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ABSTRACT The vehicle routing problem (VRP) and its variants have been intensively studied by the
operational research community. The existing surveys and the majority of the published articles tackle
traditional solutions, including exact methods, heuristics, and meta-heuristics. Recently, machine learning
(ML)-based methods have been applied to a variety of combinatorial optimization problems, specifically
VRPs. The strong trend of using ML in VRPs and the gap in the literature motivated us to review the state-
of-the-art. To provide a clear understanding of the ML-VRP landscape, we categorize the related studies
based on their applications/constraints and technical details. We mainly focus on reinforcement learning
(RL)-based approaches because of their importance in the literature, while we also address non RL-based
methods. We cover both theoretical and practical aspects by clearly addressing the existing trends, research
gap, and limitations and advantages of ML-based methods. We also discuss some of the potential future
research directions.

INDEX TERMS Vehicle routing problem (VRP), machine learning, reinforcement learning, deep learning,
combinatorial optimization.

I. INTRODUCTION
The VRP is one of the most challenging and studied problems
in the operations research (OR) field. As can be seen in
Figure 1, the number of published papers over the years shows
an exponential increase. Almost 50% of the studies were
published during and after 2021, indicating the importance
of the subject.

The vehicle routing problem (VRP) [1] is a combinatorial
optimization problem belonging to the NP-hard class [2].
As shown in Figure 2, the VRP can be defined as an

optimization problem with a set of scattered customers with
stochastic or dynamic demands and a number of vehicles
that could be homogeneous or heterogeneous. The goal is
to find the lowest possible trip cost (distance/time) such
that all customers are visited. Several variants of the VRP

The associate editor coordinating the review of this manuscript and
approving it for publication was Ikramullah Lali.

FIGURE 1. The number of VRP-related papers indexed in Scopus database
with the keywords ‘‘Vehicle Routing Problem’’ and ‘‘Learning’’.

have been defined by introducing constraints to the problem.
For instance, capacitated VRP (CVRP) introduces limited
capacity for goods, or VRP with time windows (VRPTW)
introduces specific time frames [3].

The existing literature mainly concentrates on exact
approaches, heuristics, and meta-heuristic algorithms to
solve the VRPs [4]. Recently, machine learning (ML)-based
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FIGURE 2. The schematic of the VRP where the vehicles (homogeneous or heterogeneous), with single or multi-depots. The
dashed lines show the feasible routes, while the solid line shows the selected route for vehicle m that visits the customer
(i − 1, i , i + 1) and returns to depot 1. The objective varies depending on the introduced constrains. However, it usually
includes the minimization of total travel time and/or energy consumption while the time windows, capacity, or other
constraints are satisfied.

algorithms have gained the interest of numerous researchers
for solving the VRPs [5]. Considering the importance of VRP,
there are many surveys in the current literature. However,
there is still no comprehensive review onML-based solutions
for VRPs, that discusses the problem from a technical point
of view.

In this paper, we focus on the rapidly expanding ML-based
VRP research and provide a comprehensive review and
categorization from both a technical and applied standpoint.
We categorize the related works, address new research
directions, and present an overview of practical implemen-
tation guidelines, including existing benchmark datasets and
software solutions (see Sec. I-C for the contributions of this
paper).

A. EXISTING SURVEYS
We examined over 20 related surveys to find out if a review on
ML-based methods has been presented in the VRP-related lit-
erature [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29]. There are only two related surveys that partially
address ML-based methods. Bai et al. [27] incorporate ML
and review hybrid solutions for VRPs that integrate analytical
techniques with ML tools. They divide integration efforts
into three main categories: ML-assisted VRP modeling,
ML-assisted offline, and ML-assisted online optimizations.
The study focuses on providing a high-level overview
rather than specific features of the publications, such as
mathematical formulations, solution methods, datasets, and
future technology directions. In [30] the authors very briefly
address the learning-based approaches to the VRPs by almost

ignoring all the related studies. This gap in the literature
motivated us to perform this review onML-based approaches
for VRPs.

B. METHODOLOGY
We searched the ‘‘Scopus’’, ‘‘Web of Science’’ and ‘‘arXiv’’
databases to cover relevant literature on the use of ML-based
methods for VRPs. We focused on the studies published
between 2020 and 2023, although some older studies are
addressed based on their importance. Our initial search
inputs were around 300 publications, which were reduced
after a critical assessment. We attempt to investigate all
available relevant studies and encompass over 20 published
related surveys. The majority (61%) of papers submitted for
critical evaluation are drawn from trustworthy journals (see
Figure 3), and 39% of our covered studies are published
in conferences or archive pre-prints. As can be seen in
Figure 3, 64% and 18% of the journals are ranked Q1 and
Q2, respectively.

C. OUR CONTRIBUTIONS
In this paper, we aim to address the following four important
questions:

1) How ML-based solutions are defined for VRPs?
2) How to categorize the ML-based methods for VRPs?
3) What are the limitations, advantages, and possible

future directions in the integration of ML into VRPs?
4) What are the practical considerations for using or

designing ML-based solutions for VRPs?
Considering the above-mentioned questions, the structure
of this research is presented in Figure 4. In this survey,
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FIGURE 3. Categorization of the recent studies (2020-2023) covered in
this paper based on the publication type and the journals’ scoring
(Q1-Q4) in Scopus.

we provide several novel contributions to existing literature.
We first present a classification of ML-based methods, with
a focus on reinforcement learning approaches. To the best of
our knowledge, this is the first time the ML-based methods
have been investigated comprehensively for VRPs. Second,
we discuss the practical challenges of implementing these
strategies in real-world scenarios. Finally, we identify present
research gaps and suggest future research areas to further
progress the discipline.

The main contributions of this paper are presented as
follows:

• We provide a thorough review of ML-based solutions
for VRPs. We cover the publications between 2020 and
2023. Some notable research papers conducted before
2020 are also included. We present and discuss the
implemented models of RL, including the sequence-to-
sequence, attention mechanism, and Markov decision
process.

• We categorize the covered studies from a variety of per-
spectives, including their applications (six categories)
and proposed algorithms (five categories).

• We perform a high-level classification and illustrate
how ML-based methods can complement existing exact
or heuristic approaches, improving the overall system
performance and enabling the resolution of large-scale
VRPs.

• We discuss the existing limits of the research and discuss
future research directions. We attempt to bridge the gap
between the OR and ML communities by highlighting
possible collaboration directions.

• We address practical considerations by providing
implementation guides, benchmark instances, and
open-source solvers.

The remainder of this paper is structured as fol-
lows: The background information on solution approaches
for the VRP and their different forms are given in Section II.

In Section II-C, we look at studies that use ML to solve
VRPs, focusing on RL-based solution approaches. Section IV
presents a discussion, summarizing the knowledge of the
considered scientific literature. Section V gives practical sug-
gestions on accessible benchmark datasets and open-source
software packages. Finally, Section VI concludes and makes
recommendations for future research. The abbreviations used
in this paper are presented in Table 1.

II. SOLUTION APPROACHES
In the scientific literature, typically the vehicles are assumed
to be homogeneous (same characteristics), and the customer
set is defined a-priori, as well as information on the
transportation network and cost functions. These assumptions
help to approximate the problems, while the real world
demands that we handle more dynamic behavior by address-
ing complex multi-depot stochastic systems [31]. This is
why solution methods play a critical role in enabling us to
integrate more real-world needs into VRPs. As we discuss in
this paper, the main advantage of ML-based methods lies in
their potential to handle dynamic demands, uncertainty, and
large-scale instances. In this section, we will look deeper into
the various ML-based approaches, evaluating their strengths
and weaknesses. For instance, while RL-based approaches
provide flexibility in dealing with dynamic demands, they
frequently need large computational resources. Non-RL
approaches, on the other hand, are often easier to implement,
but they may not perform as well in complicated, real-time
contexts.

VRP solution strategies can be classified according to
different features, and they are usually broken down into
three main groups: exact methods, heuristics, and meta-
heuristics [32]. However, with the new advancements, there
is a new categorization, as we address in this survey,
by ML-based approaches. In what follows, we briefly
describe the aforementioned solution strategies.

A. EXACT METHODS
Deterministic VRPs are typically formulated as integer
linear programs (ILP) [33] or constraint optimization pro-
grams [34]. The goal is to identify a binary decision variable
assignment that minimizes the objective while satisfying
operational constraints. Most algorithms use a divide-and-
conquer strategy to divide the initial solution space into
smaller sets. Branch-and-bound [35] is a simple algorithmic
structure implementation. The branch-and-bound method is
considered in a variety of research papers [36].

Exact methods are computationally expensive and can-
not provide an optimal solution for large-scale problems.
However, exact approaches could be combined with heuristic
algorithms to filter out subsets of the solution space
that cannot improve the cost function. One of the most
straightforward ways to apply the lower-bound heuristic is to
linearly relax the ILP into a convex linear program, which can
be solved in O(n3) by many algorithms, such as the simplex
method.
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FIGURE 4. The structure of this survey by our contribution considering the raised questions.

B. HEURISTICS AND META-HEURISTICS
Heuristic approaches are widely employed to quickly find the
feasible solutions on large instances [37].

Meta-heuristics are more advanced procedures that guide
the search process to explore the solution space and find
near-optimal solutions efficiently [8]. Meta-heuristics can be
classified into two main classes: single-solution-based and
population-based approaches.

1) SINGLE-BASED SOLUTION
Among the most known single-based methods, we mention
the variable neighborhood search (VNS) [38], [39], [40],
the large neighborhood search (LNS) methods [41], the tabu
search (TS), and the simulated annealing (SA) [42], [43].

2) POPULATION-BASED SOLUTION
Population-based approaches try to find a solution (from
a group of solutions), either by pairing and combining
existing ones or by teaching them to work together through
a learning process [44]. Elsaher and Awad [8] underline
that population-based approaches can be broken down
into two main categories: approaches that use evolutionary
computation (EC) and approaches that use swarm intelligence
(SI). A lot of hybrid algorithms use meta-heuristics along
with ML to find improved solutions [45], [46], [47], [48],
[49].

Heuristics and meta-heuristics might become trapped in
local optima, especially in complex or large-scale prob-
lems. Usually problem-specific heuristics are not flexible
enough to adjust to dynamic constraints and settings that

yield unsatisfactory solutions. Althoughmeta-heuristics offer
greater flexibility and can explore a wider range of solutions,
they can be computationally demanding and necessitate
precise parameter adjustment.

C. ML-BASED APPROACHES
From one perspective, we categorize the ML-based
approaches into reinforcement learning (RL)-based and non-
RL-based. The majority of the related studies focus on
RL-based approaches. ML can help address VRPs in two
main directions: describing the problem as a Seq-2-Seq or
Markov decision process and applying ML-based techniques
to solve the problem. The majority of covered papers in the
literature are based on RL and its variants. ML approaches
are generally applied to single-agent environments with
stationary environments. However, solving VRP with ML
brings significant issues, such as the training process taking
time, the performance of aML-based algorithm being heavily
dependent on the training dataset, and convergence and a
near-optimal solution not being guaranteed. In continuing,
we provide a more technical presentation of both RL-based
and non RL-based methods.

1) RL-BASED METHODS
The first efforts at using RL for addressing the VRPs are
represented by the Sequence-to-Sequence (Seq2Seq) models.
They are a sort of neural network (NN) architecture that
maps a variable-length input sequence to a variable-length
output sequence. These models have been utilized in natural
language processing and were adapted for VRPs. As can be
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TABLE 1. Abbreviations used in this study; presented by Alphabetical order.

seen in Figure 5, considering a small VRP instance with four
customer locations (A, B, C, D), the Seq2Seq model takes
the locations and demands as input sequence and learns to
predict the optimal visiting order as output sequence. LetX =

{x1, x2, . . . , xn} denote the input sequence, where each xi is a
vector representing the location of customer i. The Seq2Seq
model aims to determine a sequence Y = {y1, y2, . . . , yn}
where yi represents the i-th location the vehicle should visit.
The model consists of two main components: the encoder
and the decoder. The encoder processes the input sequence
and compresses the information into a context vector, while
the decoder takes the context vector and generates the output
sequence one element at a time.

In summary, the Seq2Seq model for VRP includes the
following key elements:

• Input sequence: A set of delivery locations represented
as a sequence of vectors. Let X = x1, x2, . . . , xn
be the input sequence, where xi represents the vector
representation of the i-th delivery location.

• Encoder: Takes the sequence X as input and determines
a vector representation of the input sequence. Let h =

fencoder (X ) be the output of the encoder, where fencoder is
the encoder NN.

• Decoder: Takes the output of the encoder, h, as input
and generates an output sequence of the optimal routes.
The decoder is a Recurrent Neural Network (RNN)
that generates the output sequence one element at

a time, conditioned on the previous elements. Let
Y = y1, y2, . . . , ym be the output sequence, where yi
represents the i-th element. Let di be the decoder input at
time step i, defined as di = [h, yi−1]. Let p(yi|di) be the
probability distribution over the possible next elements
of the output sequence at time step i, given the decoder
input di.

• Training: Using a supervised learning approach, where
the optimal routes are the target output for each input,
the model is trained to minimize the distance traveled
by vehicles.

The Seq2Seq models cannot incorporate complex con-
straints or long-term dependencies [50]. To overcome this
issue, the Attention mechanism (AM) was introduced.
AM enables the model to focus on different parts of the
input (e.g., customers’ locations) when predicting the route,
leading to more effective solutions [51]. As illustrated in
Figure 6, considering the same VRP instance with customer
locations (A, B, C, D), AM computes a set of attention
weights, indicating the importance of each input element for
each output step [52]. First, the list of customer locations
and needs (X ) is sent through an embedding layer to
turn each customer’s raw features into a dense vector
representation. This step enhances the model’s ability to
capture complex relationships within the data. Next, the
embedded representations are fed into the attention layer
during the decoding phase.
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FIGURE 5. The schematic of the seq2seq model. In this example, we consider one depot and four customers (A, B, C, D). We assume
a capacity availability that permits the existence of two optimal routes. For instance, vehicle capacity is C = 10 while dA = 9, dB = 2,
dC = 3, and dD = 9.

At each decoding step i, AM computes a context vector ci
as a weighted sum of the embedded inputs, where the weights
represent the relevance of each input to the current decoder
state. In particular,

ci =

n∑
j=1

αijEj, αij =
exp(eij)∑n
k=1 exp(eik )

where αij is the attention weight, eij is the alignment score
between the input at position j and output position i and Ej
is the embedded representation of the j-th input. In addition,
yi = g(ci, yi−1) where the function g generates the i-th output
based on the context vector ci and the previously generated
output yi−1.

Attention-based methods have been very popular. Deep
attention with dimension reduction is studied in [53] and
a dynamic Attention-based approach with mixed-instance
training methods is presented in [54].

Pointer networks are a type of Seq2Seq model that creates
chains of discrete tokens by pointing to places in the input
chain. This was particularly suitable for VRP, where the
output route is a reordering of the input locations [55].
It should be noted that the combination of these methods is
also addressed in the literature. For instance, Vinyals et al.
[56] propose a Seq2Seq Pointer Network based on an RNN
that uses an AM in a supervised manner. Both attention-
based models and pointer networks are difficult to scale due
to their high computational complexity and memory usage.
They typically require a large amount of training data, which
makes them potentially poor in generalization and integrating
complex constraints.

Deep reinforcement learning methods have been exten-
sively applied to VRPs, typically within theMarkov Decision
Process (MDP) framework. Deep reinforcement learning
(DRL) methods combine RL and deep learning [57] (see
Figure 7). DRL allows vehicles to make decisions based
on unstructured input data without requiring manual state
space engineering. DRL algorithms are capable of processing
massive volumes of data and determining which actions

to take. DRL also struggles with large computing cost
and training time, since learning efficient policies requires
several interactions with the environment. While DRL
provides a more flexible framework for policy learning than
pointer networks, it frequently necessitates more fine-tuning
and processing resources. DRL offer more adaptability to
dynamic settings in compared to attention-based models and
pointer networks.

MDPs provide a mathematical framework for modeling
decision-making with partially random outcomes that are
reliant on earlier actions. RL is used to develop a policy
that maps states to actions in such a way that the predicted
cumulative reward over time is maximized. The key distinc-
tion between Seq2Seq models and MDPs is that the former
construct optimal routes based only on the input delivery
locations, without taking into account the present status of
the system or the actions made by the vehicles. MDPs, on the
other hand, explicitly model the state of the system as well as
the actions of the delivery vehicles and use RL to establish a
policy that maximizes the predicted cumulative reward over
time. Therefore, MDPs are better models for stochastic and
dynamic VRPs.

MDP is represented by a set of states, actions, rewards, and
the corresponding transition probability function. At the time
t , given the current state of environment St , an agent selects
action At that yields a reward in the next step, denoted by
Rt+1, and a new state St+1. The probability function is defined
in Eq. (1) in which the next state is determined by the current
state and action.

p(s′|s, a) = P(St+1 = s′|St = s,At = a) (1)

The reward function denoted as r(s, a, s′), defines the reward
for the taken action a at state s with the consecutive state s′,
as shown in Eq. (2).

r(s, a, s′) = E[Rt+1|St = s,At = a, St+1 = s′] (2)
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FIGURE 6. The schematic of the Attention Mechanism. In this example, we consider one depot and four
customers (A, B, C, D). We assume a capacity availability that permits the existence of two optimal routes.
For instance, vehicle capacity is C = 10 while dA = 9, dB = 2, dC = 3, and dD = 9.

FIGURE 7. A high-level overview of deep reinforcement learning (DRL),
which is used to solve MDP models in VRPs.

The policy denoted by π(a|s), maps the states to the
selected actions as presented in Eq. (3).

π (a|s) = p(At+1 = a|St = s) (3)

The value function denoted as v(s) presents the long-term
rewards. A value function with a certain policy π is denoted
by vπ (s) and defined as the total reward from state s with
planning horizon T and discount fActor γ as presented in Eq.
(4).

vπ (s) = E[
T−1∑
k=0

γ kRt+k+1|St = s] (4)

The action value function is denoted by qπ (s, a) and shows
the reward when taking action a at state s under policy π as

given in Eq. (5).

qπ (s, a) = E[
T−1∑
k=0

γ kRt+k+1|St = s,At = a] (5)

The common objective is to find a policy, that leads to
maximum total rewards by applying the Bellman optimality
conditions [58]. Each problem instance includes a set of Nc
customers, a set of Nv vehicles, and a depot. Each customer
has several characteristics, including location (v), demand
(d), service time (s), time windows (e, l) so that they could be
represented as a tuple ci = (vi, di, si, ei, li), i = 1, 2, . . . ,Nc.
Vehicles are assumed to have a fixed capacity (Q) and speed
(E) [59].

The vehicles start at the depot and meet the demands of
customers sequentially. Vehicles need to comply with the
following rules (single depot scenario):

• The vehicles depart from the depot and return to the
depot after visiting several customers.

• The sequence of customers visited constitutes the routes
of the vehicles.

• Routes begin at and end at the depot.
• The depot can only appear at both ends of a route.
• Once back at the depot, vehicles are not allowed to visit
customers again.

• Vehicles have a maximum load, i.e. capacity Q. The
sum of the demands of customers on a route should not
exceed capacity Q.

• Customers’ time windows could be considered soft,
which implies that vehicles can visit them before or after
the time window. Even yet, there will be a penalty if
a customer is visited outside of the time window. The
penalty is specified as a linear function of the arrival time
and the time window. Vehicles are not permitted to stop
at a customer node. When vehicles arrive at a customer
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node, they should promptly serve the customer and then
leave.

The solution of a VRP instance could be represented as
R = (r1, r2, . . . , rv), where ri is the i-th vehicle’s route. The
goal is to find a solution with minimal cost. For an instance
P and a solution R, the cost could be computed as follows:

Length(ri|P) =

|ri|−1∑
j=1

∥vri (j), vri (j+ 1)∥2 (6)

Penalty(ri|P) =

∑
j∈ri

((ej − ti,j)α ke + (ti,j − lj)β kl) (7)

Cost(R|P) = sumNvi=1(Length(ri|G) + Penalty(ri|G)) (8)

where Length(ri|P) is the total route length of vehicle i, ∥.∥2 is
l2 norm, ri(j) is the j-th customer in the path of vehicle i.
Penalty(ri|P) represents the early and late penalty of route i,
ti is the time when vehicle i arrives at customer j, the travel
time between two customers equals the distance of them
divided by the speed E of the vehicle, the arrival time of the
current customer is equal to the arrival time of the previous
customer plus the service time of the previous customer and
the travel time between the two customers. α and β are early
and late arrival penalty coefficients, respectively, whereas ke
and kl indicate early or late arrival; indeed, it is equal to
1 when arrival time is earlier or later than the time window;
otherwise, 0.

RL-basedmethods aim at learning a policy that maps states
to actions in such a way that the expected cumulative reward,
R, over time is maximized. From Figure 8, it is evident that
different model-free and model-based methods have been
proposed [60]. The model-based RL is used to improve
uncertainty handling, and it also enables the proposedmethod
to construct and store known transport events. To learn the
policy, algorithms such as Q-learning [61], [62] and policy
gradient are very common in the literature. In Q-learning, the
vehicles estimate the expected cumulative reward of taking
action in a given state and following the optimal policy
thereafter by updating their estimates based on the observed
rewards and transitions. The policy can then be obtained by
selecting the action with the highest estimated action-value
in each state. Q-Learning is a model-free algorithm in which
the Q-values can be learned using a table or a neural network,
and the policy can be derived from the Q-values using
an ‘‘ϵ-greedy’’ policy or a ‘‘softmax’’ policy [63]. Some
deep learning models, such as [50], [64], and [65], use
auto-regressive decoding to create the solution to the VRP
incrementally. In these studies, the RL is used to train a policy
that selects the next node in the solution based on a reward
function generated at each step.

Model-based RL makes use of simulated interactions,
it can learn optimal policies more quickly and with
more sample efficiency. Model-based RL makes use of
an environment model for planning and decision-making.
However, in complicated or dynamic contexts, it may struggle
with model inaccuracies, resulting in sub-optimal solutions.

Model-free RL can adapt better to complex real-world
conditions while it often requires more training data and
computational resources. As a result, model-free RL needs
longer training times but provides more robust performance.

The Actor-Critic (AC) methods provide a framework for
learning policies (see Figure 8). For instance, Bello et al.
[66] apply the AC for unsupervised learning. In contrast to
AC, AM and Pointer networks provide architectural tools
to handle the sequential and combinatorial aspects of VRP
effectively. The AC is also combined with DRL. In particular,
Zhao et al. [67] propose two DRL-based algorithms. At first,
they utilize the AC method and combine their proposed DRL
with a local search method to improve the solution quality.
They use the output of the DRL-based method as the initial
solution of the local search algorithm. They show that the
DRL-based solution overcomes the existing state-of-the-art
approach, while the combined DRL and local search method
overcomes their own proposed DRL-based algorithm.

VRPs have graph-based structures inherently. The cus-
tomers or depots could be considered as nodes of this graph,
while the possible routes could be modeled as the edges
with various constraints and objectives. Therefore, graph
neural networks (GNNs) are also utilized in the literature to
provide a solution for VRPs [68]. The GNNs are integrated
with RL and serve as a function approximator for the policy
estimation. GNNs are also combined with deep Q-learning
for model-free policy-based solutions [69]. The combination
of GNNs with heuristics such as hybrid genetic search (HGS)
is also presented in the literature [70]. In general two types
of single-head and multi-head attentions are introduced for
VRPs. Based on the experimental results on VRPs it is shown
that single-Head Attention works better with larger instances
compared to the multi-Head Attention [71].

RL-based models need a large number of interactions with
the environment in order to develop efficient routing policies.
This means a high computing cost and lengthy training
times. Attention-based models and pointer networks can
produce faster initial solutions in compared to the RL-based
methods; however, they compromise the quality of long-term
optimization. RL-based methods require less computational
resources and fine-tuning in compared to the attention-based
models and pointer networks.

D. NON RL-BASED METHODS
Although the majority of the existing ML-based solution
approaches are based on RL, other machine learning-based
methods such as decision trees, game theory, and k-means are
presented in the literature. Typically non RL-based methods
are proposed in hybrid solutions.

In [72], a decision tree is used to figure out the direction of
the evolution process in a multi-objective learnable evolution
model. The authors use heuristics and a sequential search
method to solve the problem that has three goals: travel
distance, driver pay, and the number of vehicles. Their
experimental results suggest that their model is capable of
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FIGURE 8. Categorization of RL-based methods in the literature to solve the VRPs. Model-free RL provides resilience and
adaptability, whereas model-based RL offers efficiency and speed.

finding better Pareto-front solutions than other evolutionary
algorithms.

In [73], the authors use machine learning to predict the
value of variables that can only be one of two options in the
best solution. They also say that this framework can be used to
predict branching scores for variables that are fractional based
on complete strong branching. When the predicted decision
variables are added to a node selection strategy, the expected
branching score is then used on the variable selection policy.

Game theory (GT) in conjunction with ant colony opti-
mization is studied in [74]. The authors investigate dynamic
and stochastic ways to tackle complicated dynamic vehicle
routing problems, minimize total travel time, find the shortest
routing path, and consider dynamic demands. They use GT to
help with decision-making and discover optimal solutions to
conflict and cooperation situations.

Wang et al. [75] use the k-means for collaborative multi-
center VRP with time windows and mixed deliveries and
pickups. The authors describe the issue as a mixed-integer
programming model to lower operational costs. They then
present a two-step hybrid method that combines customer
clustering with vehicle routing optimization. The authors
specifically talked about a 3D k-means clustering method
based on space-time distances for delivery and pickup
constraints at the same time in a vehicle routing problem
with a time window. They also combine the genetic algorithm
with particle swarm optimization to describe a hybrid
heuristic technique for optimizing vehicle routes. They use
30 small-scale instances in the CPLEX solver. Villalba and
Rotta also studied K-means to investigate the VRP with a
time windows (R20-villalba2022clustering). They provide
a clustering-based algorithm that uses K-means and optics
clustering approaches, as well as nearest neighbor and local
search 2-opt heuristics.

The total traveled distance and the total waiting time
of drivers are two typical objective functions in VRPs
that combine the multi-objective vehicle routing problem
with the time frame. The decomposition-based multi-
objective evolutionary algorithm (MOEA/D) has been
applied to single-objective optimization issues. A method
called MOPILS was developed by the authors in [76] to solve
the multi-objective vehicle routing problem. It is based on
pattern injection local search (PILS) and combinesMOEA/D.

Column generation is an iterative approach for solving
a variety of optimization problems that decomposes the
problem into primary and multi-pricing problems [77].
Morabit et al. [77] propose a new heuristic pricing algorithm
that combinesML and heuristic pricing. The authors leverage
data from previous executions to minimize the network
size. On the training data, the authors use a random
forest model, and the hyper-parameters are tweaked using
a cross-validation approach. The authors conducted some
experiments, and the results reveal that this strategy reduces
the execution time for solving VRPS with time windows
constraints, by roughly 40%.

In the study by Mandi et al. [78], preferences like travel
time or fuel use are modeled along with the arc probabilities
so that they can be used in the optimization process. The
authors look at the data that is available to pick out features,
neural architectures, and loss functions. They then use a
neural network model to guess the chances that these things
will happen. The use of ML-based state-of-charge estimation
for electric vehicles by Adaboost and XGBoost algorithms is
proposed in [79].

III. STATE-OF-THE-ART: CATEGORIZATION OF RL-BASED
METHODS
In this section, we review and categorize the covered
studies based on different perspectives. First, we consider
the applications, followed by the categorization based on
their algorithms. Considering the applications, we classify
the studies into six categories: 1) loading, pickup, and
delivery (Section III-A1), 2) UAVs (Section III-A2), 3) Green
VRP (Section III-A3), 4) Multi-depot VRP (Section III-A4),
5) large-scale VRPs (Section III-A5), and 6) dynamic
VRPs (Section III-A6). We further categorize the studies
based on their proposed algorithms into five categories:
1) multi-agent RL (Section III-B1), 2) RL and local search
(Section III-B2), 3) RL with GNNs (Section III-B3), 4) RL
and evolutionary algorithms (Section III-B4), and 5) RL and
heuristics (Section III-B5).

A. APPLICATION-BASED CATEGORIZATION
In this section, we categorize the covered studies based on the
constraints imposed by the specific application.
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1) LOADING, PICKUP AND DELIVERY CONSTRAINTS
Loading constraints may include considerations such as
loading and unloading times, the arrangement of items
within the vehicle, and the type of items being loaded.
Pickup constraints refer to the requirements associated with
picking up goods from specified locations before they
are delivered to their destinations. This version of the
problem can also include time windowswithin which pickups
must occur, specific sequences in which pickups must be
made, or even constraints on the vehicles that can perform
pickups. Delivery constraints may include considerations like
customer availability, confirmation requirements, and access
restrictions to delivery locations. These constraints make the
solution to the VRP more complex.

Hansuwa et al. [80] analyze VRP with simultaneous
pickup and delivery and a time windows constraint. The
authors use practical applications with data uncertainties
in both delivery and pickup to model the problem. The
authors investigate a sequence of V vehicles, with the cost
of a central depot proportional to travel time. They assume
that vehicles can pick up and drop off at either the depot
or the customers. Vehicle capacity, customer service time
windows length, and depot opening and closing times are
some of the requirements that the solution must meet.
Even though the authors look at different vehicles, the
fleet’s capacity and cost are comparable. Some additional
constraints are investigated, such as permitting vehicles to
travel to new destinations, prohibiting customer revisits,
and allowing the vehicle to idle in the depot after the
assignment. The goal is to identify routes that reduce vehicle
dispatch and travel costs. The authors investigate several
ways to solve the capacitated simultaneous delivery and
pickup with time windows (VRPSDPTW) problem, which
involves unknowns like travel time, service time, delivery
quantities, and pickup quantities. These include RL, the
ellipsoidal uncertainty robust counterpart model, and linear
programming of the robust counterpart of mixed-integer
linear programming with box uncertainty. The authors apply
DRL’s power to address real-world VRPSDPTW situations
with undetermined data quality. In summary, the authors
train and handle feature data using the AM-based DRL
technique, both in terms of scale and uncertainty. The authors
show that their techniques generate acceptable responses for
small or medium-sized datasets, but suboptimal solutions for
larger ones. In contrast, AM-based DRL produces acceptable
quality outputs for large-scale practical data sets used in
real-world applications [80].

In [81], the authors address VRP with pickup and delivery,
where DRL is used to handle the scale-up challenge. They
present a DRL-based technique that collaborates with a
heterogeneous AM. They develop six types of AMs for
policy networks within DRL, employing an encoder-decoder
structure. Among them, three types of AMs are used to learn
the relationship between each pickup point and the points of
other roles, while the remaining three types focus on learning
the relationship between each delivery point and the points

of other roles. In their proposed method, adaptive masks are
used to reject invalid locations, ensuring feasibility. Because
of this heterogeneous Attention strategy, the policy network
can learn the pairing and precedence links. The authors train
the policy network using an RL methodology with a roll-
out baseline, and the policy gradient method is distinguished
by an Actor-network and a self-critic network. The supplied
incentive is calculated using a roll-out baseline with a
comparable structure to the Actor-network. After receiving
the reward, the RL algorithm adjusts the parameters of two
networks using the policy gradient approach. The authors
compare the proposed RL-based method’s performance to
heuristics like simulated annealing, OR-Tools, and an earlier
version of the AM and show that their techniques outperform,
in terms of effectiveness and efficiency, the state-of-the-art
approaches. The article does not account for uncertainties.

Chen et al. [82] study the combined delivery and pickup
demands and propose a framework with encoder-decoder
architecture. They utilize a GNN encoder to extract the
feature and use the AM in the decoder. They also propose
a Coordinated Decision of Loading and Routing (CDLR)
mechanism to determine the loading rate. They show that
the combined GNN encoder and CDLR simultaneously can
better handle dynamic demands.

Qiu et al. [83] investigate the home delivery and installation
routing problem with synchronization limitations imposed
by a home industry company. They assume that the goods
need to be delivered and installed in the customer’s home.
To shorten the overall travel distance of delivery and service
routes, the authors propose employing DRL within an
encoder-decoder and multi-head AM in conjunction with
a beam search strategy. The authors conduct experiments
and compare the suggested DRL-based technique to the
Lin-Kernighan heuristic (LKH), adaptive large neighborhood
search, and step-wise transformer AM. The findings of their
evaluation show that the proposed DRL-based solutions
outperform various established tactics and also provide some
management implications.

The main features of the analyzed papers are reported in
Table 2. Several earlier studies address the loading, delivery,
and pickup constraints [84], [85], [86].

2) UNMANNED AERIAL VEHICLES (UAVS)
The UAV-based VRP is a variant that incorporates the use
of UAVs (drones) in the routing and delivery process. The
goal is to find the optimal routes for a fleet of vehicles in
various locations in the most efficient manner. In UAV-VRP,
the problem includes both ground vehicles and UAVs.

In a recent paper, Chen et al. [87] present same-day
delivery with combined vehicles and drones. They tackle the
problem, assuming that vehicles and drones can transport
goods from a single depot. They take into account that
1) vehicles and UAVs have varying capacities, speeds, and
features (including battery swaps for UAVs), 2) the requests
from the customers are limited in time (time-windows), and
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TABLE 2. ML-based solutions for the VRP with loading, pickup, and delivery constraints.

3) the system operator (human or computer) must have
sufficient information to make decisions (accept or reject the
request).

They aim to maximize the number of served customers
considering the above-mentioned constraints. They propose
a deep Q-learning technique. Deep Q-learning uses deep
neural networks as an approximation architecture to learn the
value of state-action pairings. Because NNs can generally
be trained offline, the suggested method should be suitable
for real-time decision-making. Time, fleet, and actions are
three characteristics of actions and state space investigated
by the authors. All of these features are supplied into the
NN, which is then normalized using min-max. The authors
evaluate heterogeneous fleets. They evaluate the proposed
deep Q-learning method’s performance when customers are
distant in time, space, or both, and the number of vehicles
ranges from 2 to 4, with 10 to 15 drones available.

Because the training phase is designed to be offline,
the robustness of the machine learning technique is heav-
ily dependent on the training data. In this circumstance,
training the system with large-scale real-world datasets
with controlled uncertainty data can obviously improve the
performance of machine learning algorithms.

In another study, Delamer and Givigi [88] address dynamic
settings for UAVs and propose a solution to the dynamic
traveling repairman problem. The authors consider UAVs
with no mobility constraints and unlimited sensing, that must
serve several targets while attempting to reduce the waiting
time for each target (customer). They combine RL with
proximal policy optimization. The authors model the problem
as a MDP with binomial target distributions (customers). The
proposed proximal policy optimization is built with two NN
architectures: a feed-forward network and a convolutional
neural network (CNN). To assess the performance of the
defined techniques, the authors employ nearest-first (NF)
and first-generated first-served (FGFS) as baseline heuristic
policies. The NF (customer) prioritizes the nearest target. It is

considered that this strategy approximates the waiting time
and the number of services. The FGFS caters to the target
(customer) who has waited for the longest. Their evaluation
results indicate that as the size of the state space increases,
a feed-forward network outperforms heuristic techniques.
The CNN outperforms the heuristic policy FGFS but not the
heuristic NF.

The study in [88] fails to account for various practical
elements and uncertainties, and it lacks comprehensive
evaluations. The authors of [88] consider restricted sensor
capabilities and multi-agent RL to delve deeper into practical
environments.

Wang et al. [89] study the problem of autonomous ground
vehicle routing and propose a DRL strategy for tactical
driving in complex highways, while accounting for real-time
traffic dynamics. They use a deep Q-network, which takes
in account dynamic traffic data and generates typical tactical
driving decisions as action. They aim to design the solution
while considering the successful highway exit, average
driving speed, and driving safety and comfort. They also build
a CNN to extract traffic characteristics that help Q-learning
decision-making.

Wang et al. [90] present a multi-resolution, multi-agent,
mean-field RL algorithm (3M-RL). The author’s purpose is
to organize the flight paths of the UAVs so that they do
not collide with each other and arrive at their destinations
safely. Mean-field theory (MFT) approximates the influence
of other agents on a single agent by a single averaged
effect known as the mean-field. A multi-body problem is
reduced to a single-body problem using the MFT. The
authors employ the MFT to replace interactions with the
agent with average interactions. This is accomplished through
RL, which is accomplished through the actions of other
agents based on their surroundings. The problem can be
modeled as a single-agent RL problem, with the state space
remaining constant as the total number of agents increases.
When applying this MFT to UAVs, extra considerations,
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TABLE 3. RL-based solutions for the VRP with hybrid UAV/vehicles.

like the safe distance between UAVs, must be taken into
consideration. Each UAV makes judgments based on local
observations and does not communicate with other UAVs,
according to the study’s proposed technique. Using an Actor-
Critic NN, the approach trains a routing policy with multi-
resolution observations, combining specific local information
and aggregated global information based on mean-field.
In Table 3 the main features of the analyzed papers are given.

3) GREEN VRP
The operational research community has devoted high atten-
tion to environmental concerns as well as to the management
of electric vehicles and their limitations. In most cases, the
primary purpose is to reduce energy usage or pollution. These
concerns are related to the uncertain parameters, that have
been considered in the stochastic VRPs.

Alqahtani and Hu [91] investigated the VRP for electric
vehicles (EVs). By reducing reliance on power from the
main power grid, the authors were able to reduce energy
consumption while omitting other costs. The authors assume
that the EV is equipped with an energy storage unit, that is
a photovoltaic panel, which provides power to customers in
various places to meet their energy demand at lower energy
costs. In this problem, which is modeled as an MDP, the
system state is a tuple of four variables relating to vehicle
position, battery state of charge, solar irradiance, and energy
load. The actions are considered to be vehicle movement
and energy transition. Vehicles can move in four directions
(up, down, left, and right) or not move at all, while energy
transactions include charging, discharging, and idling. Each
vehicle’s movement is limited to the zones around it (limited
in the grid). The authors describe an RL paradigm in which
a deep Q-network (DQN) evaluates the Q-value for each
action the EV takes. A case study of four EVs and twenty
users is used to evaluate the selected DQN. The experiments
show that the RL algorithms are better at saving energy
than the genetic algorithm, particle swarm optimization, and
artificial fish swarm algorithms. When compared to the
previously described baseline algorithms, the DQN algorithm
can produce a near-optimal solution in a reasonable execution
time.

Logistics’ rising carbon emissions will significantly harm
the environment. To reduce carbon emissions in logistics,
Zou et al. [51] address the low-carbon multi-depot vehicle
routing problem. The authors propose a DRL with an

improved transformer model (TAOA) that includes both a
multi-head Attention mechanism (MHA) and an Attention-
to-Attention mechanism (AtAM) to address issues caused
by recurrent neural networks and AMs in encoders and
decoders, such as the long-distance dependence problem
and the neglected correlation between query vectors. The
MHA is applied to process different sections of the input
sequence, and theAtAM is used to compensate for theMHA’s
lack of correlation between query outcomes and query
vectors. The training of network parameters with TAOA takes
time, but the following prediction results are obtained rather
quickly. The authors employ the advantage Actor-Critic
technique from intensive learning to train the model. Their
proposed model outperforms the traditional transformer
model (Kools), the genetic algorithm, and Google OR-Tools.

Basso et al. [92] consider energy usage and random
customers as uncertainties in the dynamic stochastic electric
vehicle routing problem (DS-EVRP). The DS-EVRP is
presented as an MDP with a set of possible options and
a state transition function. Since the authors assume that
the vehicle fleet is homogeneous, meaning all vehicles have
the same features, the problem is addressed for a single
vehicle. The goal is to create a channel for a single EV to
service the customer at a given time slot. This problem is
viewed as a single depot that receives both predictable and
unpredictable customer requests. The deterministic requests
are received with a predetermined probability before the
EV leaves the depot. The stochastic requests are received
with an unknown probability after the EV leaves the depot.
All customers’ addresses are assumed to be known, and
all requests are granted. Since it is assumed that battery
capacity is limited, it may be important to prepare for
charging on the fly. The authors use tabu search techniques
to solve the static EVRP, which also acts as a comparison
benchmark. Stochastic EVRP users must anticipate future
demand and energy consumption. At the same time, certain
aspects are known in advance; some are unknown with
known probabilities, and some are unknown with unknown
probabilities. As a technique to reduce energy consumption
and the risk of battery depletion, the authors propose a
safe RL algorithm. Through Monte Carlo simulations, their
proposed Q-learning-based system learns about random user
needs and energy use and then guesses the path. For
offline policy training, they employ a ϵ-greedy policy. The
authors run simulations with a medium-duty truck weighing
10,700 kg (with the battery) and carrying a maximum
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cargo of 16,000 kg. The numerical results demonstrate
that a RL-based solution approach is more effective and
reliable than existing heuristics. The study addresses dynamic
requests in EVRP. However, numerous concerns are worth
investigating, especially the heterogeneous fleet. The training
step is also offline and heavily reliant on the training data.

In [93] the authors investigate public transportation,
while accounting for dynamic changes in demand, travel
times, and traffic. They propose combining RL with a
dynamic scheduling strategy of EVs, such as vehicle-to-
grid transaction capabilities or dynamic charging strategies.
The trained model includes the number of requests, drop-off
requests, battery level, time, and current location. The authors
claim that their method supports dynamic vehicles (agents)
and outperforms a fixed scheduling method.

The authors of [94] look into the issue of an unbalanced
inventory of electric motors in public transportation and
suggest a way to manage the fleet so that there is the right
number of vehicles at each station, while taking into account
the cost of moving tasks and rental opportunities. DRL is
used as a decision-making function to find the optimal fleet
allocation action based on the most recent status of the
number of automobiles at each station.

Basso et al. [95] examine time-dependent electric VRP
with chance restrictions (EVRP-CC) and partial recharge.
The goal is to anticipate the probability distribution of energy
consumption for each network road link. The authors pro-
pose a probabilistic Bayesian ML approach for forecasting
the estimated energy consumption and variation for road
linkages, paths, and routes. The proposed approach method
is divided into two stages: discovering the best paths and
optimizing the routes. To account for the unpredictability
of energy consumption, they anticipate charging within a
confidence interval. They use Bayesian regression to find
a solution. The prior is based on a model of how vehicles
move, and the posterior is improved by gathering more data.
This allows the system to estimate without any training
data, by using a prior computed probabilistic speed profile
derived from map data and a simplified vehicle model. While
the vehicles are on the road, the prediction precision can
rapidly improve with the posterior real data. As effective
energy consumption criteria, the authors consider friction
and drag, battery temperature regulation, cabin equipment,
and external auxiliaries. To test the performance of their
proposed technique, the authors run a series of experiments
using real-world traffic data on a global simulation platform.
They compare their proposed ML-based technique with a
deterministic formulation and show that it is more accurate
in terms of energy prediction as well as energy savings.

The defined method has the advantage of being less
reliant on training data and being able to be updated with
real data [95]. Although this study might be extended to
incorporate alternate vehicle layouts, energy use correlation
for adjacent road connectors, and congestion mitigation.

Aljohani et al. [96] examine metadata-driven routing opti-
mization for Evs to lower energy usage. The authors propose a
real-time data-driven electric vehicle routing optimization to
reduce energy consumption. As an agent, they use a double-
deep Q-learning network (DDQN) to understand the EV’s
maximum travel policy. The policy model is taught to guess
what the agent should do next by looking at the reward signals
and Q-values it receives, which show possible routes. The
Markov chain model is used to calculate the agent’s energy
requirements on the road. Authors use the Geocoding API
to translate physical locations into geographical coordinates.
The EV can travel in one of eight ways. The authors
perform two tests with two routes, that are comparable in
length but have different geographic characteristics. Both
investigations were conducted at a certain time and date with
a limited battery. Their evaluation results indicate that their
DDQN framework consumes less energy than conventional
techniques.

The user choice on multiple criterion route suggestion is
examined in [97]. The authors consider a multi-objective
route suggestion system that takes into account three factors:
fuel consumption, travel time, and air quality. They use the
Q-learning-based RL method promptly. The authors employ
OpenStreetMap to generate a road network graph, which they
then update regularly using existing predictors for air quality,
travel time, and fuel usage.

The main features of the analyzed studies are summarized
in Table 4.

4) MULTI-DEPOT VRP
The number of available depots significantly impacts the
complexity of the VRP and the solution strategies. Multi-
Depot VRP provides a more realistic representation of many
real-world logistics and transportation problems, but it also
requires more sophisticated solution methods to tackle the
added complexity.

The authors in [98] study the CVRP and propose
an augmented state representation. They use Q-Learning
for auto-regressive techniques, that generate solutions by
inserting nodes progressively. They also show how RL may
be used to solve the multiple depot VRP using the proposed
technique. Based on the collected computational results, the
proposedmodel does not outperform the solvers (i.e., LKH3);
however, it is useful to find the initial solutions.

In [99], the authors examine MDP for the multi-depot
dynamic VRP with stochastic road capacity and propose a
solution approach based on a simplified two-stage stochastic
integer linear programming (SILP) model. The proposed
method is suitable for obtaining a policy that is dynamically
developed on the fly throughout the roll-out process.
The roll-out method is part of the approximate dynamic
programming look-ahead solution strategy.

The summary of the reviewed paper is presented in Table 5.
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TABLE 4. ML-based solutions for the Green VRP and Electric Vehicles.

TABLE 5. ML-based solutions for the Multi-depot VRPs.

5) LARGE-SCALE VRPS
Poullet [37] proposes a two-stage technique to solve
large-scale VRP with time windows constraints. In the first
stage, a clustering algorithm based on optimal classification
trees is created to segment customers into smaller subsets.
In the second stage, an Actor-Critic RL strategy on these
smaller customer clusters is defined.

Gupta et al. [100] seek a quick solution for the capacitated
VRP with time windows, to provide a ML-based solution for
large-scale problems. The authors propose a deep Q-network
with an encoder-decoder-based RL technique. The encoder
is a technique for Attention, whereas the decoder is a fully
connected NN. They outperform heuristics, a meta-heuristic
algorithm, and a multi-agent RL framework, as indicated by
their results.

The goal of Liu et al. [101] is to tackle the large-scale
VRP. The authors propose a pre-training mechanism for
online shared networks and use the multi-head Attention
mechanism (MHA) to train the graph Pointer Network in
dual-network RL. When the time windows constraints are
taken into account, the authors claim that their proposed
approach can be used for large-scale VRPs with 100/300/500
customers. According to their evaluations, their proposed
method provides appropriate solution quality and offline
solution efficiency.

Authors in [102] investigate the routing of autonomous
guided vehicles (AGVs). The authors show that the problem
cannot be solved using meta-heuristic methods due to the
high real-time demands for AGVs. Oversimplification of
large-scale AGV systems typically results in unsatisfactory
solutions. The authors describe a DRL technique to address
the AGVs routing problem by defining the problem as a
MDP. Asynchronous deep Q-network is also used as the basic
architecture for RL.

Jiang et al. [103] offers a new coding strategy for solving
the distribution task in the multi-distribution center scenario
VRP with capacity restrictions. They use improved RL with
a MhAM during the encoding phase. They make use of
correlation information between the nodes of the encoding

output distribution. They conduct computer simulations with
Google OR-Tools, and the results show that the suggested
method outperforms the ant colony and the simulated
annealing algorithms.

The main characteristics of the considered papers are
presented in Table 6.

6) DYNAMIC VRPS
In dynamic VRP, certain elements of the problem can vary
over time or are not known with certainty, unlike static VRP,
where all data are known in advance.

Pan and Liu [63] study dynamic real-world logistics and
present a novel DRL framework for tackling a dynamic
and uncertain VRP (DU-VRP). In a changing environment,
the purpose is to fulfill customers’ unpredictable demands.
In this problem, given ambiguous knowledge about customer
desires, the partial observationMDP is used to detect changes
in customer requests in a real-time decision support system
consisting of a deep neural network with a dynamic AM.
RL is used to control the objective function of the DU-VRP
to better train the routing process dynamics.

The authors of [104] use a route-based MDP to exam-
ine the dynamic VRP with time windows. They assume
that the customers could be known in advance or stochastic.
To approximate the objective function, the authors describe
a solution technique that combines DRL and a routing
heuristic. DRLSA is a proposed system that is based
on simulated annealing and allows for optimal re-routing
decisions. The authors demonstrate how the cost of the
remaining vehicle routes can be used as a proxy for the
required route sequence and time window. The authors assess
the performance of the proposed DRLSA, comparing their
results to those achieved using approximate value iteration
and the many scenario techniques.

Peng et al. [105] developed the dynamic AM. To solve
VRPs, the authors use a dynamic encoder-decoder archi-
tecture with a RL AM. The nodes in the dynamic design
are integrated instantly as the vehicles return to the depot,
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TABLE 6. RL-based solutions for large-scale VRPs.

as opposed to the old design. This embedding is fixed in
the standard AM and represents the beginning state of the
input instance. They propose two methods: sample roll-out
and greedy roll-out. The first is stochastic and selects a node
through sampling, whereas the second is deterministic and
selects a node through maximum probability. In the AM,
node features describe an instance’s status. Unlike previous
research that looked at fixed node attributes across time,
the authors look at changing node properties and updating
them depending on model decisions at various development
stages. The authors describe a dynamic AM that uses
hidden structure information during the development process
and is based on a dynamic encoder-decoder architecture
with dynamic node properties. To demonstrate the success
of the suggested technique, the authors perform some
experiments on the models and analyze instances with 50 and
100 customers.

In [106], authors investigate RL for VRPs using
Attention-based RL models rather than earlier recurrent NN-
based techniques. The authors explore dynamic network
typologies and build a new Attention-based RL model that
delivers increased node embedding via batch normalization
reordering and gate aggregation, as well as dynamic-aware
context embedding on multiple relational structures via an
attentive aggregation module. The authors evaluate their
proposed algorithm using the CVRP.

In [107], the authors focus on urbanmobility for people and
products to lower transportation system operational costs and
negative externalities, and they propose merging passenger
transportation with commodities delivery to improve vehicle-
based transportation. Their proposed distributed model-free
DRL system (FlexPool) learns optimal dispatch policies
through interaction with the environment, allowing passen-
gers to be pooled for ride-sharing and items to be delivered
via a multi-hop transit strategy.

The authors in [108] investigate real-time intelligent
vehicle routing systems and offer a DRL method for tackling
the problem as a series of decisions. The authors investigate
the proposed technique using the SUMO simulator and nine
traffic scenarios, as well as the Wilcoxon test, to validate the
results.

The trajectory data might be used to generate a high-
resolution, uncertain road-network graph [109]. The authors
of [109] investigate probabilistic budget routing and attempt
to discover the path with the highest arriving probability
while time and budget are limited. The authors suggest
a hybrid strategy that blends convolution with ML-based

estimates. To improve accuracy, the authors explore distribu-
tion dependencies.

Yuan et al. [110] provide an RL and self-supervised
learning technique that uses an AM to learn a policy for solu-
tion generation and integrates a contrastive self-supervised
learning model to learn the Attention encoder node by node.
They use a two-phase learning technique that comprises
node-wise learning and solution-wise learning to train both
the AM and the self-supervised model. They conduct
numerical experiments to evaluate the effectiveness of the
proposed technique. The summary of the reviewd papers is
presented in Talbe 7.

B. ALGORITHM-BASED CATEGORIZATION
The reviewed studies, categorized in Section III-A, use the RL
method as their main solution algorithm. However, heuristic
and meta-heuristic methods have been frequently used in the
past, and ML-based algorithms can be applied to improve the
performance of these heuristics. In this section, we categorize
the covered studies with this perspective.

1) MULTI-AGENT REINFORCEMENT LEARNING
The standard RL learning process involves a single agent
(vehicle), while the multi-agent RL (MARL) extends this to
a multi-agent environment where vehicles learn and make
decisions collectively.

Ren et al. [59] propose a MARL solution approach,
using road recorders. Their proposed method, which includes
management and strategymodules, can determine the optimal
number of vehicles for VRP with pre-defined constraints.
The interaction environment for DRL is provided by the
management module. The strategy module is made up of
an encoder, many route recorders, and a decoder. Based
on data from the management module, it produces a route
for each vehicle. During training, the management module
generates problem examples for the strategy module to
solve. The strategy module first processes the customer
information through the encoder then constructs the state
of the agents (vehicles) based on the encoder and route
recorder output, and lastly, outputs the vehicle’s route step
by step. Finally, update the neural network parameters in
the strategy module based on the output solution and its
corresponding cost value. DRL’s environment is provided
via the management module. When the strategy module
outputs the vehicle’s next destination and the vehicle fleet
travels, it should update the problem status information
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TABLE 7. RL-based solutions for dynamic VRPs.

in addition to generating problem instances, making the
management module critical for possible remedies. Based
on a predetermined distribution, the management module
generates many instances for training and validation. As the
vehicle fleet travels, this module updates the status of
customers and vehicles. The status is comprised of the current
location of the vehicles as well as the customers visited.
Once the strategy module has provided the next destination
for a vehicle, the vehicle’s location is changed to the chosen
customer and the remanining load is updated. To avoid
infeasible routes, amasking approachmust be used to exclude
customers who are not available at the current time step,
such as customers who have been visited previously or
whose demand exceeds the vehicle’s remaining load. The
strategy module receives problem data and mask information
from the management module and turns them into the route
sequence for each vehicle. The authors conduct various
experiments and compare the performance of OR-Tools and
a genetic algorithm on over 1000 instances. The authors
show that while performance is essentially comparable in
small-scale VRPs, the novel technique outperforms earlier
heuristics in large-scale VRPs (for example, two vehicles
with 100 customers).

Shou et al. [111] model the VRP as aMarkov routing game
(MRG), in which each vehicle (agent) learns and updates
an en-route path choice strategy while interacting with other
vehicles in the network. The authors combine MARL and
a mean-field multi-agent deep Q-learning approach to solve
MRG effectively. The authors perform several experiments to
demonstrate the effectiveness of the proposed technique.

Authors in [112] explore theVRP in dynamic and uncertain
environments and provide a learning policy, that gives
decision criteria for generating routes based on online mea-
surements of the environment state, including the customers’
setup. Deep neural networks are employed to implement the
learning policy in the proposed method, which is known
as multi-agent routing with deep AM. Using a sequential
multi-agent decision-making model, the authors formalize
the description and temporal evolution of a dynamic and
stochastic VRP. They use deep neural networks with AM
to learn generalizable state representations and formulate
online decision rules for dynamic and stochastic data. The
authors run numerous experiments on both stochastic and
deterministic capacitated VRP with 20 customers and four
vehicles.

Authors in [52] investigate the multi-VRP with soft time
windows. The authors present a multi-agent AM, a novel RL

method that solves routing issues in real-time, while taking
advantage of considerable offline training. The proposed
method employs an encoder-decoder structure with Attention
layers to generate tours of several vehicles repeatedly. For
training, the authors use a multi-agent RL method with an
unsupervised auxiliary network. The numerical results show
that the proposed method outperforms Google OR-Tools
and traditional methods while using the least amount of
processing effort.

Ding et al. [113] investigate vehicular crowd sensing,
which collects data from sensor-equipped urban cars. The
authors consider hiring vehicles and propose a novel
graph convolutional cooperative multi-agent reinforcement
learning (GCC-MARL) framework for distributed routing
decisions. The authors undertake trials and show that their
proposed approach outperforms state-of-the-art algorithms in
terms of both gross merchandise volume and data usefulness.

The authors of [114] look into large-scale situations
involving multiple vehicles and time constraints. They then
come up with a new multi-agent RL model capable of
concurrently optimizing both route length and vehicle arrival
times. The encoder-decoder structure acts as the model’s
foundation. The encoder mines the relationship between
the problem’s customer nodes, and the decoder produces
each vehicle’s path repeatedly. Their results show that their
proposed model outperforms heuristic strategies in terms of
both performance and computing time.

The authors of [115] suggest a new way to solve hier-
archical problems called ‘‘learning collaborative policies’’.
This method uses DRL as the ‘‘seeder’’ policy and ‘‘reviser’’
policy to find the almost perfect solution. The seeder
generates as many diverse candidate solutions as possible
and investigates action space, i.e., the sequence of assignment
actions. They use an entropy regularization incentive to train
the seeder’s policy, while the reviser alters each candidate
solution and divides the entire route.

The authors of [116] look into real-world CVRP where the
vehicle fleet is not a clone of a single vehicle. Taking into
account the heterogeneous CVRP with varied characteristics
that affect their capacity (or travel speed), seek to reduce the
fleet’s vehicle’s longest or total travel duration. To solve the
issue, the authors suggest a DRL method based on the AM
that learns to build a solution by picking both a vehicle and a
node for this vehicle at each step. This is done with a vehicle
selection decoder taking into account the different types of
vehicles and a node selection decoder taking into account the
building of routes.
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In one of the very recent studies, the authors discuss
the collaborative VRP and propose a deep multi-agent RL
approach [117]. The authors state that characteristic functions
scale exponentially with the number of agents while in their
proposed method, the agents do not require access to the
characteristic function, thus significantly reducing run-time.

2) RL WITH LOCAL SEARCH
In recent work, Pugliese et al. [118] investigate crowd-
shipping distribution using ordinary people who normally
travel on the roads in their vehicles. According to the authors,
these cars are extra resources for the delivery company’s
trucks. These drivers are considered by the authors, who
design a heuristic technique based on variable neighborhood
search. They use ML-based techniques to explore the search
space. The authors, in particular, use a learning technique
to guide the selection of local search moves during the
intensification phase, which can be thought of as an adaption
of the Q-learning algorithm. Their findings show that the
proposed framework saves CPU time, especially when there
are a large number of customers.

Zhao et al. [67] propose a DRL model comprised of an
Actor, an adaptive critic, and a routing simulator combined
with local search to address the VRP. Based on the
AM, the Actor is supposed to generate routing strategies,
and the adaptive critic alters the network architecture to boost
the convergence rate. These completed actions improve the
solution quality of the training phase. The routing simulator
provides graph information and motivation via the Actor and
adaptive critic. The combination of DRL and local search is
used to improve solution quality even further. The authors
conduct experiments with 20, 50, and 100 vehicles, and
the results show that the DRL model outperforms Google
OR-Tools, the LNS algorithm, and previous DRL strategies
on its while combining the DRL model with various local
search methods yields promising results. Their approach
does not account for several dynamic real-life aspects, and
performance can also be improved with recent advances in
RL, such as multi-header AM.

Wu et al. [119] define heuristic algorithms to solve VRPs
that necessitate extensive trial-and-error. They use ML and
present a framework for directly learning from improvement
heuristics rather than learning from construction heuristics.
Hence, they provide a framework for DRL for learning
routing problem improvement solutions. The authors design
a self-Attention-based deep architecture to serve as the policy
network that guides solution selection. The technique is
improved by doing neighborhood searches repeatedly in the
direction of quality improvement. The authors apply DRL to
automatically identify improvement policies, whereas previ-
ous heuristic methods require domain knowledge to identify
the policies, and usually, their improvements are limited. The
authors apply their method to solve the CVRP, showing its
effectiveness.

Chen et al. [120] analyze the periodic VRP with time
windows and open routes, assuming that trucks do not return

to the depot after every single delivery, but rather at the
end of every two shifts. They show that using existing
mathematical models to solve the problem is impracticable,
and those exact search methods cannot be used to tackle
large-scale instances. Then, the authors propose VNS-RLS,
a variable neighborhood search method that incorporates RL.
The authors use RL to drive the search during the local search
improvement phase.

In another study on the application of ML to improve
the performance of heuristics on solving VRPs, Hottung,
and Tierney [65] provide a novel large neighborhood
search framework that incorporates the learned heuristics for
producing new solutions. The learning of their suggested
method is based on a deep neural network with an AM.
The authors evaluate their proposed technique on CVRP
with up to 297 customers and on the split delivery vehicle
routing problem. They use batch and single instance searches
to show that their proposed method outperforms heuristic
solvers.

Paulo et al. [121] propose to use DRL to train a local
search heuristic based on 2-opt. They create a policy neural
network that uses the gradient technique to train a stochastic
policy that selects 2-opt operations given a current solution.
The authors conduct experiments considering 10,000 occur-
rences. They compare their proposed method to heuristics for
nearest, random, and farthest insertion constructs, as well as
OR-Tools with 2-opt and LKH as augmentation heuristics.
Their novel strategy, according to the results, improves near-
optimal solutions, showing it is faster than previous learning
methods.

In [122], authors present a unique DRL method to
learn construction heuristics and apply a multi-decoder
Attention model (MDAM) to train many separate policies.
This method raises the chances of finding an acceptable
answer. To capitalize on the diversity of their proposed
MDAM, the authors additionally use a customized beam
search technique. The authors run a series of experiments
to evaluate the performance of the proposed MDAM.
They report on the run-times for solving 10,000 test
instances to decrease the cost. The results show that
their suggested MDAM outperforms the existing baseline
techniques.

In [123], the authors propose a framework for value-
function-based SRL using a combinatorial action space,
in which the action selection issue is explicitly described
as a mixed-integer optimization problem. The proposed
framework is applied to the CVRP. It models an action as
the creation of a single route using a deterministic policy
that is improved using a simple policy iteration method.
In medium-sized instances, the authors conduct simulations
whose results outperform state-of-the-art OR techniques.

3) RL WITH GRAPH NEURAL NETWORKS
Duan et al. [124] were motivated to improve the perfor-
mance of VRP systems, particularly when compared to
OR-Tools. They propose a method for training the model
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that incorporates RL (supervised). The authors use a graph
convolutional network (GCN)with node attributes to describe
cooperation and demand. The edge feature, as input to their
proposed technique, models the actual distance between
nodes. The authors use independent decoders to represent
these two node and edge features. One decoder’s output is
supervised by the output of the other decoder. They show
that the edge feature is significant enough to warrant explicit
inclusion in the model and that the joint learning technique
can accelerate training convergence and improve solution
quality.

The deep learning architecture proposed byHagström [68],
combines a graph neural network with beam search for
solving VRP, called VRPNet. The VRPNet network is based
on the recurrent relational network architecture and learns
a probabilistic representation of the solution space. VRPNet
computesmessages between nodes iteratively and updates the
hidden states. The nodes broadcast the current state to their
neighbors throughout each iteration (parallel computation).
As a result, nodes can update the hidden state, and the
cycle continues. The model produces promising results on
small-scale problems.

4) RL COMBINED WITH EVOLUTIONARY METHODS
Achamrah et al. [125] examine the dynamic and stochastic
inventory routing problem (DSIRP) and propose a novel
solution based on a hybridization of mathematical modeling,
genetic algorithms, and DRL. They test the proposed
technique on 150 single-vehicle DSIRP benchmark examples
and 450 multi-product DSIRP benchmark instances.

Moradi [36] addresses the VRP with time windows and
proposes a multi-objective discrete learnable evolution model
(MODLEM) that avoids undefined search by using a ML
technique such as decision trees. To control the approach’s
multi-objective characteristic, they include a robust strength
Pareto evolutionary algorithm in the learnable evolution
model. The suggested MODLEM performance is evaluated
using Solomon VRPTW [36]. The results show that MOD-
LEM behaves the same as the state-of-the-art approaches in
terms of solution quality and computing time in both areas.

Zhou et al. [126] apply ML to improve the performance of
adaptive ant colony optimization. They provide an approach
that is based on adaptive gradient descent (ADACO) theory
and define the transition probability as a policy. In the
proposed constraint-aware policy optimization for VRPTW,
vehicles (agents) learn the constraints as a representation
of the full environment to boost the generalization of RL
methodologies. The authors evaluate the performance of their
proposedADACO technique on a range of instances spanning
from 51 to 4,461 nodes, showing that ADACO is stable and
less hyper-parameter sensitive and that its performance is
comparable to state-of-the-art algorithms.

5) RL WITH HEURISTICS
The authors of [127] analyze a real-world VRP situation,
taking into account practical constraints. Their proposed

framework is based on DRL and a greedy heuristic. They
use a self-attention framework in conjunction with heuristics
to ensure that the self-attention framework only embeds the
graph once. The self-attention or heuristic function manages
various constraints, such as visiting each customer once.
The authors analyze the proposed technique for the traveling
salesman problem with time windows and rejection. The
rejection happens when the customers cannot be served in
the allocated time windows. The results show that their
proposed technique outperforms the tabu search heuristic in
terms of solution quality and computational time. The authors
assume that the customers and their requirements are known
in advance.

Kool et al. [128] study end-to-end DRL algorithms and
their ability to improve the performance of approximation
solution heuristics. The authors propose deep policy dynamic
programming (DPDP) combined with heuristics. In DPDP,
the deep neural network policy is used to prioritize and
constrain the dynamic programming state space. The authors
run a series of experiments. The results on 100 nodes show
that the neural policy improves the performance of DP
algorithms with limited constraints in the same way that LKH
does.

Qin et al. [129] study practical heterogeneous VRPs
with a specified fleet of vehicles of varied capacities. The
purpose is to minimize the maximum routing time for
the fleet. The authors mixed-integer linear programming
model can use to identify optimal solutions for small-
scale problems, while RL-based hyper-heuristics and DRL
tackle large-scale problems. They assess two high-level
policies and review meta-heuristics such as the artificial
bee colony algorithm, ant colony optimization, cuckoo
search, genetic algorithm, particle swarm optimization,
and simulated annealing to develop the low-level policy.
They use a policy-based RL technique to improve the
effectiveness of the hyper-heuristic framework. The authors
extract hidden patterns from the gathered data to combine
the benefits of low-level heuristics. On large-scale problems,
the numerical results show that the suggested approach
outperforms existing meta-heuristic algorithms and theMILP
solutions.

IV. DISCUSSION AND FUTURE RESEARCH DIRECTION
The key question that this survey attempts to answer is
why and how ML can help to solve the VRPs or improve
the performance of the existing solutions. As our study
demonstrates, the bulk of available studies and reviews in the
literature considered exact methods or heuristics. In small-
size instances, both optimal approaches and heuristics
perform well. Heuristics are much faster than traditional
optimization procedures, but there is no guarantee that they
will lead to the optimal solution. As a result, heuristic-
based solutions are preferred in real-world VRPs [36]. The
following summarizes the learned lessons for conventional
non-ML solutions.
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• Exact approaches provide the best or close to the
best solution for any occurrence of the vehicle routing
problem.

• VRPs are NP-hard problems; hence, exact approaches
are only relevant in particular cases and for small-scale
applications. For instance, CPLEX solver can not be
trusted with more than 25 customers [118].

• For any case of the vehicle routing problem, approxi-
mate approaches provide a sub-optimal solution.

• Typically, the estimated approach distance from the
optimal outcome is known (could be calculated). As a
result, approximation approaches are sometimes used as
a bound for other methods.

• Heuristic approaches may fail in some unusual circum-
stances. However, there has been no disagreement over
the convergence requirements of heuristic approaches.

• When compared to optimal approaches, heuristic meth-
ods are noted for their speed and cheaper processing
costs.

• When compared to optimal procedures, heuristic meth-
ods can usually be used to tackle bigger-scale vehicle
routing problems.

• Meta-heuristic approaches used to solve the VRPsmight
be single-point or population-based.

• To create hybrid methodologies, population-basedmeta-
heuristics can be combined with existing heuristics or
machine learning-based methods. For instance, meta-
heuristics, such as genetic algorithms or ant colony
optimization, are combined with heuristics, such as big
neighborhood search.

ML can help to address VRPs in two main directions. The
first approach is to describe the vehicle routing problem as
a Seq-2-Seq or MDP and then apply a ML-based technique
to solve the problem. The majority of covered papers in
the literature are based on RL and its variants. The second
way that ML-based methods can be used is to make existing
heuristics work better by teaching them a policy or making
the search space smaller. In vehicle routing problems, for
example, it is well known that the quality of heuristic
solutions is dependent on the features of the problems to be
solved.

Another finding is that ML approaches are generally
applied to single-agent environments with stationary envi-
ronments. Vehicles (agents) must know the past condition of
the environment due to stationary assumptions that are not
compatible with real-world needs.

DRL is commonly utilized to solve the VRPs. DRL
provides a framework that could be used for solving
decision-making problems in dynamic contexts. However,
solving VRP with ML, particularly DRL, brings significant
issues, which we mention below:

• DRL procedures are quick to implement. However, the
training process takes time.

• The performance of a ML-based algorithm is typically
heavily dependent on the training dataset. As a result,

a high number of instances are needed to train the DRL
model.

• Although the DRL approaches performwell in computer
experiments, convergence and having a near-optimal
solution is not guaranteed.

• In small or medium-scale VRPs, cutting-edge heuristics
outperform DRL. However, as the number of vehicles
increases, so does the computing complexity, DRL
shows a very good performance in handling such
large-scale problems.

ML-based methods have been applied to a wide range
of vehicle routing problems, but there is still much more
to be done to bridge the gap between the two OR and ML
communities. The majority of existing studies are based on
the deterministic assumption, and the few stochastic studies
are limited in the restrictions they address. In the following,
we thoroughly explain some of the fundamental concepts that
ML approaches can address.

• Almost all of the studies presume that the fleet of
vehicles is homogeneous (identical vehicles). Vehicles
with a wide range of characteristics may better represent
real-world applications. This is one of the issues that
could be best addressed by ML-based approaches.

• In almost all the studies, the number of available vehicles
is known in advance, whereas determining the optimal
number of vehicles is another issue to be considered.

• While multitasking optimization is supposed to give
excellent efficiency and accuracy, it is rarely at the fore-
front of VRPs [114]. In the VRPs, dynamic multitask
optimization methods could potentially be applied in
future research.

• The cases with uncertain and stochastic needs are
addressed, but there is still room for additional realistic
and plausible uncertainties to be considered. There
are many examples, especially for electric self-driving
scenarios.

• There is still a gap in studying the convergence of hybrid
approaches or the conditions under which the solution is
likely to be achievable.

• Taking into account integrated information, such as
delivery history data, road network information, and
various constraints, into online decision-making could
be a viable approach for large-scale problems.

• Although ML-based methods are used to increase
heuristic performance, there is still a need for more effi-
cient ML-based methods for optimal hyper-parameters
or learning strategies.

• Multi-agent VRP can capture more complex and real-
istic scenarios, especially when there are interactions
or dependencies among different entities in the system.
This subject can still be better addressed in future
studies.

• Generative adversarial networks (GANs) have recently
been at the center of attention for many research studies.
While there are very few addressing the VRPs [130].
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FIGURE 9. The overview of the practical comments that need to be taken into account in evaluating the ML-based
solutions for VRPs.

TABLE 8. The dataset used for CVRP benchmarks.

• Transfer learning is another technique that is being
utilized in many ML-based methods, but it has not been
well studied in VRPs [131].

• New concepts could be considered in combination with
RL-based methods. For instance, the concepts of meta-
learner [132] and ML-quantum computing [133].

• The new paradigms of responsible AI or explainable AI
have not yet been addressed in the literature. This might
be important, especially considering the new rules on
minimizing the risk of AI in real-world applications.

To summarize, we believe that ML techniques can improve
solutions to VRPs, particularly when dealing with large-scale
problems. They could be the only reasonable solution when
the environment and demands introduce many uncertainties
and the problem deals with a heterogeneous (non-identical)
fleet of vehicles.

V. PRACTICAL GUIDELINES
When dealing with medium- or large-scale problems,
ML-based solutions are most effective. It worth mentioning
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TABLE 9. The dataset used for VRP with time windows constraints.

TABLE 10. Benchmarks for GVRP, MDVRP, SBVRP, SDVRP, SDVRPTW, and VRPB.

that the efficacy of ML-based approaches is strongly
dependent on the quality of the data used for training.
The robustness and validity of the data gathering process
are important consideration that are sometimes disregarded
in ML-based VRP techniques. Recent research, such as
what is performed in [134] shows that seemingly random
sampling approaches might introduce potential biases and
errors during data collection. As a result, evaluating the
data gathering strategies employed in existing research is
critical to ensuring the reliability and accuracy of machine
learning models. Validation of ML-based solutions is critical
to guaranteeing their practical application. Cross-validation,
simulation, and real-world testing should be used to evaluate
model performance. Furthermore, case studies on successful
deployments of ML-based VRP systems can provide signif-
icant insights into the actual problems and benefits of these
technologies.

In the following sections, we will focus on two interlinked
key elements: benchmark datasets and available solvers,

which are often overlooked in the literature. Figure 9 provides
an overview of the system studied in the experiments along
with the practical guideline [135].

A. BENCHMARK DATASETS
The computational analysis to evaluate the performance
of the proposed solutions to the VRPs is an important part of
the related research. The datasets containing the instances to
be tested arementioned in the literature. This section provides
a quick overview of existing benchmarks for various kinds of
vehicle routing problems.1

We begin with the original CVRP, for which benchmarks
are provided from 1995 to 2018, ranging from one to
240 instances. Table 8 provides a summary of these instances.

Another feature that is taken into account in various
VRP variants is the time window. The covered variants are

1We believe that all the frequently addressed datasets are covered;
however, there might be still some benchmarks that have been missed
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TABLE 11. Benchmarks for other variants of the VRP.

the vehicle routing problem with time windows (VRPTW),
periodic vehicle routing problem with time windows

(PVRPTW), multi-depot vehicle routing problem with time
windows (MDVRPTW), and multi-depot periodic vehicle
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FIGURE 10. The capabilities of Google OR-Tools, which are widely utilized in VRP-related research.

routing problemwith timewindows (MDVRPTW), which are
summarized in Table 9.

Table 10 displays the dataset benchmarks for the green
vehicle routing problem (GVRP) variant, multi depot vehicle
routing problem (MDVRP), vehicle routing problem with
backhauls (VRPB), swap-body vehicle routing problem
(SBVRP), site-dependent vehicle routing problem (SDVRP),
and SDVRP with time windows (SDVRPTW).

Table 11 summarizes the remaining available benchmarks
in the literature.

B. SOLVER PACKAGES
In what follows, we briefly describe some of the most
well-known software products used for the VRPs. Almost
the majority of them are based on heuristics, because VRP
is NP-Hard and no exact method can be guaranteed to
identify optimal solutions in reasonable computational time,
particularly when dealing with large-scale problems. The
majority of studies in the literature focus on open-source
software products.

1) GOOGLE OR-TOOLS
It is the most commonly used software solution [136],
particularly in ML-based analyses of VRPs. OR-Tools is
a free and open-source software that includes solvers for
constraint programming, linear and mixed-integer program-
ming, vehicle routing, and graph algorithms. The vehicle
routing package includes solvers for the traveling salesperson
problem, the vehicle routing problem, the VRP with capacity

constraints, the VRP with time windows, the VRP with
resource constraints (such as space or personnel to load and
unload vehicles at the depot), and the VRP with dropped
visits, in which the vehicles are not required to visit all
locations but must pay a penalty for each visit that is dropped.
The codes are provided in Python, C++, Java, and C-sharp.
It is possible to modify the codes, such as the search method.
Sample solutions could be used as a benchmark for the
aforementioned VRPs. Figure 10 depicts the capabilities of
the OR-Tool.

2) LKH-3
It is a VRP solver recognized in the ML community [137].
The broad application of benchmarks from the literature
demonstrates the effectiveness of this solver. The LKH-3 is
an open-source, C programming language implementation
that is portable across a variety of computer platforms and
supports many VRPs, as shown in Figure 11.

3) VRPSOLVER
It uses the exact methods of branch-cut-and-price. This
VRPSolver interface is available in Julia v1.4.2 and can be
used in the following scenarios [138]:

• Comparing the heuristic algorithms with the lower
bound/optimal solution.

• Using the Exact algorithms as a benchmark.
• Developing and testing effective models for novel
vehicle routing problems.
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FIGURE 11. The LKH-3 capabilities that are widely employed in VRP and TSP research [137].

The VRPSolver license is only for academic use. The asso-
ciated software package is offered as a Docker image, which
may be run onMacOS, Ubuntu, orWindows. Docker Toolbox

can be used by users of MacOS and Windows computers
that do not meet the Docker requirements. VRPSolver makes
use of BaPCod, a C++ package that implements generic
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FIGURE 12. The capabilities of the VRPSolver package used for solving
the VRPs [138].

Branch-Cut-and-Price operations. Figure 12 summarizes
some of the VRPSolver versions that have been solved.
Figure 12 offers an overview of several variants of the VRP
addressed by using the VRPSolver.

4) VRP SPREADSHEET SOLVER—MICROSOFT
It is an open-source tool for solving and visualizing the
outcomes of VRPs. The VRP Spreadsheet solver takes
advantage of publicly available GIS and meta-heuristics to
solve the original VRP with up to 200 customers [139].
A Windows-based software known as the Larry Snyder VRP
solver is also provided, which implements a randomized
version of the Clarke-Wright savings algorithm and uses a list
of customer locations (latitude and longitude) and demand as
input to display the results in graphical (map) form.

While the literature lists numerous software solutions,
few are considered in our examined literature, such as the
‘‘ArcGISNetwork Analyst extension’’, TSP Solve byGurobi,
and ‘‘Wolfram Demonstrations Project’’.

Beyond the solvers detailed in this work, there exist distinc-
tive software packages within the Git community specifically
designed for addressing VRPs and their variations. Our
GitHub search has generated over 1000 repository results.

We believe that existing software package solutions cannot
be directly applied to new research areas, but can serve as
benchmarks for ML-based solution evaluations.

VI. CONCLUSION
The purpose of this study was to determine why and how
machine learning can help solve vehicle routing problems
or improve existing solutions. As discussed, majority of
the existing research use exact methodologies or heuristics,
which are preferable in small-scale scenarios. Heuristic-
based solutions are known for their speed and low processing
costs, but there is no guarantee that they will produce the
best solution. We investigated the application of MLmethods

for solving VRPs. We reviewed the existing related survey
publications (22 papers). We analyzed the associated litera-
ture from 2020 to 2023, as well as some important studies
from 2015 to 2020. We presented a mathematical overview,
including the fundamentals for reinforcement learning, the
Markov decision process, Attention mode, Pointer Networks,
and graph neural networks.We further categorized the studies
covered from various perspectives. We divided machine
learning-based methods into two broad categories: RL-
based methods and non-RL-based methods. We considered
supplementary categorization in RL-based approaches based
on the characteristic of the problem in which such technology
is used, i.e., VRP with loading, delivery, and pickup
constraints, UAVs, Green and electric vehicles, large-scale
VRPs, and dynamic VRPs. We also categorized the studies
based on their implemented algorithms and showed that
the majority of the studies utilize RL. We also included a
comprehensive section on implementation guidelines, which
include both the benchmark dataset and open-source solvers.
The key advantage of ML-based approaches is their ability
to deliver solutions for large-scale VRP instances. However,
these strategies are dependent on the quality and availability
of data. As a result, scalable strategies that might improve
data collecting and hence boost model robustness remain
as a future research path. Furthermore, investigating hybrid
approaches that combine ML and conventional optimization
techniques may result in significant advancements in solving
complex VRPs, particularly in terms of computational
complexity. Some fundamental concepts that ML approaches
can address in future include addressing homogeneous
vehicles, determining the optimal number of vehicles, incor-
porating integrated information into online decision-making,
increasing heuristic performance, capturing more complex
and realistic scenarios, using generative adversarial networks
(GANs), transfer learning, new concepts in combination with
RL-based methods, and new paradigms of responsible AI or
explainable AI.
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