979 0.982
SVM 0.978  0.982 0982 0984 0978 0.986
RSSCN7 KNN 0.970  0.984 0975 0973 0975 0.986
Med NN 0.984  0.964 0.969 0971 0969  0.985
SVM 0.984  0.986 0981 0974 0973 0.988
SIRI-WHU KNN 0.966  0.982 0.984 0977 0964 0.986
Med NN 0.958 0.966 0.960 0.973 0977 0.995
SVM 0.872  0.885 0.865 0.823 0.870 0.886
AID KNN 0.842  0.848 0.865 0.830 0.855 0.870
Med NN 0.783  0.823 0.815 0.786 0.789  0.825
TABLE 22. Comparison of BA-ABC with 5 state-of-the-art methods on Specificity.
Data Set Classifier WOA GWO BA ABC ACO BA-ABC
SVM 0.989  0.993 0983 0.994 0996 0.996
WHU-RS19 KNN 0.986  0.994 0.993 0996 0989 0.997
Med NN 0.997  0.994 0.996 0994 0994 0.997
SVM 0.998 0.998 0.999 0997 0.998 0.999
UC Merced  KNN 0.999 0.998 0.998 0997 0.998 0.999
Med NN 0.997 0.998 0.997 0998 0.999 0.999
SVM 0.996  0.997 0.997 0997 0996 0.997
RSSCN7 KNN 0.995  0.997 0.996 0.996 0.996 0.997
Med NN 0.997  0.994 0.995 0995 0995 0.998
SVM 0.999  0.999 0.998 0.998 0.998  0.999
SIRI-WHU KNN 0.997 0.998 0.999 0998 0.997 0.999
Med NN 0.996  0.997 0.996 0.998 0.998 1.000
SVM 0.995  0.996 0.995 0994 0996 0.996
AID KNN 0.993  0.995 0.995 0994 0995 0.996
Med NN 0.992  0.994 0.994 0.993 0993 0.995

The five different parameters considered are sum of squared
deviation (SS), mean squared error (MSE), degree of freedom
(df), p-value, and F statistic.

SS measures the total variation, variation within groups,
and variation between groups. df reflects the number of
independent values that can vary in the calculation. For
inter-groups df is 2, suggesting three groups are being
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compared (since df = number of groups - 1). Within-groups
dfis 6, which implies there are a total of 7 observations spread
across the groups. The total df is the sum of inter-groups and
within-groups df, here totaling 8.

MSE is calculated by dividing the SS by the corresponding
df. It represents the average variance within groups (2.50) and
the average variance between groups (3.908). The F-statistic,

VOLUME 12, 2024



B. Ahmed et al.: Novel Deep Learning Framework With Meta-Heuristic Feature Selection

IEEE Access

TABLE 23. Comparison of BA-ABC with 5 state-of-the-art methods on Precision.

Data Set Classifier WOA GWO BA ABC ACO BA-ABC
SVM 0.800  0.875 0.700 0900 0.925 0.935
WHU-RS19 KNN 0.750  0.900 0.875 0925 0.800 0.941
Med NN 0.950  0.900 0.925 0900 0.900 0.950
SVM 0.964 0.962 0965 0935 0956 0971
UC Merced  KNN 0.970 0.958 0961 0943 0955 0977
Med NN 0.949  0.964 0935 0952 0979 0.985
SVM 0.978  0.982 0982 0984 0.978 0.986
RSSCN7 KNN 0.969  0.984 0975 0973 0975 0.985
Med NN 0.984  0.962 0968 0971 0.968 0.987
SVM 0.984 0.987 0981 0974 0974 0.989
SIRI-WHU KNN 0.966 0.982 0.984 0.975 0964 0.985
Med NN 0.958 0.966 0959 0974 0974 0.995
SVM 0.856  0.886 0.859 0.815 0.870 0.888
AID KNN 0.802  0.848 0.859 0.830 0.855 0.870
Med NN 0.776  0.815 0.815 0.790 0.803  0.820
TABLE 24. ANOVA results on classifiers with AID. TABLE 27. ANOVA results on classifiers with UC Merced.
Source of Variance SS df MSE F-statistic p-value Source of Variance SS df MSE F-statistic p-value
Inter-groups 11.390 2 5.695 0.704 0.531 Inter-groups 3.363 2 1.681  0.235 0.798
Intra-group 48.533 6 8.089 Intra-group 43.002 6 7.167
Total 59.923 8 Total 46.365 8
TABLE 25. ANOVA results on classifiers with RSSCN7. TABLE 28. ANOVA results on classifiers with WHU-RS19.
Source of Variance  SS df MSE F-statistic p-value Source of Variance  SS df MSE F-statistic p-value
Inter-groups 0.249 2 0.125  0.019 0.981 Inter-groups 5.978 2 2989  0.388 0.694
Intra-group 38.780 6 6.463 Intra-group 46.186 6 7.698
Total 39.029 8 Total 52.164 8
TABLE 26. ANOVA results on classifiers with SIRI-WHU.
evidence. Further, the Bonferroni posthoc is performed to
IS"t“rce of Yariance §S2 - gf IIVIISIE g'ls;ﬁ“ic g'g'gé“e validate these results. The Bonferroni post-hoc test is a
Iﬂtﬁ;'_gg‘;‘(’,‘;f,s 5105 € 01’4 : method used to determine significant differences between
Total 57333 8 multiple groups in ANOVA. This test involves conducting

which measures whether group means differ significantly
from one another, is a ratio of the variation among groups to
the variance within a group. An F-statistic of 0.559 suggests
that the inter-group variance is not much larger than the intra-
group variance. Similar results/interpretations are obtained
with other datasets as well.

If the null hypothesis is correct, the p-value indicates
the likelihood of seeing the F-statistic (i.e., there are no
differences between group means). The obtained p-values
of 0.559, 0.833, 0.917, 0.685, and 0.994 are well above the
typical significance threshold of 0.01, demonstrating that the
null hypothesis cannot be rejected due to a lack of statistical
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pairwise comparisons between all possible pairs of group
means to identify specific pairs that differ significantly from
each other.

The tables 9, 10, 11, 12, and 13 make it evident that
the p-value exceeds the specified «. Thus the ANOVA and
the Bonferroni posthoc test results have confirmed p >
«. Based on the pairwise comparison’s results outlined in
Tables 14, 15, 16, 17, and 18, we can assert with 95%
confidence that the mean accuracies are within a close
bound. Thus, the proposed DL architecture (XcelNet17) has
consistent performance across all the datasets despite the
chosen classifier. Therefore, our proposed approach, utilizing
XcelNetl7 with the three classifiers, exhibits significantly
superior performance compared to conventional methods.
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TABLE 29. Results of Bonferroni test with classifiers on AID for BA-ABC.

Group A Group B Lower Limit  Difference = Upper Limit  P-value
SVM-Cubic  KNN-Cubic -6.868 0.257 7.382 0.993
SVM-Cubic  Medium NN  -4.620 2.505 9.630 0.560
KNN-Cubic  Medium NN -4.878 2.247 9.372 0.622
TABLE 30. Results of Bonferroni test with classifiers on RSSCN7 for BA-ABC.
Group A Group B Lower Limit  Difference = Upper Limit  P-value
SVM-Cubic  KNN-Cubic -6.404 -0.035 6.334 1.000
SVM-Cubic  Medium NN  -6.738 -0.369 6.000 0.983
KNN-Cubic  Medium NN  -6.703 -0.334 6.035 0.986
TABLE 31. Bonferroni post-hoc test results for three classifiers on SIRI-WHU for BA-ABC.
Group A Group B Lower Limit  Difference = Upper Limit  P-value
SVM-Cubic  KNN-Cubic -7.815 -0.223 7.369 0.996
SVM-Cubic Medium NN  -6.666 0.926 8.518 0.927
KNN-Cubic  Medium NN  -6.443 1.149 8.741 0.890
TABLE 32. Bonferroni post-hoc test results for three classifiers on UC Merced for BA-ABC.
Group A Group B Lower Limit  Difference = Upper Limit  P-value
SVM-Cubic  KNN-Cubic -6.403 0.304 7.011 0.989
SVM-Cubic  Medium NN  -5.285 1.422 8.129 0.799
KNN-Cubic  Medium NN  -5.589 1.118 7.825 0.869
TABLE 33. Bonferroni post-hoc test results for three classifiers on WHU-RS19 for BA-ABC.
Group A Group B Lower Limit  Difference = Upper Limit P-value
SVM-Cubic  KNN-Cubic -8.726 -1.775 5.176 0.726
SVM-Cubic  Medium NN  -8.629 -1.679 5.272 0.750
KNN-Cubic  Medium NN  -6.854 0.096 7.047 0.999

Additionally, Figure 9 illustrates the effectiveness of these
three classifiers across the five datasets.

C. BA-ABC PERFORMANCE EVALUATION

The performance of the BA-ABC algorithm is evaluated
in this section. We have used the XcelNetl7 CNN archi-
tecture as the feature extractor and compared BA-ABC
performance on feature selection problems with five other
population-based optimization methods including WOA,
GWO, ACO, BA, and ABC as already mentioned in Sect. II.
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The experiments are conducted on the same five most
popular RS image classification datasets i.e. AID, WHU-
RS19, UC Merced, RSSCN7, and SIRI-WHU as men-
tioned in Sect. IV-A. A comparison of the BA-ABC
algorithm with five cutting-edge techniques is presented
in Table 19 on accuracy. It is evident that the BA-ABC
has managed to achieve higher accuracy than the contem-
porary algorithms. In some cases, however, the accuracy
achieved by multiple are equal; they are highlighted in
bold.
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FIGURE 10. Accuracy box-plots of used classifiers for BA-ABC.

Similarly, Tables 20, 21, 22, and 23 show the comparison
with five methods on five datasets utilizing F1 score,
sensitivity, specificity, and precision, respectively. These
results showcase the effectiveness of BA-ABC algorithm.

The accuracy results depict the performance of various
classifiers (SVM-Cubic, KNN-Cubic, and Medium Neural
Network) on different datasets. Across various datasets, SVM
consistently demonstrates robust performance, achieving
accuracies ranging from 82.5% to 99.0%. Notably, on the
WHU-RS19 dataset, SVM attains accuracies between 82.5%
and 95.0%, showcasing its effectiveness across diverse
datasets. KNN performs competitively as well, with accuracy
varying between 77.5% and 99.0%. Its remarkable accuracy
of 99% on the SIRI-WHU dataset demonstrates its ability
to precise classification. The accuracy of the Medium
Neural Network varies greatly between datasets, despite
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its typically good performance. The results highlight the
impact of classifier choice on classification accuracy. SVM
and KNN have proved to be strong performers on different
datasets. On the other hand, the Medium Neural Network’s
performance seems to be more dependent on the features
of the dataset. The comparison of F1 score is displayed in
Table 20 below:

The F-1 score is another useful indicator for evaluating
the effectiveness of classification models across different
datasets and classifiers. The SVM has constantly high
F-1 scores, indicating a well-balanced trade-off between
precision and recall. SVM performs remarkably well on
datasets such as SIRI-WHU and RSSCN7. Here, it contin-
uously obtains F-1 values higher than 0.97, demonstrating
its reliability for precise classification. Furthermore, both
the KNN and the Medium Neural Network demonstrate
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FIGURE 11. Convergence rate of BA-ABC on different dataset.

competitive performance. Their F-1 scores are similar to in performance, the effectiveness of KNN-Cubic and the
those of SVM over various datasets. While SVM often leads Medium Neural Network is particularly evident in datasets
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like WHU-RS19 and UC Merced. Overall finding highlights
the importance of selecting classifiers tailored to dataset
characteristics.

Moreover, the harmonious distribution of Recall, Speci-
ficity, and Precision scores across the models points to
their overall effectiveness in making a delicate balance
between identifying true positives and maintaining accuracy.
This illustrates their general competence in differentiating
between the classes with a fine level of precision. The
detection speed was also compared, e.g. for WHU-RS19, the
BA-ABC took 16.32 sec to generate the final result after
60 iterations, while WOA, GWO, BA, ABC, and ACO took
16.09, 16.57, 26.62, 25.26, and 582.90 seconds. This shows
that the BA-ABC not only has outstanding accuracy but has
excellent detection speed as well.

1) STATISTICAL ANALYSIS OF BA-ABC RESULTS

In this phase of experiments, statistical analysis is carried
out on the BA-ABC algorithm using the ANOVA function
on five benchmark datasets. Again in these experiments, the
same three classifiers (SVM, KNN, and Medium NN) were
employed separately for five datasets. The Shapiro-Wilk test
p-values of 0.9998, 0.9998, and 1.0 for AID; 1.0, 0.9998,
and 0.9998 for RSSCN7; 1.0, 1.0, and, 1.0 for SIRI-WHU;
0.9998, 0.9998, and 1.0 for UC Merced, and 0.9998, 0.9998,
and 0.9998 for WHU-RS 19 datasets, respectively. All of these
values are greater than «, indicating that the data has a normal
distribution and homogeneous variances. Therefore, the null
hypothesis (Hp) is rejected based on these values.

The ANOVA test results, depicted in tables 24, 25, 26,
27, and 28 suggest that no statistically prominent differences
exist among the groups means being compared. For the AID
dataset, with an F-statistic of 0.704 and a p-value of 0.531,
the data does not provide sufficient evidence to conclude
that the group means differ from each other more than what
would be expected by chance alone. This indicates that any
observed variations in the group means are probably more
likely to be the result of random variation than of a systematic
distinction between the groups. Similar arguments hold for
ANOVA results on other datasets.

Since the p-values are greater than the specified «,
we cannot reject the null hypothesis in this scenario. This
proves the input data, i.e. the accuracy values of BA-ABC
algorithm, have means in a confined range. This proves
that the BA-ABC accuracies are consistent across datasets
and classifiers. Subsequently, we conduct the ANOVA with
Bonferroni for pairwise comparisons.

The Bonferroni post-hoc test is a method used to determine
significant differences between multiple groups in an analysis
of variance (ANOVA). This test involves conducting pairwise
comparisons between all possible pairs of group means
to identify specific pairs that differ significantly from
each other. Each pairwise comparison is evaluated using a
statistical test, such as a t-test, and the resulting p-values are
compared to the adjusted significance level.
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If a pairwise comparison’s p-value is lower than the
adjusted significance level, it indicates a significant dif-
ference between the corresponding groups. In multiple
comparisons, the Bonferroni adjustment aids in reducing the
total Type I error rate by making it more stringent. The results
of the Bonferroni post-hoc test provide insights into which
specific group pairs exhibit significant differences, aiding
in a deeper understanding of the data and facilitating more
elaborated interpretations of group comparisons in ANOVA
analyses.

These tables confirm that the ANOVA and the Bonferroni
posthoc test results have p > «. Based on the results
of pairwise comparisons delineated in Tables 29, 30, 31,
32, and 33, we can assert with 95% confidence that the
mean accuracy falls within a narrow range. This proves
that our proposed algorithm, BA-ABC consistently performs
well across all datasets, regardless of the chosen classifiers.
Hence, our proposed approach, employing BA-ABC with
the three classifiers, demonstrates significantly superior
performance compared to conventional methods. Further,
Fig. 10 illustrates the effectiveness of these three classifiers
across the five datasets.

2) CONVERGENCE RATE

A convergence rate curve is a graphical representation
illustrating the convergence behavior of an optimization
algorithm over iterations. It typically plots a performance
metric, such as objective function value, against the number
of iterations. The curve provides valuable insights into
the algorithm’s efficiency and effectiveness in reaching the
optimal solution.

Rapid convergence is indicated by a fast decrease in the
values, which implies that the algorithm is getting close to
the ideal solution quite soon. Figure 11 shows the plot of the
convergence rate of the BA-ABC.

The curve displays the so-far-best value at each iteration.
From the figure, it is evident that BA-ABC exhibits a
favorable convergence rate, swiftly identifying a promising
region in under 30 iterations.

VI. CONCLUSION
XcelNetl7 — a novel deep learning architecture for remote
sensing image classification is proposed. It is a rather simple
network comprising fourteen convolutional and three fully
connected layers, yet demonstrates remarkable performance
on five benchmark datasets including AID, RSSCN7, SIRI-
WHU, UC Merced, and WHU RS-19. XcelNet17 manages to
achieve an Overall Accuracy of 94.6% ~ 99.9%; substantially
surpassing the performance of some of the well-established
models such as AlexNet, VGG16, VGG19, ResNet50, and
DarkNet19 for the same datasets and three benchmark
classifiers. For instance, the proposed architecture yields
around 5% improved accuracy on the UC Merced dataset.
Additionally, a meta-heuristic named BA-ABC, which
combines the strengths of BA and ABC algorithms, is pro-
posed to improve the features selection process. Assisted by
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chaotic mapping for a diverse initial population, BA-ABC
demonstrates a significant improvement in the classification
accuracy when compared with WOA, GWO, BA, ABC, and
ACO algorithms. For example, an 8% superior performance
on the WHU-RS19 dataset has been recorded. Various other
metrics such as Precision, Fl1-measure, Recall, and Speci-
ficity are also used for the evaluation purposes. To support
our research findings, an in-depth statistical analysis has also
been presented.

As a follow-up work, we are utilizing vision transformers
(ViT) along with CNNs for image classification. While, the
CNNs have proven excellent at extraction of local features,
they exhibit constrained ability when it comes to global
features’ extraction, which will be aided by incorporating
the ViTs. In addition, we will enhance the framework with
another novel nature-inspired feature selection algorithm to
further boost the classification accuracy.
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